5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
196 * 14 Jun 2005 macro Use irqreturn_t.
197 * 23 Oct 2006 macro Big-endian host support.
198 * 14 Dec 2006 macro TURBOchannel support.
199 * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts.
203 #include <linux/bitops.h>
204 #include <linux/compiler.h>
205 #include <linux/delay.h>
206 #include <linux/dma-mapping.h>
207 #include <linux/eisa.h>
208 #include <linux/errno.h>
209 #include <linux/fddidevice.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
221 #include <asm/byteorder.h>
226 /* Version information string should be updated prior to each new release! */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.11"
229 #define DRV_RELDATE "2014/07/01"
231 static const char version
[] =
232 DRV_NAME
": " DRV_VERSION
" " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
235 #define DYNAMIC_BUFFERS 1
237 #define SKBUFF_RX_COPYBREAK 200
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
247 #define DFX_BUS_EISA(dev) 0
251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
253 #define DFX_BUS_TC(dev) 0
256 #ifdef CONFIG_DEFXX_MMIO
262 /* Define module-wide (static) routines */
264 static void dfx_bus_init(struct net_device
*dev
);
265 static void dfx_bus_uninit(struct net_device
*dev
);
266 static void dfx_bus_config_check(DFX_board_t
*bp
);
268 static int dfx_driver_init(struct net_device
*dev
,
269 const char *print_name
,
270 resource_size_t bar_start
);
271 static int dfx_adap_init(DFX_board_t
*bp
, int get_buffers
);
273 static int dfx_open(struct net_device
*dev
);
274 static int dfx_close(struct net_device
*dev
);
276 static void dfx_int_pr_halt_id(DFX_board_t
*bp
);
277 static void dfx_int_type_0_process(DFX_board_t
*bp
);
278 static void dfx_int_common(struct net_device
*dev
);
279 static irqreturn_t
dfx_interrupt(int irq
, void *dev_id
);
281 static struct net_device_stats
*dfx_ctl_get_stats(struct net_device
*dev
);
282 static void dfx_ctl_set_multicast_list(struct net_device
*dev
);
283 static int dfx_ctl_set_mac_address(struct net_device
*dev
, void *addr
);
284 static int dfx_ctl_update_cam(DFX_board_t
*bp
);
285 static int dfx_ctl_update_filters(DFX_board_t
*bp
);
287 static int dfx_hw_dma_cmd_req(DFX_board_t
*bp
);
288 static int dfx_hw_port_ctrl_req(DFX_board_t
*bp
, PI_UINT32 command
, PI_UINT32 data_a
, PI_UINT32 data_b
, PI_UINT32
*host_data
);
289 static void dfx_hw_adap_reset(DFX_board_t
*bp
, PI_UINT32 type
);
290 static int dfx_hw_adap_state_rd(DFX_board_t
*bp
);
291 static int dfx_hw_dma_uninit(DFX_board_t
*bp
, PI_UINT32 type
);
293 static int dfx_rcv_init(DFX_board_t
*bp
, int get_buffers
);
294 static void dfx_rcv_queue_process(DFX_board_t
*bp
);
295 #ifdef DYNAMIC_BUFFERS
296 static void dfx_rcv_flush(DFX_board_t
*bp
);
298 static inline void dfx_rcv_flush(DFX_board_t
*bp
) {}
301 static netdev_tx_t
dfx_xmt_queue_pkt(struct sk_buff
*skb
,
302 struct net_device
*dev
);
303 static int dfx_xmt_done(DFX_board_t
*bp
);
304 static void dfx_xmt_flush(DFX_board_t
*bp
);
306 /* Define module-wide (static) variables */
308 static struct pci_driver dfx_pci_driver
;
309 static struct eisa_driver dfx_eisa_driver
;
310 static struct tc_driver dfx_tc_driver
;
314 * =======================
315 * = dfx_port_write_long =
316 * = dfx_port_read_long =
317 * =======================
320 * Routines for reading and writing values from/to adapter
326 * bp - pointer to board information
327 * offset - register offset from base I/O address
328 * data - for dfx_port_write_long, this is a value to write;
329 * for dfx_port_read_long, this is a pointer to store
332 * Functional Description:
333 * These routines perform the correct operation to read or write
334 * the adapter register.
336 * EISA port block base addresses are based on the slot number in which the
337 * controller is installed. For example, if the EISA controller is installed
338 * in slot 4, the port block base address is 0x4000. If the controller is
339 * installed in slot 2, the port block base address is 0x2000, and so on.
340 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
341 * registers using the register offsets defined in DEFXX.H.
343 * PCI port block base addresses are assigned by the PCI BIOS or system
344 * firmware. There is one 128 byte port block which can be accessed. It
345 * allows for I/O mapping of both PDQ and PFI registers using the register
346 * offsets defined in DEFXX.H.
352 * bp->base is a valid base I/O address for this adapter.
353 * offset is a valid register offset for this adapter.
356 * Rather than produce macros for these functions, these routines
357 * are defined using "inline" to ensure that the compiler will
358 * generate inline code and not waste a procedure call and return.
359 * This provides all the benefits of macros, but with the
360 * advantage of strict data type checking.
363 static inline void dfx_writel(DFX_board_t
*bp
, int offset
, u32 data
)
365 writel(data
, bp
->base
.mem
+ offset
);
369 static inline void dfx_outl(DFX_board_t
*bp
, int offset
, u32 data
)
371 outl(data
, bp
->base
.port
+ offset
);
374 static void dfx_port_write_long(DFX_board_t
*bp
, int offset
, u32 data
)
376 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
377 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
378 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
381 dfx_writel(bp
, offset
, data
);
383 dfx_outl(bp
, offset
, data
);
387 static inline void dfx_readl(DFX_board_t
*bp
, int offset
, u32
*data
)
390 *data
= readl(bp
->base
.mem
+ offset
);
393 static inline void dfx_inl(DFX_board_t
*bp
, int offset
, u32
*data
)
395 *data
= inl(bp
->base
.port
+ offset
);
398 static void dfx_port_read_long(DFX_board_t
*bp
, int offset
, u32
*data
)
400 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
401 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
402 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
405 dfx_readl(bp
, offset
, data
);
407 dfx_inl(bp
, offset
, data
);
417 * Retrieves the address ranges used to access control and status
424 * bdev - pointer to device information
425 * bar_start - pointer to store the start addresses
426 * bar_len - pointer to store the lengths of the areas
429 * I am sure there are some.
434 static void dfx_get_bars(struct device
*bdev
,
435 resource_size_t
*bar_start
, resource_size_t
*bar_len
)
437 int dfx_bus_pci
= dev_is_pci(bdev
);
438 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
439 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
440 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
443 int num
= dfx_use_mmio
? 0 : 1;
445 bar_start
[0] = pci_resource_start(to_pci_dev(bdev
), num
);
446 bar_len
[0] = pci_resource_len(to_pci_dev(bdev
), num
);
447 bar_start
[2] = bar_start
[1] = 0;
448 bar_len
[2] = bar_len
[1] = 0;
451 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
452 resource_size_t bar_lo
;
453 resource_size_t bar_hi
;
456 bar_lo
= inb(base_addr
+ PI_ESIC_K_MEM_ADD_LO_CMP_2
);
458 bar_lo
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_LO_CMP_1
);
460 bar_lo
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_LO_CMP_0
);
462 bar_start
[0] = bar_lo
;
463 bar_hi
= inb(base_addr
+ PI_ESIC_K_MEM_ADD_HI_CMP_2
);
465 bar_hi
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_HI_CMP_1
);
467 bar_hi
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_HI_CMP_0
);
469 bar_len
[0] = ((bar_hi
- bar_lo
) | PI_MEM_ADD_MASK_M
) +
472 bar_start
[0] = base_addr
;
473 bar_len
[0] = PI_ESIC_K_CSR_IO_LEN
;
475 bar_start
[1] = base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
;
476 bar_len
[1] = PI_ESIC_K_BURST_HOLDOFF_LEN
;
477 bar_start
[2] = base_addr
+ PI_ESIC_K_ESIC_CSR
;
478 bar_len
[2] = PI_ESIC_K_ESIC_CSR_LEN
;
481 bar_start
[0] = to_tc_dev(bdev
)->resource
.start
+
483 bar_len
[0] = PI_TC_K_CSR_LEN
;
484 bar_start
[2] = bar_start
[1] = 0;
485 bar_len
[2] = bar_len
[1] = 0;
489 static const struct net_device_ops dfx_netdev_ops
= {
490 .ndo_open
= dfx_open
,
491 .ndo_stop
= dfx_close
,
492 .ndo_start_xmit
= dfx_xmt_queue_pkt
,
493 .ndo_get_stats
= dfx_ctl_get_stats
,
494 .ndo_set_rx_mode
= dfx_ctl_set_multicast_list
,
495 .ndo_set_mac_address
= dfx_ctl_set_mac_address
,
504 * Initializes a supported FDDI controller
510 * bdev - pointer to device information
512 * Functional Description:
515 * 0 - This device (fddi0, fddi1, etc) configured successfully
516 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
519 * It compiles so it should work :-( (PCI cards do :-)
522 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
523 * initialized and the board resources are read and stored in
524 * the device structure.
526 static int dfx_register(struct device
*bdev
)
528 static int version_disp
;
529 int dfx_bus_pci
= dev_is_pci(bdev
);
530 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
531 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
532 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
533 const char *print_name
= dev_name(bdev
);
534 struct net_device
*dev
;
535 DFX_board_t
*bp
; /* board pointer */
536 resource_size_t bar_start
[3] = {0}; /* pointers to ports */
537 resource_size_t bar_len
[3] = {0}; /* resource length */
538 int alloc_size
; /* total buffer size used */
539 struct resource
*region
;
542 if (!version_disp
) { /* display version info if adapter is found */
543 version_disp
= 1; /* set display flag to TRUE so that */
544 printk(version
); /* we only display this string ONCE */
547 dev
= alloc_fddidev(sizeof(*bp
));
549 printk(KERN_ERR
"%s: Unable to allocate fddidev, aborting\n",
554 /* Enable PCI device. */
556 err
= pci_enable_device(to_pci_dev(bdev
));
558 pr_err("%s: Cannot enable PCI device, aborting\n",
564 SET_NETDEV_DEV(dev
, bdev
);
566 bp
= netdev_priv(dev
);
568 dev_set_drvdata(bdev
, dev
);
570 dfx_get_bars(bdev
, bar_start
, bar_len
);
571 if (dfx_bus_eisa
&& dfx_use_mmio
&& bar_start
[0] == 0) {
572 pr_err("%s: Cannot use MMIO, no address set, aborting\n",
574 pr_err("%s: Run ECU and set adapter's MMIO location\n",
576 pr_err("%s: Or recompile driver with \"CONFIG_DEFXX_MMIO=n\""
583 region
= request_mem_region(bar_start
[0], bar_len
[0],
586 region
= request_region(bar_start
[0], bar_len
[0], print_name
);
588 pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, "
589 "aborting\n", dfx_use_mmio
? "MMIO" : "I/O", print_name
,
590 (long)bar_len
[0], (long)bar_start
[0]);
592 goto err_out_disable
;
594 if (bar_start
[1] != 0) {
595 region
= request_region(bar_start
[1], bar_len
[1], print_name
);
597 pr_err("%s: Cannot reserve I/O resource "
598 "0x%lx @ 0x%lx, aborting\n", print_name
,
599 (long)bar_len
[1], (long)bar_start
[1]);
601 goto err_out_csr_region
;
604 if (bar_start
[2] != 0) {
605 region
= request_region(bar_start
[2], bar_len
[2], print_name
);
607 pr_err("%s: Cannot reserve I/O resource "
608 "0x%lx @ 0x%lx, aborting\n", print_name
,
609 (long)bar_len
[2], (long)bar_start
[2]);
611 goto err_out_bh_region
;
615 /* Set up I/O base address. */
617 bp
->base
.mem
= ioremap_nocache(bar_start
[0], bar_len
[0]);
619 printk(KERN_ERR
"%s: Cannot map MMIO\n", print_name
);
621 goto err_out_esic_region
;
624 bp
->base
.port
= bar_start
[0];
625 dev
->base_addr
= bar_start
[0];
628 /* Initialize new device structure */
629 dev
->netdev_ops
= &dfx_netdev_ops
;
632 pci_set_master(to_pci_dev(bdev
));
634 if (dfx_driver_init(dev
, print_name
, bar_start
[0]) != DFX_K_SUCCESS
) {
639 err
= register_netdev(dev
);
643 printk("%s: registered as %s\n", print_name
, dev
->name
);
647 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
648 PI_CMD_REQ_K_SIZE_MAX
+ PI_CMD_RSP_K_SIZE_MAX
+
649 #ifndef DYNAMIC_BUFFERS
650 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
652 sizeof(PI_CONSUMER_BLOCK
) +
653 (PI_ALIGN_K_DESC_BLK
- 1);
655 dma_free_coherent(bdev
, alloc_size
,
656 bp
->kmalloced
, bp
->kmalloced_dma
);
660 iounmap(bp
->base
.mem
);
663 if (bar_start
[2] != 0)
664 release_region(bar_start
[2], bar_len
[2]);
667 if (bar_start
[1] != 0)
668 release_region(bar_start
[1], bar_len
[1]);
672 release_mem_region(bar_start
[0], bar_len
[0]);
674 release_region(bar_start
[0], bar_len
[0]);
678 pci_disable_device(to_pci_dev(bdev
));
692 * Initializes the bus-specific controller logic.
698 * dev - pointer to device information
700 * Functional Description:
701 * Determine and save adapter IRQ in device table,
702 * then perform bus-specific logic initialization.
708 * bp->base has already been set with the proper
709 * base I/O address for this device.
