2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock
);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node
);
74 EXPORT_PER_CPU_SYMBOL(numa_node
);
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
84 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
86 int _node_numa_mem_
[MAX_NUMNODES
];
90 * Array of node states.
92 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
93 [N_POSSIBLE
] = NODE_MASK_ALL
,
94 [N_ONLINE
] = { { [0] = 1UL } },
96 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
98 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY
] = { { [0] = 1UL } },
103 [N_CPU
] = { { [0] = 1UL } },
106 EXPORT_SYMBOL(node_states
);
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock
);
111 unsigned long totalram_pages __read_mostly
;
112 unsigned long totalreserve_pages __read_mostly
;
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
119 unsigned long dirty_balance_reserve __read_mostly
;
121 int percpu_pagelist_fraction
;
122 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
124 #ifdef CONFIG_PM_SLEEP
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
134 static gfp_t saved_gfp_mask
;
136 void pm_restore_gfp_mask(void)
138 WARN_ON(!mutex_is_locked(&pm_mutex
));
139 if (saved_gfp_mask
) {
140 gfp_allowed_mask
= saved_gfp_mask
;
145 void pm_restrict_gfp_mask(void)
147 WARN_ON(!mutex_is_locked(&pm_mutex
));
148 WARN_ON(saved_gfp_mask
);
149 saved_gfp_mask
= gfp_allowed_mask
;
150 gfp_allowed_mask
&= ~GFP_IOFS
;
153 bool pm_suspended_storage(void)
155 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
159 #endif /* CONFIG_PM_SLEEP */
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly
;
165 static void __free_pages_ok(struct page
*page
, unsigned int order
);
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
178 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
179 #ifdef CONFIG_ZONE_DMA
182 #ifdef CONFIG_ZONE_DMA32
185 #ifdef CONFIG_HIGHMEM
191 EXPORT_SYMBOL(totalram_pages
);
193 static char * const zone_names
[MAX_NR_ZONES
] = {
194 #ifdef CONFIG_ZONE_DMA
197 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 int min_free_kbytes
= 1024;
208 int user_min_free_kbytes
= -1;
210 static unsigned long __meminitdata nr_kernel_pages
;
211 static unsigned long __meminitdata nr_all_pages
;
212 static unsigned long __meminitdata dma_reserve
;
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
217 static unsigned long __initdata required_kernelcore
;
218 static unsigned long __initdata required_movablecore
;
219 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 EXPORT_SYMBOL(movable_zone
);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
228 int nr_online_nodes __read_mostly
= 1;
229 EXPORT_SYMBOL(nr_node_ids
);
230 EXPORT_SYMBOL(nr_online_nodes
);
233 int page_group_by_mobility_disabled __read_mostly
;
235 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
237 if (unlikely(page_group_by_mobility_disabled
&&
238 migratetype
< MIGRATE_PCPTYPES
))
239 migratetype
= MIGRATE_UNMOVABLE
;
241 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
242 PB_migrate
, PB_migrate_end
);
245 bool oom_killer_disabled __read_mostly
;
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
252 unsigned long pfn
= page_to_pfn(page
);
253 unsigned long sp
, start_pfn
;
256 seq
= zone_span_seqbegin(zone
);
257 start_pfn
= zone
->zone_start_pfn
;
258 sp
= zone
->spanned_pages
;
259 if (!zone_spans_pfn(zone
, pfn
))
261 } while (zone_span_seqretry(zone
, seq
));
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn
, zone_to_nid(zone
), zone
->name
,
266 start_pfn
, start_pfn
+ sp
);
271 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
273 if (!pfn_valid_within(page_to_pfn(page
)))
275 if (zone
!= page_zone(page
))
281 * Temporary debugging check for pages not lying within a given zone.
283 static int bad_range(struct zone
*zone
, struct page
*page
)
285 if (page_outside_zone_boundaries(zone
, page
))
287 if (!page_is_consistent(zone
, page
))
293 static inline int bad_range(struct zone
*zone
, struct page
*page
)
299 static void bad_page(struct page
*page
, const char *reason
,
300 unsigned long bad_flags
)
302 static unsigned long resume
;
303 static unsigned long nr_shown
;
304 static unsigned long nr_unshown
;
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page
)) {
308 page_mapcount_reset(page
); /* remove PageBuddy */
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
316 if (nr_shown
== 60) {
317 if (time_before(jiffies
, resume
)) {
323 "BUG: Bad page state: %lu messages suppressed\n",
330 resume
= jiffies
+ 60 * HZ
;
332 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
333 current
->comm
, page_to_pfn(page
));
334 dump_page_badflags(page
, reason
, bad_flags
);
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page
); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
345 * Higher-order pages are called "compound pages". They are structured thusly:
347 * The first PAGE_SIZE page is called the "head page".
349 * The remaining PAGE_SIZE pages are called "tail pages".
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
359 static void free_compound_page(struct page
*page
)
361 __free_pages_ok(page
, compound_order(page
));
364 void prep_compound_page(struct page
*page
, unsigned long order
)
367 int nr_pages
= 1 << order
;
369 set_compound_page_dtor(page
, free_compound_page
);
370 set_compound_order(page
, order
);
372 for (i
= 1; i
< nr_pages
; i
++) {
373 struct page
*p
= page
+ i
;
374 set_page_count(p
, 0);
375 p
->first_page
= page
;
376 /* Make sure p->first_page is always valid for PageTail() */
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page
*page
, unsigned long order
)
386 int nr_pages
= 1 << order
;
389 if (unlikely(compound_order(page
) != order
)) {
390 bad_page(page
, "wrong compound order", 0);
394 __ClearPageHead(page
);
396 for (i
= 1; i
< nr_pages
; i
++) {
397 struct page
*p
= page
+ i
;
399 if (unlikely(!PageTail(p
))) {
400 bad_page(page
, "PageTail not set", 0);
402 } else if (unlikely(p
->first_page
!= page
)) {
403 bad_page(page
, "first_page not consistent", 0);
412 static inline void prep_zero_page(struct page
*page
, unsigned int order
,
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
422 for (i
= 0; i
< (1 << order
); i
++)
423 clear_highpage(page
+ i
);
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder
;
429 static int __init
debug_guardpage_minorder_setup(char *buf
)
433 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
434 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
437 _debug_guardpage_minorder
= res
;
438 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
443 static inline void set_page_guard_flag(struct page
*page
)
445 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
448 static inline void clear_page_guard_flag(struct page
*page
)
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
453 static inline void set_page_guard_flag(struct page
*page
) { }
454 static inline void clear_page_guard_flag(struct page
*page
) { }
457 static inline void set_page_order(struct page
*page
, unsigned int order
)
459 set_page_private(page
, order
);
460 __SetPageBuddy(page
);
463 static inline void rmv_page_order(struct page
*page
)
465 __ClearPageBuddy(page
);
466 set_page_private(page
, 0);
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
476 * For example, if the starting buddy (buddy2) is #8 its order
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
489 return page_idx
^ (1 << order
);
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
495 * (a) the buddy is not in a hole &&
496 * (b) the buddy is in the buddy system &&
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
505 * For recording page's order, we use page_private(page).
507 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
510 if (!pfn_valid_within(page_to_pfn(buddy
)))
513 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
514 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
516 if (page_zone_id(page
) != page_zone_id(buddy
))
522 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
523 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
530 if (page_zone_id(page
) != page_zone_id(buddy
))
539 * Freeing function for a buddy system allocator.
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554 * So when we are allocating or freeing one, we can derive the state of the
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
557 * If a block is freed, and its buddy is also free, then this
558 * triggers coalescing into a block of larger size.
563 static inline void __free_one_page(struct page
*page
,
565 struct zone
*zone
, unsigned int order
,
568 unsigned long page_idx
;
569 unsigned long combined_idx
;
570 unsigned long uninitialized_var(buddy_idx
);
573 VM_BUG_ON(!zone_is_initialized(zone
));
575 if (unlikely(PageCompound(page
)))
576 if (unlikely(destroy_compound_page(page
, order
)))
579 VM_BUG_ON(migratetype
== -1);
581 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
583 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
584 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
586 while (order
< MAX_ORDER
-1) {
587 buddy_idx
= __find_buddy_index(page_idx
, order
);
588 buddy
= page
+ (buddy_idx
- page_idx
);
589 if (!page_is_buddy(page
, buddy
, order
))
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
595 if (page_is_guard(buddy
)) {
596 clear_page_guard_flag(buddy
);
597 set_page_private(page
, 0);
598 __mod_zone_freepage_state(zone
, 1 << order
,
601 list_del(&buddy
->lru
);
602 zone
->free_area
[order
].nr_free
--;
603 rmv_page_order(buddy
);
605 combined_idx
= buddy_idx
& page_idx
;
606 page
= page
+ (combined_idx
- page_idx
);
607 page_idx
= combined_idx
;
610 set_page_order(page
, order
);
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
620 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
621 struct page
*higher_page
, *higher_buddy
;
622 combined_idx
= buddy_idx
& page_idx
;
623 higher_page
= page
+ (combined_idx
- page_idx
);
624 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
625 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
626 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
627 list_add_tail(&page
->lru
,
628 &zone
->free_area
[order
].free_list
[migratetype
]);
633 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
635 zone
->free_area
[order
].nr_free
++;
638 static inline int free_pages_check(struct page
*page
)
640 const char *bad_reason
= NULL
;
641 unsigned long bad_flags
= 0;
643 if (unlikely(page_mapcount(page
)))
644 bad_reason
= "nonzero mapcount";
645 if (unlikely(page
->mapping
!= NULL
))
646 bad_reason
= "non-NULL mapping";
647 if (unlikely(atomic_read(&page
->_count
) != 0))
648 bad_reason
= "nonzero _count";
649 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
650 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
653 if (unlikely(mem_cgroup_bad_page_check(page
)))
654 bad_reason
= "cgroup check failed";
655 if (unlikely(bad_reason
)) {
656 bad_page(page
, bad_reason
, bad_flags
);
659 page_cpupid_reset_last(page
);
660 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
661 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
666 * Frees a number of pages from the PCP lists
667 * Assumes all pages on list are in same zone, and of same order.
668 * count is the number of pages to free.
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
676 static void free_pcppages_bulk(struct zone
*zone
, int count
,
677 struct per_cpu_pages
*pcp
)
682 unsigned long nr_scanned
;
684 spin_lock(&zone
->lock
);
685 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
687 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
691 struct list_head
*list
;
694 * Remove pages from lists in a round-robin fashion. A
695 * batch_free count is maintained that is incremented when an
696 * empty list is encountered. This is so more pages are freed
697 * off fuller lists instead of spinning excessively around empty
702 if (++migratetype
== MIGRATE_PCPTYPES
)
704 list
= &pcp
->lists
[migratetype
];
705 } while (list_empty(list
));
707 /* This is the only non-empty list. Free them all. */
708 if (batch_free
== MIGRATE_PCPTYPES
)
709 batch_free
= to_free
;
712 int mt
; /* migratetype of the to-be-freed page */
714 page
= list_entry(list
->prev
, struct page
, lru
);
715 /* must delete as __free_one_page list manipulates */
716 list_del(&page
->lru
);
717 mt
= get_freepage_migratetype(page
);
718 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
719 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
720 trace_mm_page_pcpu_drain(page
, 0, mt
);
721 if (likely(!is_migrate_isolate_page(page
))) {
722 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
723 if (is_migrate_cma(mt
))
724 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
726 } while (--to_free
&& --batch_free
&& !list_empty(list
));
728 spin_unlock(&zone
->lock
);
731 static void free_one_page(struct zone
*zone
,
732 struct page
*page
, unsigned long pfn
,
736 unsigned long nr_scanned
;
737 spin_lock(&zone
->lock
);
738 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
740 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
742 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
743 if (unlikely(!is_migrate_isolate(migratetype
)))
744 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
745 spin_unlock(&zone
->lock
);
748 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
753 trace_mm_page_free(page
, order
);
754 kmemcheck_free_shadow(page
, order
);
757 page
->mapping
= NULL
;
758 for (i
= 0; i
< (1 << order
); i
++)
759 bad
+= free_pages_check(page
+ i
);
763 if (!PageHighMem(page
)) {
764 debug_check_no_locks_freed(page_address(page
),
766 debug_check_no_obj_freed(page_address(page
),
769 arch_free_page(page
, order
);
770 kernel_map_pages(page
, 1 << order
, 0);
775 static void __free_pages_ok(struct page
*page
, unsigned int order
)
779 unsigned long pfn
= page_to_pfn(page
);
781 if (!free_pages_prepare(page
, order
))
784 migratetype
= get_pfnblock_migratetype(page
, pfn
);
785 local_irq_save(flags
);
786 __count_vm_events(PGFREE
, 1 << order
);
787 set_freepage_migratetype(page
, migratetype
);
788 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
789 local_irq_restore(flags
);
792 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
794 unsigned int nr_pages
= 1 << order
;
795 struct page
*p
= page
;
799 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
801 __ClearPageReserved(p
);
802 set_page_count(p
, 0);
804 __ClearPageReserved(p
);
805 set_page_count(p
, 0);
807 page_zone(page
)->managed_pages
+= nr_pages
;
808 set_page_refcounted(page
);
809 __free_pages(page
, order
);
813 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
814 void __init
init_cma_reserved_pageblock(struct page
*page
)
816 unsigned i
= pageblock_nr_pages
;
817 struct page
*p
= page
;
820 __ClearPageReserved(p
);
821 set_page_count(p
, 0);
824 set_pageblock_migratetype(page
, MIGRATE_CMA
);
826 if (pageblock_order
>= MAX_ORDER
) {
827 i
= pageblock_nr_pages
;
830 set_page_refcounted(p
);
831 __free_pages(p
, MAX_ORDER
- 1);
832 p
+= MAX_ORDER_NR_PAGES
;
833 } while (i
-= MAX_ORDER_NR_PAGES
);
835 set_page_refcounted(page
);
836 __free_pages(page
, pageblock_order
);
839 adjust_managed_page_count(page
, pageblock_nr_pages
);
844 * The order of subdivision here is critical for the IO subsystem.
845 * Please do not alter this order without good reasons and regression
846 * testing. Specifically, as large blocks of memory are subdivided,
847 * the order in which smaller blocks are delivered depends on the order
848 * they're subdivided in this function. This is the primary factor
849 * influencing the order in which pages are delivered to the IO
850 * subsystem according to empirical testing, and this is also justified
851 * by considering the behavior of a buddy system containing a single
852 * large block of memory acted on by a series of small allocations.
853 * This behavior is a critical factor in sglist merging's success.
857 static inline void expand(struct zone
*zone
, struct page
*page
,
858 int low
, int high
, struct free_area
*area
,
861 unsigned long size
= 1 << high
;
867 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 if (high
< debug_guardpage_minorder()) {
872 * Mark as guard pages (or page), that will allow to
873 * merge back to allocator when buddy will be freed.
874 * Corresponding page table entries will not be touched,
875 * pages will stay not present in virtual address space
877 INIT_LIST_HEAD(&page
[size
].lru
);
878 set_page_guard_flag(&page
[size
]);
879 set_page_private(&page
[size
], high
);
880 /* Guard pages are not available for any usage */
881 __mod_zone_freepage_state(zone
, -(1 << high
),
886 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
888 set_page_order(&page
[size
], high
);
893 * This page is about to be returned from the page allocator
895 static inline int check_new_page(struct page
*page
)
897 const char *bad_reason
= NULL
;
898 unsigned long bad_flags
= 0;
900 if (unlikely(page_mapcount(page
)))
901 bad_reason
= "nonzero mapcount";
902 if (unlikely(page
->mapping
!= NULL
))
903 bad_reason
= "non-NULL mapping";
904 if (unlikely(atomic_read(&page
->_count
) != 0))
905 bad_reason
= "nonzero _count";
906 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
907 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
908 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
910 if (unlikely(mem_cgroup_bad_page_check(page
)))
911 bad_reason
= "cgroup check failed";
912 if (unlikely(bad_reason
)) {
913 bad_page(page
, bad_reason
, bad_flags
);
919 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
)
923 for (i
= 0; i
< (1 << order
); i
++) {
924 struct page
*p
= page
+ i
;
925 if (unlikely(check_new_page(p
)))
929 set_page_private(page
, 0);
930 set_page_refcounted(page
);
932 arch_alloc_page(page
, order
);
933 kernel_map_pages(page
, 1 << order
, 1);
935 if (gfp_flags
& __GFP_ZERO
)
936 prep_zero_page(page
, order
, gfp_flags
);
938 if (order
&& (gfp_flags
& __GFP_COMP
))
939 prep_compound_page(page
, order
);
945 * Go through the free lists for the given migratetype and remove
946 * the smallest available page from the freelists
949 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
952 unsigned int current_order
;
953 struct free_area
*area
;
956 /* Find a page of the appropriate size in the preferred list */
957 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
958 area
= &(zone
->free_area
[current_order
]);
959 if (list_empty(&area
->free_list
[migratetype
]))
962 page
= list_entry(area
->free_list
[migratetype
].next
,
964 list_del(&page
->lru
);
965 rmv_page_order(page
);
967 expand(zone
, page
, order
, current_order
, area
, migratetype
);
968 set_freepage_migratetype(page
, migratetype
);
977 * This array describes the order lists are fallen back to when
978 * the free lists for the desirable migrate type are depleted
980 static int fallbacks
[MIGRATE_TYPES
][4] = {
981 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
982 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
984 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
985 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
987 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
989 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
990 #ifdef CONFIG_MEMORY_ISOLATION
991 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
996 * Move the free pages in a range to the free lists of the requested type.
997 * Note that start_page and end_pages are not aligned on a pageblock
998 * boundary. If alignment is required, use move_freepages_block()
1000 int move_freepages(struct zone
*zone
,
1001 struct page
*start_page
, struct page
*end_page
,
1005 unsigned long order
;
1006 int pages_moved
= 0;
1008 #ifndef CONFIG_HOLES_IN_ZONE
1010 * page_zone is not safe to call in this context when
1011 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1012 * anyway as we check zone boundaries in move_freepages_block().
