Merge tag 'ceph-for-4.13-rc8' of git://github.com/ceph/ceph-client
[linux/fpc-iii.git] / drivers / crypto / bcm / cipher.c
blob9cfd36c1bcb63bd92a76715ddf011efffd793eed
1 /*
2 * Copyright 2016 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation (the "GPL").
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License version 2 (GPLv2) for more details.
13 * You should have received a copy of the GNU General Public License
14 * version 2 (GPLv2) along with this source code.
17 #include <linux/err.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 #include <linux/crypto.h>
26 #include <linux/kthread.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/sched.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/io.h>
32 #include <linux/bitops.h>
34 #include <crypto/algapi.h>
35 #include <crypto/aead.h>
36 #include <crypto/internal/aead.h>
37 #include <crypto/aes.h>
38 #include <crypto/des.h>
39 #include <crypto/hmac.h>
40 #include <crypto/sha.h>
41 #include <crypto/md5.h>
42 #include <crypto/authenc.h>
43 #include <crypto/skcipher.h>
44 #include <crypto/hash.h>
45 #include <crypto/aes.h>
46 #include <crypto/sha3.h>
48 #include "util.h"
49 #include "cipher.h"
50 #include "spu.h"
51 #include "spum.h"
52 #include "spu2.h"
54 /* ================= Device Structure ================== */
56 struct device_private iproc_priv;
58 /* ==================== Parameters ===================== */
60 int flow_debug_logging;
61 module_param(flow_debug_logging, int, 0644);
62 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
64 int packet_debug_logging;
65 module_param(packet_debug_logging, int, 0644);
66 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
68 int debug_logging_sleep;
69 module_param(debug_logging_sleep, int, 0644);
70 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
73 * The value of these module parameters is used to set the priority for each
74 * algo type when this driver registers algos with the kernel crypto API.
75 * To use a priority other than the default, set the priority in the insmod or
76 * modprobe. Changing the module priority after init time has no effect.
78 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
79 * algos, but more preferred than generic software algos.
81 static int cipher_pri = 150;
82 module_param(cipher_pri, int, 0644);
83 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
85 static int hash_pri = 100;
86 module_param(hash_pri, int, 0644);
87 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
89 static int aead_pri = 150;
90 module_param(aead_pri, int, 0644);
91 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
93 #define MAX_SPUS 16
95 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
96 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
97 * 0x60 - ring 0
98 * 0x68 - ring 1
99 * 0x70 - ring 2
100 * 0x78 - ring 3
102 char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
104 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
105 * is set dynamically after reading SPU type from device tree.
107 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len
109 /* min and max time to sleep before retrying when mbox queue is full. usec */
110 #define MBOX_SLEEP_MIN 800
111 #define MBOX_SLEEP_MAX 1000
114 * select_channel() - Select a SPU channel to handle a crypto request. Selects
115 * channel in round robin order.
117 * Return: channel index
119 static u8 select_channel(void)
121 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
123 return chan_idx % iproc_priv.spu.num_spu;
127 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
128 * receive a SPU response message for an ablkcipher request. Includes buffers to
129 * catch SPU message headers and the response data.
130 * @mssg: mailbox message containing the receive sg
131 * @rctx: crypto request context
132 * @rx_frag_num: number of scatterlist elements required to hold the
133 * SPU response message
134 * @chunksize: Number of bytes of response data expected
135 * @stat_pad_len: Number of bytes required to pad the STAT field to
136 * a 4-byte boundary
138 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
139 * when the request completes, whether the request is handled successfully or
140 * there is an error.
142 * Returns:
143 * 0 if successful
144 * < 0 if an error
146 static int
147 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
148 struct iproc_reqctx_s *rctx,
149 u8 rx_frag_num,
150 unsigned int chunksize, u32 stat_pad_len)
152 struct spu_hw *spu = &iproc_priv.spu;
153 struct scatterlist *sg; /* used to build sgs in mbox message */
154 struct iproc_ctx_s *ctx = rctx->ctx;
155 u32 datalen; /* Number of bytes of response data expected */
157 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
158 rctx->gfp);
159 if (!mssg->spu.dst)
160 return -ENOMEM;
162 sg = mssg->spu.dst;
163 sg_init_table(sg, rx_frag_num);
164 /* Space for SPU message header */
165 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
167 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
168 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
169 spu->spu_xts_tweak_in_payload())
170 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
171 SPU_XTS_TWEAK_SIZE);
173 /* Copy in each dst sg entry from request, up to chunksize */
174 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
175 rctx->dst_nents, chunksize);
176 if (datalen < chunksize) {
177 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
178 __func__, chunksize, datalen);
179 return -EFAULT;
182 if (ctx->cipher.alg == CIPHER_ALG_RC4)
183 /* Add buffer to catch 260-byte SUPDT field for RC4 */
184 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
186 if (stat_pad_len)
187 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
189 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
190 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
192 return 0;
196 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
197 * send a SPU request message for an ablkcipher request. Includes SPU message
198 * headers and the request data.
199 * @mssg: mailbox message containing the transmit sg
200 * @rctx: crypto request context
201 * @tx_frag_num: number of scatterlist elements required to construct the
202 * SPU request message
203 * @chunksize: Number of bytes of request data
204 * @pad_len: Number of pad bytes
206 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
207 * when the request completes, whether the request is handled successfully or
208 * there is an error.
210 * Returns:
211 * 0 if successful
212 * < 0 if an error
214 static int
215 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
216 struct iproc_reqctx_s *rctx,
217 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
219 struct spu_hw *spu = &iproc_priv.spu;
220 struct scatterlist *sg; /* used to build sgs in mbox message */
221 struct iproc_ctx_s *ctx = rctx->ctx;
222 u32 datalen; /* Number of bytes of response data expected */
223 u32 stat_len;
225 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
226 rctx->gfp);
227 if (unlikely(!mssg->spu.src))
228 return -ENOMEM;
230 sg = mssg->spu.src;
231 sg_init_table(sg, tx_frag_num);
233 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
234 BCM_HDR_LEN + ctx->spu_req_hdr_len);
236 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
237 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
238 spu->spu_xts_tweak_in_payload())
239 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
241 /* Copy in each src sg entry from request, up to chunksize */
242 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
243 rctx->src_nents, chunksize);
244 if (unlikely(datalen < chunksize)) {
245 pr_err("%s(): failed to copy src sg to mbox msg",
246 __func__);
247 return -EFAULT;
250 if (pad_len)
251 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
253 stat_len = spu->spu_tx_status_len();
254 if (stat_len) {
255 memset(rctx->msg_buf.tx_stat, 0, stat_len);
256 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
258 return 0;
262 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
263 * a single SPU request message, starting at the current position in the request
264 * data.