712 * Interrupts are enabled at the adapter bus-specific logic.
713 * Note: Interrupts at the DMA engine (PDQ chip) are not
717 static void dfx_bus_init(struct net_device
*dev
)
719 DFX_board_t
*bp
= netdev_priv(dev
);
720 struct device
*bdev
= bp
->bus_dev
;
721 int dfx_bus_pci
= dev_is_pci(bdev
);
722 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
723 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
724 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
727 DBG_printk("In dfx_bus_init...\n");
729 /* Initialize a pointer back to the net_device struct */
732 /* Initialize adapter based on bus type */
735 dev
->irq
= to_tc_dev(bdev
)->interrupt
;
737 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
739 /* Disable the board before fiddling with the decoders. */
740 outb(0, base_addr
+ PI_ESIC_K_SLOT_CNTRL
);
742 /* Get the interrupt level from the ESIC chip. */
743 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
744 val
&= PI_CONFIG_STAT_0_M_IRQ
;
745 val
>>= PI_CONFIG_STAT_0_V_IRQ
;
748 case PI_CONFIG_STAT_0_IRQ_K_9
:
752 case PI_CONFIG_STAT_0_IRQ_K_10
:
756 case PI_CONFIG_STAT_0_IRQ_K_11
:
760 case PI_CONFIG_STAT_0_IRQ_K_15
:
766 * Enable memory decoding (MEMCS1) and/or port decoding
767 * (IOCS1/IOCS0) as appropriate in Function Control
768 * Register. MEMCS1 or IOCS0 is used for PDQ registers,
769 * taking 16 32-bit words, while IOCS1 is used for the
770 * Burst Holdoff register, taking a single 32-bit word
771 * only. We use the slot-specific I/O range as per the
772 * ESIC spec, that is set bits 15:12 in the mask registers
776 /* Set the decode range of the board. */
778 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_0_1
);
779 val
= PI_DEFEA_K_CSR_IO
;
780 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_0_0
);
782 val
= PI_IO_CMP_M_SLOT
;
783 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_0_1
);
784 val
= (PI_ESIC_K_CSR_IO_LEN
- 1) & ~3;
785 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_0_0
);
788 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_1_1
);
789 val
= PI_DEFEA_K_BURST_HOLDOFF
;
790 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_1_0
);
792 val
= PI_IO_CMP_M_SLOT
;
793 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_1_1
);
794 val
= (PI_ESIC_K_BURST_HOLDOFF_LEN
- 1) & ~3;
795 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_1_0
);
797 /* Enable the decoders. */
798 val
= PI_FUNCTION_CNTRL_M_IOCS1
;
800 val
|= PI_FUNCTION_CNTRL_M_MEMCS1
;
802 val
|= PI_FUNCTION_CNTRL_M_IOCS0
;
803 outb(val
, base_addr
+ PI_ESIC_K_FUNCTION_CNTRL
);
806 * Enable access to the rest of the module
807 * (including PDQ and packet memory).
809 val
= PI_SLOT_CNTRL_M_ENB
;
810 outb(val
, base_addr
+ PI_ESIC_K_SLOT_CNTRL
);
813 * Map PDQ registers into memory or port space. This is
814 * done with a bit in the Burst Holdoff register.
816 val
= inb(base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
);
818 val
|= PI_BURST_HOLDOFF_M_MEM_MAP
;
820 val
&= ~PI_BURST_HOLDOFF_M_MEM_MAP
;
821 outb(val
, base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
);
823 /* Enable interrupts at EISA bus interface chip (ESIC) */
824 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
825 val
|= PI_CONFIG_STAT_0_M_INT_ENB
;
826 outb(val
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
829 struct pci_dev
*pdev
= to_pci_dev(bdev
);
831 /* Get the interrupt level from the PCI Configuration Table */
833 dev
->irq
= pdev
->irq
;
835 /* Check Latency Timer and set if less than minimal */
837 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &val
);
838 if (val
< PFI_K_LAT_TIMER_MIN
) {
839 val
= PFI_K_LAT_TIMER_DEF
;
840 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, val
);
843 /* Enable interrupts at PCI bus interface chip (PFI) */
844 val
= PFI_MODE_M_PDQ_INT_ENB
| PFI_MODE_M_DMA_ENB
;
845 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
, val
);
855 * Uninitializes the bus-specific controller logic.
861 * dev - pointer to device information
863 * Functional Description:
864 * Perform bus-specific logic uninitialization.
870 * bp->base has already been set with the proper
871 * base I/O address for this device.
874 * Interrupts are disabled at the adapter bus-specific logic.
877 static void dfx_bus_uninit(struct net_device
*dev
)
879 DFX_board_t
*bp
= netdev_priv(dev
);
880 struct device
*bdev
= bp
->bus_dev
;
881 int dfx_bus_pci
= dev_is_pci(bdev
);
882 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
885 DBG_printk("In dfx_bus_uninit...\n");
887 /* Uninitialize adapter based on bus type */
890 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
892 /* Disable interrupts at EISA bus interface chip (ESIC) */
893 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
894 val
&= ~PI_CONFIG_STAT_0_M_INT_ENB
;
895 outb(val
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
897 /* Disable the board. */
898 outb(0, base_addr
+ PI_ESIC_K_SLOT_CNTRL
);
900 /* Disable memory and port decoders. */
901 outb(0, base_addr
+ PI_ESIC_K_FUNCTION_CNTRL
);
904 /* Disable interrupts at PCI bus interface chip (PFI) */
905 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
, 0);
911 * ========================
912 * = dfx_bus_config_check =
913 * ========================
916 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
917 * are illegal, then this routine will set new defaults.
923 * bp - pointer to board information
925 * Functional Description:
926 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
927 * PDQ, and all FDDI PCI controllers, all values are legal.
933 * dfx_adap_init has NOT been called yet so burst size and other items have
940 static void dfx_bus_config_check(DFX_board_t
*bp
)
942 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
943 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
944 int status
; /* return code from adapter port control call */
945 u32 host_data
; /* LW data returned from port control call */
947 DBG_printk("In dfx_bus_config_check...\n");
949 /* Configuration check only valid for EISA adapter */
953 * First check if revision 2 EISA controller. Rev. 1 cards used
954 * PDQ revision B, so no workaround needed in this case. Rev. 3
955 * cards used PDQ revision E, so no workaround needed in this
956 * case, either. Only Rev. 2 cards used either Rev. D or E
957 * chips, so we must verify the chip revision on Rev. 2 cards.
959 if (to_eisa_device(bdev
)->id
.driver_data
== DEFEA_PROD_ID_2
) {
961 * Revision 2 FDDI EISA controller found,
962 * so let's check PDQ revision of adapter.
964 status
= dfx_hw_port_ctrl_req(bp
,
966 PI_SUB_CMD_K_PDQ_REV_GET
,
969 if ((status
!= DFX_K_SUCCESS
) || (host_data
== 2))
972 * Either we couldn't determine the PDQ revision, or
973 * we determined that it is at revision D. In either case,
974 * we need to implement the workaround.
977 /* Ensure that the burst size is set to 8 longwords or less */
979 switch (bp
->burst_size
)
981 case PI_PDATA_B_DMA_BURST_SIZE_32
:
982 case PI_PDATA_B_DMA_BURST_SIZE_16
:
983 bp
->burst_size
= PI_PDATA_B_DMA_BURST_SIZE_8
;
990 /* Ensure that full-duplex mode is not enabled */
992 bp
->full_duplex_enb
= PI_SNMP_K_FALSE
;
1000 * ===================
1001 * = dfx_driver_init =
1002 * ===================
1005 * Initializes remaining adapter board structure information
1006 * and makes sure adapter is in a safe state prior to dfx_open().
1012 * dev - pointer to device information
1013 * print_name - printable device name
1015 * Functional Description:
1016 * This function allocates additional resources such as the host memory
1017 * blocks needed by the adapter (eg. descriptor and consumer blocks).
1018 * Remaining bus initialization steps are also completed. The adapter
1019 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
1020 * must call dfx_open() to open the adapter and bring it on-line.
1023 * DFX_K_SUCCESS - initialization succeeded
1024 * DFX_K_FAILURE - initialization failed - could not allocate memory
1025 * or read adapter MAC address
1028 * Memory allocated from pci_alloc_consistent() call is physically
1029 * contiguous, locked memory.
1032 * Adapter is reset and should be in DMA_UNAVAILABLE state before
1033 * returning from this routine.
1036 static int dfx_driver_init(struct net_device
*dev
, const char *print_name
,
1037 resource_size_t bar_start
)
1039 DFX_board_t
*bp
= netdev_priv(dev
);
1040 struct device
*bdev
= bp
->bus_dev
;
1041 int dfx_bus_pci
= dev_is_pci(bdev
);
1042 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
1043 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
1044 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
1045 int alloc_size
; /* total buffer size needed */
1046 char *top_v
, *curr_v
; /* virtual addrs into memory block */
1047 dma_addr_t top_p
, curr_p
; /* physical addrs into memory block */
1048 u32 data
; /* host data register value */
1050 char *board_name
= NULL
;
1052 DBG_printk("In dfx_driver_init...\n");
1054 /* Initialize bus-specific hardware registers */
1059 * Initialize default values for configurable parameters
1061 * Note: All of these parameters are ones that a user may
1062 * want to customize. It'd be nice to break these
1063 * out into Space.c or someplace else that's more
1064 * accessible/understandable than this file.
1067 bp
->full_duplex_enb
= PI_SNMP_K_FALSE
;
1068 bp
->req_ttrt
= 8 * 12500; /* 8ms in 80 nanosec units */
1069 bp
->burst_size
= PI_PDATA_B_DMA_BURST_SIZE_DEF
;
1070 bp
->rcv_bufs_to_post
= RCV_BUFS_DEF
;
1073 * Ensure that HW configuration is OK
1075 * Note: Depending on the hardware revision, we may need to modify
1076 * some of the configurable parameters to workaround hardware
1077 * limitations. We'll perform this configuration check AFTER
1078 * setting the parameters to their default values.
1081 dfx_bus_config_check(bp
);
1083 /* Disable PDQ interrupts first */
1085 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1087 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1089 (void) dfx_hw_dma_uninit(bp
, PI_PDATA_A_RESET_M_SKIP_ST
);
1091 /* Read the factory MAC address from the adapter then save it */
1093 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_MLA
, PI_PDATA_A_MLA_K_LO
, 0,
1094 &data
) != DFX_K_SUCCESS
) {
1095 printk("%s: Could not read adapter factory MAC address!\n",
1097 return DFX_K_FAILURE
;
1099 le32
= cpu_to_le32(data
);
1100 memcpy(&bp
->factory_mac_addr
[0], &le32
, sizeof(u32
));
1102 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_MLA
, PI_PDATA_A_MLA_K_HI
, 0,
1103 &data
) != DFX_K_SUCCESS
) {
1104 printk("%s: Could not read adapter factory MAC address!\n",
1106 return DFX_K_FAILURE
;
1108 le32
= cpu_to_le32(data
);
1109 memcpy(&bp
->factory_mac_addr
[4], &le32
, sizeof(u16
));
1112 * Set current address to factory address
1114 * Note: Node address override support is handled through
1115 * dfx_ctl_set_mac_address.
1118 memcpy(dev
->dev_addr
, bp
->factory_mac_addr
, FDDI_K_ALEN
);
1120 board_name
= "DEFTA";
1122 board_name
= "DEFEA";
1124 board_name
= "DEFPA";
1125 pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1126 print_name
, board_name
, dfx_use_mmio
? "MMIO" : "I/O",
1127 (long long)bar_start
, dev
->irq
, dev
->dev_addr
);
1130 * Get memory for descriptor block, consumer block, and other buffers
1131 * that need to be DMA read or written to by the adapter.
1134 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
1135 PI_CMD_REQ_K_SIZE_MAX
+
1136 PI_CMD_RSP_K_SIZE_MAX
+
1137 #ifndef DYNAMIC_BUFFERS
1138 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
1140 sizeof(PI_CONSUMER_BLOCK
) +
1141 (PI_ALIGN_K_DESC_BLK
- 1);
1142 bp
->kmalloced
= top_v
= dma_zalloc_coherent(bp
->bus_dev
, alloc_size
,
1146 return DFX_K_FAILURE
;
1148 top_p
= bp
->kmalloced_dma
; /* get physical address of buffer */
1151 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1152 * plus the amount of memory needed was allocated. The physical address
1153 * is now 8K aligned. By carving up the memory in a specific order,
1154 * we'll guarantee the alignment requirements for all other structures.
1156 * Note: If the assumptions change regarding the non-paged, non-cached,
1157 * physically contiguous nature of the memory block or the address
1158 * alignments, then we'll need to implement a different algorithm
1159 * for allocating the needed memory.