1013 * Remove at a later date when no bug reports exist related to
1014 * grouping pages by mobility
1016 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1019 for (page
= start_page
; page
<= end_page
;) {
1020 /* Make sure we are not inadvertently changing nodes */
1021 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1023 if (!pfn_valid_within(page_to_pfn(page
))) {
1028 if (!PageBuddy(page
)) {
1033 order
= page_order(page
);
1034 list_move(&page
->lru
,
1035 &zone
->free_area
[order
].free_list
[migratetype
]);
1036 set_freepage_migratetype(page
, migratetype
);
1038 pages_moved
+= 1 << order
;
1044 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1047 unsigned long start_pfn
, end_pfn
;
1048 struct page
*start_page
, *end_page
;
1050 start_pfn
= page_to_pfn(page
);
1051 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1052 start_page
= pfn_to_page(start_pfn
);
1053 end_page
= start_page
+ pageblock_nr_pages
- 1;
1054 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1056 /* Do not cross zone boundaries */
1057 if (!zone_spans_pfn(zone
, start_pfn
))
1059 if (!zone_spans_pfn(zone
, end_pfn
))
1062 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1065 static void change_pageblock_range(struct page
*pageblock_page
,
1066 int start_order
, int migratetype
)
1068 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1070 while (nr_pageblocks
--) {
1071 set_pageblock_migratetype(pageblock_page
, migratetype
);
1072 pageblock_page
+= pageblock_nr_pages
;
1077 * If breaking a large block of pages, move all free pages to the preferred
1078 * allocation list. If falling back for a reclaimable kernel allocation, be
1079 * more aggressive about taking ownership of free pages.
1081 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1082 * nor move CMA pages to different free lists. We don't want unmovable pages
1083 * to be allocated from MIGRATE_CMA areas.
1085 * Returns the new migratetype of the pageblock (or the same old migratetype
1086 * if it was unchanged).
1088 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1089 int start_type
, int fallback_type
)
1091 int current_order
= page_order(page
);
1094 * When borrowing from MIGRATE_CMA, we need to release the excess
1095 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1096 * is set to CMA so it is returned to the correct freelist in case
1097 * the page ends up being not actually allocated from the pcp lists.
1099 if (is_migrate_cma(fallback_type
))
1100 return fallback_type
;
1102 /* Take ownership for orders >= pageblock_order */
1103 if (current_order
>= pageblock_order
) {
1104 change_pageblock_range(page
, current_order
, start_type
);
1108 if (current_order
>= pageblock_order
/ 2 ||
1109 start_type
== MIGRATE_RECLAIMABLE
||
1110 page_group_by_mobility_disabled
) {
1113 pages
= move_freepages_block(zone
, page
, start_type
);
1115 /* Claim the whole block if over half of it is free */
1116 if (pages
>= (1 << (pageblock_order
-1)) ||
1117 page_group_by_mobility_disabled
) {
1119 set_pageblock_migratetype(page
, start_type
);
1125 return fallback_type
;
1128 /* Remove an element from the buddy allocator from the fallback list */
1129 static inline struct page
*
1130 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1132 struct free_area
*area
;
1133 unsigned int current_order
;
1135 int migratetype
, new_type
, i
;
1137 /* Find the largest possible block of pages in the other list */
1138 for (current_order
= MAX_ORDER
-1;
1139 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1142 migratetype
= fallbacks
[start_migratetype
][i
];
1144 /* MIGRATE_RESERVE handled later if necessary */
1145 if (migratetype
== MIGRATE_RESERVE
)
1148 area
= &(zone
->free_area
[current_order
]);
1149 if (list_empty(&area
->free_list
[migratetype
]))
1152 page
= list_entry(area
->free_list
[migratetype
].next
,
1156 new_type
= try_to_steal_freepages(zone
, page
,
1160 /* Remove the page from the freelists */
1161 list_del(&page
->lru
);
1162 rmv_page_order(page
);
1164 expand(zone
, page
, order
, current_order
, area
,
1166 /* The freepage_migratetype may differ from pageblock's
1167 * migratetype depending on the decisions in
1168 * try_to_steal_freepages. This is OK as long as it does
1169 * not differ for MIGRATE_CMA type.
1171 set_freepage_migratetype(page
, new_type
);
1173 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1174 start_migratetype
, migratetype
, new_type
);
1184 * Do the hard work of removing an element from the buddy allocator.
1185 * Call me with the zone->lock already held.
1187 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1193 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1195 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1196 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1199 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1200 * is used because __rmqueue_smallest is an inline function
1201 * and we want just one call site
1204 migratetype
= MIGRATE_RESERVE
;
1209 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1214 * Obtain a specified number of elements from the buddy allocator, all under
1215 * a single hold of the lock, for efficiency. Add them to the supplied list.
1216 * Returns the number of new pages which were placed at *list.
1218 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1219 unsigned long count
, struct list_head
*list
,
1220 int migratetype
, bool cold
)
1224 spin_lock(&zone
->lock
);
1225 for (i
= 0; i
< count
; ++i
) {
1226 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1227 if (unlikely(page
== NULL
))
1231 * Split buddy pages returned by expand() are received here
1232 * in physical page order. The page is added to the callers and
1233 * list and the list head then moves forward. From the callers
1234 * perspective, the linked list is ordered by page number in
1235 * some conditions. This is useful for IO devices that can
1236 * merge IO requests if the physical pages are ordered
1240 list_add(&page
->lru
, list
);
1242 list_add_tail(&page
->lru
, list
);
1244 if (is_migrate_cma(get_freepage_migratetype(page
)))
1245 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1248 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1249 spin_unlock(&zone
->lock
);
1255 * Called from the vmstat counter updater to drain pagesets of this
1256 * currently executing processor on remote nodes after they have
1259 * Note that this function must be called with the thread pinned to
1260 * a single processor.
1262 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1264 unsigned long flags
;
1265 int to_drain
, batch
;
1267 local_irq_save(flags
);
1268 batch
= ACCESS_ONCE(pcp
->batch
);
1269 to_drain
= min(pcp
->count
, batch
);
1271 free_pcppages_bulk(zone
, to_drain
, pcp
);
1272 pcp
->count
-= to_drain
;
1274 local_irq_restore(flags
);
1279 * Drain pages of the indicated processor.
1281 * The processor must either be the current processor and the
1282 * thread pinned to the current processor or a processor that
1285 static void drain_pages(unsigned int cpu
)
1287 unsigned long flags
;
1290 for_each_populated_zone(zone
) {
1291 struct per_cpu_pageset
*pset
;
1292 struct per_cpu_pages
*pcp
;
1294 local_irq_save(flags
);
1295 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1299 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1302 local_irq_restore(flags
);
1307 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1309 void drain_local_pages(void *arg
)
1311 drain_pages(smp_processor_id());
1315 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1317 * Note that this code is protected against sending an IPI to an offline
1318 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1319 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1320 * nothing keeps CPUs from showing up after we populated the cpumask and
1321 * before the call to on_each_cpu_mask().
1323 void drain_all_pages(void)
1326 struct per_cpu_pageset
*pcp
;
1330 * Allocate in the BSS so we wont require allocation in
1331 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1333 static cpumask_t cpus_with_pcps
;
1336 * We don't care about racing with CPU hotplug event
1337 * as offline notification will cause the notified
1338 * cpu to drain that CPU pcps and on_each_cpu_mask
1339 * disables preemption as part of its processing
1341 for_each_online_cpu(cpu
) {
1342 bool has_pcps
= false;
1343 for_each_populated_zone(zone
) {
1344 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1345 if (pcp
->pcp
.count
) {
1351 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1353 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1355 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1358 #ifdef CONFIG_HIBERNATION
1360 void mark_free_pages(struct zone
*zone
)
1362 unsigned long pfn
, max_zone_pfn
;
1363 unsigned long flags
;
1364 unsigned int order
, t
;
1365 struct list_head
*curr
;
1367 if (zone_is_empty(zone
))
1370 spin_lock_irqsave(&zone
->lock
, flags
);
1372 max_zone_pfn
= zone_end_pfn(zone
);
1373 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1374 if (pfn_valid(pfn
)) {
1375 struct page
*page
= pfn_to_page(pfn
);
1377 if (!swsusp_page_is_forbidden(page
))
1378 swsusp_unset_page_free(page
);
1381 for_each_migratetype_order(order
, t
) {
1382 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1385 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1386 for (i
= 0; i
< (1UL << order
); i
++)
1387 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1390 spin_unlock_irqrestore(&zone
->lock
, flags
);
1392 #endif /* CONFIG_PM */
1395 * Free a 0-order page
1396 * cold == true ? free a cold page : free a hot page
1398 void free_hot_cold_page(struct page
*page
, bool cold
)
1400 struct zone
*zone
= page_zone(page
);
1401 struct per_cpu_pages
*pcp
;
1402 unsigned long flags
;
1403 unsigned long pfn
= page_to_pfn(page
);
1406 if (!free_pages_prepare(page
, 0))
1409 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1410 set_freepage_migratetype(page
, migratetype
);
1411 local_irq_save(flags
);
1412 __count_vm_event(PGFREE
);
1415 * We only track unmovable, reclaimable and movable on pcp lists.
1416 * Free ISOLATE pages back to the allocator because they are being
1417 * offlined but treat RESERVE as movable pages so we can get those
1418 * areas back if necessary. Otherwise, we may have to free
1419 * excessively into the page allocator
1421 if (migratetype
>= MIGRATE_PCPTYPES
) {
1422 if (unlikely(is_migrate_isolate(migratetype
))) {
1423 free_one_page(zone
, page
, pfn
, 0, migratetype
);
1426 migratetype
= MIGRATE_MOVABLE
;
1429 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1431 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1433 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1435 if (pcp
->count
>= pcp
->high
) {
1436 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1437 free_pcppages_bulk(zone
, batch
, pcp
);
1438 pcp
->count
-= batch
;
1442 local_irq_restore(flags
);
1446 * Free a list of 0-order pages
1448 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
1450 struct page
*page
, *next
;
1452 list_for_each_entry_safe(page
, next
, list
, lru
) {
1453 trace_mm_page_free_batched(page
, cold
);
1454 free_hot_cold_page(page
, cold
);
1459 * split_page takes a non-compound higher-order page, and splits it into
1460 * n (1<<order) sub-pages: page[0..n]
1461 * Each sub-page must be freed individually.
1463 * Note: this is probably too low level an operation for use in drivers.
1464 * Please consult with lkml before using this in your driver.
1466 void split_page(struct page
*page
, unsigned int order
)
1470 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1471 VM_BUG_ON_PAGE(!page_count(page
), page
);
1473 #ifdef CONFIG_KMEMCHECK
1475 * Split shadow pages too, because free(page[0]) would
1476 * otherwise free the whole shadow.
1478 if (kmemcheck_page_is_tracked(page
))
1479 split_page(virt_to_page(page
[0].shadow
), order
);
1482 for (i
= 1; i
< (1 << order
); i
++)
1483 set_page_refcounted(page
+ i
);
1485 EXPORT_SYMBOL_GPL(split_page
);
1487 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1489 unsigned long watermark
;
1493 BUG_ON(!PageBuddy(page
));
1495 zone
= page_zone(page
);
1496 mt
= get_pageblock_migratetype(page
);
1498 if (!is_migrate_isolate(mt
)) {
1499 /* Obey watermarks as if the page was being allocated */
1500 watermark
= low_wmark_pages(zone
) + (1 << order
);
1501 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1504 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1507 /* Remove page from free list */
1508 list_del(&page
->lru
);
1509 zone
->free_area
[order
].nr_free
--;
1510 rmv_page_order(page
);
1512 /* Set the pageblock if the isolated page is at least a pageblock */
1513 if (order
>= pageblock_order
- 1) {
1514 struct page
*endpage
= page
+ (1 << order
) - 1;
1515 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1516 int mt
= get_pageblock_migratetype(page
);
1517 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1518 set_pageblock_migratetype(page
,
1523 return 1UL << order
;
1527 * Similar to split_page except the page is already free. As this is only
1528 * being used for migration, the migratetype of the block also changes.
1529 * As this is called with interrupts disabled, the caller is responsible
1530 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1533 * Note: this is probably too low level an operation for use in drivers.
1534 * Please consult with lkml before using this in your driver.
1536 int split_free_page(struct page
*page
)
1541 order
= page_order(page
);
1543 nr_pages
= __isolate_free_page(page
, order
);
1547 /* Split into individual pages */
1548 set_page_refcounted(page
);
1549 split_page(page
, order
);
1554 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1555 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1559 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1560 struct zone
*zone
, unsigned int order
,
1561 gfp_t gfp_flags
, int migratetype
)
1563 unsigned long flags
;
1565 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
1568 if (likely(order
== 0)) {
1569 struct per_cpu_pages
*pcp
;
1570 struct list_head
*list
;
1572 local_irq_save(flags
);
1573 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1574 list
= &pcp
->lists
[migratetype
];
1575 if (list_empty(list
)) {
1576 pcp
->count
+= rmqueue_bulk(zone
, 0,
1579 if (unlikely(list_empty(list
)))
1584 page
= list_entry(list
->prev
, struct page
, lru
);
1586 page
= list_entry(list
->next
, struct page
, lru
);
1588 list_del(&page
->lru
);
1591 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1593 * __GFP_NOFAIL is not to be used in new code.
1595 * All __GFP_NOFAIL callers should be fixed so that they
1596 * properly detect and handle allocation failures.
1598 * We most definitely don't want callers attempting to
1599 * allocate greater than order-1 page units with
1602 WARN_ON_ONCE(order
> 1);
1604 spin_lock_irqsave(&zone
->lock
, flags
);
1605 page
= __rmqueue(zone
, order
, migratetype
);
1606 spin_unlock(&zone
->lock
);
1609 __mod_zone_freepage_state(zone
, -(1 << order
),
1610 get_freepage_migratetype(page
));
1613 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1614 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
1615 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
1616 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
1618 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1619 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1620 local_irq_restore(flags
);
1622 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1623 if (prep_new_page(page
, order
, gfp_flags
))
1628 local_irq_restore(flags
);
1632 #ifdef CONFIG_FAIL_PAGE_ALLOC
1635 struct fault_attr attr
;
1637 u32 ignore_gfp_highmem
;
1638 u32 ignore_gfp_wait
;
1640 } fail_page_alloc
= {
1641 .attr
= FAULT_ATTR_INITIALIZER
,
1642 .ignore_gfp_wait
= 1,
1643 .ignore_gfp_highmem
= 1,
1647 static int __init
setup_fail_page_alloc(char *str
)
1649 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1651 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1653 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1655 if (order
< fail_page_alloc
.min_order
)
1657 if (gfp_mask
& __GFP_NOFAIL
)
1659 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1661 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1664 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1669 static int __init
fail_page_alloc_debugfs(void)
1671 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1674 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1675 &fail_page_alloc
.attr
);
1677 return PTR_ERR(dir
);
1679 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1680 &fail_page_alloc
.ignore_gfp_wait
))
1682 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1683 &fail_page_alloc
.ignore_gfp_highmem
))
1685 if (!debugfs_create_u32("min-order", mode
, dir
,
1686 &fail_page_alloc
.min_order
))
1691 debugfs_remove_recursive(dir
);
1696 late_initcall(fail_page_alloc_debugfs
);
1698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1700 #else /* CONFIG_FAIL_PAGE_ALLOC */
1702 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1707 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1710 * Return true if free pages are above 'mark'. This takes into account the order
1711 * of the allocation.
1713 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
1714 unsigned long mark
, int classzone_idx
, int alloc_flags
,
1717 /* free_pages my go negative - that's OK */
1722 free_pages
-= (1 << order
) - 1;
1723 if (alloc_flags
& ALLOC_HIGH
)
1725 if (alloc_flags
& ALLOC_HARDER
)
1728 /* If allocation can't use CMA areas don't use free CMA pages */
1729 if (!(alloc_flags
& ALLOC_CMA
))
1730 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1733 if (free_pages
- free_cma
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1735 for (o
= 0; o
< order
; o
++) {
1736 /* At the next order, this order's pages become unavailable */
1737 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1739 /* Require fewer higher order pages to be free */
1742 if (free_pages
<= min
)
1748 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
1749 int classzone_idx
, int alloc_flags
)
1751 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1752 zone_page_state(z
, NR_FREE_PAGES
));
1755 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
1756 unsigned long mark
, int classzone_idx
, int alloc_flags
)
1758 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1760 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1761 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1763 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1769 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1770 * skip over zones that are not allowed by the cpuset, or that have
1771 * been recently (in last second) found to be nearly full. See further
1772 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1773 * that have to skip over a lot of full or unallowed zones.
1775 * If the zonelist cache is present in the passed zonelist, then
1776 * returns a pointer to the allowed node mask (either the current
1777 * tasks mems_allowed, or node_states[N_MEMORY].)
1779 * If the zonelist cache is not available for this zonelist, does
1780 * nothing and returns NULL.
1782 * If the fullzones BITMAP in the zonelist cache is stale (more than
1783 * a second since last zap'd) then we zap it out (clear its bits.)
1785 * We hold off even calling zlc_setup, until after we've checked the
1786 * first zone in the zonelist, on the theory that most allocations will
1787 * be satisfied from that first zone, so best to examine that zone as
1788 * quickly as we can.
1790 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1792 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1793 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1795 zlc
= zonelist
->zlcache_ptr
;
1799 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1800 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1801 zlc
->last_full_zap
= jiffies
;
1804 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1805 &cpuset_current_mems_allowed
:
1806 &node_states
[N_MEMORY
];
1807 return allowednodes
;
1811 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1812 * if it is worth looking at further for free memory:
1813 * 1) Check that the zone isn't thought to be full (doesn't have its
1814 * bit set in the zonelist_cache fullzones BITMAP).
1815 * 2) Check that the zones node (obtained from the zonelist_cache
1816 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1817 * Return true (non-zero) if zone is worth looking at further, or
1818 * else return false (zero) if it is not.
1820 * This check -ignores- the distinction between various watermarks,
1821 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1822 * found to be full for any variation of these watermarks, it will
1823 * be considered full for up to one second by all requests, unless
1824 * we are so low on memory on all allowed nodes that we are forced
1825 * into the second scan of the zonelist.