265 * @rctx: Crypto request context
267 * This may be called on the crypto API thread, or, when a request is so large
268 * it must be broken into multiple SPU messages, on the thread used to invoke
269 * the response callback. When requests are broken into multiple SPU
270 * messages, we assume subsequent messages depend on previous results, and
271 * thus always wait for previous results before submitting the next message.
272 * Because requests are submitted in lock step like this, there is no need
273 * to synchronize access to request data structures.
275 * Return: -EINPROGRESS: request has been accepted and result will be returned
276 * asynchronously
277 * Any other value indicates an error
279 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
281 struct spu_hw *spu = &iproc_priv.spu;
282 struct crypto_async_request *areq = rctx->parent;
283 struct ablkcipher_request *req =
284 container_of(areq, struct ablkcipher_request, base);
285 struct iproc_ctx_s *ctx = rctx->ctx;
286 struct spu_cipher_parms cipher_parms;
287 int err = 0;
288 unsigned int chunksize = 0; /* Num bytes of request to submit */
289 int remaining = 0; /* Bytes of request still to process */
290 int chunk_start; /* Beginning of data for current SPU msg */
292 /* IV or ctr value to use in this SPU msg */
293 u8 local_iv_ctr[MAX_IV_SIZE];
294 u32 stat_pad_len; /* num bytes to align status field */
295 u32 pad_len; /* total length of all padding */
296 bool update_key = false;
297 struct brcm_message *mssg; /* mailbox message */
298 int retry_cnt = 0;
300 /* number of entries in src and dst sg in mailbox message. */
301 u8 rx_frag_num = 2; /* response header and STATUS */
302 u8 tx_frag_num = 1; /* request header */
304 flow_log("%s\n", __func__);
306 cipher_parms.alg = ctx->cipher.alg;
307 cipher_parms.mode = ctx->cipher.mode;
308 cipher_parms.type = ctx->cipher_type;
309 cipher_parms.key_len = ctx->enckeylen;
310 cipher_parms.key_buf = ctx->enckey;
311 cipher_parms.iv_buf = local_iv_ctr;
312 cipher_parms.iv_len = rctx->iv_ctr_len;
314 mssg = &rctx->mb_mssg;
315 chunk_start = rctx->src_sent;
316 remaining = rctx->total_todo - chunk_start;
318 /* determine the chunk we are breaking off and update the indexes */
319 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
320 (remaining > ctx->max_payload))
321 chunksize = ctx->max_payload;
322 else
323 chunksize = remaining;
325 rctx->src_sent += chunksize;
326 rctx->total_sent = rctx->src_sent;
328 /* Count number of sg entries to be included in this request */
329 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
330 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
332 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
333 rctx->is_encrypt && chunk_start)
335 * Encrypting non-first first chunk. Copy last block of
336 * previous result to IV for this chunk.
338 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
339 rctx->iv_ctr_len,
340 chunk_start - rctx->iv_ctr_len);
342 if (rctx->iv_ctr_len) {
343 /* get our local copy of the iv */
344 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
345 rctx->iv_ctr_len);
347 /* generate the next IV if possible */
348 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
349 !rctx->is_encrypt) {
351 * CBC Decrypt: next IV is the last ciphertext block in
352 * this chunk
354 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
355 rctx->iv_ctr_len,
356 rctx->src_sent - rctx->iv_ctr_len);
357 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
359 * The SPU hardware increments the counter once for
360 * each AES block of 16 bytes. So update the counter
361 * for the next chunk, if there is one. Note that for
362 * this chunk, the counter has already been copied to
363 * local_iv_ctr. We can assume a block size of 16,
364 * because we only support CTR mode for AES, not for
365 * any other cipher alg.
367 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
371 if (ctx->cipher.alg == CIPHER_ALG_RC4) {
372 rx_frag_num++;
373 if (chunk_start) {
375 * for non-first RC4 chunks, use SUPDT from previous
376 * response as key for this chunk.
378 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
379 update_key = true;
380 cipher_parms.type = CIPHER_TYPE_UPDT;
381 } else if (!rctx->is_encrypt) {
383 * First RC4 chunk. For decrypt, key in pre-built msg
384 * header may have been changed if encrypt required
385 * multiple chunks. So revert the key to the
386 * ctx->enckey value.
388 update_key = true;
389 cipher_parms.type = CIPHER_TYPE_INIT;
393 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
394 flow_log("max_payload infinite\n");
395 else
396 flow_log("max_payload %u\n", ctx->max_payload);
398 flow_log("sent:%u start:%u remains:%u size:%u\n",
399 rctx->src_sent, chunk_start, remaining, chunksize);
401 /* Copy SPU header template created at setkey time */
402 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
403 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
406 * Pass SUPDT field as key. Key field in finish() call is only used
407 * when update_key has been set above for RC4. Will be ignored in
408 * all other cases.
410 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
411 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
412 &cipher_parms, update_key, chunksize);
414 atomic64_add(chunksize, &iproc_priv.bytes_out);
416 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
417 if (stat_pad_len)
418 rx_frag_num++;
419 pad_len = stat_pad_len;
420 if (pad_len) {
421 tx_frag_num++;
422 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
423 0, ctx->auth.alg, ctx->auth.mode,
424 rctx->total_sent, stat_pad_len);
427 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
428 ctx->spu_req_hdr_len);
429 packet_log("payload:\n");
430 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
431 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
434 * Build mailbox message containing SPU request msg and rx buffers
435 * to catch response message
437 memset(mssg, 0, sizeof(*mssg));
438 mssg->type = BRCM_MESSAGE_SPU;
439 mssg->ctx = rctx; /* Will be returned in response */
441 /* Create rx scatterlist to catch result */
442 rx_frag_num += rctx->dst_nents;
444 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
445 spu->spu_xts_tweak_in_payload())
446 rx_frag_num++; /* extra sg to insert tweak */
448 err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
449 stat_pad_len);
450 if (err)
451 return err;
453 /* Create tx scatterlist containing SPU request message */
454 tx_frag_num += rctx->src_nents;
455 if (spu->spu_tx_status_len())
456 tx_frag_num++;
458 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
459 spu->spu_xts_tweak_in_payload())
460 tx_frag_num++; /* extra sg to insert tweak */
462 err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
463 pad_len);
464 if (err)
465 return err;
467 err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg);
468 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
469 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
471 * Mailbox queue is full. Since MAY_SLEEP is set, assume
472 * not in atomic context and we can wait and try again.