1162 curr_p
= ALIGN(top_p
, PI_ALIGN_K_DESC_BLK
);
1163 curr_v
= top_v
+ (curr_p
- top_p
);
1165 /* Reserve space for descriptor block */
1167 bp
->descr_block_virt
= (PI_DESCR_BLOCK
*) curr_v
;
1168 bp
->descr_block_phys
= curr_p
;
1169 curr_v
+= sizeof(PI_DESCR_BLOCK
);
1170 curr_p
+= sizeof(PI_DESCR_BLOCK
);
1172 /* Reserve space for command request buffer */
1174 bp
->cmd_req_virt
= (PI_DMA_CMD_REQ
*) curr_v
;
1175 bp
->cmd_req_phys
= curr_p
;
1176 curr_v
+= PI_CMD_REQ_K_SIZE_MAX
;
1177 curr_p
+= PI_CMD_REQ_K_SIZE_MAX
;
1179 /* Reserve space for command response buffer */
1181 bp
->cmd_rsp_virt
= (PI_DMA_CMD_RSP
*) curr_v
;
1182 bp
->cmd_rsp_phys
= curr_p
;
1183 curr_v
+= PI_CMD_RSP_K_SIZE_MAX
;
1184 curr_p
+= PI_CMD_RSP_K_SIZE_MAX
;
1186 /* Reserve space for the LLC host receive queue buffers */
1188 bp
->rcv_block_virt
= curr_v
;
1189 bp
->rcv_block_phys
= curr_p
;
1191 #ifndef DYNAMIC_BUFFERS
1192 curr_v
+= (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
);
1193 curr_p
+= (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
);
1196 /* Reserve space for the consumer block */
1198 bp
->cons_block_virt
= (PI_CONSUMER_BLOCK
*) curr_v
;
1199 bp
->cons_block_phys
= curr_p
;
1201 /* Display virtual and physical addresses if debug driver */
1203 DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1204 print_name
, bp
->descr_block_virt
, &bp
->descr_block_phys
);
1205 DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1206 print_name
, bp
->cmd_req_virt
, &bp
->cmd_req_phys
);
1207 DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1208 print_name
, bp
->cmd_rsp_virt
, &bp
->cmd_rsp_phys
);
1209 DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1210 print_name
, bp
->rcv_block_virt
, &bp
->rcv_block_phys
);
1211 DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1212 print_name
, bp
->cons_block_virt
, &bp
->cons_block_phys
);
1214 return DFX_K_SUCCESS
;
1224 * Brings the adapter to the link avail/link unavailable state.
1230 * bp - pointer to board information
1231 * get_buffers - non-zero if buffers to be allocated
1233 * Functional Description:
1234 * Issues the low-level firmware/hardware calls necessary to bring
1235 * the adapter up, or to properly reset and restore adapter during
1239 * DFX_K_SUCCESS - Adapter brought up successfully
1240 * DFX_K_FAILURE - Adapter initialization failed
1243 * bp->reset_type should be set to a valid reset type value before
1244 * calling this routine.
1247 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1248 * upon a successful return of this routine.
1251 static int dfx_adap_init(DFX_board_t
*bp
, int get_buffers
)
1253 DBG_printk("In dfx_adap_init...\n");
1255 /* Disable PDQ interrupts first */
1257 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1259 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1261 if (dfx_hw_dma_uninit(bp
, bp
->reset_type
) != DFX_K_SUCCESS
)
1263 printk("%s: Could not uninitialize/reset adapter!\n", bp
->dev
->name
);
1264 return DFX_K_FAILURE
;
1268 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1269 * so we'll acknowledge all Type 0 interrupts now before continuing.
1272 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, PI_HOST_INT_K_ACK_ALL_TYPE_0
);
1275 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1277 * Note: We only need to clear host copies of these registers. The PDQ reset
1278 * takes care of the on-board register values.
1281 bp
->cmd_req_reg
.lword
= 0;
1282 bp
->cmd_rsp_reg
.lword
= 0;
1283 bp
->rcv_xmt_reg
.lword
= 0;
1285 /* Clear consumer block before going to DMA_AVAILABLE state */
1287 memset(bp
->cons_block_virt
, 0, sizeof(PI_CONSUMER_BLOCK
));
1289 /* Initialize the DMA Burst Size */
1291 if (dfx_hw_port_ctrl_req(bp
,
1293 PI_SUB_CMD_K_BURST_SIZE_SET
,
1295 NULL
) != DFX_K_SUCCESS
)
1297 printk("%s: Could not set adapter burst size!\n", bp
->dev
->name
);
1298 return DFX_K_FAILURE
;
1302 * Set base address of Consumer Block
1304 * Assumption: 32-bit physical address of consumer block is 64 byte
1305 * aligned. That is, bits 0-5 of the address must be zero.
1308 if (dfx_hw_port_ctrl_req(bp
,
1309 PI_PCTRL_M_CONS_BLOCK
,
1310 bp
->cons_block_phys
,
1312 NULL
) != DFX_K_SUCCESS
)
1314 printk("%s: Could not set consumer block address!\n", bp
->dev
->name
);
1315 return DFX_K_FAILURE
;
1319 * Set the base address of Descriptor Block and bring adapter
1320 * to DMA_AVAILABLE state.
1322 * Note: We also set the literal and data swapping requirements
1325 * Assumption: 32-bit physical address of descriptor block
1326 * is 8Kbyte aligned.
1328 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_INIT
,
1329 (u32
)(bp
->descr_block_phys
|
1330 PI_PDATA_A_INIT_M_BSWAP_INIT
),
1331 0, NULL
) != DFX_K_SUCCESS
) {
1332 printk("%s: Could not set descriptor block address!\n",
1334 return DFX_K_FAILURE
;
1337 /* Set transmit flush timeout value */
1339 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_CHARS_SET
;
1340 bp
->cmd_req_virt
->char_set
.item
[0].item_code
= PI_ITEM_K_FLUSH_TIME
;
1341 bp
->cmd_req_virt
->char_set
.item
[0].value
= 3; /* 3 seconds */
1342 bp
->cmd_req_virt
->char_set
.item
[0].item_index
= 0;
1343 bp
->cmd_req_virt
->char_set
.item
[1].item_code
= PI_ITEM_K_EOL
;
1344 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1346 printk("%s: DMA command request failed!\n", bp
->dev
->name
);
1347 return DFX_K_FAILURE
;
1350 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1352 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_SNMP_SET
;
1353 bp
->cmd_req_virt
->snmp_set
.item
[0].item_code
= PI_ITEM_K_FDX_ENB_DIS
;
1354 bp
->cmd_req_virt
->snmp_set
.item
[0].value
= bp
->full_duplex_enb
;
1355 bp
->cmd_req_virt
->snmp_set
.item
[0].item_index
= 0;
1356 bp
->cmd_req_virt
->snmp_set
.item
[1].item_code
= PI_ITEM_K_MAC_T_REQ
;
1357 bp
->cmd_req_virt
->snmp_set
.item
[1].value
= bp
->req_ttrt
;
1358 bp
->cmd_req_virt
->snmp_set
.item
[1].item_index
= 0;
1359 bp
->cmd_req_virt
->snmp_set
.item
[2].item_code
= PI_ITEM_K_EOL
;
1360 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1362 printk("%s: DMA command request failed!\n", bp
->dev
->name
);
1363 return DFX_K_FAILURE
;
1366 /* Initialize adapter CAM */
1368 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
1370 printk("%s: Adapter CAM update failed!\n", bp
->dev
->name
);
1371 return DFX_K_FAILURE
;
1374 /* Initialize adapter filters */
1376 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
1378 printk("%s: Adapter filters update failed!\n", bp
->dev
->name
);
1379 return DFX_K_FAILURE
;
1383 * Remove any existing dynamic buffers (i.e. if the adapter is being
1390 /* Initialize receive descriptor block and produce buffers */
1392 if (dfx_rcv_init(bp
, get_buffers
))
1394 printk("%s: Receive buffer allocation failed\n", bp
->dev
->name
);
1397 return DFX_K_FAILURE
;
1400 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1402 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_START
;
1403 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1405 printk("%s: Start command failed\n", bp
->dev
->name
);
1408 return DFX_K_FAILURE
;
1411 /* Initialization succeeded, reenable PDQ interrupts */
1413 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_ENABLE_DEF_INTS
);
1414 return DFX_K_SUCCESS
;
1430 * dev - pointer to device information
1432 * Functional Description:
1433 * This function brings the adapter to an operational state.
1436 * 0 - Adapter was successfully opened
1437 * -EAGAIN - Could not register IRQ or adapter initialization failed
1440 * This routine should only be called for a device that was
1441 * initialized successfully.
1444 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1445 * if the open is successful.
1448 static int dfx_open(struct net_device
*dev
)
1450 DFX_board_t
*bp
= netdev_priv(dev
);
1453 DBG_printk("In dfx_open...\n");
1455 /* Register IRQ - support shared interrupts by passing device ptr */
1457 ret
= request_irq(dev
->irq
, dfx_interrupt
, IRQF_SHARED
, dev
->name
,
1460 printk(KERN_ERR
"%s: Requested IRQ %d is busy\n", dev
->name
, dev
->irq
);
1465 * Set current address to factory MAC address
1467 * Note: We've already done this step in dfx_driver_init.
1468 * However, it's possible that a user has set a node
1469 * address override, then closed and reopened the
1470 * adapter. Unless we reset the device address field
1471 * now, we'll continue to use the existing modified
1475 memcpy(dev
->dev_addr
, bp
->factory_mac_addr
, FDDI_K_ALEN
);
1477 /* Clear local unicast/multicast address tables and counts */
1479 memset(bp
->uc_table
, 0, sizeof(bp
->uc_table
));
1480 memset(bp
->mc_table
, 0, sizeof(bp
->mc_table
));
1484 /* Disable promiscuous filter settings */
1486 bp
->ind_group_prom
= PI_FSTATE_K_BLOCK
;
1487 bp
->group_prom
= PI_FSTATE_K_BLOCK
;
1489 spin_lock_init(&bp
->lock
);
1491 /* Reset and initialize adapter */
1493 bp
->reset_type
= PI_PDATA_A_RESET_M_SKIP_ST
; /* skip self-test */
1494 if (dfx_adap_init(bp
, 1) != DFX_K_SUCCESS
)
1496 printk(KERN_ERR
"%s: Adapter open failed!\n", dev
->name
);
1497 free_irq(dev
->irq
, dev
);
1501 /* Set device structure info */
1502 netif_start_queue(dev
);
1513 * Closes the device/module.
1519 * dev - pointer to device information
1521 * Functional Description:
1522 * This routine closes the adapter and brings it to a safe state.
1523 * The interrupt service routine is deregistered with the OS.
1524 * The adapter can be opened again with another call to dfx_open().
1530 * No further requests for this adapter are made after this routine is
1531 * called. dfx_open() can be called to reset and reinitialize the
1535 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1539 static int dfx_close(struct net_device
*dev
)
1541 DFX_board_t
*bp
= netdev_priv(dev
);
1543 DBG_printk("In dfx_close...\n");
1545 /* Disable PDQ interrupts first */
1547 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1549 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1551 (void) dfx_hw_dma_uninit(bp
, PI_PDATA_A_RESET_M_SKIP_ST
);
1554 * Flush any pending transmit buffers
1556 * Note: It's important that we flush the transmit buffers
1557 * BEFORE we clear our copy of the Type 2 register.
1558 * Otherwise, we'll have no idea how many buffers
1565 * Clear Type 1 and Type 2 registers after adapter reset
1567 * Note: Even though we're closing the adapter, it's
1568 * possible that an interrupt will occur after
1569 * dfx_close is called. Without some assurance to
1570 * the contrary we want to make sure that we don't
1571 * process receive and transmit LLC frames and update
1572 * the Type 2 register with bad information.
1575 bp
->cmd_req_reg
.lword
= 0;
1576 bp
->cmd_rsp_reg
.lword
= 0;
1577 bp
->rcv_xmt_reg
.lword
= 0;
1579 /* Clear consumer block for the same reason given above */
1581 memset(bp
->cons_block_virt
, 0, sizeof(PI_CONSUMER_BLOCK
));
1583 /* Release all dynamically allocate skb in the receive ring. */
1587 /* Clear device structure flags */
1589 netif_stop_queue(dev
);
1591 /* Deregister (free) IRQ */
1593 free_irq(dev
->irq
, dev
);
1600 * ======================
1601 * = dfx_int_pr_halt_id =
1602 * ======================
1605 * Displays halt id's in string form.
1611 * bp - pointer to board information
1613 * Functional Description:
1614 * Determine current halt id and display appropriate string.
1626 static void dfx_int_pr_halt_id(DFX_board_t
*bp
)
1628 PI_UINT32 port_status
; /* PDQ port status register value */
1629 PI_UINT32 halt_id
; /* PDQ port status halt ID */
1631 /* Read the latest port status */
1633 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
1635 /* Display halt state transition information */
1637 halt_id
= (port_status
& PI_PSTATUS_M_HALT_ID
) >> PI_PSTATUS_V_HALT_ID
;
1640 case PI_HALT_ID_K_SELFTEST_TIMEOUT
:
1641 printk("%s: Halt ID: Selftest Timeout\n", bp
->dev
->name
);
1644 case PI_HALT_ID_K_PARITY_ERROR
:
1645 printk("%s: Halt ID: Host Bus Parity Error\n", bp
->dev
->name
);
1648 case PI_HALT_ID_K_HOST_DIR_HALT
:
1649 printk("%s: Halt ID: Host-Directed Halt\n", bp
->dev
->name
);
1652 case PI_HALT_ID_K_SW_FAULT
:
1653 printk("%s: Halt ID: Adapter Software Fault\n", bp
->dev
->name
);
1656 case PI_HALT_ID_K_HW_FAULT
:
1657 printk("%s: Halt ID: Adapter Hardware Fault\n", bp
->dev
->name
);
1660 case PI_HALT_ID_K_PC_TRACE
:
1661 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp
->dev
->name
);
1664 case PI_HALT_ID_K_DMA_ERROR
:
1665 printk("%s: Halt ID: Adapter DMA Error\n", bp
->dev
->name
);
1668 case PI_HALT_ID_K_IMAGE_CRC_ERROR
:
1669 printk("%s: Halt ID: Firmware Image CRC Error\n", bp
->dev
->name
);
1672 case PI_HALT_ID_K_BUS_EXCEPTION
:
1673 printk("%s: Halt ID: 68000 Bus Exception\n", bp
->dev
->name
);
1677 printk("%s: Halt ID: Unknown (code = %X)\n", bp
->dev
->name
, halt_id
);
1684 * ==========================
1685 * = dfx_int_type_0_process =
1686 * ==========================
1689 * Processes Type 0 interrupts.