1827 * In the second scan we ignore this zonelist cache and exactly
1828 * apply the watermarks to all zones, even it is slower to do so.
1829 * We are low on memory in the second scan, and should leave no stone
1830 * unturned looking for a free page.
1832 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1833 nodemask_t
*allowednodes
)
1835 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1836 int i
; /* index of *z in zonelist zones */
1837 int n
; /* node that zone *z is on */
1839 zlc
= zonelist
->zlcache_ptr
;
1843 i
= z
- zonelist
->_zonerefs
;
1846 /* This zone is worth trying if it is allowed but not full */
1847 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1851 * Given 'z' scanning a zonelist, set the corresponding bit in
1852 * zlc->fullzones, so that subsequent attempts to allocate a page
1853 * from that zone don't waste time re-examining it.
1855 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1857 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1858 int i
; /* index of *z in zonelist zones */
1860 zlc
= zonelist
->zlcache_ptr
;
1864 i
= z
- zonelist
->_zonerefs
;
1866 set_bit(i
, zlc
->fullzones
);
1870 * clear all zones full, called after direct reclaim makes progress so that
1871 * a zone that was recently full is not skipped over for up to a second
1873 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1875 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1877 zlc
= zonelist
->zlcache_ptr
;
1881 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1884 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1886 return local_zone
->node
== zone
->node
;
1889 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1891 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
1895 #else /* CONFIG_NUMA */
1897 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1902 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1903 nodemask_t
*allowednodes
)
1908 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1912 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1916 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1921 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1926 #endif /* CONFIG_NUMA */
1928 static void reset_alloc_batches(struct zone
*preferred_zone
)
1930 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
1933 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
1934 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
1935 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
1936 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
1937 } while (zone
++ != preferred_zone
);
1941 * get_page_from_freelist goes through the zonelist trying to allocate
1944 static struct page
*
1945 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1946 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1947 struct zone
*preferred_zone
, int classzone_idx
, int migratetype
)
1950 struct page
*page
= NULL
;
1952 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1953 int zlc_active
= 0; /* set if using zonelist_cache */
1954 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1955 bool consider_zone_dirty
= (alloc_flags
& ALLOC_WMARK_LOW
) &&
1956 (gfp_mask
& __GFP_WRITE
);
1957 int nr_fair_skipped
= 0;
1958 bool zonelist_rescan
;
1961 zonelist_rescan
= false;
1964 * Scan zonelist, looking for a zone with enough free.
1965 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1967 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1968 high_zoneidx
, nodemask
) {
1971 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1972 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1974 if (cpusets_enabled() &&
1975 (alloc_flags
& ALLOC_CPUSET
) &&
1976 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1979 * Distribute pages in proportion to the individual
1980 * zone size to ensure fair page aging. The zone a
1981 * page was allocated in should have no effect on the
1982 * time the page has in memory before being reclaimed.
1984 if (alloc_flags
& ALLOC_FAIR
) {
1985 if (!zone_local(preferred_zone
, zone
))
1987 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
1993 * When allocating a page cache page for writing, we
1994 * want to get it from a zone that is within its dirty
1995 * limit, such that no single zone holds more than its
1996 * proportional share of globally allowed dirty pages.
1997 * The dirty limits take into account the zone's
1998 * lowmem reserves and high watermark so that kswapd
1999 * should be able to balance it without having to
2000 * write pages from its LRU list.
2002 * This may look like it could increase pressure on
2003 * lower zones by failing allocations in higher zones
2004 * before they are full. But the pages that do spill
2005 * over are limited as the lower zones are protected
2006 * by this very same mechanism. It should not become
2007 * a practical burden to them.
2009 * XXX: For now, allow allocations to potentially
2010 * exceed the per-zone dirty limit in the slowpath
2011 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2012 * which is important when on a NUMA setup the allowed
2013 * zones are together not big enough to reach the
2014 * global limit. The proper fix for these situations
2015 * will require awareness of zones in the
2016 * dirty-throttling and the flusher threads.
2018 if (consider_zone_dirty
&& !zone_dirty_ok(zone
))
2021 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2022 if (!zone_watermark_ok(zone
, order
, mark
,
2023 classzone_idx
, alloc_flags
)) {
2026 /* Checked here to keep the fast path fast */
2027 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2028 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2031 if (IS_ENABLED(CONFIG_NUMA
) &&
2032 !did_zlc_setup
&& nr_online_nodes
> 1) {
2034 * we do zlc_setup if there are multiple nodes
2035 * and before considering the first zone allowed
2038 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2043 if (zone_reclaim_mode
== 0 ||
2044 !zone_allows_reclaim(preferred_zone
, zone
))
2045 goto this_zone_full
;
2048 * As we may have just activated ZLC, check if the first
2049 * eligible zone has failed zone_reclaim recently.
2051 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2052 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2055 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2057 case ZONE_RECLAIM_NOSCAN
:
2060 case ZONE_RECLAIM_FULL
:
2061 /* scanned but unreclaimable */
2064 /* did we reclaim enough */
2065 if (zone_watermark_ok(zone
, order
, mark
,
2066 classzone_idx
, alloc_flags
))
2070 * Failed to reclaim enough to meet watermark.
2071 * Only mark the zone full if checking the min
2072 * watermark or if we failed to reclaim just
2073 * 1<<order pages or else the page allocator
2074 * fastpath will prematurely mark zones full
2075 * when the watermark is between the low and
2078 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2079 ret
== ZONE_RECLAIM_SOME
)
2080 goto this_zone_full
;
2087 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2088 gfp_mask
, migratetype
);
2092 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
)
2093 zlc_mark_zone_full(zonelist
, z
);
2098 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2099 * necessary to allocate the page. The expectation is
2100 * that the caller is taking steps that will free more
2101 * memory. The caller should avoid the page being used
2102 * for !PFMEMALLOC purposes.
2104 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2109 * The first pass makes sure allocations are spread fairly within the
2110 * local node. However, the local node might have free pages left
2111 * after the fairness batches are exhausted, and remote zones haven't
2112 * even been considered yet. Try once more without fairness, and
2113 * include remote zones now, before entering the slowpath and waking
2114 * kswapd: prefer spilling to a remote zone over swapping locally.
2116 if (alloc_flags
& ALLOC_FAIR
) {
2117 alloc_flags
&= ~ALLOC_FAIR
;
2118 if (nr_fair_skipped
) {
2119 zonelist_rescan
= true;
2120 reset_alloc_batches(preferred_zone
);
2122 if (nr_online_nodes
> 1)
2123 zonelist_rescan
= true;
2126 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && zlc_active
)) {
2127 /* Disable zlc cache for second zonelist scan */
2129 zonelist_rescan
= true;
2132 if (zonelist_rescan
)
2139 * Large machines with many possible nodes should not always dump per-node
2140 * meminfo in irq context.
2142 static inline bool should_suppress_show_mem(void)
2147 ret
= in_interrupt();
2152 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2153 DEFAULT_RATELIMIT_INTERVAL
,
2154 DEFAULT_RATELIMIT_BURST
);
2156 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2158 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2160 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2161 debug_guardpage_minorder() > 0)
2165 * This documents exceptions given to allocations in certain
2166 * contexts that are allowed to allocate outside current's set
2169 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2170 if (test_thread_flag(TIF_MEMDIE
) ||
2171 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2172 filter
&= ~SHOW_MEM_FILTER_NODES
;
2173 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2174 filter
&= ~SHOW_MEM_FILTER_NODES
;
2177 struct va_format vaf
;
2180 va_start(args
, fmt
);
2185 pr_warn("%pV", &vaf
);
2190 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2191 current
->comm
, order
, gfp_mask
);
2194 if (!should_suppress_show_mem())
2199 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2200 unsigned long did_some_progress
,
2201 unsigned long pages_reclaimed
)
2203 /* Do not loop if specifically requested */
2204 if (gfp_mask
& __GFP_NORETRY
)
2207 /* Always retry if specifically requested */
2208 if (gfp_mask
& __GFP_NOFAIL
)
2212 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2213 * making forward progress without invoking OOM. Suspend also disables
2214 * storage devices so kswapd will not help. Bail if we are suspending.
2216 if (!did_some_progress
&& pm_suspended_storage())
2220 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2221 * means __GFP_NOFAIL, but that may not be true in other
2224 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2228 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2229 * specified, then we retry until we no longer reclaim any pages
2230 * (above), or we've reclaimed an order of pages at least as
2231 * large as the allocation's order. In both cases, if the
2232 * allocation still fails, we stop retrying.
2234 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2240 static inline struct page
*
2241 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2242 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2243 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2244 int classzone_idx
, int migratetype
)
2248 /* Acquire the per-zone oom lock for each zone */
2249 if (!oom_zonelist_trylock(zonelist
, gfp_mask
)) {
2250 schedule_timeout_uninterruptible(1);
2255 * PM-freezer should be notified that there might be an OOM killer on
2256 * its way to kill and wake somebody up. This is too early and we might
2257 * end up not killing anything but false positives are acceptable.
2258 * See freeze_processes.
2263 * Go through the zonelist yet one more time, keep very high watermark
2264 * here, this is only to catch a parallel oom killing, we must fail if
2265 * we're still under heavy pressure.
2267 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2268 order
, zonelist
, high_zoneidx
,
2269 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2270 preferred_zone
, classzone_idx
, migratetype
);
2274 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2275 /* The OOM killer will not help higher order allocs */
2276 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2278 /* The OOM killer does not needlessly kill tasks for lowmem */
2279 if (high_zoneidx
< ZONE_NORMAL
)
2282 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2283 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2284 * The caller should handle page allocation failure by itself if
2285 * it specifies __GFP_THISNODE.
2286 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2288 if (gfp_mask
& __GFP_THISNODE
)
2291 /* Exhausted what can be done so it's blamo time */
2292 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2295 oom_zonelist_unlock(zonelist
, gfp_mask
);
2299 #ifdef CONFIG_COMPACTION
2300 /* Try memory compaction for high-order allocations before reclaim */
2301 static struct page
*
2302 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2303 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2304 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2305 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2306 int *contended_compaction
, bool *deferred_compaction
)
2308 struct zone
*last_compact_zone
= NULL
;
2309 unsigned long compact_result
;
2315 current
->flags
|= PF_MEMALLOC
;
2316 compact_result
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2318 contended_compaction
,
2319 &last_compact_zone
);
2320 current
->flags
&= ~PF_MEMALLOC
;
2322 switch (compact_result
) {
2323 case COMPACT_DEFERRED
:
2324 *deferred_compaction
= true;
2326 case COMPACT_SKIPPED
:
2333 * At least in one zone compaction wasn't deferred or skipped, so let's
2334 * count a compaction stall
2336 count_vm_event(COMPACTSTALL
);
2338 /* Page migration frees to the PCP lists but we want merging */
2339 drain_pages(get_cpu());
2342 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2343 order
, zonelist
, high_zoneidx
,
2344 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2345 preferred_zone
, classzone_idx
, migratetype
);
2348 struct zone
*zone
= page_zone(page
);
2350 zone
->compact_blockskip_flush
= false;
2351 compaction_defer_reset(zone
, order
, true);
2352 count_vm_event(COMPACTSUCCESS
);
2357 * last_compact_zone is where try_to_compact_pages thought allocation
2358 * should succeed, so it did not defer compaction. But here we know
2359 * that it didn't succeed, so we do the defer.
2361 if (last_compact_zone
&& mode
!= MIGRATE_ASYNC
)
2362 defer_compaction(last_compact_zone
, order
);
2365 * It's bad if compaction run occurs and fails. The most likely reason
2366 * is that pages exist, but not enough to satisfy watermarks.
2368 count_vm_event(COMPACTFAIL
);
2375 static inline struct page
*
2376 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2377 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2378 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2379 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2380 int *contended_compaction
, bool *deferred_compaction
)
2384 #endif /* CONFIG_COMPACTION */
2386 /* Perform direct synchronous page reclaim */
2388 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2389 nodemask_t
*nodemask
)
2391 struct reclaim_state reclaim_state
;
2396 /* We now go into synchronous reclaim */
2397 cpuset_memory_pressure_bump();
2398 current
->flags
|= PF_MEMALLOC
;
2399 lockdep_set_current_reclaim_state(gfp_mask
);
2400 reclaim_state
.reclaimed_slab
= 0;
2401 current
->reclaim_state
= &reclaim_state
;
2403 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2405 current
->reclaim_state
= NULL
;
2406 lockdep_clear_current_reclaim_state();
2407 current
->flags
&= ~PF_MEMALLOC
;
2414 /* The really slow allocator path where we enter direct reclaim */
2415 static inline struct page
*
2416 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2417 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2418 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2419 int classzone_idx
, int migratetype
, unsigned long *did_some_progress
)
2421 struct page
*page
= NULL
;
2422 bool drained
= false;
2424 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2426 if (unlikely(!(*did_some_progress
)))
2429 /* After successful reclaim, reconsider all zones for allocation */
2430 if (IS_ENABLED(CONFIG_NUMA
))
2431 zlc_clear_zones_full(zonelist
);
2434 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2435 zonelist
, high_zoneidx
,
2436 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2437 preferred_zone
, classzone_idx
,
2441 * If an allocation failed after direct reclaim, it could be because
2442 * pages are pinned on the per-cpu lists. Drain them and try again
2444 if (!page
&& !drained
) {
2454 * This is called in the allocator slow-path if the allocation request is of
2455 * sufficient urgency to ignore watermarks and take other desperate measures
2457 static inline struct page
*
2458 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2459 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2460 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2461 int classzone_idx
, int migratetype
)
2466 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2467 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2468 preferred_zone
, classzone_idx
, migratetype
);
2470 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2471 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2472 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2477 static void wake_all_kswapds(unsigned int order
,
2478 struct zonelist
*zonelist
,
2479 enum zone_type high_zoneidx
,
2480 struct zone
*preferred_zone
,
2481 nodemask_t
*nodemask
)
2486 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2487 high_zoneidx
, nodemask
)
2488 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2492 gfp_to_alloc_flags(gfp_t gfp_mask
)
2494 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2495 const bool atomic
= !(gfp_mask
& (__GFP_WAIT
| __GFP_NO_KSWAPD
));
2497 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2498 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2501 * The caller may dip into page reserves a bit more if the caller
2502 * cannot run direct reclaim, or if the caller has realtime scheduling
2503 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2504 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2506 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2510 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2511 * if it can't schedule.
2513 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2514 alloc_flags
|= ALLOC_HARDER
;
2516 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2517 * comment for __cpuset_node_allowed_softwall().
2519 alloc_flags
&= ~ALLOC_CPUSET
;
2520 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2521 alloc_flags
|= ALLOC_HARDER
;
2523 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2524 if (gfp_mask
& __GFP_MEMALLOC
)
2525 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2526 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2527 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2528 else if (!in_interrupt() &&
2529 ((current
->flags
& PF_MEMALLOC
) ||
2530 unlikely(test_thread_flag(TIF_MEMDIE
))))
2531 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2534 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2535 alloc_flags
|= ALLOC_CMA
;
2540 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2542 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2545 static inline struct page
*
2546 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2547 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2548 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2549 int classzone_idx
, int migratetype
)
2551 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2552 struct page
*page
= NULL
;
2554 unsigned long pages_reclaimed
= 0;
2555 unsigned long did_some_progress
;
2556 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2557 bool deferred_compaction
= false;
2558 int contended_compaction
= COMPACT_CONTENDED_NONE
;
2561 * In the slowpath, we sanity check order to avoid ever trying to
2562 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2563 * be using allocators in order of preference for an area that is
2566 if (order
>= MAX_ORDER
) {
2567 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2572 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2573 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2574 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2575 * using a larger set of nodes after it has established that the
2576 * allowed per node queues are empty and that nodes are
2579 if (IS_ENABLED(CONFIG_NUMA
) &&
2580 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2584 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2585 wake_all_kswapds(order
, zonelist
, high_zoneidx
,
2586 preferred_zone
, nodemask
);
2589 * OK, we're below the kswapd watermark and have kicked background
2590 * reclaim. Now things get more complex, so set up alloc_flags according
2591 * to how we want to proceed.
2593 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2596 * Find the true preferred zone if the allocation is unconstrained by
2599 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
) {
2600 struct zoneref
*preferred_zoneref
;
2601 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2602 NULL
, &preferred_zone
);
2603 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2607 /* This is the last chance, in general, before the goto nopage. */
2608 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2609 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2610 preferred_zone
, classzone_idx
, migratetype
);
2614 /* Allocate without watermarks if the context allows */
2615 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2617 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2618 * the allocation is high priority and these type of
2619 * allocations are system rather than user orientated
2621 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2623 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2624 zonelist
, high_zoneidx
, nodemask
,
2625 preferred_zone
, classzone_idx
, migratetype
);
2631 /* Atomic allocations - we can't balance anything */
2634 * All existing users of the deprecated __GFP_NOFAIL are
2635 * blockable, so warn of any new users that actually allow this
2636 * type of allocation to fail.
2638 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
2642 /* Avoid recursion of direct reclaim */
2643 if (current
->flags
& PF_MEMALLOC
)
2646 /* Avoid allocations with no watermarks from looping endlessly */
2647 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2651 * Try direct compaction. The first pass is asynchronous. Subsequent
2652 * attempts after direct reclaim are synchronous
2654 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2655 high_zoneidx
, nodemask
, alloc_flags
,
2657 classzone_idx
, migratetype
,
2658 migration_mode
, &contended_compaction
,
2659 &deferred_compaction
);
2663 /* Checks for THP-specific high-order allocations */
2664 if ((gfp_mask
& GFP_TRANSHUGE
) == GFP_TRANSHUGE
) {
2666 * If compaction is deferred for high-order allocations, it is
2667 * because sync compaction recently failed. If this is the case
2668 * and the caller requested a THP allocation, we do not want
2669 * to heavily disrupt the system, so we fail the allocation
2670 * instead of entering direct reclaim.
2672 if (deferred_compaction
)
2676 * In all zones where compaction was attempted (and not
2677 * deferred or skipped), lock contention has been detected.
2678 * For THP allocation we do not want to disrupt the others
2679 * so we fallback to base pages instead.