474 retry_cnt++;
475 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
476 err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx],
477 mssg);
478 atomic_inc(&iproc_priv.mb_no_spc);
481 if (unlikely(err < 0)) {
482 atomic_inc(&iproc_priv.mb_send_fail);
483 return err;
486 return -EINPROGRESS;
490 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
491 * total received count for the request and updates global stats.
492 * @rctx: Crypto request context
494 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
496 struct spu_hw *spu = &iproc_priv.spu;
497 #ifdef DEBUG
498 struct crypto_async_request *areq = rctx->parent;
499 struct ablkcipher_request *req = ablkcipher_request_cast(areq);
500 #endif
501 struct iproc_ctx_s *ctx = rctx->ctx;
502 u32 payload_len;
504 /* See how much data was returned */
505 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
508 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
509 * encrypted tweak ("i") value; we don't count those.
511 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
512 spu->spu_xts_tweak_in_payload() &&
513 (payload_len >= SPU_XTS_TWEAK_SIZE))
514 payload_len -= SPU_XTS_TWEAK_SIZE;
516 atomic64_add(payload_len, &iproc_priv.bytes_in);
518 flow_log("%s() offset: %u, bd_len: %u BD:\n",
519 __func__, rctx->total_received, payload_len);
521 dump_sg(req->dst, rctx->total_received, payload_len);
522 if (ctx->cipher.alg == CIPHER_ALG_RC4)
523 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak,
524 SPU_SUPDT_LEN);
526 rctx->total_received += payload_len;
527 if (rctx->total_received == rctx->total_todo) {
528 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
529 atomic_inc(
530 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
535 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
536 * receive a SPU response message for an ahash request.
537 * @mssg: mailbox message containing the receive sg
538 * @rctx: crypto request context
539 * @rx_frag_num: number of scatterlist elements required to hold the
540 * SPU response message
541 * @digestsize: length of hash digest, in bytes
542 * @stat_pad_len: Number of bytes required to pad the STAT field to
543 * a 4-byte boundary
545 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
546 * when the request completes, whether the request is handled successfully or
547 * there is an error.
549 * Return:
550 * 0 if successful
551 * < 0 if an error
553 static int
554 spu_ahash_rx_sg_create(struct brcm_message *mssg,
555 struct iproc_reqctx_s *rctx,
556 u8 rx_frag_num, unsigned int digestsize,
557 u32 stat_pad_len)
559 struct spu_hw *spu = &iproc_priv.spu;
560 struct scatterlist *sg; /* used to build sgs in mbox message */
561 struct iproc_ctx_s *ctx = rctx->ctx;
563 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
564 rctx->gfp);
565 if (!mssg->spu.dst)
566 return -ENOMEM;
568 sg = mssg->spu.dst;
569 sg_init_table(sg, rx_frag_num);
570 /* Space for SPU message header */
571 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
573 /* Space for digest */
574 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
576 if (stat_pad_len)
577 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
579 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
580 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
581 return 0;
585 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
586 * a SPU request message for an ahash request. Includes SPU message headers and
587 * the request data.
588 * @mssg: mailbox message containing the transmit sg
589 * @rctx: crypto request context
590 * @tx_frag_num: number of scatterlist elements required to construct the
591 * SPU request message
592 * @spu_hdr_len: length in bytes of SPU message header
593 * @hash_carry_len: Number of bytes of data carried over from previous req
594 * @new_data_len: Number of bytes of new request data
595 * @pad_len: Number of pad bytes
597 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
598 * when the request completes, whether the request is handled successfully or
599 * there is an error.
601 * Return:
602 * 0 if successful
603 * < 0 if an error
605 static int
606 spu_ahash_tx_sg_create(struct brcm_message *mssg,
607 struct iproc_reqctx_s *rctx,
608 u8 tx_frag_num,
609 u32 spu_hdr_len,
610 unsigned int hash_carry_len,
611 unsigned int new_data_len, u32 pad_len)
613 struct spu_hw *spu = &iproc_priv.spu;
614 struct scatterlist *sg; /* used to build sgs in mbox message */
615 u32 datalen; /* Number of bytes of response data expected */
616 u32 stat_len;
618 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
619 rctx->gfp);
620 if (!mssg->spu.src)
621 return -ENOMEM;
623 sg = mssg->spu.src;
624 sg_init_table(sg, tx_frag_num);
626 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
627 BCM_HDR_LEN + spu_hdr_len);
629 if (hash_carry_len)
630 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
632 if (new_data_len) {
633 /* Copy in each src sg entry from request, up to chunksize */
634 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
635 rctx->src_nents, new_data_len);
636 if (datalen < new_data_len) {
637 pr_err("%s(): failed to copy src sg to mbox msg",
638 __func__);
639 return -EFAULT;
643 if (pad_len)
644 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
646 stat_len = spu->spu_tx_status_len();
647 if (stat_len) {
648 memset(rctx->msg_buf.tx_stat, 0, stat_len);
649 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
652 return 0;
656 * handle_ahash_req() - Process an asynchronous hash request from the crypto
657 * API.
658 * @rctx: Crypto request context
660 * Builds a SPU request message embedded in a mailbox message and submits the
661 * mailbox message on a selected mailbox channel. The SPU request message is
662 * constructed as a scatterlist, including entries from the crypto API's
663 * src scatterlist to avoid copying the data to be hashed. This function is
664 * called either on the thread from the crypto API, or, in the case that the
665 * crypto API request is too large to fit in a single SPU request message,
666 * on the thread that invokes the receive callback with a response message.
667 * Because some operations require the response from one chunk before the next
668 * chunk can be submitted, we always wait for the response for the previous
669 * chunk before submitting the next chunk. Because requests are submitted in
670 * lock step like this, there is no need to synchronize access to request data
671 * structures.
673 * Return:
674 * -EINPROGRESS: request has been submitted to SPU and response will be
675 * returned asynchronously
676 * -EAGAIN: non-final request included a small amount of data, which for
677 * efficiency we did not submit to the SPU, but instead stored
678 * to be submitted to the SPU with the next part of the request
679 * other: an error code
681 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
683 struct spu_hw *spu = &iproc_priv.spu;
684 struct crypto_async_request *areq = rctx->parent;
685 struct ahash_request *req = ahash_request_cast(areq);
686 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
687 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
688 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
689 struct iproc_ctx_s *ctx = rctx->ctx;
691 /* number of bytes still to be hashed in this req */
692 unsigned int nbytes_to_hash = 0;
693 int err = 0;
694 unsigned int chunksize = 0; /* length of hash carry + new data */
696 * length of new data, not from hash carry, to be submitted in
697 * this hw request
699 unsigned int new_data_len;
701 unsigned int chunk_start = 0;
702 u32 db_size; /* Length of data field, incl gcm and hash padding */
703 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
704 u32 data_pad_len = 0; /* length of GCM/CCM padding */
705 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
706 struct brcm_message *mssg; /* mailbox message */
707 struct spu_request_opts req_opts;
708 struct spu_cipher_parms cipher_parms;
709 struct spu_hash_parms hash_parms;
710 struct spu_aead_parms aead_parms;
711 unsigned int local_nbuf;
712 u32 spu_hdr_len;
713 unsigned int digestsize;
714 u16 rem = 0;
715 int retry_cnt = 0;
718 * number of entries in src and dst sg. Always includes SPU msg header.