1695 * bp - pointer to board information
1697 * Functional Description:
1698 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1699 * is a serious fault on the adapter, then an error message is displayed
1700 * and the adapter is reset.
1702 * One tricky potential timing window is the rapid succession of "link avail"
1703 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1704 * interrupt must be done before reading the state from the Port Status
1705 * register. This is true because a state change could occur after reading
1706 * the data, but before acknowledging the interrupt. If this state change
1707 * does happen, it would be lost because the driver is using the old state,
1708 * and it will never know about the new state because it subsequently
1709 * acknowledges the state change interrupt.
1712 * read type 0 int reasons read type 0 int reasons
1713 * read adapter state ack type 0 interrupts
1714 * ack type 0 interrupts read adapter state
1715 * ... process interrupt ... ... process interrupt ...
1724 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1725 * or if the port status indicates that the adapter is halted. The driver
1726 * is responsible for reinitializing the adapter with the current CAM
1727 * contents and adapter filter settings.
1730 static void dfx_int_type_0_process(DFX_board_t
*bp
)
1733 PI_UINT32 type_0_status
; /* Host Interrupt Type 0 register */
1734 PI_UINT32 state
; /* current adap state (from port status) */
1737 * Read host interrupt Type 0 register to determine which Type 0
1738 * interrupts are pending. Immediately write it back out to clear
1742 dfx_port_read_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, &type_0_status
);
1743 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, type_0_status
);
1745 /* Check for Type 0 error interrupts */
1747 if (type_0_status
& (PI_TYPE_0_STAT_M_NXM
|
1748 PI_TYPE_0_STAT_M_PM_PAR_ERR
|
1749 PI_TYPE_0_STAT_M_BUS_PAR_ERR
))
1751 /* Check for Non-Existent Memory error */
1753 if (type_0_status
& PI_TYPE_0_STAT_M_NXM
)
1754 printk("%s: Non-Existent Memory Access Error\n", bp
->dev
->name
);
1756 /* Check for Packet Memory Parity error */
1758 if (type_0_status
& PI_TYPE_0_STAT_M_PM_PAR_ERR
)
1759 printk("%s: Packet Memory Parity Error\n", bp
->dev
->name
);
1761 /* Check for Host Bus Parity error */
1763 if (type_0_status
& PI_TYPE_0_STAT_M_BUS_PAR_ERR
)
1764 printk("%s: Host Bus Parity Error\n", bp
->dev
->name
);
1766 /* Reset adapter and bring it back on-line */
1768 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1769 bp
->reset_type
= 0; /* rerun on-board diagnostics */
1770 printk("%s: Resetting adapter...\n", bp
->dev
->name
);
1771 if (dfx_adap_init(bp
, 0) != DFX_K_SUCCESS
)
1773 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp
->dev
->name
);
1774 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1777 printk("%s: Adapter reset successful!\n", bp
->dev
->name
);
1781 /* Check for transmit flush interrupt */
1783 if (type_0_status
& PI_TYPE_0_STAT_M_XMT_FLUSH
)
1785 /* Flush any pending xmt's and acknowledge the flush interrupt */
1787 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1788 dfx_xmt_flush(bp
); /* flush any outstanding packets */
1789 (void) dfx_hw_port_ctrl_req(bp
,
1790 PI_PCTRL_M_XMT_DATA_FLUSH_DONE
,
1796 /* Check for adapter state change */
1798 if (type_0_status
& PI_TYPE_0_STAT_M_STATE_CHANGE
)
1800 /* Get latest adapter state */
1802 state
= dfx_hw_adap_state_rd(bp
); /* get adapter state */
1803 if (state
== PI_STATE_K_HALTED
)
1806 * Adapter has transitioned to HALTED state, try to reset
1807 * adapter to bring it back on-line. If reset fails,
1808 * leave the adapter in the broken state.
1811 printk("%s: Controller has transitioned to HALTED state!\n", bp
->dev
->name
);
1812 dfx_int_pr_halt_id(bp
); /* display halt id as string */
1814 /* Reset adapter and bring it back on-line */
1816 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1817 bp
->reset_type
= 0; /* rerun on-board diagnostics */
1818 printk("%s: Resetting adapter...\n", bp
->dev
->name
);
1819 if (dfx_adap_init(bp
, 0) != DFX_K_SUCCESS
)
1821 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp
->dev
->name
);
1822 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1825 printk("%s: Adapter reset successful!\n", bp
->dev
->name
);
1827 else if (state
== PI_STATE_K_LINK_AVAIL
)
1829 bp
->link_available
= PI_K_TRUE
; /* set link available flag */
1836 * ==================
1837 * = dfx_int_common =
1838 * ==================
1841 * Interrupt service routine (ISR)
1847 * bp - pointer to board information
1849 * Functional Description:
1850 * This is the ISR which processes incoming adapter interrupts.
1856 * This routine assumes PDQ interrupts have not been disabled.
1857 * When interrupts are disabled at the PDQ, the Port Status register
1858 * is automatically cleared. This routine uses the Port Status
1859 * register value to determine whether a Type 0 interrupt occurred,
1860 * so it's important that adapter interrupts are not normally
1861 * enabled/disabled at the PDQ.
1863 * It's vital that this routine is NOT reentered for the
1864 * same board and that the OS is not in another section of
1865 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1869 * Pending interrupts are serviced. Depending on the type of
1870 * interrupt, acknowledging and clearing the interrupt at the
1871 * PDQ involves writing a register to clear the interrupt bit
1872 * or updating completion indices.
1875 static void dfx_int_common(struct net_device
*dev
)
1877 DFX_board_t
*bp
= netdev_priv(dev
);
1878 PI_UINT32 port_status
; /* Port Status register */
1880 /* Process xmt interrupts - frequent case, so always call this routine */
1882 if(dfx_xmt_done(bp
)) /* free consumed xmt packets */
1883 netif_wake_queue(dev
);
1885 /* Process rcv interrupts - frequent case, so always call this routine */
1887 dfx_rcv_queue_process(bp
); /* service received LLC frames */
1890 * Transmit and receive producer and completion indices are updated on the
1891 * adapter by writing to the Type 2 Producer register. Since the frequent
1892 * case is that we'll be processing either LLC transmit or receive buffers,
1893 * we'll optimize I/O writes by doing a single register write here.
1896 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
1898 /* Read PDQ Port Status register to find out which interrupts need processing */
1900 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
1902 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1904 if (port_status
& PI_PSTATUS_M_TYPE_0_PENDING
)
1905 dfx_int_type_0_process(bp
); /* process Type 0 interrupts */
1915 * Interrupt processing routine
1918 * Whether a valid interrupt was seen.
1921 * irq - interrupt vector
1922 * dev_id - pointer to device information
1924 * Functional Description:
1925 * This routine calls the interrupt processing routine for this adapter. It
1926 * disables and reenables adapter interrupts, as appropriate. We can support
1927 * shared interrupts since the incoming dev_id pointer provides our device
1928 * structure context.
1931 * IRQ_HANDLED - an IRQ was handled.
1932 * IRQ_NONE - no IRQ was handled.
1935 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1936 * on Intel-based systems) is done by the operating system outside this
1939 * System interrupts are enabled through this call.
1942 * Interrupts are disabled, then reenabled at the adapter.
1945 static irqreturn_t
dfx_interrupt(int irq
, void *dev_id
)
1947 struct net_device
*dev
= dev_id
;
1948 DFX_board_t
*bp
= netdev_priv(dev
);
1949 struct device
*bdev
= bp
->bus_dev
;
1950 int dfx_bus_pci
= dev_is_pci(bdev
);
1951 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
1952 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
1954 /* Service adapter interrupts */
1959 dfx_port_read_long(bp
, PFI_K_REG_STATUS
, &status
);
1960 if (!(status
& PFI_STATUS_M_PDQ_INT
))
1963 spin_lock(&bp
->lock
);
1965 /* Disable PDQ-PFI interrupts at PFI */
1966 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
,
1967 PFI_MODE_M_DMA_ENB
);
1969 /* Call interrupt service routine for this adapter */
1970 dfx_int_common(dev
);
1972 /* Clear PDQ interrupt status bit and reenable interrupts */
1973 dfx_port_write_long(bp
, PFI_K_REG_STATUS
,
1974 PFI_STATUS_M_PDQ_INT
);
1975 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
,
1976 (PFI_MODE_M_PDQ_INT_ENB
|
1977 PFI_MODE_M_DMA_ENB
));
1979 spin_unlock(&bp
->lock
);
1982 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
1985 status
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
1986 if (!(status
& PI_CONFIG_STAT_0_M_PEND
))
1989 spin_lock(&bp
->lock
);
1991 /* Disable interrupts at the ESIC */
1992 status
&= ~PI_CONFIG_STAT_0_M_INT_ENB
;
1993 outb(status
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
1995 /* Call interrupt service routine for this adapter */
1996 dfx_int_common(dev
);
1998 /* Reenable interrupts at the ESIC */
1999 status
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
2000 status
|= PI_CONFIG_STAT_0_M_INT_ENB
;
2001 outb(status
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
2003 spin_unlock(&bp
->lock
);
2008 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &status
);
2009 if (!(status
& (PI_PSTATUS_M_RCV_DATA_PENDING
|
2010 PI_PSTATUS_M_XMT_DATA_PENDING
|
2011 PI_PSTATUS_M_SMT_HOST_PENDING
|
2012 PI_PSTATUS_M_UNSOL_PENDING
|
2013 PI_PSTATUS_M_CMD_RSP_PENDING
|
2014 PI_PSTATUS_M_CMD_REQ_PENDING
|
2015 PI_PSTATUS_M_TYPE_0_PENDING
)))
2018 spin_lock(&bp
->lock
);
2020 /* Call interrupt service routine for this adapter */
2021 dfx_int_common(dev
);
2023 spin_unlock(&bp
->lock
);
2031 * =====================
2032 * = dfx_ctl_get_stats =
2033 * =====================
2036 * Get statistics for FDDI adapter
2039 * Pointer to FDDI statistics structure
2042 * dev - pointer to device information
2044 * Functional Description:
2045 * Gets current MIB objects from adapter, then
2046 * returns FDDI statistics structure as defined
2049 * Note: Since the FDDI statistics structure is
2050 * still new and the device structure doesn't
2051 * have an FDDI-specific get statistics handler,
2052 * we'll return the FDDI statistics structure as
2053 * a pointer to an Ethernet statistics structure.
2054 * That way, at least the first part of the statistics
2055 * structure can be decoded properly, and it allows
2056 * "smart" applications to perform a second cast to
2057 * decode the FDDI-specific statistics.