2681 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
2685 * If compaction was aborted due to need_resched(), we do not
2686 * want to further increase allocation latency, unless it is
2687 * khugepaged trying to collapse.
2689 if (contended_compaction
== COMPACT_CONTENDED_SCHED
2690 && !(current
->flags
& PF_KTHREAD
))
2695 * It can become very expensive to allocate transparent hugepages at
2696 * fault, so use asynchronous memory compaction for THP unless it is
2697 * khugepaged trying to collapse.
2699 if ((gfp_mask
& GFP_TRANSHUGE
) != GFP_TRANSHUGE
||
2700 (current
->flags
& PF_KTHREAD
))
2701 migration_mode
= MIGRATE_SYNC_LIGHT
;
2703 /* Try direct reclaim and then allocating */
2704 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2705 zonelist
, high_zoneidx
,
2707 alloc_flags
, preferred_zone
,
2708 classzone_idx
, migratetype
,
2709 &did_some_progress
);
2714 * If we failed to make any progress reclaiming, then we are
2715 * running out of options and have to consider going OOM
2717 if (!did_some_progress
) {
2718 if (oom_gfp_allowed(gfp_mask
)) {
2719 if (oom_killer_disabled
)
2721 /* Coredumps can quickly deplete all memory reserves */
2722 if ((current
->flags
& PF_DUMPCORE
) &&
2723 !(gfp_mask
& __GFP_NOFAIL
))
2725 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2726 zonelist
, high_zoneidx
,
2727 nodemask
, preferred_zone
,
2728 classzone_idx
, migratetype
);
2732 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2734 * The oom killer is not called for high-order
2735 * allocations that may fail, so if no progress
2736 * is being made, there are no other options and
2737 * retrying is unlikely to help.
2739 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2742 * The oom killer is not called for lowmem
2743 * allocations to prevent needlessly killing
2746 if (high_zoneidx
< ZONE_NORMAL
)
2754 /* Check if we should retry the allocation */
2755 pages_reclaimed
+= did_some_progress
;
2756 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2758 /* Wait for some write requests to complete then retry */
2759 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2763 * High-order allocations do not necessarily loop after
2764 * direct reclaim and reclaim/compaction depends on compaction
2765 * being called after reclaim so call directly if necessary
2767 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2768 high_zoneidx
, nodemask
, alloc_flags
,
2770 classzone_idx
, migratetype
,
2771 migration_mode
, &contended_compaction
,
2772 &deferred_compaction
);
2778 warn_alloc_failed(gfp_mask
, order
, NULL
);
2781 if (kmemcheck_enabled
)
2782 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2788 * This is the 'heart' of the zoned buddy allocator.
2791 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2792 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2794 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2795 struct zone
*preferred_zone
;
2796 struct zoneref
*preferred_zoneref
;
2797 struct page
*page
= NULL
;
2798 int migratetype
= gfpflags_to_migratetype(gfp_mask
);
2799 unsigned int cpuset_mems_cookie
;
2800 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2803 gfp_mask
&= gfp_allowed_mask
;
2805 lockdep_trace_alloc(gfp_mask
);
2807 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2809 if (should_fail_alloc_page(gfp_mask
, order
))
2813 * Check the zones suitable for the gfp_mask contain at least one
2814 * valid zone. It's possible to have an empty zonelist as a result
2815 * of GFP_THISNODE and a memoryless node
2817 if (unlikely(!zonelist
->_zonerefs
->zone
))
2820 if (IS_ENABLED(CONFIG_CMA
) && migratetype
== MIGRATE_MOVABLE
)
2821 alloc_flags
|= ALLOC_CMA
;
2824 cpuset_mems_cookie
= read_mems_allowed_begin();
2826 /* The preferred zone is used for statistics later */
2827 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2828 nodemask
? : &cpuset_current_mems_allowed
,
2830 if (!preferred_zone
)
2832 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2834 /* First allocation attempt */
2835 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2836 zonelist
, high_zoneidx
, alloc_flags
,
2837 preferred_zone
, classzone_idx
, migratetype
);
2838 if (unlikely(!page
)) {
2840 * Runtime PM, block IO and its error handling path
2841 * can deadlock because I/O on the device might not
2844 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2845 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2846 zonelist
, high_zoneidx
, nodemask
,
2847 preferred_zone
, classzone_idx
, migratetype
);
2850 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2854 * When updating a task's mems_allowed, it is possible to race with
2855 * parallel threads in such a way that an allocation can fail while
2856 * the mask is being updated. If a page allocation is about to fail,
2857 * check if the cpuset changed during allocation and if so, retry.
2859 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2864 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2867 * Common helper functions.
2869 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2874 * __get_free_pages() returns a 32-bit address, which cannot represent
2877 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2879 page
= alloc_pages(gfp_mask
, order
);
2882 return (unsigned long) page_address(page
);
2884 EXPORT_SYMBOL(__get_free_pages
);
2886 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2888 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2890 EXPORT_SYMBOL(get_zeroed_page
);
2892 void __free_pages(struct page
*page
, unsigned int order
)
2894 if (put_page_testzero(page
)) {
2896 free_hot_cold_page(page
, false);
2898 __free_pages_ok(page
, order
);
2902 EXPORT_SYMBOL(__free_pages
);
2904 void free_pages(unsigned long addr
, unsigned int order
)
2907 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2908 __free_pages(virt_to_page((void *)addr
), order
);
2912 EXPORT_SYMBOL(free_pages
);
2915 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2916 * of the current memory cgroup.
2918 * It should be used when the caller would like to use kmalloc, but since the
2919 * allocation is large, it has to fall back to the page allocator.
2921 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
2924 struct mem_cgroup
*memcg
= NULL
;
2926 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2928 page
= alloc_pages(gfp_mask
, order
);
2929 memcg_kmem_commit_charge(page
, memcg
, order
);
2933 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
2936 struct mem_cgroup
*memcg
= NULL
;
2938 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2940 page
= alloc_pages_node(nid
, gfp_mask
, order
);
2941 memcg_kmem_commit_charge(page
, memcg
, order
);
2946 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2949 void __free_kmem_pages(struct page
*page
, unsigned int order
)
2951 memcg_kmem_uncharge_pages(page
, order
);
2952 __free_pages(page
, order
);
2955 void free_kmem_pages(unsigned long addr
, unsigned int order
)
2958 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2959 __free_kmem_pages(virt_to_page((void *)addr
), order
);
2963 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2966 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2967 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2969 split_page(virt_to_page((void *)addr
), order
);
2970 while (used
< alloc_end
) {
2975 return (void *)addr
;
2979 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2980 * @size: the number of bytes to allocate
2981 * @gfp_mask: GFP flags for the allocation
2983 * This function is similar to alloc_pages(), except that it allocates the
2984 * minimum number of pages to satisfy the request. alloc_pages() can only
2985 * allocate memory in power-of-two pages.
2987 * This function is also limited by MAX_ORDER.
2989 * Memory allocated by this function must be released by free_pages_exact().
2991 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2993 unsigned int order
= get_order(size
);
2996 addr
= __get_free_pages(gfp_mask
, order
);
2997 return make_alloc_exact(addr
, order
, size
);
2999 EXPORT_SYMBOL(alloc_pages_exact
);
3002 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3004 * @nid: the preferred node ID where memory should be allocated
3005 * @size: the number of bytes to allocate
3006 * @gfp_mask: GFP flags for the allocation
3008 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3010 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3013 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3015 unsigned order
= get_order(size
);
3016 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3019 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3023 * free_pages_exact - release memory allocated via alloc_pages_exact()
3024 * @virt: the value returned by alloc_pages_exact.
3025 * @size: size of allocation, same value as passed to alloc_pages_exact().
3027 * Release the memory allocated by a previous call to alloc_pages_exact.
3029 void free_pages_exact(void *virt
, size_t size
)
3031 unsigned long addr
= (unsigned long)virt
;
3032 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3034 while (addr
< end
) {
3039 EXPORT_SYMBOL(free_pages_exact
);
3042 * nr_free_zone_pages - count number of pages beyond high watermark
3043 * @offset: The zone index of the highest zone
3045 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3046 * high watermark within all zones at or below a given zone index. For each
3047 * zone, the number of pages is calculated as:
3048 * managed_pages - high_pages
3050 static unsigned long nr_free_zone_pages(int offset
)
3055 /* Just pick one node, since fallback list is circular */
3056 unsigned long sum
= 0;
3058 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3060 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3061 unsigned long size
= zone
->managed_pages
;
3062 unsigned long high
= high_wmark_pages(zone
);
3071 * nr_free_buffer_pages - count number of pages beyond high watermark
3073 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3074 * watermark within ZONE_DMA and ZONE_NORMAL.
3076 unsigned long nr_free_buffer_pages(void)
3078 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3080 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3083 * nr_free_pagecache_pages - count number of pages beyond high watermark
3085 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3086 * high watermark within all zones.
3088 unsigned long nr_free_pagecache_pages(void)
3090 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3093 static inline void show_node(struct zone
*zone
)
3095 if (IS_ENABLED(CONFIG_NUMA
))
3096 printk("Node %d ", zone_to_nid(zone
));
3099 void si_meminfo(struct sysinfo
*val
)
3101 val
->totalram
= totalram_pages
;
3102 val
->sharedram
= global_page_state(NR_SHMEM
);
3103 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3104 val
->bufferram
= nr_blockdev_pages();
3105 val
->totalhigh
= totalhigh_pages
;
3106 val
->freehigh
= nr_free_highpages();
3107 val
->mem_unit
= PAGE_SIZE
;
3110 EXPORT_SYMBOL(si_meminfo
);
3113 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3115 int zone_type
; /* needs to be signed */
3116 unsigned long managed_pages
= 0;
3117 pg_data_t
*pgdat
= NODE_DATA(nid
);
3119 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3120 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3121 val
->totalram
= managed_pages
;
3122 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3123 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3124 #ifdef CONFIG_HIGHMEM
3125 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3126 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3132 val
->mem_unit
= PAGE_SIZE
;
3137 * Determine whether the node should be displayed or not, depending on whether
3138 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3140 bool skip_free_areas_node(unsigned int flags
, int nid
)
3143 unsigned int cpuset_mems_cookie
;
3145 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3149 cpuset_mems_cookie
= read_mems_allowed_begin();
3150 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3151 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3156 #define K(x) ((x) << (PAGE_SHIFT-10))
3158 static void show_migration_types(unsigned char type
)
3160 static const char types
[MIGRATE_TYPES
] = {
3161 [MIGRATE_UNMOVABLE
] = 'U',
3162 [MIGRATE_RECLAIMABLE
] = 'E',
3163 [MIGRATE_MOVABLE
] = 'M',
3164 [MIGRATE_RESERVE
] = 'R',
3166 [MIGRATE_CMA
] = 'C',
3168 #ifdef CONFIG_MEMORY_ISOLATION
3169 [MIGRATE_ISOLATE
] = 'I',
3172 char tmp
[MIGRATE_TYPES
+ 1];
3176 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3177 if (type
& (1 << i
))
3182 printk("(%s) ", tmp
);
3186 * Show free area list (used inside shift_scroll-lock stuff)
3187 * We also calculate the percentage fragmentation. We do this by counting the
3188 * memory on each free list with the exception of the first item on the list.
3189 * Suppresses nodes that are not allowed by current's cpuset if
3190 * SHOW_MEM_FILTER_NODES is passed.
3192 void show_free_areas(unsigned int filter
)
3197 for_each_populated_zone(zone
) {
3198 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3201 printk("%s per-cpu:\n", zone
->name
);
3203 for_each_online_cpu(cpu
) {
3204 struct per_cpu_pageset
*pageset
;
3206 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3208 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3209 cpu
, pageset
->pcp
.high
,
3210 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3214 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3215 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3217 " dirty:%lu writeback:%lu unstable:%lu\n"
3218 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3219 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3221 global_page_state(NR_ACTIVE_ANON
),
3222 global_page_state(NR_INACTIVE_ANON
),
3223 global_page_state(NR_ISOLATED_ANON
),
3224 global_page_state(NR_ACTIVE_FILE
),
3225 global_page_state(NR_INACTIVE_FILE
),
3226 global_page_state(NR_ISOLATED_FILE
),
3227 global_page_state(NR_UNEVICTABLE
),
3228 global_page_state(NR_FILE_DIRTY
),
3229 global_page_state(NR_WRITEBACK
),
3230 global_page_state(NR_UNSTABLE_NFS
),
3231 global_page_state(NR_FREE_PAGES
),
3232 global_page_state(NR_SLAB_RECLAIMABLE
),
3233 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3234 global_page_state(NR_FILE_MAPPED
),
3235 global_page_state(NR_SHMEM
),
3236 global_page_state(NR_PAGETABLE
),
3237 global_page_state(NR_BOUNCE
),
3238 global_page_state(NR_FREE_CMA_PAGES
));
3240 for_each_populated_zone(zone
) {
3243 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3251 " active_anon:%lukB"
3252 " inactive_anon:%lukB"
3253 " active_file:%lukB"
3254 " inactive_file:%lukB"
3255 " unevictable:%lukB"
3256 " isolated(anon):%lukB"
3257 " isolated(file):%lukB"
3265 " slab_reclaimable:%lukB"
3266 " slab_unreclaimable:%lukB"
3267 " kernel_stack:%lukB"
3272 " writeback_tmp:%lukB"
3273 " pages_scanned:%lu"
3274 " all_unreclaimable? %s"
3277 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3278 K(min_wmark_pages(zone
)),
3279 K(low_wmark_pages(zone
)),
3280 K(high_wmark_pages(zone
)),
3281 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3282 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3283 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3284 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3285 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3286 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3287 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3288 K(zone
->present_pages
),
3289 K(zone
->managed_pages
),
3290 K(zone_page_state(zone
, NR_MLOCK
)),
3291 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3292 K(zone_page_state(zone
, NR_WRITEBACK
)),
3293 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3294 K(zone_page_state(zone
, NR_SHMEM
)),
3295 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3296 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3297 zone_page_state(zone
, NR_KERNEL_STACK
) *
3299 K(zone_page_state(zone
, NR_PAGETABLE
)),
3300 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3301 K(zone_page_state(zone
, NR_BOUNCE
)),
3302 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3303 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3304 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3305 (!zone_reclaimable(zone
) ? "yes" : "no")
3307 printk("lowmem_reserve[]:");
3308 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3309 printk(" %ld", zone
->lowmem_reserve
[i
]);
3313 for_each_populated_zone(zone
) {
3314 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3315 unsigned char types
[MAX_ORDER
];
3317 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3320 printk("%s: ", zone
->name
);
3322 spin_lock_irqsave(&zone
->lock
, flags
);
3323 for (order
= 0; order
< MAX_ORDER
; order
++) {
3324 struct free_area
*area
= &zone
->free_area
[order
];
3327 nr
[order
] = area
->nr_free
;
3328 total
+= nr
[order
] << order
;
3331 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3332 if (!list_empty(&area
->free_list
[type
]))
3333 types
[order
] |= 1 << type
;
3336 spin_unlock_irqrestore(&zone
->lock
, flags
);
3337 for (order
= 0; order
< MAX_ORDER
; order
++) {
3338 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3340 show_migration_types(types
[order
]);
3342 printk("= %lukB\n", K(total
));
3345 hugetlb_show_meminfo();
3347 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3349 show_swap_cache_info();
3352 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3354 zoneref
->zone
= zone
;
3355 zoneref
->zone_idx
= zone_idx(zone
);
3359 * Builds allocation fallback zone lists.
3361 * Add all populated zones of a node to the zonelist.
3363 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3367 enum zone_type zone_type
= MAX_NR_ZONES
;
3371 zone
= pgdat
->node_zones
+ zone_type
;
3372 if (populated_zone(zone
)) {
3373 zoneref_set_zone(zone
,
3374 &zonelist
->_zonerefs
[nr_zones
++]);
3375 check_highest_zone(zone_type
);
3377 } while (zone_type
);
3385 * 0 = automatic detection of better ordering.
3386 * 1 = order by ([node] distance, -zonetype)
3387 * 2 = order by (-zonetype, [node] distance)
3389 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3390 * the same zonelist. So only NUMA can configure this param.
3392 #define ZONELIST_ORDER_DEFAULT 0
3393 #define ZONELIST_ORDER_NODE 1
3394 #define ZONELIST_ORDER_ZONE 2
3396 /* zonelist order in the kernel.
3397 * set_zonelist_order() will set this to NODE or ZONE.
3399 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3400 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3404 /* The value user specified ....changed by config */
3405 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3406 /* string for sysctl */
3407 #define NUMA_ZONELIST_ORDER_LEN 16
3408 char numa_zonelist_order
[16] = "default";
3411 * interface for configure zonelist ordering.
3412 * command line option "numa_zonelist_order"
3413 * = "[dD]efault - default, automatic configuration.
3414 * = "[nN]ode - order by node locality, then by zone within node
3415 * = "[zZ]one - order by zone, then by locality within zone
3418 static int __parse_numa_zonelist_order(char *s
)
3420 if (*s
== 'd' || *s
== 'D') {
3421 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3422 } else if (*s
== 'n' || *s
== 'N') {
3423 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3424 } else if (*s
== 'z' || *s
== 'Z') {
3425 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3428 "Ignoring invalid numa_zonelist_order value: "
3435 static __init
int setup_numa_zonelist_order(char *s
)
3442 ret
= __parse_numa_zonelist_order(s
);
3444 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3448 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3451 * sysctl handler for numa_zonelist_order
3453 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
3454 void __user
*buffer
, size_t *length
,
3457 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3459 static DEFINE_MUTEX(zl_order_mutex
);
3461 mutex_lock(&zl_order_mutex
);
3463 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3467 strcpy(saved_string
, (char *)table
->data
);
3469 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3473 int oldval
= user_zonelist_order
;
3475 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3478 * bogus value. restore saved string
3480 strncpy((char *)table
->data
, saved_string
,
3481 NUMA_ZONELIST_ORDER_LEN
);
3482 user_zonelist_order
= oldval
;
3483 } else if (oldval
!= user_zonelist_order
) {
3484 mutex_lock(&zonelists_mutex
);
3485 build_all_zonelists(NULL
, NULL
);
3486 mutex_unlock(&zonelists_mutex
);
3490 mutex_unlock(&zl_order_mutex
);
3495 #define MAX_NODE_LOAD (nr_online_nodes)
3496 static int node_load
[MAX_NUMNODES
];
3499 * find_next_best_node - find the next node that should appear in a given node's fallback list
3500 * @node: node whose fallback list we're appending
3501 * @used_node_mask: nodemask_t of already used nodes
3503 * We use a number of factors to determine which is the next node that should
3504 * appear on a given node's fallback list. The node should not have appeared
3505 * already in @node's fallback list, and it should be the next closest node
3506 * according to the distance array (which contains arbitrary distance values
3507 * from each node to each node in the system), and should also prefer nodes
3508 * with no CPUs, since presumably they'll have very little allocation pressure
3509 * on them otherwise.