719 * rx always includes a buffer to catch digest and STATUS.
721 u8 rx_frag_num = 3;
722 u8 tx_frag_num = 1;
724 flow_log("total_todo %u, total_sent %u\n",
725 rctx->total_todo, rctx->total_sent);
727 memset(&req_opts, 0, sizeof(req_opts));
728 memset(&cipher_parms, 0, sizeof(cipher_parms));
729 memset(&hash_parms, 0, sizeof(hash_parms));
730 memset(&aead_parms, 0, sizeof(aead_parms));
732 req_opts.bd_suppress = true;
733 hash_parms.alg = ctx->auth.alg;
734 hash_parms.mode = ctx->auth.mode;
735 hash_parms.type = HASH_TYPE_NONE;
736 hash_parms.key_buf = (u8 *)ctx->authkey;
737 hash_parms.key_len = ctx->authkeylen;
740 * For hash algorithms below assignment looks bit odd but
741 * it's needed for AES-XCBC and AES-CMAC hash algorithms
742 * to differentiate between 128, 192, 256 bit key values.
743 * Based on the key values, hash algorithm is selected.
744 * For example for 128 bit key, hash algorithm is AES-128.
746 cipher_parms.type = ctx->cipher_type;
748 mssg = &rctx->mb_mssg;
749 chunk_start = rctx->src_sent;
752 * Compute the amount remaining to hash. This may include data
753 * carried over from previous requests.
755 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
756 chunksize = nbytes_to_hash;
757 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
758 (chunksize > ctx->max_payload))
759 chunksize = ctx->max_payload;
762 * If this is not a final request and the request data is not a multiple
763 * of a full block, then simply park the extra data and prefix it to the
764 * data for the next request.
766 if (!rctx->is_final) {
767 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
768 u16 new_len; /* len of data to add to hash carry */
770 rem = chunksize % blocksize; /* remainder */
771 if (rem) {
772 /* chunksize not a multiple of blocksize */
773 chunksize -= rem;
774 if (chunksize == 0) {
775 /* Don't have a full block to submit to hw */
776 new_len = rem - rctx->hash_carry_len;
777 sg_copy_part_to_buf(req->src, dest, new_len,
778 rctx->src_sent);
779 rctx->hash_carry_len = rem;
780 flow_log("Exiting with hash carry len: %u\n",
781 rctx->hash_carry_len);
782 packet_dump(" buf: ",
783 rctx->hash_carry,
784 rctx->hash_carry_len);
785 return -EAGAIN;
790 /* if we have hash carry, then prefix it to the data in this request */
791 local_nbuf = rctx->hash_carry_len;
792 rctx->hash_carry_len = 0;
793 if (local_nbuf)
794 tx_frag_num++;
795 new_data_len = chunksize - local_nbuf;
797 /* Count number of sg entries to be used in this request */
798 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
799 new_data_len);
801 /* AES hashing keeps key size in type field, so need to copy it here */
802 if (hash_parms.alg == HASH_ALG_AES)
803 hash_parms.type = cipher_parms.type;
804 else
805 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
807 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
808 hash_parms.type);
809 hash_parms.digestsize = digestsize;
811 /* update the indexes */
812 rctx->total_sent += chunksize;
813 /* if you sent a prebuf then that wasn't from this req->src */
814 rctx->src_sent += new_data_len;
816 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
817 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
818 hash_parms.mode,
819 chunksize,
820 blocksize);
823 * If a non-first chunk, then include the digest returned from the
824 * previous chunk so that hw can add to it (except for AES types).
826 if ((hash_parms.type == HASH_TYPE_UPDT) &&
827 (hash_parms.alg != HASH_ALG_AES)) {
828 hash_parms.key_buf = rctx->incr_hash;
829 hash_parms.key_len = digestsize;
832 atomic64_add(chunksize, &iproc_priv.bytes_out);
834 flow_log("%s() final: %u nbuf: %u ",
835 __func__, rctx->is_final, local_nbuf);
837 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
838 flow_log("max_payload infinite\n");
839 else
840 flow_log("max_payload %u\n", ctx->max_payload);
842 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
844 /* Prepend SPU header with type 3 BCM header */
845 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
847 hash_parms.prebuf_len = local_nbuf;
848 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
849 BCM_HDR_LEN,
850 &req_opts, &cipher_parms,
851 &hash_parms, &aead_parms,
852 new_data_len);
854 if (spu_hdr_len == 0) {
855 pr_err("Failed to create SPU request header\n");
856 return -EFAULT;
860 * Determine total length of padding required. Put all padding in one
861 * buffer.
863 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
864 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
865 0, 0, hash_parms.pad_len);
866 if (spu->spu_tx_status_len())
867 stat_pad_len = spu->spu_wordalign_padlen(db_size);
868 if (stat_pad_len)
869 rx_frag_num++;
870 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
871 if (pad_len) {
872 tx_frag_num++;
873 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
874 hash_parms.pad_len, ctx->auth.alg,
875 ctx->auth.mode, rctx->total_sent,
876 stat_pad_len);
879 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
880 spu_hdr_len);
881 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
882 flow_log("Data:\n");
883 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
884 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
887 * Build mailbox message containing SPU request msg and rx buffers
888 * to catch response message
890 memset(mssg, 0, sizeof(*mssg));
891 mssg->type = BRCM_MESSAGE_SPU;
892 mssg->ctx = rctx; /* Will be returned in response */
894 /* Create rx scatterlist to catch result */
895 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
896 stat_pad_len);
897 if (err)
898 return err;
900 /* Create tx scatterlist containing SPU request message */
901 tx_frag_num += rctx->src_nents;
902 if (spu->spu_tx_status_len())
903 tx_frag_num++;
904 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
905 local_nbuf, new_data_len, pad_len);
906 if (err)
907 return err;
909 err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg);
910 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
911 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
913 * Mailbox queue is full. Since MAY_SLEEP is set, assume
914 * not in atomic context and we can wait and try again.