2059 * We'll have to pay attention to this routine as the
2060 * device structure becomes more mature and LAN media
2073 static struct net_device_stats
*dfx_ctl_get_stats(struct net_device
*dev
)
2075 DFX_board_t
*bp
= netdev_priv(dev
);
2077 /* Fill the bp->stats structure with driver-maintained counters */
2079 bp
->stats
.gen
.rx_packets
= bp
->rcv_total_frames
;
2080 bp
->stats
.gen
.tx_packets
= bp
->xmt_total_frames
;
2081 bp
->stats
.gen
.rx_bytes
= bp
->rcv_total_bytes
;
2082 bp
->stats
.gen
.tx_bytes
= bp
->xmt_total_bytes
;
2083 bp
->stats
.gen
.rx_errors
= bp
->rcv_crc_errors
+
2084 bp
->rcv_frame_status_errors
+
2085 bp
->rcv_length_errors
;
2086 bp
->stats
.gen
.tx_errors
= bp
->xmt_length_errors
;
2087 bp
->stats
.gen
.rx_dropped
= bp
->rcv_discards
;
2088 bp
->stats
.gen
.tx_dropped
= bp
->xmt_discards
;
2089 bp
->stats
.gen
.multicast
= bp
->rcv_multicast_frames
;
2090 bp
->stats
.gen
.collisions
= 0; /* always zero (0) for FDDI */
2092 /* Get FDDI SMT MIB objects */
2094 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_SMT_MIB_GET
;
2095 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2096 return (struct net_device_stats
*)&bp
->stats
;
2098 /* Fill the bp->stats structure with the SMT MIB object values */
2100 memcpy(bp
->stats
.smt_station_id
, &bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_id
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_id
));
2101 bp
->stats
.smt_op_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_op_version_id
;
2102 bp
->stats
.smt_hi_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_hi_version_id
;
2103 bp
->stats
.smt_lo_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_lo_version_id
;
2104 memcpy(bp
->stats
.smt_user_data
, &bp
->cmd_rsp_virt
->smt_mib_get
.smt_user_data
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.smt_user_data
));
2105 bp
->stats
.smt_mib_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_mib_version_id
;
2106 bp
->stats
.smt_mac_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_mac_ct
;
2107 bp
->stats
.smt_non_master_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_non_master_ct
;
2108 bp
->stats
.smt_master_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_master_ct
;
2109 bp
->stats
.smt_available_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_available_paths
;
2110 bp
->stats
.smt_config_capabilities
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_config_capabilities
;
2111 bp
->stats
.smt_config_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_config_policy
;
2112 bp
->stats
.smt_connection_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_connection_policy
;
2113 bp
->stats
.smt_t_notify
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_t_notify
;
2114 bp
->stats
.smt_stat_rpt_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_stat_rpt_policy
;
2115 bp
->stats
.smt_trace_max_expiration
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_trace_max_expiration
;
2116 bp
->stats
.smt_bypass_present
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_bypass_present
;
2117 bp
->stats
.smt_ecm_state
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_ecm_state
;
2118 bp
->stats
.smt_cf_state
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_cf_state
;
2119 bp
->stats
.smt_remote_disconnect_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_remote_disconnect_flag
;
2120 bp
->stats
.smt_station_status
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_status
;
2121 bp
->stats
.smt_peer_wrap_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_peer_wrap_flag
;
2122 bp
->stats
.smt_time_stamp
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_msg_time_stamp
.ls
;
2123 bp
->stats
.smt_transition_time_stamp
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_transition_time_stamp
.ls
;
2124 bp
->stats
.mac_frame_status_functions
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_status_functions
;
2125 bp
->stats
.mac_t_max_capability
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_max_capability
;
2126 bp
->stats
.mac_tvx_capability
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_tvx_capability
;
2127 bp
->stats
.mac_available_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_available_paths
;
2128 bp
->stats
.mac_current_path
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_current_path
;
2129 memcpy(bp
->stats
.mac_upstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_upstream_nbr
, FDDI_K_ALEN
);
2130 memcpy(bp
->stats
.mac_downstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_downstream_nbr
, FDDI_K_ALEN
);
2131 memcpy(bp
->stats
.mac_old_upstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_old_upstream_nbr
, FDDI_K_ALEN
);
2132 memcpy(bp
->stats
.mac_old_downstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_old_downstream_nbr
, FDDI_K_ALEN
);
2133 bp
->stats
.mac_dup_address_test
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_dup_address_test
;
2134 bp
->stats
.mac_requested_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_requested_paths
;
2135 bp
->stats
.mac_downstream_port_type
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_downstream_port_type
;
2136 memcpy(bp
->stats
.mac_smt_address
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_smt_address
, FDDI_K_ALEN
);
2137 bp
->stats
.mac_t_req
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_req
;
2138 bp
->stats
.mac_t_neg
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_neg
;
2139 bp
->stats
.mac_t_max
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_max
;
2140 bp
->stats
.mac_tvx_value
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_tvx_value
;
2141 bp
->stats
.mac_frame_error_threshold
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_threshold
;
2142 bp
->stats
.mac_frame_error_ratio
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_ratio
;
2143 bp
->stats
.mac_rmt_state
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_rmt_state
;
2144 bp
->stats
.mac_da_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_da_flag
;
2145 bp
->stats
.mac_una_da_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_unda_flag
;
2146 bp
->stats
.mac_frame_error_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_flag
;
2147 bp
->stats
.mac_ma_unitdata_available
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_ma_unitdata_available
;
2148 bp
->stats
.mac_hardware_present
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_hardware_present
;
2149 bp
->stats
.mac_ma_unitdata_enable
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_ma_unitdata_enable
;
2150 bp
->stats
.path_tvx_lower_bound
= bp
->cmd_rsp_virt
->smt_mib_get
.path_tvx_lower_bound
;
2151 bp
->stats
.path_t_max_lower_bound
= bp
->cmd_rsp_virt
->smt_mib_get
.path_t_max_lower_bound
;
2152 bp
->stats
.path_max_t_req
= bp
->cmd_rsp_virt
->smt_mib_get
.path_max_t_req
;
2153 memcpy(bp
->stats
.path_configuration
, &bp
->cmd_rsp_virt
->smt_mib_get
.path_configuration
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.path_configuration
));
2154 bp
->stats
.port_my_type
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_my_type
[0];
2155 bp
->stats
.port_my_type
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_my_type
[1];
2156 bp
->stats
.port_neighbor_type
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_neighbor_type
[0];
2157 bp
->stats
.port_neighbor_type
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_neighbor_type
[1];
2158 bp
->stats
.port_connection_policies
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_policies
[0];
2159 bp
->stats
.port_connection_policies
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_policies
[1];
2160 bp
->stats
.port_mac_indicated
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_indicated
[0];
2161 bp
->stats
.port_mac_indicated
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_indicated
[1];
2162 bp
->stats
.port_current_path
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_current_path
[0];
2163 bp
->stats
.port_current_path
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_current_path
[1];
2164 memcpy(&bp
->stats
.port_requested_paths
[0*3], &bp
->cmd_rsp_virt
->smt_mib_get
.port_requested_paths
[0], 3);
2165 memcpy(&bp
->stats
.port_requested_paths
[1*3], &bp
->cmd_rsp_virt
->smt_mib_get
.port_requested_paths
[1], 3);
2166 bp
->stats
.port_mac_placement
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_placement
[0];
2167 bp
->stats
.port_mac_placement
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_placement
[1];
2168 bp
->stats
.port_available_paths
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_available_paths
[0];
2169 bp
->stats
.port_available_paths
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_available_paths
[1];
2170 bp
->stats
.port_pmd_class
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pmd_class
[0];
2171 bp
->stats
.port_pmd_class
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pmd_class
[1];
2172 bp
->stats
.port_connection_capabilities
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_capabilities
[0];
2173 bp
->stats
.port_connection_capabilities
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_capabilities
[1];
2174 bp
->stats
.port_bs_flag
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_bs_flag
[0];
2175 bp
->stats
.port_bs_flag
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_bs_flag
[1];
2176 bp
->stats
.port_ler_estimate
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_estimate
[0];
2177 bp
->stats
.port_ler_estimate
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_estimate
[1];
2178 bp
->stats
.port_ler_cutoff
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_cutoff
[0];
2179 bp
->stats
.port_ler_cutoff
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_cutoff
[1];
2180 bp
->stats
.port_ler_alarm
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_alarm
[0];
2181 bp
->stats
.port_ler_alarm
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_alarm
[1];
2182 bp
->stats
.port_connect_state
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connect_state
[0];
2183 bp
->stats
.port_connect_state
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connect_state
[1];
2184 bp
->stats
.port_pcm_state
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pcm_state
[0];
2185 bp
->stats
.port_pcm_state
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pcm_state
[1];
2186 bp
->stats
.port_pc_withhold
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pc_withhold
[0];
2187 bp
->stats
.port_pc_withhold
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pc_withhold
[1];
2188 bp
->stats
.port_ler_flag
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_flag
[0];
2189 bp
->stats
.port_ler_flag
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_flag
[1];
2190 bp
->stats
.port_hardware_present
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_hardware_present
[0];
2191 bp
->stats
.port_hardware_present
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_hardware_present
[1];
2193 /* Get FDDI counters */
2195 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_CNTRS_GET
;
2196 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2197 return (struct net_device_stats
*)&bp
->stats
;
2199 /* Fill the bp->stats structure with the FDDI counter values */
2201 bp
->stats
.mac_frame_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.frame_cnt
.ls
;
2202 bp
->stats
.mac_copied_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.copied_cnt
.ls
;
2203 bp
->stats
.mac_transmit_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.transmit_cnt
.ls
;
2204 bp
->stats
.mac_error_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.error_cnt
.ls
;
2205 bp
->stats
.mac_lost_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lost_cnt
.ls
;
2206 bp
->stats
.port_lct_fail_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lct_rejects
[0].ls
;
2207 bp
->stats
.port_lct_fail_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lct_rejects
[1].ls
;
2208 bp
->stats
.port_lem_reject_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lem_rejects
[0].ls
;
2209 bp
->stats
.port_lem_reject_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lem_rejects
[1].ls
;
2210 bp
->stats
.port_lem_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.link_errors
[0].ls
;
2211 bp
->stats
.port_lem_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.link_errors
[1].ls
;
2213 return (struct net_device_stats
*)&bp
->stats
;
2218 * ==============================
2219 * = dfx_ctl_set_multicast_list =
2220 * ==============================
2223 * Enable/Disable LLC frame promiscuous mode reception
2224 * on the adapter and/or update multicast address table.
2230 * dev - pointer to device information
2232 * Functional Description:
2233 * This routine follows a fairly simple algorithm for setting the
2234 * adapter filters and CAM:
2236 * if IFF_PROMISC flag is set
2237 * enable LLC individual/group promiscuous mode
2239 * disable LLC individual/group promiscuous mode
2240 * if number of incoming multicast addresses >
2241 * (CAM max size - number of unicast addresses in CAM)
2242 * enable LLC group promiscuous mode
2243 * set driver-maintained multicast address count to zero
2245 * disable LLC group promiscuous mode
2246 * set driver-maintained multicast address count to incoming count
2247 * update adapter CAM
2248 * update adapter filters
2254 * Multicast addresses are presented in canonical (LSB) format.
2257 * On-board adapter CAM and filters are updated.
2260 static void dfx_ctl_set_multicast_list(struct net_device
*dev
)
2262 DFX_board_t
*bp
= netdev_priv(dev
);
2263 int i
; /* used as index in for loop */
2264 struct netdev_hw_addr
*ha
;
2266 /* Enable LLC frame promiscuous mode, if necessary */
2268 if (dev
->flags
& IFF_PROMISC
)
2269 bp
->ind_group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC ind/group prom mode */
2271 /* Else, update multicast address table */
2275 bp
->ind_group_prom
= PI_FSTATE_K_BLOCK
; /* Disable LLC ind/group prom mode */
2277 * Check whether incoming multicast address count exceeds table size
2279 * Note: The adapters utilize an on-board 64 entry CAM for
2280 * supporting perfect filtering of multicast packets
2281 * and bridge functions when adding unicast addresses.
2282 * There is no hash function available. To support
2283 * additional multicast addresses, the all multicast
2284 * filter (LLC group promiscuous mode) must be enabled.
2286 * The firmware reserves two CAM entries for SMT-related
2287 * multicast addresses, which leaves 62 entries available.
2288 * The following code ensures that we're not being asked
2289 * to add more than 62 addresses to the CAM. If we are,
2290 * the driver will enable the all multicast filter.
2291 * Should the number of multicast addresses drop below
2292 * the high water mark, the filter will be disabled and
2293 * perfect filtering will be used.
2296 if (netdev_mc_count(dev
) > (PI_CMD_ADDR_FILTER_K_SIZE
- bp
->uc_count
))
2298 bp
->group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC group prom mode */
2299 bp
->mc_count
= 0; /* Don't add mc addrs to CAM */
2303 bp
->group_prom
= PI_FSTATE_K_BLOCK
; /* Disable LLC group prom mode */
2304 bp
->mc_count
= netdev_mc_count(dev
); /* Add mc addrs to CAM */
2307 /* Copy addresses to multicast address table, then update adapter CAM */
2310 netdev_for_each_mc_addr(ha
, dev
)
2311 memcpy(&bp
->mc_table
[i
++ * FDDI_K_ALEN
],
2312 ha
->addr
, FDDI_K_ALEN
);
2314 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
2316 DBG_printk("%s: Could not update multicast address table!\n", dev
->name
);
2320 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev
->name
, bp
->mc_count
);
2324 /* Update adapter filters */
2326 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
2328 DBG_printk("%s: Could not update adapter filters!\n", dev
->name
);
2332 DBG_printk("%s: Adapter filters updated!\n", dev
->name
);
2338 * ===========================
2339 * = dfx_ctl_set_mac_address =
2340 * ===========================
2343 * Add node address override (unicast address) to adapter
2344 * CAM and update dev_addr field in device table.
2350 * dev - pointer to device information
2351 * addr - pointer to sockaddr structure containing unicast address to add
2353 * Functional Description:
2354 * The adapter supports node address overrides by adding one or more
2355 * unicast addresses to the adapter CAM. This is similar to adding
2356 * multicast addresses. In this routine we'll update the driver and
2357 * device structures with the new address, then update the adapter CAM
2358 * to ensure that the adapter will copy and strip frames destined and
2359 * sourced by that address.
2362 * Always returns zero.
2365 * The address pointed to by addr->sa_data is a valid unicast
2366 * address and is presented in canonical (LSB) format.
2369 * On-board adapter CAM is updated. On-board adapter filters
2373 static int dfx_ctl_set_mac_address(struct net_device
*dev
, void *addr
)
2375 struct sockaddr
*p_sockaddr
= (struct sockaddr
*)addr
;
2376 DFX_board_t
*bp
= netdev_priv(dev
);
2378 /* Copy unicast address to driver-maintained structs and update count */
2380 memcpy(dev
->dev_addr
, p_sockaddr
->sa_data
, FDDI_K_ALEN
); /* update device struct */
2381 memcpy(&bp
->uc_table
[0], p_sockaddr
->sa_data
, FDDI_K_ALEN
); /* update driver struct */
2385 * Verify we're not exceeding the CAM size by adding unicast address
2387 * Note: It's possible that before entering this routine we've
2388 * already filled the CAM with 62 multicast addresses.
2389 * Since we need to place the node address override into
2390 * the CAM, we have to check to see that we're not
2391 * exceeding the CAM size. If we are, we have to enable
2392 * the LLC group (multicast) promiscuous mode filter as
2393 * in dfx_ctl_set_multicast_list.
2396 if ((bp
->uc_count
+ bp
->mc_count
) > PI_CMD_ADDR_FILTER_K_SIZE
)
2398 bp
->group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC group prom mode */
2399 bp
->mc_count
= 0; /* Don't add mc addrs to CAM */
2401 /* Update adapter filters */
2403 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
2405 DBG_printk("%s: Could not update adapter filters!\n", dev
->name
);
2409 DBG_printk("%s: Adapter filters updated!\n", dev
->name
);
2413 /* Update adapter CAM with new unicast address */
2415 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
2417 DBG_printk("%s: Could not set new MAC address!\n", dev
->name
);
2421 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev
->name
);
2423 return 0; /* always return zero */
2428 * ======================
2429 * = dfx_ctl_update_cam =
2430 * ======================
2433 * Procedure to update adapter CAM (Content Addressable Memory)
2434 * with desired unicast and multicast address entries.
2440 * bp - pointer to board information
2442 * Functional Description:
2443 * Updates adapter CAM with current contents of board structure
2444 * unicast and multicast address tables. Since there are only 62
2445 * free entries in CAM, this routine ensures that the command
2446 * request buffer is not overrun.