3510 * It returns -1 if no node is found.
3512 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3515 int min_val
= INT_MAX
;
3516 int best_node
= NUMA_NO_NODE
;
3517 const struct cpumask
*tmp
= cpumask_of_node(0);
3519 /* Use the local node if we haven't already */
3520 if (!node_isset(node
, *used_node_mask
)) {
3521 node_set(node
, *used_node_mask
);
3525 for_each_node_state(n
, N_MEMORY
) {
3527 /* Don't want a node to appear more than once */
3528 if (node_isset(n
, *used_node_mask
))
3531 /* Use the distance array to find the distance */
3532 val
= node_distance(node
, n
);
3534 /* Penalize nodes under us ("prefer the next node") */
3537 /* Give preference to headless and unused nodes */
3538 tmp
= cpumask_of_node(n
);
3539 if (!cpumask_empty(tmp
))
3540 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3542 /* Slight preference for less loaded node */
3543 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3544 val
+= node_load
[n
];
3546 if (val
< min_val
) {
3553 node_set(best_node
, *used_node_mask
);
3560 * Build zonelists ordered by node and zones within node.
3561 * This results in maximum locality--normal zone overflows into local
3562 * DMA zone, if any--but risks exhausting DMA zone.
3564 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3567 struct zonelist
*zonelist
;
3569 zonelist
= &pgdat
->node_zonelists
[0];
3570 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3572 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3573 zonelist
->_zonerefs
[j
].zone
= NULL
;
3574 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3578 * Build gfp_thisnode zonelists
3580 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3583 struct zonelist
*zonelist
;
3585 zonelist
= &pgdat
->node_zonelists
[1];
3586 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3587 zonelist
->_zonerefs
[j
].zone
= NULL
;
3588 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3592 * Build zonelists ordered by zone and nodes within zones.
3593 * This results in conserving DMA zone[s] until all Normal memory is
3594 * exhausted, but results in overflowing to remote node while memory
3595 * may still exist in local DMA zone.
3597 static int node_order
[MAX_NUMNODES
];
3599 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3602 int zone_type
; /* needs to be signed */
3604 struct zonelist
*zonelist
;
3606 zonelist
= &pgdat
->node_zonelists
[0];
3608 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3609 for (j
= 0; j
< nr_nodes
; j
++) {
3610 node
= node_order
[j
];
3611 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3612 if (populated_zone(z
)) {
3614 &zonelist
->_zonerefs
[pos
++]);
3615 check_highest_zone(zone_type
);
3619 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3620 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3623 #if defined(CONFIG_64BIT)
3625 * Devices that require DMA32/DMA are relatively rare and do not justify a
3626 * penalty to every machine in case the specialised case applies. Default
3627 * to Node-ordering on 64-bit NUMA machines
3629 static int default_zonelist_order(void)
3631 return ZONELIST_ORDER_NODE
;
3635 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3636 * by the kernel. If processes running on node 0 deplete the low memory zone
3637 * then reclaim will occur more frequency increasing stalls and potentially
3638 * be easier to OOM if a large percentage of the zone is under writeback or
3639 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3640 * Hence, default to zone ordering on 32-bit.
3642 static int default_zonelist_order(void)
3644 return ZONELIST_ORDER_ZONE
;
3646 #endif /* CONFIG_64BIT */
3648 static void set_zonelist_order(void)
3650 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3651 current_zonelist_order
= default_zonelist_order();
3653 current_zonelist_order
= user_zonelist_order
;
3656 static void build_zonelists(pg_data_t
*pgdat
)
3660 nodemask_t used_mask
;
3661 int local_node
, prev_node
;
3662 struct zonelist
*zonelist
;
3663 int order
= current_zonelist_order
;
3665 /* initialize zonelists */
3666 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3667 zonelist
= pgdat
->node_zonelists
+ i
;
3668 zonelist
->_zonerefs
[0].zone
= NULL
;
3669 zonelist
->_zonerefs
[0].zone_idx
= 0;
3672 /* NUMA-aware ordering of nodes */
3673 local_node
= pgdat
->node_id
;
3674 load
= nr_online_nodes
;
3675 prev_node
= local_node
;
3676 nodes_clear(used_mask
);
3678 memset(node_order
, 0, sizeof(node_order
));
3681 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3683 * We don't want to pressure a particular node.
3684 * So adding penalty to the first node in same
3685 * distance group to make it round-robin.
3687 if (node_distance(local_node
, node
) !=
3688 node_distance(local_node
, prev_node
))
3689 node_load
[node
] = load
;
3693 if (order
== ZONELIST_ORDER_NODE
)
3694 build_zonelists_in_node_order(pgdat
, node
);
3696 node_order
[j
++] = node
; /* remember order */
3699 if (order
== ZONELIST_ORDER_ZONE
) {
3700 /* calculate node order -- i.e., DMA last! */
3701 build_zonelists_in_zone_order(pgdat
, j
);
3704 build_thisnode_zonelists(pgdat
);
3707 /* Construct the zonelist performance cache - see further mmzone.h */
3708 static void build_zonelist_cache(pg_data_t
*pgdat
)
3710 struct zonelist
*zonelist
;
3711 struct zonelist_cache
*zlc
;
3714 zonelist
= &pgdat
->node_zonelists
[0];
3715 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3716 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3717 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3718 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3721 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3723 * Return node id of node used for "local" allocations.
3724 * I.e., first node id of first zone in arg node's generic zonelist.
3725 * Used for initializing percpu 'numa_mem', which is used primarily
3726 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3728 int local_memory_node(int node
)
3732 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3733 gfp_zone(GFP_KERNEL
),
3740 #else /* CONFIG_NUMA */
3742 static void set_zonelist_order(void)
3744 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3747 static void build_zonelists(pg_data_t
*pgdat
)
3749 int node
, local_node
;
3751 struct zonelist
*zonelist
;
3753 local_node
= pgdat
->node_id
;
3755 zonelist
= &pgdat
->node_zonelists
[0];
3756 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3759 * Now we build the zonelist so that it contains the zones
3760 * of all the other nodes.
3761 * We don't want to pressure a particular node, so when
3762 * building the zones for node N, we make sure that the
3763 * zones coming right after the local ones are those from
3764 * node N+1 (modulo N)
3766 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3767 if (!node_online(node
))
3769 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3771 for (node
= 0; node
< local_node
; node
++) {
3772 if (!node_online(node
))
3774 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3777 zonelist
->_zonerefs
[j
].zone
= NULL
;
3778 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3781 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3782 static void build_zonelist_cache(pg_data_t
*pgdat
)
3784 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3787 #endif /* CONFIG_NUMA */
3790 * Boot pageset table. One per cpu which is going to be used for all
3791 * zones and all nodes. The parameters will be set in such a way
3792 * that an item put on a list will immediately be handed over to
3793 * the buddy list. This is safe since pageset manipulation is done
3794 * with interrupts disabled.
3796 * The boot_pagesets must be kept even after bootup is complete for
3797 * unused processors and/or zones. They do play a role for bootstrapping
3798 * hotplugged processors.
3800 * zoneinfo_show() and maybe other functions do
3801 * not check if the processor is online before following the pageset pointer.
3802 * Other parts of the kernel may not check if the zone is available.
3804 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3805 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3806 static void setup_zone_pageset(struct zone
*zone
);
3809 * Global mutex to protect against size modification of zonelists
3810 * as well as to serialize pageset setup for the new populated zone.
3812 DEFINE_MUTEX(zonelists_mutex
);
3814 /* return values int ....just for stop_machine() */
3815 static int __build_all_zonelists(void *data
)
3819 pg_data_t
*self
= data
;
3822 memset(node_load
, 0, sizeof(node_load
));
3825 if (self
&& !node_online(self
->node_id
)) {
3826 build_zonelists(self
);
3827 build_zonelist_cache(self
);
3830 for_each_online_node(nid
) {
3831 pg_data_t
*pgdat
= NODE_DATA(nid
);
3833 build_zonelists(pgdat
);
3834 build_zonelist_cache(pgdat
);
3838 * Initialize the boot_pagesets that are going to be used
3839 * for bootstrapping processors. The real pagesets for
3840 * each zone will be allocated later when the per cpu
3841 * allocator is available.
3843 * boot_pagesets are used also for bootstrapping offline
3844 * cpus if the system is already booted because the pagesets
3845 * are needed to initialize allocators on a specific cpu too.
3846 * F.e. the percpu allocator needs the page allocator which
3847 * needs the percpu allocator in order to allocate its pagesets
3848 * (a chicken-egg dilemma).
3850 for_each_possible_cpu(cpu
) {
3851 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3855 * We now know the "local memory node" for each node--
3856 * i.e., the node of the first zone in the generic zonelist.
3857 * Set up numa_mem percpu variable for on-line cpus. During
3858 * boot, only the boot cpu should be on-line; we'll init the
3859 * secondary cpus' numa_mem as they come on-line. During
3860 * node/memory hotplug, we'll fixup all on-line cpus.
3862 if (cpu_online(cpu
))
3863 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3871 * Called with zonelists_mutex held always
3872 * unless system_state == SYSTEM_BOOTING.
3874 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3876 set_zonelist_order();
3878 if (system_state
== SYSTEM_BOOTING
) {
3879 __build_all_zonelists(NULL
);
3880 mminit_verify_zonelist();
3881 cpuset_init_current_mems_allowed();
3883 #ifdef CONFIG_MEMORY_HOTPLUG
3885 setup_zone_pageset(zone
);
3887 /* we have to stop all cpus to guarantee there is no user
3889 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3890 /* cpuset refresh routine should be here */
3892 vm_total_pages
= nr_free_pagecache_pages();
3894 * Disable grouping by mobility if the number of pages in the
3895 * system is too low to allow the mechanism to work. It would be
3896 * more accurate, but expensive to check per-zone. This check is
3897 * made on memory-hotadd so a system can start with mobility
3898 * disabled and enable it later
3900 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3901 page_group_by_mobility_disabled
= 1;
3903 page_group_by_mobility_disabled
= 0;
3905 printk("Built %i zonelists in %s order, mobility grouping %s. "
3906 "Total pages: %ld\n",
3908 zonelist_order_name
[current_zonelist_order
],
3909 page_group_by_mobility_disabled
? "off" : "on",
3912 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3917 * Helper functions to size the waitqueue hash table.
3918 * Essentially these want to choose hash table sizes sufficiently
3919 * large so that collisions trying to wait on pages are rare.
3920 * But in fact, the number of active page waitqueues on typical
3921 * systems is ridiculously low, less than 200. So this is even
3922 * conservative, even though it seems large.
3924 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3925 * waitqueues, i.e. the size of the waitq table given the number of pages.
3927 #define PAGES_PER_WAITQUEUE 256
3929 #ifndef CONFIG_MEMORY_HOTPLUG
3930 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3932 unsigned long size
= 1;
3934 pages
/= PAGES_PER_WAITQUEUE
;
3936 while (size
< pages
)
3940 * Once we have dozens or even hundreds of threads sleeping
3941 * on IO we've got bigger problems than wait queue collision.
3942 * Limit the size of the wait table to a reasonable size.
3944 size
= min(size
, 4096UL);
3946 return max(size
, 4UL);
3950 * A zone's size might be changed by hot-add, so it is not possible to determine
3951 * a suitable size for its wait_table. So we use the maximum size now.
3953 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3955 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3956 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3957 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3959 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3960 * or more by the traditional way. (See above). It equals:
3962 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3963 * ia64(16K page size) : = ( 8G + 4M)byte.
3964 * powerpc (64K page size) : = (32G +16M)byte.
3966 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3973 * This is an integer logarithm so that shifts can be used later
3974 * to extract the more random high bits from the multiplicative
3975 * hash function before the remainder is taken.
3977 static inline unsigned long wait_table_bits(unsigned long size
)
3983 * Check if a pageblock contains reserved pages
3985 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3989 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3990 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3997 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3998 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3999 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4000 * higher will lead to a bigger reserve which will get freed as contiguous
4001 * blocks as reclaim kicks in
4003 static void setup_zone_migrate_reserve(struct zone
*zone
)
4005 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
4007 unsigned long block_migratetype
;
4012 * Get the start pfn, end pfn and the number of blocks to reserve
4013 * We have to be careful to be aligned to pageblock_nr_pages to
4014 * make sure that we always check pfn_valid for the first page in
4017 start_pfn
= zone
->zone_start_pfn
;
4018 end_pfn
= zone_end_pfn(zone
);
4019 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
4020 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
4024 * Reserve blocks are generally in place to help high-order atomic
4025 * allocations that are short-lived. A min_free_kbytes value that
4026 * would result in more than 2 reserve blocks for atomic allocations
4027 * is assumed to be in place to help anti-fragmentation for the
4028 * future allocation of hugepages at runtime.
4030 reserve
= min(2, reserve
);
4031 old_reserve
= zone
->nr_migrate_reserve_block
;
4033 /* When memory hot-add, we almost always need to do nothing */
4034 if (reserve
== old_reserve
)
4036 zone
->nr_migrate_reserve_block
= reserve
;
4038 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
4039 if (!pfn_valid(pfn
))
4041 page
= pfn_to_page(pfn
);
4043 /* Watch out for overlapping nodes */
4044 if (page_to_nid(page
) != zone_to_nid(zone
))
4047 block_migratetype
= get_pageblock_migratetype(page
);
4049 /* Only test what is necessary when the reserves are not met */
4052 * Blocks with reserved pages will never free, skip
4055 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
4056 if (pageblock_is_reserved(pfn
, block_end_pfn
))
4059 /* If this block is reserved, account for it */
4060 if (block_migratetype
== MIGRATE_RESERVE
) {
4065 /* Suitable for reserving if this block is movable */
4066 if (block_migratetype
== MIGRATE_MOVABLE
) {
4067 set_pageblock_migratetype(page
,
4069 move_freepages_block(zone
, page
,
4074 } else if (!old_reserve
) {
4076 * At boot time we don't need to scan the whole zone
4077 * for turning off MIGRATE_RESERVE.
4083 * If the reserve is met and this is a previous reserved block,
4086 if (block_migratetype
== MIGRATE_RESERVE
) {
4087 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4088 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4094 * Initially all pages are reserved - free ones are freed
4095 * up by free_all_bootmem() once the early boot process is
4096 * done. Non-atomic initialization, single-pass.
4098 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4099 unsigned long start_pfn
, enum memmap_context context
)
4102 unsigned long end_pfn
= start_pfn
+ size
;
4106 if (highest_memmap_pfn
< end_pfn
- 1)
4107 highest_memmap_pfn
= end_pfn
- 1;
4109 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4110 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4112 * There can be holes in boot-time mem_map[]s
4113 * handed to this function. They do not
4114 * exist on hotplugged memory.
4116 if (context
== MEMMAP_EARLY
) {
4117 if (!early_pfn_valid(pfn
))
4119 if (!early_pfn_in_nid(pfn
, nid
))
4122 page
= pfn_to_page(pfn
);
4123 set_page_links(page
, zone
, nid
, pfn
);
4124 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4125 init_page_count(page
);
4126 page_mapcount_reset(page
);
4127 page_cpupid_reset_last(page
);
4128 SetPageReserved(page
);
4130 * Mark the block movable so that blocks are reserved for
4131 * movable at startup. This will force kernel allocations
4132 * to reserve their blocks rather than leaking throughout
4133 * the address space during boot when many long-lived
4134 * kernel allocations are made. Later some blocks near
4135 * the start are marked MIGRATE_RESERVE by
4136 * setup_zone_migrate_reserve()
4138 * bitmap is created for zone's valid pfn range. but memmap
4139 * can be created for invalid pages (for alignment)
4140 * check here not to call set_pageblock_migratetype() against
4143 if ((z
->zone_start_pfn
<= pfn
)
4144 && (pfn
< zone_end_pfn(z
))
4145 && !(pfn
& (pageblock_nr_pages
- 1)))
4146 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4148 INIT_LIST_HEAD(&page
->lru
);
4149 #ifdef WANT_PAGE_VIRTUAL
4150 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4151 if (!is_highmem_idx(zone
))
4152 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4157 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4159 unsigned int order
, t
;
4160 for_each_migratetype_order(order
, t
) {
4161 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4162 zone
->free_area
[order
].nr_free
= 0;
4166 #ifndef __HAVE_ARCH_MEMMAP_INIT
4167 #define memmap_init(size, nid, zone, start_pfn) \
4168 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4171 static int zone_batchsize(struct zone
*zone
)
4177 * The per-cpu-pages pools are set to around 1000th of the
4178 * size of the zone. But no more than 1/2 of a meg.
4180 * OK, so we don't know how big the cache is. So guess.
4182 batch
= zone
->managed_pages
/ 1024;
4183 if (batch
* PAGE_SIZE
> 512 * 1024)
4184 batch
= (512 * 1024) / PAGE_SIZE
;
4185 batch
/= 4; /* We effectively *= 4 below */
4190 * Clamp the batch to a 2^n - 1 value. Having a power
4191 * of 2 value was found to be more likely to have
4192 * suboptimal cache aliasing properties in some cases.
4194 * For example if 2 tasks are alternately allocating
4195 * batches of pages, one task can end up with a lot
4196 * of pages of one half of the possible page colors
4197 * and the other with pages of the other colors.