916 retry_cnt++;
917 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
918 err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx],
919 mssg);
920 atomic_inc(&iproc_priv.mb_no_spc);
923 if (err < 0) {
924 atomic_inc(&iproc_priv.mb_send_fail);
925 return err;
927 return -EINPROGRESS;
931 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
932 * for an HMAC request.
933 * @req: The HMAC request from the crypto API
934 * @ctx: The session context
936 * Return: 0 if synchronous hash operation successful
937 * -EINVAL if the hash algo is unrecognized
938 * any other value indicates an error
940 static int spu_hmac_outer_hash(struct ahash_request *req,
941 struct iproc_ctx_s *ctx)
943 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
944 unsigned int blocksize =
945 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
946 int rc;
948 switch (ctx->auth.alg) {
949 case HASH_ALG_MD5:
950 rc = do_shash("md5", req->result, ctx->opad, blocksize,
951 req->result, ctx->digestsize, NULL, 0);
952 break;
953 case HASH_ALG_SHA1:
954 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
955 req->result, ctx->digestsize, NULL, 0);
956 break;
957 case HASH_ALG_SHA224:
958 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
959 req->result, ctx->digestsize, NULL, 0);
960 break;
961 case HASH_ALG_SHA256:
962 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
963 req->result, ctx->digestsize, NULL, 0);
964 break;
965 case HASH_ALG_SHA384:
966 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
967 req->result, ctx->digestsize, NULL, 0);
968 break;
969 case HASH_ALG_SHA512:
970 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
971 req->result, ctx->digestsize, NULL, 0);
972 break;
973 default:
974 pr_err("%s() Error : unknown hmac type\n", __func__);
975 rc = -EINVAL;
977 return rc;
981 * ahash_req_done() - Process a hash result from the SPU hardware.
982 * @rctx: Crypto request context
984 * Return: 0 if successful
985 * < 0 if an error
987 static int ahash_req_done(struct iproc_reqctx_s *rctx)
989 struct spu_hw *spu = &iproc_priv.spu;
990 struct crypto_async_request *areq = rctx->parent;
991 struct ahash_request *req = ahash_request_cast(areq);
992 struct iproc_ctx_s *ctx = rctx->ctx;
993 int err;
995 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
997 if (spu->spu_type == SPU_TYPE_SPUM) {
998 /* byte swap the output from the UPDT function to network byte
999 * order
1001 if (ctx->auth.alg == HASH_ALG_MD5) {
1002 __swab32s((u32 *)req->result);
1003 __swab32s(((u32 *)req->result) + 1);
1004 __swab32s(((u32 *)req->result) + 2);
1005 __swab32s(((u32 *)req->result) + 3);
1006 __swab32s(((u32 *)req->result) + 4);
1010 flow_dump(" digest ", req->result, ctx->digestsize);
1012 /* if this an HMAC then do the outer hash */
1013 if (rctx->is_sw_hmac) {
1014 err = spu_hmac_outer_hash(req, ctx);
1015 if (err < 0)
1016 return err;
1017 flow_dump(" hmac: ", req->result, ctx->digestsize);
1020 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1021 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1022 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1023 } else {
1024 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1025 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1028 return 0;
1032 * handle_ahash_resp() - Process a SPU response message for a hash request.
1033 * Checks if the entire crypto API request has been processed, and if so,
1034 * invokes post processing on the result.
1035 * @rctx: Crypto request context
1037 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1039 struct iproc_ctx_s *ctx = rctx->ctx;
1040 #ifdef DEBUG
1041 struct crypto_async_request *areq = rctx->parent;
1042 struct ahash_request *req = ahash_request_cast(areq);
1043 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1044 unsigned int blocksize =
1045 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1046 #endif
1048 * Save hash to use as input to next op if incremental. Might be copying
1049 * too much, but that's easier than figuring out actual digest size here
1051 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1053 flow_log("%s() blocksize:%u digestsize:%u\n",
1054 __func__, blocksize, ctx->digestsize);
1056 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1058 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1059 ahash_req_done(rctx);
1063 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1064 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1065 * message headers and the response data.
1066 * @mssg: mailbox message containing the receive sg
1067 * @rctx: crypto request context
1068 * @rx_frag_num: number of scatterlist elements required to hold the
1069 * SPU response message
1070 * @assoc_len: Length of associated data included in the crypto request
1071 * @ret_iv_len: Length of IV returned in response
1072 * @resp_len: Number of bytes of response data expected to be written to
1073 * dst buffer from crypto API
1074 * @digestsize: Length of hash digest, in bytes
1075 * @stat_pad_len: Number of bytes required to pad the STAT field to
1076 * a 4-byte boundary
1078 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1079 * when the request completes, whether the request is handled successfully or
1080 * there is an error.
1082 * Returns:
1083 * 0 if successful
1084 * < 0 if an error
1086 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1087 struct aead_request *req,
1088 struct iproc_reqctx_s *rctx,
1089 u8 rx_frag_num,
1090 unsigned int assoc_len,
1091 u32 ret_iv_len, unsigned int resp_len,
1092 unsigned int digestsize, u32 stat_pad_len)
1094 struct spu_hw *spu = &iproc_priv.spu;
1095 struct scatterlist *sg; /* used to build sgs in mbox message */
1096 struct iproc_ctx_s *ctx = rctx->ctx;
1097 u32 datalen; /* Number of bytes of response data expected */
1098 u32 assoc_buf_len;
1099 u8 data_padlen = 0;
1101 if (ctx->is_rfc4543) {
1102 /* RFC4543: only pad after data, not after AAD */
1103 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1104 assoc_len + resp_len);
1105 assoc_buf_len = assoc_len;
1106 } else {
1107 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1108 resp_len);
1109 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1110 assoc_len, ret_iv_len,
1111 rctx->is_encrypt);
1114 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1115 /* ICV (after data) must be in the next 32-bit word for CCM */
1116 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1117 resp_len +
1118 data_padlen);
1120 if (data_padlen)
1121 /* have to catch gcm pad in separate buffer */
1122 rx_frag_num++;
1124 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1125 rctx->gfp);
1126 if (!mssg->spu.dst)
1127 return -ENOMEM;
1129 sg = mssg->spu.dst;
1130 sg_init_table(sg, rx_frag_num);
1132 /* Space for SPU message header */
1133 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1135 if (assoc_buf_len) {
1137 * Don't write directly to req->dst, because SPU may pad the
1138 * assoc data in the response
1140 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1141 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1144 if (resp_len) {
1146 * Copy in each dst sg entry from request, up to chunksize.
1147 * dst sg catches just the data. digest caught in separate buf.