2449 * DFX_K_SUCCESS - Request succeeded
2450 * DFX_K_FAILURE - Request failed
2453 * All addresses being added (unicast and multicast) are in canonical
2457 * On-board adapter CAM is updated.
2460 static int dfx_ctl_update_cam(DFX_board_t
*bp
)
2462 int i
; /* used as index */
2463 PI_LAN_ADDR
*p_addr
; /* pointer to CAM entry */
2466 * Fill in command request information
2468 * Note: Even though both the unicast and multicast address
2469 * table entries are stored as contiguous 6 byte entries,
2470 * the firmware address filter set command expects each
2471 * entry to be two longwords (8 bytes total). We must be
2472 * careful to only copy the six bytes of each unicast and
2473 * multicast table entry into each command entry. This
2474 * is also why we must first clear the entire command
2478 memset(bp
->cmd_req_virt
, 0, PI_CMD_REQ_K_SIZE_MAX
); /* first clear buffer */
2479 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_ADDR_FILTER_SET
;
2480 p_addr
= &bp
->cmd_req_virt
->addr_filter_set
.entry
[0];
2482 /* Now add unicast addresses to command request buffer, if any */
2484 for (i
=0; i
< (int)bp
->uc_count
; i
++)
2486 if (i
< PI_CMD_ADDR_FILTER_K_SIZE
)
2488 memcpy(p_addr
, &bp
->uc_table
[i
*FDDI_K_ALEN
], FDDI_K_ALEN
);
2489 p_addr
++; /* point to next command entry */
2493 /* Now add multicast addresses to command request buffer, if any */
2495 for (i
=0; i
< (int)bp
->mc_count
; i
++)
2497 if ((i
+ bp
->uc_count
) < PI_CMD_ADDR_FILTER_K_SIZE
)
2499 memcpy(p_addr
, &bp
->mc_table
[i
*FDDI_K_ALEN
], FDDI_K_ALEN
);
2500 p_addr
++; /* point to next command entry */
2504 /* Issue command to update adapter CAM, then return */
2506 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2507 return DFX_K_FAILURE
;
2508 return DFX_K_SUCCESS
;
2513 * ==========================
2514 * = dfx_ctl_update_filters =
2515 * ==========================
2518 * Procedure to update adapter filters with desired
2525 * bp - pointer to board information
2527 * Functional Description:
2528 * Enables or disables filter using current filter settings.
2531 * DFX_K_SUCCESS - Request succeeded.
2532 * DFX_K_FAILURE - Request failed.
2535 * We must always pass up packets destined to the broadcast
2536 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2537 * broadcast filter enabled.
2540 * On-board adapter filters are updated.
2543 static int dfx_ctl_update_filters(DFX_board_t
*bp
)
2545 int i
= 0; /* used as index */
2547 /* Fill in command request information */
2549 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_FILTERS_SET
;
2551 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2553 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_BROADCAST
;
2554 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= PI_FSTATE_K_PASS
;
2556 /* Initialize LLC Individual/Group Promiscuous filter */
2558 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_IND_GROUP_PROM
;
2559 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= bp
->ind_group_prom
;
2561 /* Initialize LLC Group Promiscuous filter */
2563 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_GROUP_PROM
;
2564 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= bp
->group_prom
;
2566 /* Terminate the item code list */
2568 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_EOL
;
2570 /* Issue command to update adapter filters, then return */
2572 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2573 return DFX_K_FAILURE
;
2574 return DFX_K_SUCCESS
;
2579 * ======================
2580 * = dfx_hw_dma_cmd_req =
2581 * ======================
2584 * Sends PDQ DMA command to adapter firmware
2590 * bp - pointer to board information
2592 * Functional Description:
2593 * The command request and response buffers are posted to the adapter in the manner
2594 * described in the PDQ Port Specification:
2596 * 1. Command Response Buffer is posted to adapter.
2597 * 2. Command Request Buffer is posted to adapter.
2598 * 3. Command Request consumer index is polled until it indicates that request
2599 * buffer has been DMA'd to adapter.
2600 * 4. Command Response consumer index is polled until it indicates that response
2601 * buffer has been DMA'd from adapter.
2603 * This ordering ensures that a response buffer is already available for the firmware
2604 * to use once it's done processing the request buffer.
2607 * DFX_K_SUCCESS - DMA command succeeded
2608 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2609 * DFX_K_HW_TIMEOUT - DMA command timed out
2612 * Command request buffer has already been filled with desired DMA command.
2618 static int dfx_hw_dma_cmd_req(DFX_board_t
*bp
)
2620 int status
; /* adapter status */
2621 int timeout_cnt
; /* used in for loops */
2623 /* Make sure the adapter is in a state that we can issue the DMA command in */
2625 status
= dfx_hw_adap_state_rd(bp
);
2626 if ((status
== PI_STATE_K_RESET
) ||
2627 (status
== PI_STATE_K_HALTED
) ||
2628 (status
== PI_STATE_K_DMA_UNAVAIL
) ||
2629 (status
== PI_STATE_K_UPGRADE
))
2630 return DFX_K_OUTSTATE
;
2632 /* Put response buffer on the command response queue */
2634 bp
->descr_block_virt
->cmd_rsp
[bp
->cmd_rsp_reg
.index
.prod
].long_0
= (u32
) (PI_RCV_DESCR_M_SOP
|
2635 ((PI_CMD_RSP_K_SIZE_MAX
/ PI_ALIGN_K_CMD_RSP_BUFF
) << PI_RCV_DESCR_V_SEG_LEN
));
2636 bp
->descr_block_virt
->cmd_rsp
[bp
->cmd_rsp_reg
.index
.prod
].long_1
= bp
->cmd_rsp_phys
;
2638 /* Bump (and wrap) the producer index and write out to register */
2640 bp
->cmd_rsp_reg
.index
.prod
+= 1;
2641 bp
->cmd_rsp_reg
.index
.prod
&= PI_CMD_RSP_K_NUM_ENTRIES
-1;
2642 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_RSP_PROD
, bp
->cmd_rsp_reg
.lword
);
2644 /* Put request buffer on the command request queue */
2646 bp
->descr_block_virt
->cmd_req
[bp
->cmd_req_reg
.index
.prod
].long_0
= (u32
) (PI_XMT_DESCR_M_SOP
|
2647 PI_XMT_DESCR_M_EOP
| (PI_CMD_REQ_K_SIZE_MAX
<< PI_XMT_DESCR_V_SEG_LEN
));
2648 bp
->descr_block_virt
->cmd_req
[bp
->cmd_req_reg
.index
.prod
].long_1
= bp
->cmd_req_phys
;
2650 /* Bump (and wrap) the producer index and write out to register */
2652 bp
->cmd_req_reg
.index
.prod
+= 1;
2653 bp
->cmd_req_reg
.index
.prod
&= PI_CMD_REQ_K_NUM_ENTRIES
-1;
2654 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_REQ_PROD
, bp
->cmd_req_reg
.lword
);
2657 * Here we wait for the command request consumer index to be equal
2658 * to the producer, indicating that the adapter has DMAed the request.
2661 for (timeout_cnt
= 20000; timeout_cnt
> 0; timeout_cnt
--)
2663 if (bp
->cmd_req_reg
.index
.prod
== (u8
)(bp
->cons_block_virt
->cmd_req
))
2665 udelay(100); /* wait for 100 microseconds */
2667 if (timeout_cnt
== 0)
2668 return DFX_K_HW_TIMEOUT
;
2670 /* Bump (and wrap) the completion index and write out to register */
2672 bp
->cmd_req_reg
.index
.comp
+= 1;
2673 bp
->cmd_req_reg
.index
.comp
&= PI_CMD_REQ_K_NUM_ENTRIES
-1;
2674 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_REQ_PROD
, bp
->cmd_req_reg
.lword
);
2677 * Here we wait for the command response consumer index to be equal
2678 * to the producer, indicating that the adapter has DMAed the response.
2681 for (timeout_cnt
= 20000; timeout_cnt
> 0; timeout_cnt
--)
2683 if (bp
->cmd_rsp_reg
.index
.prod
== (u8
)(bp
->cons_block_virt
->cmd_rsp
))
2685 udelay(100); /* wait for 100 microseconds */
2687 if (timeout_cnt
== 0)
2688 return DFX_K_HW_TIMEOUT
;
2690 /* Bump (and wrap) the completion index and write out to register */
2692 bp
->cmd_rsp_reg
.index
.comp
+= 1;
2693 bp
->cmd_rsp_reg
.index
.comp
&= PI_CMD_RSP_K_NUM_ENTRIES
-1;
2694 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_RSP_PROD
, bp
->cmd_rsp_reg
.lword
);
2695 return DFX_K_SUCCESS
;
2700 * ========================
2701 * = dfx_hw_port_ctrl_req =
2702 * ========================
2705 * Sends PDQ port control command to adapter firmware
2708 * Host data register value in host_data if ptr is not NULL
2711 * bp - pointer to board information
2712 * command - port control command
2713 * data_a - port data A register value
2714 * data_b - port data B register value
2715 * host_data - ptr to host data register value
2717 * Functional Description:
2718 * Send generic port control command to adapter by writing
2719 * to various PDQ port registers, then polling for completion.
2722 * DFX_K_SUCCESS - port control command succeeded
2723 * DFX_K_HW_TIMEOUT - port control command timed out
2732 static int dfx_hw_port_ctrl_req(
2737 PI_UINT32
*host_data
2741 PI_UINT32 port_cmd
; /* Port Control command register value */
2742 int timeout_cnt
; /* used in for loops */
2744 /* Set Command Error bit in command longword */
2746 port_cmd
= (PI_UINT32
) (command
| PI_PCTRL_M_CMD_ERROR
);
2748 /* Issue port command to the adapter */
2750 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_A
, data_a
);
2751 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_B
, data_b
);
2752 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_CTRL
, port_cmd
);
2754 /* Now wait for command to complete */
2756 if (command
== PI_PCTRL_M_BLAST_FLASH
)
2757 timeout_cnt
= 600000; /* set command timeout count to 60 seconds */
2759 timeout_cnt
= 20000; /* set command timeout count to 2 seconds */
2761 for (; timeout_cnt
> 0; timeout_cnt
--)
2763 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_CTRL
, &port_cmd
);
2764 if (!(port_cmd
& PI_PCTRL_M_CMD_ERROR
))
2766 udelay(100); /* wait for 100 microseconds */
2768 if (timeout_cnt
== 0)
2769 return DFX_K_HW_TIMEOUT
;
2772 * If the address of host_data is non-zero, assume caller has supplied a
2773 * non NULL pointer, and return the contents of the HOST_DATA register in
2777 if (host_data
!= NULL
)
2778 dfx_port_read_long(bp
, PI_PDQ_K_REG_HOST_DATA
, host_data
);
2779 return DFX_K_SUCCESS
;
2784 * =====================
2785 * = dfx_hw_adap_reset =
2786 * =====================
2795 * bp - pointer to board information
2796 * type - type of reset to perform
2798 * Functional Description:
2799 * Issue soft reset to adapter by writing to PDQ Port Reset
2800 * register. Use incoming reset type to tell adapter what
2801 * kind of reset operation to perform.
2807 * This routine merely issues a soft reset to the adapter.
2808 * It is expected that after this routine returns, the caller
2809 * will appropriately poll the Port Status register for the
2810 * adapter to enter the proper state.
2813 * Internal adapter registers are cleared.
2816 static void dfx_hw_adap_reset(
2822 /* Set Reset type and assert reset */
2824 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_A
, type
); /* tell adapter type of reset */
2825 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_RESET
, PI_RESET_M_ASSERT_RESET
);
2827 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2831 /* Deassert reset */
2833 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_RESET
, 0);
2838 * ========================
2839 * = dfx_hw_adap_state_rd =
2840 * ========================
2843 * Returns current adapter state
2846 * Adapter state per PDQ Port Specification
2849 * bp - pointer to board information
2851 * Functional Description:
2852 * Reads PDQ Port Status register and returns adapter state.
2864 static int dfx_hw_adap_state_rd(DFX_board_t
*bp
)
2866 PI_UINT32 port_status
; /* Port Status register value */
2868 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
2869 return (port_status
& PI_PSTATUS_M_STATE
) >> PI_PSTATUS_V_STATE
;
2874 * =====================
2875 * = dfx_hw_dma_uninit =
2876 * =====================
2879 * Brings adapter to DMA_UNAVAILABLE state
2885 * bp - pointer to board information
2886 * type - type of reset to perform
2888 * Functional Description:
2889 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2890 * 1. Set reset type bit in Port Data A Register then reset adapter.
2891 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2894 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2895 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2901 * Internal adapter registers are cleared.
2904 static int dfx_hw_dma_uninit(DFX_board_t
*bp
, PI_UINT32 type
)
2906 int timeout_cnt
; /* used in for loops */
2908 /* Set reset type bit and reset adapter */
2910 dfx_hw_adap_reset(bp
, type
);
2912 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2914 for (timeout_cnt
= 100000; timeout_cnt
> 0; timeout_cnt
--)
2916 if (dfx_hw_adap_state_rd(bp
) == PI_STATE_K_DMA_UNAVAIL
)
2918 udelay(100); /* wait for 100 microseconds */
2920 if (timeout_cnt
== 0)
2921 return DFX_K_HW_TIMEOUT
;
2922 return DFX_K_SUCCESS
;
2926 * Align an sk_buff to a boundary power of 2
2929 #ifdef DYNAMIC_BUFFERS
2930 static void my_skb_align(struct sk_buff
*skb
, int n
)
2932 unsigned long x
= (unsigned long)skb
->data
;
2935 v
= ALIGN(x
, n
); /* Where we want to be */
2937 skb_reserve(skb
, v
- x
);
2947 * Produces buffers to adapter LLC Host receive descriptor block
2953 * bp - pointer to board information
2954 * get_buffers - non-zero if buffers to be allocated
2956 * Functional Description:
2957 * This routine can be called during dfx_adap_init() or during an adapter
2958 * reset. It initializes the descriptor block and produces all allocated
2959 * LLC Host queue receive buffers.