4199 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4204 /* The deferral and batching of frees should be suppressed under NOMMU
4207 * The problem is that NOMMU needs to be able to allocate large chunks
4208 * of contiguous memory as there's no hardware page translation to
4209 * assemble apparent contiguous memory from discontiguous pages.
4211 * Queueing large contiguous runs of pages for batching, however,
4212 * causes the pages to actually be freed in smaller chunks. As there
4213 * can be a significant delay between the individual batches being
4214 * recycled, this leads to the once large chunks of space being
4215 * fragmented and becoming unavailable for high-order allocations.
4222 * pcp->high and pcp->batch values are related and dependent on one another:
4223 * ->batch must never be higher then ->high.
4224 * The following function updates them in a safe manner without read side
4227 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4228 * those fields changing asynchronously (acording the the above rule).
4230 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4231 * outside of boot time (or some other assurance that no concurrent updaters
4234 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4235 unsigned long batch
)
4237 /* start with a fail safe value for batch */
4241 /* Update high, then batch, in order */
4248 /* a companion to pageset_set_high() */
4249 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4251 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4254 static void pageset_init(struct per_cpu_pageset
*p
)
4256 struct per_cpu_pages
*pcp
;
4259 memset(p
, 0, sizeof(*p
));
4263 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4264 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4267 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4270 pageset_set_batch(p
, batch
);
4274 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4275 * to the value high for the pageset p.
4277 static void pageset_set_high(struct per_cpu_pageset
*p
,
4280 unsigned long batch
= max(1UL, high
/ 4);
4281 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4282 batch
= PAGE_SHIFT
* 8;
4284 pageset_update(&p
->pcp
, high
, batch
);
4287 static void pageset_set_high_and_batch(struct zone
*zone
,
4288 struct per_cpu_pageset
*pcp
)
4290 if (percpu_pagelist_fraction
)
4291 pageset_set_high(pcp
,
4292 (zone
->managed_pages
/
4293 percpu_pagelist_fraction
));
4295 pageset_set_batch(pcp
, zone_batchsize(zone
));
4298 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4300 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4303 pageset_set_high_and_batch(zone
, pcp
);
4306 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4309 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4310 for_each_possible_cpu(cpu
)
4311 zone_pageset_init(zone
, cpu
);
4315 * Allocate per cpu pagesets and initialize them.
4316 * Before this call only boot pagesets were available.
4318 void __init
setup_per_cpu_pageset(void)
4322 for_each_populated_zone(zone
)
4323 setup_zone_pageset(zone
);
4326 static noinline __init_refok
4327 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4333 * The per-page waitqueue mechanism uses hashed waitqueues
4336 zone
->wait_table_hash_nr_entries
=
4337 wait_table_hash_nr_entries(zone_size_pages
);
4338 zone
->wait_table_bits
=
4339 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4340 alloc_size
= zone
->wait_table_hash_nr_entries
4341 * sizeof(wait_queue_head_t
);
4343 if (!slab_is_available()) {
4344 zone
->wait_table
= (wait_queue_head_t
*)
4345 memblock_virt_alloc_node_nopanic(
4346 alloc_size
, zone
->zone_pgdat
->node_id
);
4349 * This case means that a zone whose size was 0 gets new memory
4350 * via memory hot-add.
4351 * But it may be the case that a new node was hot-added. In
4352 * this case vmalloc() will not be able to use this new node's
4353 * memory - this wait_table must be initialized to use this new
4354 * node itself as well.
4355 * To use this new node's memory, further consideration will be
4358 zone
->wait_table
= vmalloc(alloc_size
);
4360 if (!zone
->wait_table
)
4363 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4364 init_waitqueue_head(zone
->wait_table
+ i
);
4369 static __meminit
void zone_pcp_init(struct zone
*zone
)
4372 * per cpu subsystem is not up at this point. The following code
4373 * relies on the ability of the linker to provide the
4374 * offset of a (static) per cpu variable into the per cpu area.
4376 zone
->pageset
= &boot_pageset
;
4378 if (populated_zone(zone
))
4379 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4380 zone
->name
, zone
->present_pages
,
4381 zone_batchsize(zone
));
4384 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4385 unsigned long zone_start_pfn
,
4387 enum memmap_context context
)
4389 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4391 ret
= zone_wait_table_init(zone
, size
);
4394 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4396 zone
->zone_start_pfn
= zone_start_pfn
;
4398 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4399 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4401 (unsigned long)zone_idx(zone
),
4402 zone_start_pfn
, (zone_start_pfn
+ size
));
4404 zone_init_free_lists(zone
);
4409 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4410 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4412 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4414 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4416 unsigned long start_pfn
, end_pfn
;
4419 * NOTE: The following SMP-unsafe globals are only used early in boot
4420 * when the kernel is running single-threaded.
4422 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4423 static int __meminitdata last_nid
;
4425 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4428 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4430 last_start_pfn
= start_pfn
;
4431 last_end_pfn
= end_pfn
;
4437 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4439 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4443 nid
= __early_pfn_to_nid(pfn
);
4446 /* just returns 0 */
4450 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4451 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4455 nid
= __early_pfn_to_nid(pfn
);
4456 if (nid
>= 0 && nid
!= node
)
4463 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4464 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4465 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4467 * If an architecture guarantees that all ranges registered contain no holes
4468 * and may be freed, this this function may be used instead of calling
4469 * memblock_free_early_nid() manually.
4471 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4473 unsigned long start_pfn
, end_pfn
;
4476 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4477 start_pfn
= min(start_pfn
, max_low_pfn
);
4478 end_pfn
= min(end_pfn
, max_low_pfn
);
4480 if (start_pfn
< end_pfn
)
4481 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4482 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4488 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4489 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4491 * If an architecture guarantees that all ranges registered contain no holes and may
4492 * be freed, this function may be used instead of calling memory_present() manually.
4494 void __init
sparse_memory_present_with_active_regions(int nid
)
4496 unsigned long start_pfn
, end_pfn
;
4499 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4500 memory_present(this_nid
, start_pfn
, end_pfn
);
4504 * get_pfn_range_for_nid - Return the start and end page frames for a node
4505 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4506 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4507 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4509 * It returns the start and end page frame of a node based on information
4510 * provided by memblock_set_node(). If called for a node
4511 * with no available memory, a warning is printed and the start and end
4514 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4515 unsigned long *start_pfn
, unsigned long *end_pfn
)
4517 unsigned long this_start_pfn
, this_end_pfn
;
4523 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4524 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4525 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4528 if (*start_pfn
== -1UL)
4533 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4534 * assumption is made that zones within a node are ordered in monotonic
4535 * increasing memory addresses so that the "highest" populated zone is used
4537 static void __init
find_usable_zone_for_movable(void)
4540 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4541 if (zone_index
== ZONE_MOVABLE
)
4544 if (arch_zone_highest_possible_pfn
[zone_index
] >
4545 arch_zone_lowest_possible_pfn
[zone_index
])
4549 VM_BUG_ON(zone_index
== -1);
4550 movable_zone
= zone_index
;
4554 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4555 * because it is sized independent of architecture. Unlike the other zones,
4556 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4557 * in each node depending on the size of each node and how evenly kernelcore
4558 * is distributed. This helper function adjusts the zone ranges
4559 * provided by the architecture for a given node by using the end of the
4560 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4561 * zones within a node are in order of monotonic increases memory addresses
4563 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4564 unsigned long zone_type
,
4565 unsigned long node_start_pfn
,
4566 unsigned long node_end_pfn
,
4567 unsigned long *zone_start_pfn
,
4568 unsigned long *zone_end_pfn
)
4570 /* Only adjust if ZONE_MOVABLE is on this node */
4571 if (zone_movable_pfn
[nid
]) {
4572 /* Size ZONE_MOVABLE */
4573 if (zone_type
== ZONE_MOVABLE
) {
4574 *zone_start_pfn
= zone_movable_pfn
[nid
];
4575 *zone_end_pfn
= min(node_end_pfn
,
4576 arch_zone_highest_possible_pfn
[movable_zone
]);
4578 /* Adjust for ZONE_MOVABLE starting within this range */
4579 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4580 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4581 *zone_end_pfn
= zone_movable_pfn
[nid
];
4583 /* Check if this whole range is within ZONE_MOVABLE */
4584 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4585 *zone_start_pfn
= *zone_end_pfn
;
4590 * Return the number of pages a zone spans in a node, including holes
4591 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4593 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4594 unsigned long zone_type
,
4595 unsigned long node_start_pfn
,
4596 unsigned long node_end_pfn
,
4597 unsigned long *ignored
)
4599 unsigned long zone_start_pfn
, zone_end_pfn
;
4601 /* Get the start and end of the zone */
4602 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4603 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4604 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4605 node_start_pfn
, node_end_pfn
,
4606 &zone_start_pfn
, &zone_end_pfn
);
4608 /* Check that this node has pages within the zone's required range */
4609 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4612 /* Move the zone boundaries inside the node if necessary */
4613 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4614 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4616 /* Return the spanned pages */
4617 return zone_end_pfn
- zone_start_pfn
;
4621 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4622 * then all holes in the requested range will be accounted for.
4624 unsigned long __meminit
__absent_pages_in_range(int nid
,
4625 unsigned long range_start_pfn
,
4626 unsigned long range_end_pfn
)
4628 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4629 unsigned long start_pfn
, end_pfn
;
4632 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4633 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4634 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4635 nr_absent
-= end_pfn
- start_pfn
;
4641 * absent_pages_in_range - Return number of page frames in holes within a range
4642 * @start_pfn: The start PFN to start searching for holes
4643 * @end_pfn: The end PFN to stop searching for holes
4645 * It returns the number of pages frames in memory holes within a range.
4647 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4648 unsigned long end_pfn
)
4650 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4653 /* Return the number of page frames in holes in a zone on a node */
4654 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4655 unsigned long zone_type
,
4656 unsigned long node_start_pfn
,
4657 unsigned long node_end_pfn
,
4658 unsigned long *ignored
)
4660 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4661 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4662 unsigned long zone_start_pfn
, zone_end_pfn
;
4664 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4665 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4667 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4668 node_start_pfn
, node_end_pfn
,
4669 &zone_start_pfn
, &zone_end_pfn
);
4670 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4673 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4674 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4675 unsigned long zone_type
,
4676 unsigned long node_start_pfn
,
4677 unsigned long node_end_pfn
,
4678 unsigned long *zones_size
)
4680 return zones_size
[zone_type
];
4683 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4684 unsigned long zone_type
,
4685 unsigned long node_start_pfn
,
4686 unsigned long node_end_pfn
,
4687 unsigned long *zholes_size
)
4692 return zholes_size
[zone_type
];
4695 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4697 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4698 unsigned long node_start_pfn
,
4699 unsigned long node_end_pfn
,
4700 unsigned long *zones_size
,
4701 unsigned long *zholes_size
)
4703 unsigned long realtotalpages
, totalpages
= 0;
4706 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4707 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4711 pgdat
->node_spanned_pages
= totalpages
;
4713 realtotalpages
= totalpages
;
4714 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4716 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4717 node_start_pfn
, node_end_pfn
,
4719 pgdat
->node_present_pages
= realtotalpages
;
4720 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4724 #ifndef CONFIG_SPARSEMEM
4726 * Calculate the size of the zone->blockflags rounded to an unsigned long
4727 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4728 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4729 * round what is now in bits to nearest long in bits, then return it in
4732 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4734 unsigned long usemapsize
;
4736 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4737 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4738 usemapsize
= usemapsize
>> pageblock_order
;
4739 usemapsize
*= NR_PAGEBLOCK_BITS
;
4740 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4742 return usemapsize
/ 8;
4745 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4747 unsigned long zone_start_pfn
,
4748 unsigned long zonesize
)
4750 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4751 zone
->pageblock_flags
= NULL
;
4753 zone
->pageblock_flags
=
4754 memblock_virt_alloc_node_nopanic(usemapsize
,
4758 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4759 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4760 #endif /* CONFIG_SPARSEMEM */
4762 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4764 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4765 void __paginginit
set_pageblock_order(void)
4769 /* Check that pageblock_nr_pages has not already been setup */
4770 if (pageblock_order
)
4773 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4774 order
= HUGETLB_PAGE_ORDER
;
4776 order
= MAX_ORDER
- 1;
4779 * Assume the largest contiguous order of interest is a huge page.
4780 * This value may be variable depending on boot parameters on IA64 and
4783 pageblock_order
= order
;
4785 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4788 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4789 * is unused as pageblock_order is set at compile-time. See
4790 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4793 void __paginginit
set_pageblock_order(void)
4797 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4799 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4800 unsigned long present_pages
)
4802 unsigned long pages
= spanned_pages
;
4805 * Provide a more accurate estimation if there are holes within
4806 * the zone and SPARSEMEM is in use. If there are holes within the
4807 * zone, each populated memory region may cost us one or two extra
4808 * memmap pages due to alignment because memmap pages for each
4809 * populated regions may not naturally algined on page boundary.
4810 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4812 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4813 IS_ENABLED(CONFIG_SPARSEMEM
))
4814 pages
= present_pages
;
4816 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4820 * Set up the zone data structures:
4821 * - mark all pages reserved
4822 * - mark all memory queues empty
4823 * - clear the memory bitmaps
4825 * NOTE: pgdat should get zeroed by caller.
4827 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4828 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4829 unsigned long *zones_size
, unsigned long *zholes_size
)
4832 int nid
= pgdat
->node_id
;
4833 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4836 pgdat_resize_init(pgdat
);
4837 #ifdef CONFIG_NUMA_BALANCING
4838 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4839 pgdat
->numabalancing_migrate_nr_pages
= 0;
4840 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4842 init_waitqueue_head(&pgdat
->kswapd_wait
);
4843 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4844 pgdat_page_cgroup_init(pgdat
);
4846 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4847 struct zone
*zone
= pgdat
->node_zones
+ j
;
4848 unsigned long size
, realsize
, freesize
, memmap_pages
;
4850 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4851 node_end_pfn
, zones_size
);
4852 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4858 * Adjust freesize so that it accounts for how much memory
4859 * is used by this zone for memmap. This affects the watermark
4860 * and per-cpu initialisations
4862 memmap_pages
= calc_memmap_size(size
, realsize
);
4863 if (freesize
>= memmap_pages
) {
4864 freesize
-= memmap_pages
;
4867 " %s zone: %lu pages used for memmap\n",
4868 zone_names
[j
], memmap_pages
);
4871 " %s zone: %lu pages exceeds freesize %lu\n",
4872 zone_names
[j
], memmap_pages
, freesize
);
4874 /* Account for reserved pages */
4875 if (j
== 0 && freesize
> dma_reserve
) {
4876 freesize
-= dma_reserve
;
4877 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4878 zone_names
[0], dma_reserve
);
4881 if (!is_highmem_idx(j
))
4882 nr_kernel_pages
+= freesize
;
4883 /* Charge for highmem memmap if there are enough kernel pages */
4884 else if (nr_kernel_pages
> memmap_pages
* 2)
4885 nr_kernel_pages
-= memmap_pages
;
4886 nr_all_pages
+= freesize
;
4888 zone
->spanned_pages
= size
;
4889 zone
->present_pages
= realsize
;
4891 * Set an approximate value for lowmem here, it will be adjusted
4892 * when the bootmem allocator frees pages into the buddy system.
4893 * And all highmem pages will be managed by the buddy system.
4895 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4898 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4900 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4902 zone
->name
= zone_names
[j
];
4903 spin_lock_init(&zone
->lock
);
4904 spin_lock_init(&zone
->lru_lock
);
4905 zone_seqlock_init(zone
);
4906 zone
->zone_pgdat
= pgdat
;
4907 zone_pcp_init(zone
);
4909 /* For bootup, initialized properly in watermark setup */
4910 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4912 lruvec_init(&zone
->lruvec
);
4916 set_pageblock_order();
4917 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4918 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4919 size
, MEMMAP_EARLY
);
4921 memmap_init(size
, nid
, j
, zone_start_pfn
);
4922 zone_start_pfn
+= size
;
4926 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4928 /* Skip empty nodes */
4929 if (!pgdat
->node_spanned_pages
)
4932 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4933 /* ia64 gets its own node_mem_map, before this, without bootmem */
4934 if (!pgdat
->node_mem_map
) {
4935 unsigned long size
, start
, end
;
4939 * The zone's endpoints aren't required to be MAX_ORDER
4940 * aligned but the node_mem_map endpoints must be in order
4941 * for the buddy allocator to function correctly.
4943 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4944 end
= pgdat_end_pfn(pgdat
);
4945 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4946 size
= (end
- start
) * sizeof(struct page
);
4947 map
= alloc_remap(pgdat
->node_id
, size
);
4949 map
= memblock_virt_alloc_node_nopanic(size
,
4951 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4953 #ifndef CONFIG_NEED_MULTIPLE_NODES
4955 * With no DISCONTIG, the global mem_map is just set as node 0's
4957 if (pgdat
== NODE_DATA(0)) {
4958 mem_map
= NODE_DATA(0)->node_mem_map
;
4959 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4960 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4961 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4962 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4965 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4968 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4969 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4971 pg_data_t
*pgdat
= NODE_DATA(nid
);
4972 unsigned long start_pfn
= 0;
4973 unsigned long end_pfn
= 0;
4975 /* pg_data_t should be reset to zero when it's allocated */
4976 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4978 pgdat
->node_id
= nid
;
4979 pgdat
->node_start_pfn
= node_start_pfn
;
4980 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4981 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4982 printk(KERN_INFO
"Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid
,
4983 (u64
) start_pfn
<< PAGE_SHIFT
, (u64
) (end_pfn
<< PAGE_SHIFT
) - 1);
4985 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4986 zones_size
, zholes_size
);
4988 alloc_node_mem_map(pgdat
);
4989 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4990 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4991 nid
, (unsigned long)pgdat
,
4992 (unsigned long)pgdat
->node_mem_map
);
4995 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4996 zones_size
, zholes_size
);
4999 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5001 #if MAX_NUMNODES > 1
5003 * Figure out the number of possible node ids.