1149 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1150 rctx->dst_nents, resp_len);
1151 if (datalen < (resp_len)) {
1152 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1153 __func__, resp_len, datalen);
1154 return -EFAULT;
1158 /* If GCM/CCM data is padded, catch padding in separate buffer */
1159 if (data_padlen) {
1160 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1161 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1164 /* Always catch ICV in separate buffer */
1165 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1167 flow_log("stat_pad_len %u\n", stat_pad_len);
1168 if (stat_pad_len) {
1169 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1170 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1173 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1174 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1176 return 0;
1180 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1181 * SPU request message for an AEAD request. Includes SPU message headers and the
1182 * request data.
1183 * @mssg: mailbox message containing the transmit sg
1184 * @rctx: crypto request context
1185 * @tx_frag_num: number of scatterlist elements required to construct the
1186 * SPU request message
1187 * @spu_hdr_len: length of SPU message header in bytes
1188 * @assoc: crypto API associated data scatterlist
1189 * @assoc_len: length of associated data
1190 * @assoc_nents: number of scatterlist entries containing assoc data
1191 * @aead_iv_len: length of AEAD IV, if included
1192 * @chunksize: Number of bytes of request data
1193 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1194 * @pad_len: Number of pad bytes
1195 * @incl_icv: If true, write separate ICV buffer after data and
1196 * any padding
1198 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1199 * when the request completes, whether the request is handled successfully or
1200 * there is an error.
1202 * Return:
1203 * 0 if successful
1204 * < 0 if an error
1206 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1207 struct iproc_reqctx_s *rctx,
1208 u8 tx_frag_num,
1209 u32 spu_hdr_len,
1210 struct scatterlist *assoc,
1211 unsigned int assoc_len,
1212 int assoc_nents,
1213 unsigned int aead_iv_len,
1214 unsigned int chunksize,
1215 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1217 struct spu_hw *spu = &iproc_priv.spu;
1218 struct scatterlist *sg; /* used to build sgs in mbox message */
1219 struct scatterlist *assoc_sg = assoc;
1220 struct iproc_ctx_s *ctx = rctx->ctx;
1221 u32 datalen; /* Number of bytes of data to write */
1222 u32 written; /* Number of bytes of data written */
1223 u32 assoc_offset = 0;
1224 u32 stat_len;
1226 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1227 rctx->gfp);
1228 if (!mssg->spu.src)
1229 return -ENOMEM;
1231 sg = mssg->spu.src;
1232 sg_init_table(sg, tx_frag_num);
1234 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1235 BCM_HDR_LEN + spu_hdr_len);
1237 if (assoc_len) {
1238 /* Copy in each associated data sg entry from request */
1239 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1240 assoc_nents, assoc_len);
1241 if (written < assoc_len) {
1242 pr_err("%s(): failed to copy assoc sg to mbox msg",
1243 __func__);
1244 return -EFAULT;
1248 if (aead_iv_len)
1249 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1251 if (aad_pad_len) {
1252 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1253 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1256 datalen = chunksize;
1257 if ((chunksize > ctx->digestsize) && incl_icv)
1258 datalen -= ctx->digestsize;
1259 if (datalen) {
1260 /* For aead, a single msg should consume the entire src sg */
1261 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1262 rctx->src_nents, datalen);
1263 if (written < datalen) {
1264 pr_err("%s(): failed to copy src sg to mbox msg",
1265 __func__);
1266 return -EFAULT;
1270 if (pad_len) {
1271 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1272 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1275 if (incl_icv)
1276 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1278 stat_len = spu->spu_tx_status_len();
1279 if (stat_len) {
1280 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1281 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1283 return 0;
1287 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1288 * current AEAD request.
1289 * @rctx: Crypto request context
1291 * Unlike other operation types, we assume the length of the request fits in
1292 * a single SPU request message. aead_enqueue() makes sure this is true.
1293 * Comments for other op types regarding threads applies here as well.
1295 * Unlike incremental hash ops, where the spu returns the entire hash for
1296 * truncated algs like sha-224, the SPU returns just the truncated hash in
1297 * response to aead requests. So digestsize is always ctx->digestsize here.
1299 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1300 * returned asynchronously
1301 * Any other value indicates an error
1303 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1305 struct spu_hw *spu = &iproc_priv.spu;
1306 struct crypto_async_request *areq = rctx->parent;
1307 struct aead_request *req = container_of(areq,
1308 struct aead_request, base);
1309 struct iproc_ctx_s *ctx = rctx->ctx;
1310 int err;
1311 unsigned int chunksize;
1312 unsigned int resp_len;
1313 u32 spu_hdr_len;
1314 u32 db_size;
1315 u32 stat_pad_len;
1316 u32 pad_len;
1317 struct brcm_message *mssg; /* mailbox message */
1318 struct spu_request_opts req_opts;
1319 struct spu_cipher_parms cipher_parms;
1320 struct spu_hash_parms hash_parms;
1321 struct spu_aead_parms aead_parms;
1322 int assoc_nents = 0;
1323 bool incl_icv = false;
1324 unsigned int digestsize = ctx->digestsize;
1325 int retry_cnt = 0;
1327 /* number of entries in src and dst sg. Always includes SPU msg header.
1329 u8 rx_frag_num = 2; /* and STATUS */
1330 u8 tx_frag_num = 1;
1332 /* doing the whole thing at once */
1333 chunksize = rctx->total_todo;
1335 flow_log("%s: chunksize %u\n", __func__, chunksize);
1337 memset(&req_opts, 0, sizeof(req_opts));
1338 memset(&hash_parms, 0, sizeof(hash_parms));
1339 memset(&aead_parms, 0, sizeof(aead_parms));
1341 req_opts.is_inbound = !(rctx->is_encrypt);
1342 req_opts.auth_first = ctx->auth_first;
1343 req_opts.is_aead = true;
1344 req_opts.is_esp = ctx->is_esp;
1346 cipher_parms.alg = ctx->cipher.alg;
1347 cipher_parms.mode = ctx->cipher.mode;
1348 cipher_parms.type = ctx->cipher_type;
1349 cipher_parms.key_buf = ctx->enckey;
1350 cipher_parms.key_len = ctx->enckeylen;
1351 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1352 cipher_parms.iv_len = rctx->iv_ctr_len;
1354 hash_parms.alg = ctx->auth.alg;
1355 hash_parms.mode = ctx->auth.mode;
1356 hash_parms.type = HASH_TYPE_NONE;
1357 hash_parms.key_buf = (u8 *)ctx->authkey;
1358 hash_parms.key_len = ctx->authkeylen;
1359 hash_parms.digestsize = digestsize;
1361 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1362 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1363 hash_parms.key_len = SHA224_DIGEST_SIZE;
1365 aead_parms.assoc_size = req->assoclen;
1366 if (ctx->is_esp && !ctx->is_rfc4543) {
1368 * 8-byte IV is included assoc data in request. SPU2
1369 * expects AAD to include just SPI and seqno. So
1370 * subtract off the IV len.