2962 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2963 * dynamic buffer allocation). If the buffer allocation failed, the
2964 * already allocated buffers will not be released and the caller should do
2968 * The PDQ has been reset and the adapter and driver maintained Type 2
2969 * register indices are cleared.
2972 * Receive buffers are posted to the adapter LLC queue and the adapter
2976 static int dfx_rcv_init(DFX_board_t
*bp
, int get_buffers
)
2978 int i
, j
; /* used in for loop */
2981 * Since each receive buffer is a single fragment of same length, initialize
2982 * first longword in each receive descriptor for entire LLC Host descriptor
2983 * block. Also initialize second longword in each receive descriptor with
2984 * physical address of receive buffer. We'll always allocate receive
2985 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2986 * block and produce new receive buffers by simply updating the receive
2990 * To support all shipping versions of PDQ, the receive buffer size
2991 * must be mod 128 in length and the physical address must be 128 byte
2992 * aligned. In other words, bits 0-6 of the length and address must
2993 * be zero for the following descriptor field entries to be correct on
2994 * all PDQ-based boards. We guaranteed both requirements during
2995 * driver initialization when we allocated memory for the receive buffers.
2999 #ifdef DYNAMIC_BUFFERS
3000 for (i
= 0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
3001 for (j
= 0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
3003 struct sk_buff
*newskb
;
3004 dma_addr_t dma_addr
;
3006 newskb
= __netdev_alloc_skb(bp
->dev
, NEW_SKB_SIZE
,
3011 * align to 128 bytes for compatibility with
3012 * the old EISA boards.
3015 my_skb_align(newskb
, 128);
3016 dma_addr
= dma_map_single(bp
->bus_dev
,
3018 PI_RCV_DATA_K_SIZE_MAX
,
3020 if (dma_mapping_error(bp
->bus_dev
, dma_addr
)) {
3021 dev_kfree_skb(newskb
);
3024 bp
->descr_block_virt
->rcv_data
[i
+ j
].long_0
=
3025 (u32
)(PI_RCV_DESCR_M_SOP
|
3026 ((PI_RCV_DATA_K_SIZE_MAX
/
3027 PI_ALIGN_K_RCV_DATA_BUFF
) <<
3028 PI_RCV_DESCR_V_SEG_LEN
));
3029 bp
->descr_block_virt
->rcv_data
[i
+ j
].long_1
=
3033 * p_rcv_buff_va is only used inside the
3034 * kernel so we put the skb pointer here.
3036 bp
->p_rcv_buff_va
[i
+j
] = (char *) newskb
;
3039 for (i
=0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
3040 for (j
=0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
3042 bp
->descr_block_virt
->rcv_data
[i
+j
].long_0
= (u32
) (PI_RCV_DESCR_M_SOP
|
3043 ((PI_RCV_DATA_K_SIZE_MAX
/ PI_ALIGN_K_RCV_DATA_BUFF
) << PI_RCV_DESCR_V_SEG_LEN
));
3044 bp
->descr_block_virt
->rcv_data
[i
+j
].long_1
= (u32
) (bp
->rcv_block_phys
+ (i
* PI_RCV_DATA_K_SIZE_MAX
));
3045 bp
->p_rcv_buff_va
[i
+j
] = (bp
->rcv_block_virt
+ (i
* PI_RCV_DATA_K_SIZE_MAX
));
3050 /* Update receive producer and Type 2 register */
3052 bp
->rcv_xmt_reg
.index
.rcv_prod
= bp
->rcv_bufs_to_post
;
3053 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
3059 * =========================
3060 * = dfx_rcv_queue_process =
3061 * =========================
3064 * Process received LLC frames.
3070 * bp - pointer to board information
3072 * Functional Description:
3073 * Received LLC frames are processed until there are no more consumed frames.
3074 * Once all frames are processed, the receive buffers are returned to the
3075 * adapter. Note that this algorithm fixes the length of time that can be spent
3076 * in this routine, because there are a fixed number of receive buffers to
3077 * process and buffers are not produced until this routine exits and returns
3090 static void dfx_rcv_queue_process(
3095 PI_TYPE_2_CONSUMER
*p_type_2_cons
; /* ptr to rcv/xmt consumer block register */
3096 char *p_buff
; /* ptr to start of packet receive buffer (FMC descriptor) */
3097 u32 descr
, pkt_len
; /* FMC descriptor field and packet length */
3098 struct sk_buff
*skb
= NULL
; /* pointer to a sk_buff to hold incoming packet data */
3100 /* Service all consumed LLC receive frames */
3102 p_type_2_cons
= (PI_TYPE_2_CONSUMER
*)(&bp
->cons_block_virt
->xmt_rcv_data
);
3103 while (bp
->rcv_xmt_reg
.index
.rcv_comp
!= p_type_2_cons
->index
.rcv_cons
)
3105 /* Process any errors */
3106 dma_addr_t dma_addr
;
3109 entry
= bp
->rcv_xmt_reg
.index
.rcv_comp
;
3110 #ifdef DYNAMIC_BUFFERS
3111 p_buff
= (char *) (((struct sk_buff
*)bp
->p_rcv_buff_va
[entry
])->data
);
3113 p_buff
= bp
->p_rcv_buff_va
[entry
];
3115 dma_addr
= bp
->descr_block_virt
->rcv_data
[entry
].long_1
;
3116 dma_sync_single_for_cpu(bp
->bus_dev
,
3117 dma_addr
+ RCV_BUFF_K_DESCR
,
3120 memcpy(&descr
, p_buff
+ RCV_BUFF_K_DESCR
, sizeof(u32
));
3122 if (descr
& PI_FMC_DESCR_M_RCC_FLUSH
)
3124 if (descr
& PI_FMC_DESCR_M_RCC_CRC
)
3125 bp
->rcv_crc_errors
++;
3127 bp
->rcv_frame_status_errors
++;
3131 int rx_in_place
= 0;
3133 /* The frame was received without errors - verify packet length */
3135 pkt_len
= (u32
)((descr
& PI_FMC_DESCR_M_LEN
) >> PI_FMC_DESCR_V_LEN
);
3136 pkt_len
-= 4; /* subtract 4 byte CRC */
3137 if (!IN_RANGE(pkt_len
, FDDI_K_LLC_ZLEN
, FDDI_K_LLC_LEN
))
3138 bp
->rcv_length_errors
++;
3140 #ifdef DYNAMIC_BUFFERS
3141 struct sk_buff
*newskb
= NULL
;
3143 if (pkt_len
> SKBUFF_RX_COPYBREAK
) {
3144 dma_addr_t new_dma_addr
;
3146 newskb
= netdev_alloc_skb(bp
->dev
,
3149 my_skb_align(newskb
, 128);
3150 new_dma_addr
= dma_map_single(
3153 PI_RCV_DATA_K_SIZE_MAX
,
3155 if (dma_mapping_error(
3158 dev_kfree_skb(newskb
);
3165 skb
= (struct sk_buff
*)bp
->p_rcv_buff_va
[entry
];
3166 dma_unmap_single(bp
->bus_dev
,
3168 PI_RCV_DATA_K_SIZE_MAX
,
3170 skb_reserve(skb
, RCV_BUFF_K_PADDING
);
3171 bp
->p_rcv_buff_va
[entry
] = (char *)newskb
;
3172 bp
->descr_block_virt
->rcv_data
[entry
].long_1
= (u32
)new_dma_addr
;
3177 /* Alloc new buffer to pass up,
3178 * add room for PRH. */
3179 skb
= netdev_alloc_skb(bp
->dev
,
3183 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp
->dev
->name
);
3189 /* Receive buffer allocated, pass receive packet up */
3190 dma_sync_single_for_cpu(
3197 skb_copy_to_linear_data(skb
,
3198 p_buff
+ RCV_BUFF_K_PADDING
,
3202 skb_reserve(skb
,3); /* adjust data field so that it points to FC byte */
3203 skb_put(skb
, pkt_len
); /* pass up packet length, NOT including CRC */
3204 skb
->protocol
= fddi_type_trans(skb
, bp
->dev
);
3205 bp
->rcv_total_bytes
+= skb
->len
;
3208 /* Update the rcv counters */
3209 bp
->rcv_total_frames
++;
3210 if (*(p_buff
+ RCV_BUFF_K_DA
) & 0x01)
3211 bp
->rcv_multicast_frames
++;
3217 * Advance the producer (for recycling) and advance the completion
3218 * (for servicing received frames). Note that it is okay to
3219 * advance the producer without checking that it passes the
3220 * completion index because they are both advanced at the same
3224 bp
->rcv_xmt_reg
.index
.rcv_prod
+= 1;
3225 bp
->rcv_xmt_reg
.index
.rcv_comp
+= 1;
3231 * =====================
3232 * = dfx_xmt_queue_pkt =
3233 * =====================
3236 * Queues packets for transmission
3242 * skb - pointer to sk_buff to queue for transmission
3243 * dev - pointer to device information
3245 * Functional Description:
3246 * Here we assume that an incoming skb transmit request
3247 * is contained in a single physically contiguous buffer
3248 * in which the virtual address of the start of packet
3249 * (skb->data) can be converted to a physical address
3250 * by using pci_map_single().
3252 * Since the adapter architecture requires a three byte
3253 * packet request header to prepend the start of packet,
3254 * we'll write the three byte field immediately prior to
3255 * the FC byte. This assumption is valid because we've
3256 * ensured that dev->hard_header_len includes three pad
3257 * bytes. By posting a single fragment to the adapter,
3258 * we'll reduce the number of descriptor fetches and
3259 * bus traffic needed to send the request.
3261 * Also, we can't free the skb until after it's been DMA'd
3262 * out by the adapter, so we'll queue it in the driver and
3263 * return it in dfx_xmt_done.
3266 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3267 * 1 - caller should requeue the sk_buff for later transmission
3270 * First and foremost, we assume the incoming skb pointer
3271 * is NOT NULL and is pointing to a valid sk_buff structure.
3273 * The outgoing packet is complete, starting with the
3274 * frame control byte including the last byte of data,
3275 * but NOT including the 4 byte CRC. We'll let the
3276 * adapter hardware generate and append the CRC.
3278 * The entire packet is stored in one physically
3279 * contiguous buffer which is not cached and whose
3280 * 32-bit physical address can be determined.
3282 * It's vital that this routine is NOT reentered for the
3283 * same board and that the OS is not in another section of
3284 * code (eg. dfx_int_common) for the same board on a
3291 static netdev_tx_t
dfx_xmt_queue_pkt(struct sk_buff
*skb
,
3292 struct net_device
*dev
)
3294 DFX_board_t
*bp
= netdev_priv(dev
);
3295 u8 prod
; /* local transmit producer index */
3296 PI_XMT_DESCR
*p_xmt_descr
; /* ptr to transmit descriptor block entry */
3297 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3298 dma_addr_t dma_addr
;
3299 unsigned long flags
;
3301 netif_stop_queue(dev
);
3304 * Verify that incoming transmit request is OK
3306 * Note: The packet size check is consistent with other
3307 * Linux device drivers, although the correct packet
3308 * size should be verified before calling the
3312 if (!IN_RANGE(skb
->len
, FDDI_K_LLC_ZLEN
, FDDI_K_LLC_LEN
))
3314 printk("%s: Invalid packet length - %u bytes\n",
3315 dev
->name
, skb
->len
);
3316 bp
->xmt_length_errors
++; /* bump error counter */
3317 netif_wake_queue(dev
);
3319 return NETDEV_TX_OK
; /* return "success" */
3322 * See if adapter link is available, if not, free buffer
3324 * Note: If the link isn't available, free buffer and return 0
3325 * rather than tell the upper layer to requeue the packet.
3326 * The methodology here is that by the time the link
3327 * becomes available, the packet to be sent will be
3328 * fairly stale. By simply dropping the packet, the
3329 * higher layer protocols will eventually time out
3330 * waiting for response packets which it won't receive.
3333 if (bp
->link_available
== PI_K_FALSE
)
3335 if (dfx_hw_adap_state_rd(bp
) == PI_STATE_K_LINK_AVAIL
) /* is link really available? */
3336 bp
->link_available
= PI_K_TRUE
; /* if so, set flag and continue */
3339 bp
->xmt_discards
++; /* bump error counter */
3340 dev_kfree_skb(skb
); /* free sk_buff now */
3341 netif_wake_queue(dev
);
3342 return NETDEV_TX_OK
; /* return "success" */
3346 /* Write the three PRH bytes immediately before the FC byte */
3349 skb
->data
[0] = DFX_PRH0_BYTE
; /* these byte values are defined */
3350 skb
->data
[1] = DFX_PRH1_BYTE
; /* in the Motorola FDDI MAC chip */
3351 skb
->data
[2] = DFX_PRH2_BYTE
; /* specification */
3353 dma_addr
= dma_map_single(bp
->bus_dev
, skb
->data
, skb
->len
,
3355 if (dma_mapping_error(bp
->bus_dev
, dma_addr
)) {
3357 return NETDEV_TX_BUSY
;
3360 spin_lock_irqsave(&bp
->lock
, flags
);
3362 /* Get the current producer and the next free xmt data descriptor */
3364 prod
= bp
->rcv_xmt_reg
.index
.xmt_prod
;
3365 p_xmt_descr
= &(bp
->descr_block_virt
->xmt_data
[prod
]);
3368 * Get pointer to auxiliary queue entry to contain information
3371 * Note: The current xmt producer index will become the
3372 * current xmt completion index when we complete this
3373 * packet later on. So, we'll get the pointer to the
3374 * next auxiliary queue entry now before we bump the
3378 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[prod
++]); /* also bump producer index */
3381 * Write the descriptor with buffer info and bump producer
3383 * Note: Since we need to start DMA from the packet request
3384 * header, we'll add 3 bytes to the DMA buffer length,
3385 * and we'll determine the physical address of the
3386 * buffer from the PRH, not skb->data.