5005 void __init
setup_nr_node_ids(void)
5008 unsigned int highest
= 0;
5010 for_each_node_mask(node
, node_possible_map
)
5012 nr_node_ids
= highest
+ 1;
5017 * node_map_pfn_alignment - determine the maximum internode alignment
5019 * This function should be called after node map is populated and sorted.
5020 * It calculates the maximum power of two alignment which can distinguish
5023 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5024 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5025 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5026 * shifted, 1GiB is enough and this function will indicate so.
5028 * This is used to test whether pfn -> nid mapping of the chosen memory
5029 * model has fine enough granularity to avoid incorrect mapping for the
5030 * populated node map.
5032 * Returns the determined alignment in pfn's. 0 if there is no alignment
5033 * requirement (single node).
5035 unsigned long __init
node_map_pfn_alignment(void)
5037 unsigned long accl_mask
= 0, last_end
= 0;
5038 unsigned long start
, end
, mask
;
5042 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5043 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5050 * Start with a mask granular enough to pin-point to the
5051 * start pfn and tick off bits one-by-one until it becomes
5052 * too coarse to separate the current node from the last.
5054 mask
= ~((1 << __ffs(start
)) - 1);
5055 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5058 /* accumulate all internode masks */
5062 /* convert mask to number of pages */
5063 return ~accl_mask
+ 1;
5066 /* Find the lowest pfn for a node */
5067 static unsigned long __init
find_min_pfn_for_node(int nid
)
5069 unsigned long min_pfn
= ULONG_MAX
;
5070 unsigned long start_pfn
;
5073 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5074 min_pfn
= min(min_pfn
, start_pfn
);
5076 if (min_pfn
== ULONG_MAX
) {
5078 "Could not find start_pfn for node %d\n", nid
);
5086 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5088 * It returns the minimum PFN based on information provided via
5089 * memblock_set_node().
5091 unsigned long __init
find_min_pfn_with_active_regions(void)
5093 return find_min_pfn_for_node(MAX_NUMNODES
);
5097 * early_calculate_totalpages()
5098 * Sum pages in active regions for movable zone.
5099 * Populate N_MEMORY for calculating usable_nodes.
5101 static unsigned long __init
early_calculate_totalpages(void)
5103 unsigned long totalpages
= 0;
5104 unsigned long start_pfn
, end_pfn
;
5107 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5108 unsigned long pages
= end_pfn
- start_pfn
;
5110 totalpages
+= pages
;
5112 node_set_state(nid
, N_MEMORY
);
5118 * Find the PFN the Movable zone begins in each node. Kernel memory
5119 * is spread evenly between nodes as long as the nodes have enough
5120 * memory. When they don't, some nodes will have more kernelcore than
5123 static void __init
find_zone_movable_pfns_for_nodes(void)
5126 unsigned long usable_startpfn
;
5127 unsigned long kernelcore_node
, kernelcore_remaining
;
5128 /* save the state before borrow the nodemask */
5129 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5130 unsigned long totalpages
= early_calculate_totalpages();
5131 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5132 struct memblock_region
*r
;
5134 /* Need to find movable_zone earlier when movable_node is specified. */
5135 find_usable_zone_for_movable();
5138 * If movable_node is specified, ignore kernelcore and movablecore
5141 if (movable_node_is_enabled()) {
5142 for_each_memblock(memory
, r
) {
5143 if (!memblock_is_hotpluggable(r
))
5148 usable_startpfn
= PFN_DOWN(r
->base
);
5149 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5150 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5158 * If movablecore=nn[KMG] was specified, calculate what size of
5159 * kernelcore that corresponds so that memory usable for
5160 * any allocation type is evenly spread. If both kernelcore
5161 * and movablecore are specified, then the value of kernelcore
5162 * will be used for required_kernelcore if it's greater than
5163 * what movablecore would have allowed.
5165 if (required_movablecore
) {
5166 unsigned long corepages
;
5169 * Round-up so that ZONE_MOVABLE is at least as large as what
5170 * was requested by the user
5172 required_movablecore
=
5173 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5174 corepages
= totalpages
- required_movablecore
;
5176 required_kernelcore
= max(required_kernelcore
, corepages
);
5179 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5180 if (!required_kernelcore
)
5183 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5184 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5187 /* Spread kernelcore memory as evenly as possible throughout nodes */
5188 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5189 for_each_node_state(nid
, N_MEMORY
) {
5190 unsigned long start_pfn
, end_pfn
;
5193 * Recalculate kernelcore_node if the division per node
5194 * now exceeds what is necessary to satisfy the requested
5195 * amount of memory for the kernel
5197 if (required_kernelcore
< kernelcore_node
)
5198 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5201 * As the map is walked, we track how much memory is usable
5202 * by the kernel using kernelcore_remaining. When it is
5203 * 0, the rest of the node is usable by ZONE_MOVABLE
5205 kernelcore_remaining
= kernelcore_node
;
5207 /* Go through each range of PFNs within this node */
5208 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5209 unsigned long size_pages
;
5211 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5212 if (start_pfn
>= end_pfn
)
5215 /* Account for what is only usable for kernelcore */
5216 if (start_pfn
< usable_startpfn
) {
5217 unsigned long kernel_pages
;
5218 kernel_pages
= min(end_pfn
, usable_startpfn
)
5221 kernelcore_remaining
-= min(kernel_pages
,
5222 kernelcore_remaining
);
5223 required_kernelcore
-= min(kernel_pages
,
5224 required_kernelcore
);
5226 /* Continue if range is now fully accounted */
5227 if (end_pfn
<= usable_startpfn
) {
5230 * Push zone_movable_pfn to the end so
5231 * that if we have to rebalance
5232 * kernelcore across nodes, we will
5233 * not double account here
5235 zone_movable_pfn
[nid
] = end_pfn
;
5238 start_pfn
= usable_startpfn
;
5242 * The usable PFN range for ZONE_MOVABLE is from
5243 * start_pfn->end_pfn. Calculate size_pages as the
5244 * number of pages used as kernelcore
5246 size_pages
= end_pfn
- start_pfn
;
5247 if (size_pages
> kernelcore_remaining
)
5248 size_pages
= kernelcore_remaining
;
5249 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5252 * Some kernelcore has been met, update counts and
5253 * break if the kernelcore for this node has been
5256 required_kernelcore
-= min(required_kernelcore
,
5258 kernelcore_remaining
-= size_pages
;
5259 if (!kernelcore_remaining
)
5265 * If there is still required_kernelcore, we do another pass with one
5266 * less node in the count. This will push zone_movable_pfn[nid] further
5267 * along on the nodes that still have memory until kernelcore is
5271 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5275 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5276 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5277 zone_movable_pfn
[nid
] =
5278 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5281 /* restore the node_state */
5282 node_states
[N_MEMORY
] = saved_node_state
;
5285 /* Any regular or high memory on that node ? */
5286 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5288 enum zone_type zone_type
;
5290 if (N_MEMORY
== N_NORMAL_MEMORY
)
5293 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5294 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5295 if (populated_zone(zone
)) {
5296 node_set_state(nid
, N_HIGH_MEMORY
);
5297 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5298 zone_type
<= ZONE_NORMAL
)
5299 node_set_state(nid
, N_NORMAL_MEMORY
);
5306 * free_area_init_nodes - Initialise all pg_data_t and zone data
5307 * @max_zone_pfn: an array of max PFNs for each zone
5309 * This will call free_area_init_node() for each active node in the system.
5310 * Using the page ranges provided by memblock_set_node(), the size of each
5311 * zone in each node and their holes is calculated. If the maximum PFN
5312 * between two adjacent zones match, it is assumed that the zone is empty.
5313 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5314 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5315 * starts where the previous one ended. For example, ZONE_DMA32 starts
5316 * at arch_max_dma_pfn.
5318 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5320 unsigned long start_pfn
, end_pfn
;
5323 /* Record where the zone boundaries are */
5324 memset(arch_zone_lowest_possible_pfn
, 0,
5325 sizeof(arch_zone_lowest_possible_pfn
));
5326 memset(arch_zone_highest_possible_pfn
, 0,
5327 sizeof(arch_zone_highest_possible_pfn
));
5328 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5329 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5330 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5331 if (i
== ZONE_MOVABLE
)
5333 arch_zone_lowest_possible_pfn
[i
] =
5334 arch_zone_highest_possible_pfn
[i
-1];
5335 arch_zone_highest_possible_pfn
[i
] =
5336 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5338 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5339 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5341 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5342 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5343 find_zone_movable_pfns_for_nodes();
5345 /* Print out the zone ranges */
5346 printk("Zone ranges:\n");
5347 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5348 if (i
== ZONE_MOVABLE
)
5350 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5351 if (arch_zone_lowest_possible_pfn
[i
] ==
5352 arch_zone_highest_possible_pfn
[i
])
5353 printk(KERN_CONT
"empty\n");
5355 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5356 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5357 (arch_zone_highest_possible_pfn
[i
]
5358 << PAGE_SHIFT
) - 1);
5361 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5362 printk("Movable zone start for each node\n");
5363 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5364 if (zone_movable_pfn
[i
])
5365 printk(" Node %d: %#010lx\n", i
,
5366 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5369 /* Print out the early node map */
5370 printk("Early memory node ranges\n");
5371 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5372 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5373 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5375 /* Initialise every node */
5376 mminit_verify_pageflags_layout();
5377 setup_nr_node_ids();
5378 for_each_online_node(nid
) {
5379 pg_data_t
*pgdat
= NODE_DATA(nid
);
5380 free_area_init_node(nid
, NULL
,
5381 find_min_pfn_for_node(nid
), NULL
);
5383 /* Any memory on that node */
5384 if (pgdat
->node_present_pages
)
5385 node_set_state(nid
, N_MEMORY
);
5386 check_for_memory(pgdat
, nid
);
5390 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5392 unsigned long long coremem
;
5396 coremem
= memparse(p
, &p
);
5397 *core
= coremem
>> PAGE_SHIFT
;
5399 /* Paranoid check that UL is enough for the coremem value */
5400 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5406 * kernelcore=size sets the amount of memory for use for allocations that
5407 * cannot be reclaimed or migrated.
5409 static int __init
cmdline_parse_kernelcore(char *p
)
5411 return cmdline_parse_core(p
, &required_kernelcore
);
5415 * movablecore=size sets the amount of memory for use for allocations that
5416 * can be reclaimed or migrated.
5418 static int __init
cmdline_parse_movablecore(char *p
)
5420 return cmdline_parse_core(p
, &required_movablecore
);
5423 early_param("kernelcore", cmdline_parse_kernelcore
);
5424 early_param("movablecore", cmdline_parse_movablecore
);
5426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5428 void adjust_managed_page_count(struct page
*page
, long count
)
5430 spin_lock(&managed_page_count_lock
);
5431 page_zone(page
)->managed_pages
+= count
;
5432 totalram_pages
+= count
;
5433 #ifdef CONFIG_HIGHMEM
5434 if (PageHighMem(page
))
5435 totalhigh_pages
+= count
;
5437 spin_unlock(&managed_page_count_lock
);
5439 EXPORT_SYMBOL(adjust_managed_page_count
);
5441 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5444 unsigned long pages
= 0;
5446 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5447 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5448 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5449 if ((unsigned int)poison
<= 0xFF)
5450 memset(pos
, poison
, PAGE_SIZE
);
5451 free_reserved_page(virt_to_page(pos
));
5455 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5456 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5460 EXPORT_SYMBOL(free_reserved_area
);
5462 #ifdef CONFIG_HIGHMEM
5463 void free_highmem_page(struct page
*page
)
5465 __free_reserved_page(page
);
5467 page_zone(page
)->managed_pages
++;
5473 void __init
mem_init_print_info(const char *str
)
5475 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5476 unsigned long init_code_size
, init_data_size
;
5478 physpages
= get_num_physpages();
5479 codesize
= _etext
- _stext
;
5480 datasize
= _edata
- _sdata
;
5481 rosize
= __end_rodata
- __start_rodata
;
5482 bss_size
= __bss_stop
- __bss_start
;
5483 init_data_size
= __init_end
- __init_begin
;
5484 init_code_size
= _einittext
- _sinittext
;
5487 * Detect special cases and adjust section sizes accordingly:
5488 * 1) .init.* may be embedded into .data sections
5489 * 2) .init.text.* may be out of [__init_begin, __init_end],
5490 * please refer to arch/tile/kernel/vmlinux.lds.S.
5491 * 3) .rodata.* may be embedded into .text or .data sections.
5493 #define adj_init_size(start, end, size, pos, adj) \
5495 if (start <= pos && pos < end && size > adj) \
5499 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5500 _sinittext
, init_code_size
);
5501 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5502 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5503 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5504 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5506 #undef adj_init_size
5508 printk("Memory: %luK/%luK available "
5509 "(%luK kernel code, %luK rwdata, %luK rodata, "
5510 "%luK init, %luK bss, %luK reserved"
5511 #ifdef CONFIG_HIGHMEM
5515 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5516 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5517 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5518 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5519 #ifdef CONFIG_HIGHMEM
5520 totalhigh_pages
<< (PAGE_SHIFT
-10),
5522 str
? ", " : "", str
? str
: "");
5526 * set_dma_reserve - set the specified number of pages reserved in the first zone
5527 * @new_dma_reserve: The number of pages to mark reserved
5529 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5530 * In the DMA zone, a significant percentage may be consumed by kernel image
5531 * and other unfreeable allocations which can skew the watermarks badly. This
5532 * function may optionally be used to account for unfreeable pages in the
5533 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5534 * smaller per-cpu batchsize.
5536 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5538 dma_reserve
= new_dma_reserve
;
5541 void __init
free_area_init(unsigned long *zones_size
)
5543 free_area_init_node(0, zones_size
,
5544 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5547 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5548 unsigned long action
, void *hcpu
)
5550 int cpu
= (unsigned long)hcpu
;
5552 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5553 lru_add_drain_cpu(cpu
);
5557 * Spill the event counters of the dead processor
5558 * into the current processors event counters.
5559 * This artificially elevates the count of the current
5562 vm_events_fold_cpu(cpu
);
5565 * Zero the differential counters of the dead processor
5566 * so that the vm statistics are consistent.
5568 * This is only okay since the processor is dead and cannot
5569 * race with what we are doing.
5571 cpu_vm_stats_fold(cpu
);
5576 void __init
page_alloc_init(void)
5578 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5582 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5583 * or min_free_kbytes changes.
5585 static void calculate_totalreserve_pages(void)
5587 struct pglist_data
*pgdat
;
5588 unsigned long reserve_pages
= 0;
5589 enum zone_type i
, j
;
5591 for_each_online_pgdat(pgdat
) {
5592 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5593 struct zone
*zone
= pgdat
->node_zones
+ i
;
5596 /* Find valid and maximum lowmem_reserve in the zone */
5597 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5598 if (zone
->lowmem_reserve
[j
] > max
)
5599 max
= zone
->lowmem_reserve
[j
];
5602 /* we treat the high watermark as reserved pages. */
5603 max
+= high_wmark_pages(zone
);
5605 if (max
> zone
->managed_pages
)
5606 max
= zone
->managed_pages
;
5607 reserve_pages
+= max
;
5609 * Lowmem reserves are not available to
5610 * GFP_HIGHUSER page cache allocations and
5611 * kswapd tries to balance zones to their high
5612 * watermark. As a result, neither should be
5613 * regarded as dirtyable memory, to prevent a
5614 * situation where reclaim has to clean pages
5615 * in order to balance the zones.
5617 zone
->dirty_balance_reserve
= max
;
5620 dirty_balance_reserve
= reserve_pages
;
5621 totalreserve_pages
= reserve_pages
;
5625 * setup_per_zone_lowmem_reserve - called whenever
5626 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5627 * has a correct pages reserved value, so an adequate number of
5628 * pages are left in the zone after a successful __alloc_pages().
5630 static void setup_per_zone_lowmem_reserve(void)
5632 struct pglist_data
*pgdat
;
5633 enum zone_type j
, idx
;
5635 for_each_online_pgdat(pgdat
) {
5636 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5637 struct zone
*zone
= pgdat
->node_zones
+ j
;
5638 unsigned long managed_pages
= zone
->managed_pages
;
5640 zone
->lowmem_reserve
[j
] = 0;
5644 struct zone
*lower_zone
;
5648 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5649 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5651 lower_zone
= pgdat
->node_zones
+ idx
;
5652 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5653 sysctl_lowmem_reserve_ratio
[idx
];
5654 managed_pages
+= lower_zone
->managed_pages
;
5659 /* update totalreserve_pages */
5660 calculate_totalreserve_pages();
5663 static void __setup_per_zone_wmarks(void)
5665 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5666 unsigned long lowmem_pages
= 0;
5668 unsigned long flags
;
5670 /* Calculate total number of !ZONE_HIGHMEM pages */
5671 for_each_zone(zone
) {
5672 if (!is_highmem(zone
))
5673 lowmem_pages
+= zone
->managed_pages
;
5676 for_each_zone(zone
) {
5679 spin_lock_irqsave(&zone
->lock
, flags
);
5680 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5681 do_div(tmp
, lowmem_pages
);
5682 if (is_highmem(zone
)) {
5684 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5685 * need highmem pages, so cap pages_min to a small
5688 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5689 * deltas controls asynch page reclaim, and so should
5690 * not be capped for highmem.
5692 unsigned long min_pages
;
5694 min_pages
= zone
->managed_pages
/ 1024;
5695 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5696 zone
->watermark
[WMARK_MIN
] = min_pages
;
5699 * If it's a lowmem zone, reserve a number of pages
5700 * proportionate to the zone's size.
5702 zone
->watermark
[WMARK_MIN
] = tmp
;
5705 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5706 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5708 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5709 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
5710 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
5712 setup_zone_migrate_reserve(zone
);
5713 spin_unlock_irqrestore(&zone
->lock
, flags
);
5716 /* update totalreserve_pages */
5717 calculate_totalreserve_pages();
5721 * setup_per_zone_wmarks - called when min_free_kbytes changes
5722 * or when memory is hot-{added|removed}
5724 * Ensures that the watermark[min,low,high] values for each zone are set
5725 * correctly with respect to min_free_kbytes.