1372 aead_parms.assoc_size -= GCM_ESP_IV_SIZE;
1374 if (rctx->is_encrypt) {
1375 aead_parms.return_iv = true;
1376 aead_parms.ret_iv_len = GCM_ESP_IV_SIZE;
1377 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1379 } else {
1380 aead_parms.ret_iv_len = 0;
1384 * Count number of sg entries from the crypto API request that are to
1385 * be included in this mailbox message. For dst sg, don't count space
1386 * for digest. Digest gets caught in a separate buffer and copied back
1387 * to dst sg when processing response.
1389 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1390 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1391 if (aead_parms.assoc_size)
1392 assoc_nents = spu_sg_count(rctx->assoc, 0,
1393 aead_parms.assoc_size);
1395 mssg = &rctx->mb_mssg;
1397 rctx->total_sent = chunksize;
1398 rctx->src_sent = chunksize;
1399 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1400 aead_parms.assoc_size,
1401 aead_parms.ret_iv_len,
1402 rctx->is_encrypt))
1403 rx_frag_num++;
1405 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1406 rctx->iv_ctr_len);
1408 if (ctx->auth.alg == HASH_ALG_AES)
1409 hash_parms.type = ctx->cipher_type;
1411 /* General case AAD padding (CCM and RFC4543 special cases below) */
1412 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1413 aead_parms.assoc_size);
1415 /* General case data padding (CCM decrypt special case below) */
1416 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1417 chunksize);
1419 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1421 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1422 * 128-bit aligned
1424 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1425 ctx->cipher.mode,
1426 aead_parms.assoc_size + 2);
1429 * And when decrypting CCM, need to pad without including
1430 * size of ICV which is tacked on to end of chunk
1432 if (!rctx->is_encrypt)
1433 aead_parms.data_pad_len =
1434 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1435 chunksize - digestsize);
1437 /* CCM also requires software to rewrite portions of IV: */
1438 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1439 chunksize, rctx->is_encrypt,
1440 ctx->is_esp);
1443 if (ctx->is_rfc4543) {
1445 * RFC4543: data is included in AAD, so don't pad after AAD
1446 * and pad data based on both AAD + data size
1448 aead_parms.aad_pad_len = 0;
1449 if (!rctx->is_encrypt)
1450 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1451 ctx->cipher.mode,
1452 aead_parms.assoc_size + chunksize -
1453 digestsize);
1454 else
1455 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1456 ctx->cipher.mode,
1457 aead_parms.assoc_size + chunksize);
1459 req_opts.is_rfc4543 = true;
1462 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1463 incl_icv = true;
1464 tx_frag_num++;
1465 /* Copy ICV from end of src scatterlist to digest buf */
1466 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1467 req->assoclen + rctx->total_sent -
1468 digestsize);
1471 atomic64_add(chunksize, &iproc_priv.bytes_out);
1473 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1475 /* Prepend SPU header with type 3 BCM header */
1476 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1478 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1479 BCM_HDR_LEN, &req_opts,
1480 &cipher_parms, &hash_parms,
1481 &aead_parms, chunksize);
1483 /* Determine total length of padding. Put all padding in one buffer. */
1484 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1485 chunksize, aead_parms.aad_pad_len,
1486 aead_parms.data_pad_len, 0);
1488 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1490 if (stat_pad_len)
1491 rx_frag_num++;
1492 pad_len = aead_parms.data_pad_len + stat_pad_len;
1493 if (pad_len) {
1494 tx_frag_num++;
1495 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1496 aead_parms.data_pad_len, 0,
1497 ctx->auth.alg, ctx->auth.mode,
1498 rctx->total_sent, stat_pad_len);
1501 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1502 spu_hdr_len);
1503 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1504 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1505 packet_log("BD:\n");
1506 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1507 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1510 * Build mailbox message containing SPU request msg and rx buffers
1511 * to catch response message
1513 memset(mssg, 0, sizeof(*mssg));
1514 mssg->type = BRCM_MESSAGE_SPU;
1515 mssg->ctx = rctx; /* Will be returned in response */
1517 /* Create rx scatterlist to catch result */
1518 rx_frag_num += rctx->dst_nents;
1519 resp_len = chunksize;
1522 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1523 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1524 * sends entire digest back.
1526 rx_frag_num++;
1528 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1529 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1531 * Input is ciphertxt plus ICV, but ICV not incl
1532 * in output.
1534 resp_len -= ctx->digestsize;
1535 if (resp_len == 0)
1536 /* no rx frags to catch output data */
1537 rx_frag_num -= rctx->dst_nents;
1540 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1541 aead_parms.assoc_size,
1542 aead_parms.ret_iv_len, resp_len, digestsize,
1543 stat_pad_len);
1544 if (err)
1545 return err;
1547 /* Create tx scatterlist containing SPU request message */
1548 tx_frag_num += rctx->src_nents;
1549 tx_frag_num += assoc_nents;
1550 if (aead_parms.aad_pad_len)
1551 tx_frag_num++;
1552 if (aead_parms.iv_len)
1553 tx_frag_num++;
1554 if (spu->spu_tx_status_len())
1555 tx_frag_num++;
1556 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1557 rctx->assoc, aead_parms.assoc_size,
1558 assoc_nents, aead_parms.iv_len, chunksize,
1559 aead_parms.aad_pad_len, pad_len, incl_icv);
1560 if (err)
1561 return err;
1563 err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg);
1564 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
1565 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
1567 * Mailbox queue is full. Since MAY_SLEEP is set, assume
1568 * not in atomic context and we can wait and try again.
1570 retry_cnt++;
1571 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
1572 err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx],
1573 mssg);
1574 atomic_inc(&iproc_priv.mb_no_spc);
1577 if (err < 0) {
1578 atomic_inc(&iproc_priv.mb_send_fail);
1579 return err;
1582 return -EINPROGRESS;
1586 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1587 * @rctx: Crypto request context
1589 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1591 struct spu_hw *spu = &iproc_priv.spu;
1592 struct crypto_async_request *areq = rctx->parent;
1593 struct aead_request *req = container_of(areq,
1594 struct aead_request, base);
1595 struct iproc_ctx_s *ctx = rctx->ctx;
1596 u32 payload_len;
1597 unsigned int icv_offset;
1598 u32 result_len;
1600 /* See how much data was returned */
1601 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1602 flow_log("payload_len %u\n", payload_len);
1604 /* only count payload */
1605 atomic64_add(payload_len, &iproc_priv.bytes_in);
1607 if (req->assoclen)
1608 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1609 req->assoclen);
1612 * Copy the ICV back to the destination
1613 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1614 * API doesn't expect ICV in dst buffer.