3389 * 1. Packet starts with the frame control (FC) byte
3391 * 2. The 4-byte CRC is not appended to the buffer or
3392 * included in the length.
3393 * 3. Packet length (skb->len) is from FC to end of
3395 * 4. The packet length does not exceed the maximum
3396 * FDDI LLC frame length of 4491 bytes.
3397 * 5. The entire packet is contained in a physically
3398 * contiguous, non-cached, locked memory space
3399 * comprised of a single buffer pointed to by
3401 * 6. The physical address of the start of packet
3402 * can be determined from the virtual address
3403 * by using pci_map_single() and is only 32-bits
3407 p_xmt_descr
->long_0
= (u32
) (PI_XMT_DESCR_M_SOP
| PI_XMT_DESCR_M_EOP
| ((skb
->len
) << PI_XMT_DESCR_V_SEG_LEN
));
3408 p_xmt_descr
->long_1
= (u32
)dma_addr
;
3411 * Verify that descriptor is actually available
3413 * Note: If descriptor isn't available, return 1 which tells
3414 * the upper layer to requeue the packet for later
3417 * We need to ensure that the producer never reaches the
3418 * completion, except to indicate that the queue is empty.
3421 if (prod
== bp
->rcv_xmt_reg
.index
.xmt_comp
)
3424 spin_unlock_irqrestore(&bp
->lock
, flags
);
3425 return NETDEV_TX_BUSY
; /* requeue packet for later */
3429 * Save info for this packet for xmt done indication routine
3431 * Normally, we'd save the producer index in the p_xmt_drv_descr
3432 * structure so that we'd have it handy when we complete this
3433 * packet later (in dfx_xmt_done). However, since the current
3434 * transmit architecture guarantees a single fragment for the
3435 * entire packet, we can simply bump the completion index by
3436 * one (1) for each completed packet.
3438 * Note: If this assumption changes and we're presented with
3439 * an inconsistent number of transmit fragments for packet
3440 * data, we'll need to modify this code to save the current
3441 * transmit producer index.
3444 p_xmt_drv_descr
->p_skb
= skb
;
3446 /* Update Type 2 register */
3448 bp
->rcv_xmt_reg
.index
.xmt_prod
= prod
;
3449 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
3450 spin_unlock_irqrestore(&bp
->lock
, flags
);
3451 netif_wake_queue(dev
);
3452 return NETDEV_TX_OK
; /* packet queued to adapter */
3462 * Processes all frames that have been transmitted.
3468 * bp - pointer to board information
3470 * Functional Description:
3471 * For all consumed transmit descriptors that have not
3472 * yet been completed, we'll free the skb we were holding
3473 * onto using dev_kfree_skb and bump the appropriate
3480 * The Type 2 register is not updated in this routine. It is
3481 * assumed that it will be updated in the ISR when dfx_xmt_done
3488 static int dfx_xmt_done(DFX_board_t
*bp
)
3490 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3491 PI_TYPE_2_CONSUMER
*p_type_2_cons
; /* ptr to rcv/xmt consumer block register */
3492 u8 comp
; /* local transmit completion index */
3493 int freed
= 0; /* buffers freed */
3495 /* Service all consumed transmit frames */
3497 p_type_2_cons
= (PI_TYPE_2_CONSUMER
*)(&bp
->cons_block_virt
->xmt_rcv_data
);
3498 while (bp
->rcv_xmt_reg
.index
.xmt_comp
!= p_type_2_cons
->index
.xmt_cons
)
3500 /* Get pointer to the transmit driver descriptor block information */
3502 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[bp
->rcv_xmt_reg
.index
.xmt_comp
]);
3504 /* Increment transmit counters */
3506 bp
->xmt_total_frames
++;
3507 bp
->xmt_total_bytes
+= p_xmt_drv_descr
->p_skb
->len
;
3509 /* Return skb to operating system */
3510 comp
= bp
->rcv_xmt_reg
.index
.xmt_comp
;
3511 dma_unmap_single(bp
->bus_dev
,
3512 bp
->descr_block_virt
->xmt_data
[comp
].long_1
,
3513 p_xmt_drv_descr
->p_skb
->len
,
3515 dev_kfree_skb_irq(p_xmt_drv_descr
->p_skb
);
3518 * Move to start of next packet by updating completion index
3520 * Here we assume that a transmit packet request is always
3521 * serviced by posting one fragment. We can therefore
3522 * simplify the completion code by incrementing the
3523 * completion index by one. This code will need to be
3524 * modified if this assumption changes. See comments
3525 * in dfx_xmt_queue_pkt for more details.
3528 bp
->rcv_xmt_reg
.index
.xmt_comp
+= 1;
3541 * Remove all skb's in the receive ring.
3547 * bp - pointer to board information
3549 * Functional Description:
3550 * Free's all the dynamically allocated skb's that are
3551 * currently attached to the device receive ring. This
3552 * function is typically only used when the device is
3553 * initialized or reinitialized.
3561 #ifdef DYNAMIC_BUFFERS
3562 static void dfx_rcv_flush( DFX_board_t
*bp
)
3566 for (i
= 0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
3567 for (j
= 0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
3569 struct sk_buff
*skb
;
3570 skb
= (struct sk_buff
*)bp
->p_rcv_buff_va
[i
+j
];
3572 dma_unmap_single(bp
->bus_dev
,
3573 bp
->descr_block_virt
->rcv_data
[i
+j
].long_1
,
3574 PI_RCV_DATA_K_SIZE_MAX
,
3578 bp
->p_rcv_buff_va
[i
+j
] = NULL
;
3582 #endif /* DYNAMIC_BUFFERS */
3590 * Processes all frames whether they've been transmitted
3597 * bp - pointer to board information
3599 * Functional Description:
3600 * For all produced transmit descriptors that have not
3601 * yet been completed, we'll free the skb we were holding
3602 * onto using dev_kfree_skb and bump the appropriate
3603 * counters. Of course, it's possible that some of
3604 * these transmit requests actually did go out, but we
3605 * won't make that distinction here. Finally, we'll
3606 * update the consumer index to match the producer.
3612 * This routine does NOT update the Type 2 register. It
3613 * is assumed that this routine is being called during a
3614 * transmit flush interrupt, or a shutdown or close routine.
3620 static void dfx_xmt_flush( DFX_board_t
*bp
)
3622 u32 prod_cons
; /* rcv/xmt consumer block longword */
3623 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3624 u8 comp
; /* local transmit completion index */
3626 /* Flush all outstanding transmit frames */
3628 while (bp
->rcv_xmt_reg
.index
.xmt_comp
!= bp
->rcv_xmt_reg
.index
.xmt_prod
)
3630 /* Get pointer to the transmit driver descriptor block information */
3632 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[bp
->rcv_xmt_reg
.index
.xmt_comp
]);
3634 /* Return skb to operating system */
3635 comp
= bp
->rcv_xmt_reg
.index
.xmt_comp
;
3636 dma_unmap_single(bp
->bus_dev
,
3637 bp
->descr_block_virt
->xmt_data
[comp
].long_1
,
3638 p_xmt_drv_descr
->p_skb
->len
,
3640 dev_kfree_skb(p_xmt_drv_descr
->p_skb
);
3642 /* Increment transmit error counter */
3647 * Move to start of next packet by updating completion index
3649 * Here we assume that a transmit packet request is always
3650 * serviced by posting one fragment. We can therefore
3651 * simplify the completion code by incrementing the
3652 * completion index by one. This code will need to be
3653 * modified if this assumption changes. See comments
3654 * in dfx_xmt_queue_pkt for more details.
3657 bp
->rcv_xmt_reg
.index
.xmt_comp
+= 1;
3660 /* Update the transmit consumer index in the consumer block */
3662 prod_cons
= (u32
)(bp
->cons_block_virt
->xmt_rcv_data
& ~PI_CONS_M_XMT_INDEX
);
3663 prod_cons
|= (u32
)(bp
->rcv_xmt_reg
.index
.xmt_prod
<< PI_CONS_V_XMT_INDEX
);
3664 bp
->cons_block_virt
->xmt_rcv_data
= prod_cons
;
3668 * ==================
3669 * = dfx_unregister =
3670 * ==================
3673 * Shuts down an FDDI controller
3679 * bdev - pointer to device information
3681 * Functional Description:
3687 * It compiles so it should work :-( (PCI cards do :-)
3690 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3693 static void dfx_unregister(struct device
*bdev
)
3695 struct net_device
*dev
= dev_get_drvdata(bdev
);
3696 DFX_board_t
*bp
= netdev_priv(dev
);
3697 int dfx_bus_pci
= dev_is_pci(bdev
);
3698 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
3699 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
3700 resource_size_t bar_start
[3] = {0}; /* pointers to ports */
3701 resource_size_t bar_len
[3] = {0}; /* resource lengths */
3702 int alloc_size
; /* total buffer size used */
3704 unregister_netdev(dev
);
3706 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
3707 PI_CMD_REQ_K_SIZE_MAX
+ PI_CMD_RSP_K_SIZE_MAX
+
3708 #ifndef DYNAMIC_BUFFERS
3709 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
3711 sizeof(PI_CONSUMER_BLOCK
) +
3712 (PI_ALIGN_K_DESC_BLK
- 1);
3714 dma_free_coherent(bdev
, alloc_size
,
3715 bp
->kmalloced
, bp
->kmalloced_dma
);
3717 dfx_bus_uninit(dev
);
3719 dfx_get_bars(bdev
, bar_start
, bar_len
);
3720 if (bar_start
[2] != 0)
3721 release_region(bar_start
[2], bar_len
[2]);
3722 if (bar_start
[1] != 0)
3723 release_region(bar_start
[1], bar_len
[1]);
3725 iounmap(bp
->base
.mem
);
3726 release_mem_region(bar_start
[0], bar_len
[0]);
3728 release_region(bar_start
[0], bar_len
[0]);
3731 pci_disable_device(to_pci_dev(bdev
));
3737 static int __maybe_unused
dfx_dev_register(struct device
*);
3738 static int __maybe_unused
dfx_dev_unregister(struct device
*);
3741 static int dfx_pci_register(struct pci_dev
*, const struct pci_device_id
*);
3742 static void dfx_pci_unregister(struct pci_dev
*);
3744 static const struct pci_device_id dfx_pci_table
[] = {
3745 { PCI_DEVICE(PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_FDDI
) },
3748 MODULE_DEVICE_TABLE(pci
, dfx_pci_table
);
3750 static struct pci_driver dfx_pci_driver
= {
3752 .id_table
= dfx_pci_table
,
3753 .probe
= dfx_pci_register
,
3754 .remove
= dfx_pci_unregister
,
3757 static int dfx_pci_register(struct pci_dev
*pdev
,
3758 const struct pci_device_id
*ent
)
3760 return dfx_register(&pdev
->dev
);
3763 static void dfx_pci_unregister(struct pci_dev
*pdev
)
3765 dfx_unregister(&pdev
->dev
);
3767 #endif /* CONFIG_PCI */
3770 static struct eisa_device_id dfx_eisa_table
[] = {
3771 { "DEC3001", DEFEA_PROD_ID_1
},
3772 { "DEC3002", DEFEA_PROD_ID_2
},
3773 { "DEC3003", DEFEA_PROD_ID_3
},
3774 { "DEC3004", DEFEA_PROD_ID_4
},
3777 MODULE_DEVICE_TABLE(eisa
, dfx_eisa_table
);
3779 static struct eisa_driver dfx_eisa_driver
= {
3780 .id_table
= dfx_eisa_table
,
3783 .bus
= &eisa_bus_type
,
3784 .probe
= dfx_dev_register
,
3785 .remove
= dfx_dev_unregister
,
3788 #endif /* CONFIG_EISA */
3791 static struct tc_device_id
const dfx_tc_table
[] = {
3792 { "DEC ", "PMAF-FA " },
3793 { "DEC ", "PMAF-FD " },
3794 { "DEC ", "PMAF-FS " },
3795 { "DEC ", "PMAF-FU " },
3798 MODULE_DEVICE_TABLE(tc
, dfx_tc_table
);
3800 static struct tc_driver dfx_tc_driver
= {
3801 .id_table
= dfx_tc_table
,
3804 .bus
= &tc_bus_type
,
3805 .probe
= dfx_dev_register
,
3806 .remove
= dfx_dev_unregister
,
3809 #endif /* CONFIG_TC */
3811 static int __maybe_unused
dfx_dev_register(struct device
*dev
)
3815 status
= dfx_register(dev
);
3821 static int __maybe_unused
dfx_dev_unregister(struct device
*dev
)
3824 dfx_unregister(dev
);
3829 static int dfx_init(void)
3833 status
= pci_register_driver(&dfx_pci_driver
);
3835 status
= eisa_driver_register(&dfx_eisa_driver
);
3837 status
= tc_register_driver(&dfx_tc_driver
);
3841 static void dfx_cleanup(void)
3843 tc_unregister_driver(&dfx_tc_driver
);
3844 eisa_driver_unregister(&dfx_eisa_driver
);
3845 pci_unregister_driver(&dfx_pci_driver
);
3848 module_init(dfx_init
);
3849 module_exit(dfx_cleanup
);
3850 MODULE_AUTHOR("Lawrence V. Stefani");
3851 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3852 DRV_VERSION
" " DRV_RELDATE
);
3853 MODULE_LICENSE("GPL");