5727 void setup_per_zone_wmarks(void)
5729 mutex_lock(&zonelists_mutex
);
5730 __setup_per_zone_wmarks();
5731 mutex_unlock(&zonelists_mutex
);
5735 * The inactive anon list should be small enough that the VM never has to
5736 * do too much work, but large enough that each inactive page has a chance
5737 * to be referenced again before it is swapped out.
5739 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5740 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5741 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5742 * the anonymous pages are kept on the inactive list.
5745 * memory ratio inactive anon
5746 * -------------------------------------
5755 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5757 unsigned int gb
, ratio
;
5759 /* Zone size in gigabytes */
5760 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5762 ratio
= int_sqrt(10 * gb
);
5766 zone
->inactive_ratio
= ratio
;
5769 static void __meminit
setup_per_zone_inactive_ratio(void)
5774 calculate_zone_inactive_ratio(zone
);
5778 * Initialise min_free_kbytes.
5780 * For small machines we want it small (128k min). For large machines
5781 * we want it large (64MB max). But it is not linear, because network
5782 * bandwidth does not increase linearly with machine size. We use
5784 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5785 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5801 int __meminit
init_per_zone_wmark_min(void)
5803 unsigned long lowmem_kbytes
;
5804 int new_min_free_kbytes
;
5806 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5807 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5809 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5810 min_free_kbytes
= new_min_free_kbytes
;
5811 if (min_free_kbytes
< 128)
5812 min_free_kbytes
= 128;
5813 if (min_free_kbytes
> 65536)
5814 min_free_kbytes
= 65536;
5816 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5817 new_min_free_kbytes
, user_min_free_kbytes
);
5819 setup_per_zone_wmarks();
5820 refresh_zone_stat_thresholds();
5821 setup_per_zone_lowmem_reserve();
5822 setup_per_zone_inactive_ratio();
5825 module_init(init_per_zone_wmark_min
)
5828 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5829 * that we can call two helper functions whenever min_free_kbytes
5832 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
5833 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5837 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5842 user_min_free_kbytes
= min_free_kbytes
;
5843 setup_per_zone_wmarks();
5849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5850 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5855 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5860 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5861 sysctl_min_unmapped_ratio
) / 100;
5865 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5866 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5871 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5876 zone
->min_slab_pages
= (zone
->managed_pages
*
5877 sysctl_min_slab_ratio
) / 100;
5883 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5884 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5885 * whenever sysctl_lowmem_reserve_ratio changes.
5887 * The reserve ratio obviously has absolutely no relation with the
5888 * minimum watermarks. The lowmem reserve ratio can only make sense
5889 * if in function of the boot time zone sizes.
5891 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5892 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5894 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5895 setup_per_zone_lowmem_reserve();
5900 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5901 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5902 * pagelist can have before it gets flushed back to buddy allocator.
5904 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
5905 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5908 int old_percpu_pagelist_fraction
;
5911 mutex_lock(&pcp_batch_high_lock
);
5912 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
5914 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5915 if (!write
|| ret
< 0)
5918 /* Sanity checking to avoid pcp imbalance */
5919 if (percpu_pagelist_fraction
&&
5920 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
5921 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
5927 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
5930 for_each_populated_zone(zone
) {
5933 for_each_possible_cpu(cpu
)
5934 pageset_set_high_and_batch(zone
,
5935 per_cpu_ptr(zone
->pageset
, cpu
));
5938 mutex_unlock(&pcp_batch_high_lock
);
5942 int hashdist
= HASHDIST_DEFAULT
;
5945 static int __init
set_hashdist(char *str
)
5949 hashdist
= simple_strtoul(str
, &str
, 0);
5952 __setup("hashdist=", set_hashdist
);
5956 * allocate a large system hash table from bootmem
5957 * - it is assumed that the hash table must contain an exact power-of-2
5958 * quantity of entries
5959 * - limit is the number of hash buckets, not the total allocation size
5961 void *__init
alloc_large_system_hash(const char *tablename
,
5962 unsigned long bucketsize
,
5963 unsigned long numentries
,
5966 unsigned int *_hash_shift
,
5967 unsigned int *_hash_mask
,
5968 unsigned long low_limit
,
5969 unsigned long high_limit
)
5971 unsigned long long max
= high_limit
;
5972 unsigned long log2qty
, size
;
5975 /* allow the kernel cmdline to have a say */
5977 /* round applicable memory size up to nearest megabyte */
5978 numentries
= nr_kernel_pages
;
5980 /* It isn't necessary when PAGE_SIZE >= 1MB */
5981 if (PAGE_SHIFT
< 20)
5982 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
5984 /* limit to 1 bucket per 2^scale bytes of low memory */
5985 if (scale
> PAGE_SHIFT
)
5986 numentries
>>= (scale
- PAGE_SHIFT
);
5988 numentries
<<= (PAGE_SHIFT
- scale
);
5990 /* Make sure we've got at least a 0-order allocation.. */
5991 if (unlikely(flags
& HASH_SMALL
)) {
5992 /* Makes no sense without HASH_EARLY */
5993 WARN_ON(!(flags
& HASH_EARLY
));
5994 if (!(numentries
>> *_hash_shift
)) {
5995 numentries
= 1UL << *_hash_shift
;
5996 BUG_ON(!numentries
);
5998 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5999 numentries
= PAGE_SIZE
/ bucketsize
;
6001 numentries
= roundup_pow_of_two(numentries
);
6003 /* limit allocation size to 1/16 total memory by default */
6005 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6006 do_div(max
, bucketsize
);
6008 max
= min(max
, 0x80000000ULL
);
6010 if (numentries
< low_limit
)
6011 numentries
= low_limit
;
6012 if (numentries
> max
)
6015 log2qty
= ilog2(numentries
);
6018 size
= bucketsize
<< log2qty
;
6019 if (flags
& HASH_EARLY
)
6020 table
= memblock_virt_alloc_nopanic(size
, 0);
6022 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6025 * If bucketsize is not a power-of-two, we may free
6026 * some pages at the end of hash table which
6027 * alloc_pages_exact() automatically does
6029 if (get_order(size
) < MAX_ORDER
) {
6030 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6031 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6034 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6037 panic("Failed to allocate %s hash table\n", tablename
);
6039 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6042 ilog2(size
) - PAGE_SHIFT
,
6046 *_hash_shift
= log2qty
;
6048 *_hash_mask
= (1 << log2qty
) - 1;
6053 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6054 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6057 #ifdef CONFIG_SPARSEMEM
6058 return __pfn_to_section(pfn
)->pageblock_flags
;
6060 return zone
->pageblock_flags
;
6061 #endif /* CONFIG_SPARSEMEM */
6064 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6066 #ifdef CONFIG_SPARSEMEM
6067 pfn
&= (PAGES_PER_SECTION
-1);
6068 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6070 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6071 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6072 #endif /* CONFIG_SPARSEMEM */
6076 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6077 * @page: The page within the block of interest
6078 * @pfn: The target page frame number
6079 * @end_bitidx: The last bit of interest to retrieve
6080 * @mask: mask of bits that the caller is interested in
6082 * Return: pageblock_bits flags
6084 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6085 unsigned long end_bitidx
,
6089 unsigned long *bitmap
;
6090 unsigned long bitidx
, word_bitidx
;
6093 zone
= page_zone(page
);
6094 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6095 bitidx
= pfn_to_bitidx(zone
, pfn
);
6096 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6097 bitidx
&= (BITS_PER_LONG
-1);
6099 word
= bitmap
[word_bitidx
];
6100 bitidx
+= end_bitidx
;
6101 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6105 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6106 * @page: The page within the block of interest
6107 * @flags: The flags to set
6108 * @pfn: The target page frame number
6109 * @end_bitidx: The last bit of interest
6110 * @mask: mask of bits that the caller is interested in
6112 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6114 unsigned long end_bitidx
,
6118 unsigned long *bitmap
;
6119 unsigned long bitidx
, word_bitidx
;
6120 unsigned long old_word
, word
;
6122 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6124 zone
= page_zone(page
);
6125 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6126 bitidx
= pfn_to_bitidx(zone
, pfn
);
6127 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6128 bitidx
&= (BITS_PER_LONG
-1);
6130 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6132 bitidx
+= end_bitidx
;
6133 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6134 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6136 word
= ACCESS_ONCE(bitmap
[word_bitidx
]);
6138 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6139 if (word
== old_word
)
6146 * This function checks whether pageblock includes unmovable pages or not.
6147 * If @count is not zero, it is okay to include less @count unmovable pages
6149 * PageLRU check without isolation or lru_lock could race so that
6150 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6151 * expect this function should be exact.
6153 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6154 bool skip_hwpoisoned_pages
)
6156 unsigned long pfn
, iter
, found
;
6160 * For avoiding noise data, lru_add_drain_all() should be called
6161 * If ZONE_MOVABLE, the zone never contains unmovable pages
6163 if (zone_idx(zone
) == ZONE_MOVABLE
)
6165 mt
= get_pageblock_migratetype(page
);
6166 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6169 pfn
= page_to_pfn(page
);
6170 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6171 unsigned long check
= pfn
+ iter
;
6173 if (!pfn_valid_within(check
))
6176 page
= pfn_to_page(check
);
6179 * Hugepages are not in LRU lists, but they're movable.
6180 * We need not scan over tail pages bacause we don't
6181 * handle each tail page individually in migration.
6183 if (PageHuge(page
)) {
6184 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6189 * We can't use page_count without pin a page
6190 * because another CPU can free compound page.
6191 * This check already skips compound tails of THP
6192 * because their page->_count is zero at all time.
6194 if (!atomic_read(&page
->_count
)) {
6195 if (PageBuddy(page
))
6196 iter
+= (1 << page_order(page
)) - 1;
6201 * The HWPoisoned page may be not in buddy system, and
6202 * page_count() is not 0.
6204 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6210 * If there are RECLAIMABLE pages, we need to check it.
6211 * But now, memory offline itself doesn't call shrink_slab()
6212 * and it still to be fixed.
6215 * If the page is not RAM, page_count()should be 0.
6216 * we don't need more check. This is an _used_ not-movable page.
6218 * The problematic thing here is PG_reserved pages. PG_reserved
6219 * is set to both of a memory hole page and a _used_ kernel
6228 bool is_pageblock_removable_nolock(struct page
*page
)
6234 * We have to be careful here because we are iterating over memory
6235 * sections which are not zone aware so we might end up outside of
6236 * the zone but still within the section.
6237 * We have to take care about the node as well. If the node is offline
6238 * its NODE_DATA will be NULL - see page_zone.
6240 if (!node_online(page_to_nid(page
)))
6243 zone
= page_zone(page
);
6244 pfn
= page_to_pfn(page
);
6245 if (!zone_spans_pfn(zone
, pfn
))
6248 return !has_unmovable_pages(zone
, page
, 0, true);
6253 static unsigned long pfn_max_align_down(unsigned long pfn
)
6255 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6256 pageblock_nr_pages
) - 1);
6259 static unsigned long pfn_max_align_up(unsigned long pfn
)
6261 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6262 pageblock_nr_pages
));
6265 /* [start, end) must belong to a single zone. */
6266 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6267 unsigned long start
, unsigned long end
)
6269 /* This function is based on compact_zone() from compaction.c. */
6270 unsigned long nr_reclaimed
;
6271 unsigned long pfn
= start
;
6272 unsigned int tries
= 0;
6277 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6278 if (fatal_signal_pending(current
)) {
6283 if (list_empty(&cc
->migratepages
)) {
6284 cc
->nr_migratepages
= 0;
6285 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6291 } else if (++tries
== 5) {
6292 ret
= ret
< 0 ? ret
: -EBUSY
;
6296 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6298 cc
->nr_migratepages
-= nr_reclaimed
;
6300 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6301 NULL
, 0, cc
->mode
, MR_CMA
);
6304 putback_movable_pages(&cc
->migratepages
);
6311 * alloc_contig_range() -- tries to allocate given range of pages
6312 * @start: start PFN to allocate
6313 * @end: one-past-the-last PFN to allocate
6314 * @migratetype: migratetype of the underlaying pageblocks (either
6315 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6316 * in range must have the same migratetype and it must
6317 * be either of the two.
6319 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6320 * aligned, however it's the caller's responsibility to guarantee that
6321 * we are the only thread that changes migrate type of pageblocks the
6324 * The PFN range must belong to a single zone.
6326 * Returns zero on success or negative error code. On success all
6327 * pages which PFN is in [start, end) are allocated for the caller and
6328 * need to be freed with free_contig_range().
6330 int alloc_contig_range(unsigned long start
, unsigned long end
,
6331 unsigned migratetype
)
6333 unsigned long outer_start
, outer_end
;
6336 struct compact_control cc
= {
6337 .nr_migratepages
= 0,
6339 .zone
= page_zone(pfn_to_page(start
)),
6340 .mode
= MIGRATE_SYNC
,
6341 .ignore_skip_hint
= true,
6343 INIT_LIST_HEAD(&cc
.migratepages
);
6346 * What we do here is we mark all pageblocks in range as
6347 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6348 * have different sizes, and due to the way page allocator
6349 * work, we align the range to biggest of the two pages so
6350 * that page allocator won't try to merge buddies from
6351 * different pageblocks and change MIGRATE_ISOLATE to some
6352 * other migration type.
6354 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6355 * migrate the pages from an unaligned range (ie. pages that
6356 * we are interested in). This will put all the pages in
6357 * range back to page allocator as MIGRATE_ISOLATE.
6359 * When this is done, we take the pages in range from page
6360 * allocator removing them from the buddy system. This way
6361 * page allocator will never consider using them.
6363 * This lets us mark the pageblocks back as
6364 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6365 * aligned range but not in the unaligned, original range are
6366 * put back to page allocator so that buddy can use them.
6369 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6370 pfn_max_align_up(end
), migratetype
,
6375 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6380 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6381 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6382 * more, all pages in [start, end) are free in page allocator.
6383 * What we are going to do is to allocate all pages from
6384 * [start, end) (that is remove them from page allocator).
6386 * The only problem is that pages at the beginning and at the
6387 * end of interesting range may be not aligned with pages that
6388 * page allocator holds, ie. they can be part of higher order
6389 * pages. Because of this, we reserve the bigger range and
6390 * once this is done free the pages we are not interested in.
6392 * We don't have to hold zone->lock here because the pages are
6393 * isolated thus they won't get removed from buddy.
6396 lru_add_drain_all();
6400 outer_start
= start
;
6401 while (!PageBuddy(pfn_to_page(outer_start
))) {
6402 if (++order
>= MAX_ORDER
) {
6406 outer_start
&= ~0UL << order
;
6409 /* Make sure the range is really isolated. */
6410 if (test_pages_isolated(outer_start
, end
, false)) {
6411 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6418 /* Grab isolated pages from freelists. */
6419 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6425 /* Free head and tail (if any) */
6426 if (start
!= outer_start
)
6427 free_contig_range(outer_start
, start
- outer_start
);
6428 if (end
!= outer_end
)
6429 free_contig_range(end
, outer_end
- end
);
6432 undo_isolate_page_range(pfn_max_align_down(start
),
6433 pfn_max_align_up(end
), migratetype
);
6437 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6439 unsigned int count
= 0;
6441 for (; nr_pages
--; pfn
++) {
6442 struct page
*page
= pfn_to_page(pfn
);
6444 count
+= page_count(page
) != 1;
6447 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6451 #ifdef CONFIG_MEMORY_HOTPLUG
6453 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6454 * page high values need to be recalulated.
6456 void __meminit
zone_pcp_update(struct zone
*zone
)
6459 mutex_lock(&pcp_batch_high_lock
);
6460 for_each_possible_cpu(cpu
)
6461 pageset_set_high_and_batch(zone
,
6462 per_cpu_ptr(zone
->pageset
, cpu
));
6463 mutex_unlock(&pcp_batch_high_lock
);
6467 void zone_pcp_reset(struct zone
*zone
)
6469 unsigned long flags
;
6471 struct per_cpu_pageset
*pset
;
6473 /* avoid races with drain_pages() */
6474 local_irq_save(flags
);
6475 if (zone
->pageset
!= &boot_pageset
) {
6476 for_each_online_cpu(cpu
) {
6477 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6478 drain_zonestat(zone
, pset
);
6480 free_percpu(zone
->pageset
);
6481 zone
->pageset
= &boot_pageset
;
6483 local_irq_restore(flags
);
6486 #ifdef CONFIG_MEMORY_HOTREMOVE
6488 * All pages in the range must be isolated before calling this.
6491 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6495 unsigned int order
, i
;
6497 unsigned long flags
;
6498 /* find the first valid pfn */
6499 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6504 zone
= page_zone(pfn_to_page(pfn
));
6505 spin_lock_irqsave(&zone
->lock
, flags
);
6507 while (pfn
< end_pfn
) {
6508 if (!pfn_valid(pfn
)) {
6512 page
= pfn_to_page(pfn
);
6514 * The HWPoisoned page may be not in buddy system, and
6515 * page_count() is not 0.
6517 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6519 SetPageReserved(page
);
6523 BUG_ON(page_count(page
));
6524 BUG_ON(!PageBuddy(page
));
6525 order
= page_order(page
);
6526 #ifdef CONFIG_DEBUG_VM
6527 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6528 pfn
, 1 << order
, end_pfn
);
6530 list_del(&page
->lru
);
6531 rmv_page_order(page
);
6532 zone
->free_area
[order
].nr_free
--;
6533 for (i
= 0; i
< (1 << order
); i
++)
6534 SetPageReserved((page
+i
));
6535 pfn
+= (1 << order
);
6537 spin_unlock_irqrestore(&zone
->lock
, flags
);
6541 #ifdef CONFIG_MEMORY_FAILURE
6542 bool is_free_buddy_page(struct page
*page
)
6544 struct zone
*zone
= page_zone(page
);
6545 unsigned long pfn
= page_to_pfn(page
);
6546 unsigned long flags
;
6549 spin_lock_irqsave(&zone
->lock
, flags
);
6550 for (order
= 0; order
< MAX_ORDER
; order
++) {
6551 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6553 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6556 spin_unlock_irqrestore(&zone
->lock
, flags
);
6558 return order
< MAX_ORDER
;