1616 result_len = req->cryptlen;
1617 if (rctx->is_encrypt) {
1618 icv_offset = req->assoclen + rctx->total_sent;
1619 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1620 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1621 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1622 ctx->digestsize, icv_offset);
1623 result_len += ctx->digestsize;
1626 packet_log("response data: ");
1627 dump_sg(req->dst, req->assoclen, result_len);
1629 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1630 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1631 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1632 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1633 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1634 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1635 else
1636 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1637 } else {
1638 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1643 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1644 * @rctx: request context
1646 * Mailbox scatterlists are allocated for each chunk. So free them after
1647 * processing each chunk.
1649 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1651 /* mailbox message used to tx request */
1652 struct brcm_message *mssg = &rctx->mb_mssg;
1654 kfree(mssg->spu.src);
1655 kfree(mssg->spu.dst);
1656 memset(mssg, 0, sizeof(struct brcm_message));
1660 * finish_req() - Used to invoke the complete callback from the requester when
1661 * a request has been handled asynchronously.
1662 * @rctx: Request context
1663 * @err: Indicates whether the request was successful or not
1665 * Ensures that cleanup has been done for request
1667 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1669 struct crypto_async_request *areq = rctx->parent;
1671 flow_log("%s() err:%d\n\n", __func__, err);
1673 /* No harm done if already called */
1674 spu_chunk_cleanup(rctx);
1676 if (areq)
1677 areq->complete(areq, err);
1681 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1682 * @cl: mailbox client structure for SPU driver
1683 * @msg: mailbox message containing SPU response
1685 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1687 struct spu_hw *spu = &iproc_priv.spu;
1688 struct brcm_message *mssg = msg;
1689 struct iproc_reqctx_s *rctx;
1690 struct iproc_ctx_s *ctx;
1691 struct crypto_async_request *areq;
1692 int err = 0;
1694 rctx = mssg->ctx;
1695 if (unlikely(!rctx)) {
1696 /* This is fatal */
1697 pr_err("%s(): no request context", __func__);
1698 err = -EFAULT;
1699 goto cb_finish;
1701 areq = rctx->parent;
1702 ctx = rctx->ctx;
1704 /* process the SPU status */
1705 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1706 if (err != 0) {
1707 if (err == SPU_INVALID_ICV)
1708 atomic_inc(&iproc_priv.bad_icv);
1709 err = -EBADMSG;
1710 goto cb_finish;
1713 /* Process the SPU response message */
1714 switch (rctx->ctx->alg->type) {
1715 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1716 handle_ablkcipher_resp(rctx);
1717 break;
1718 case CRYPTO_ALG_TYPE_AHASH:
1719 handle_ahash_resp(rctx);
1720 break;
1721 case CRYPTO_ALG_TYPE_AEAD:
1722 handle_aead_resp(rctx);
1723 break;
1724 default:
1725 err = -EINVAL;
1726 goto cb_finish;
1730 * If this response does not complete the request, then send the next
1731 * request chunk.
1733 if (rctx->total_sent < rctx->total_todo) {
1734 /* Deallocate anything specific to previous chunk */
1735 spu_chunk_cleanup(rctx);
1737 switch (rctx->ctx->alg->type) {
1738 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1739 err = handle_ablkcipher_req(rctx);
1740 break;
1741 case CRYPTO_ALG_TYPE_AHASH:
1742 err = handle_ahash_req(rctx);
1743 if (err == -EAGAIN)
1745 * we saved data in hash carry, but tell crypto
1746 * API we successfully completed request.
1748 err = 0;
1749 break;
1750 case CRYPTO_ALG_TYPE_AEAD:
1751 err = handle_aead_req(rctx);
1752 break;
1753 default:
1754 err = -EINVAL;
1757 if (err == -EINPROGRESS)
1758 /* Successfully submitted request for next chunk */
1759 return;
1762 cb_finish:
1763 finish_req(rctx, err);
1766 /* ==================== Kernel Cryptographic API ==================== */
1769 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1770 * @req: Crypto API request
1771 * @encrypt: true if encrypting; false if decrypting
1773 * Return: -EINPROGRESS if request accepted and result will be returned
1774 * asynchronously
1775 * < 0 if an error
1777 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1779 struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1780 struct iproc_ctx_s *ctx =
1781 crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1782 int err;
1784 flow_log("%s() enc:%u\n", __func__, encrypt);
1786 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1787 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1788 rctx->parent = &req->base;
1789 rctx->is_encrypt = encrypt;
1790 rctx->bd_suppress = false;
1791 rctx->total_todo = req->nbytes;
1792 rctx->src_sent = 0;
1793 rctx->total_sent = 0;
1794 rctx->total_received = 0;
1795 rctx->ctx = ctx;
1797 /* Initialize current position in src and dst scatterlists */
1798 rctx->src_sg = req->src;
1799 rctx->src_nents = 0;
1800 rctx->src_skip = 0;
1801 rctx->dst_sg = req->dst;
1802 rctx->dst_nents = 0;
1803 rctx->dst_skip = 0;
1805 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1806 ctx->cipher.mode == CIPHER_MODE_CTR ||
1807 ctx->cipher.mode == CIPHER_MODE_OFB ||
1808 ctx->cipher.mode == CIPHER_MODE_XTS ||
1809 ctx->cipher.mode == CIPHER_MODE_GCM ||
1810 ctx->cipher.mode == CIPHER_MODE_CCM) {
1811 rctx->iv_ctr_len =
1812 crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1813 memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1814 } else {
1815 rctx->iv_ctr_len = 0;
1818 /* Choose a SPU to process this request */
1819 rctx->chan_idx = select_channel();
1820 err = handle_ablkcipher_req(rctx);
1821 if (err != -EINPROGRESS)
1822 /* synchronous result */
1823 spu_chunk_cleanup(rctx);
1825 return err;
1828 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1829 unsigned int keylen)
1831 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1832 u32 tmp[DES_EXPKEY_WORDS];
1834 if (keylen == DES_KEY_SIZE) {
1835 if (des_ekey(tmp, key) == 0) {
1836 if (crypto_ablkcipher_get_flags(cipher) &
1837 CRYPTO_TFM_REQ_WEAK_KEY) {
1838 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1840 crypto_ablkcipher_set_flags(cipher, flags);
1841 return -EINVAL;
1845 ctx->cipher_type = CIPHER_TYPE_DES;
1846 } else {
1847 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1848 return -EINVAL;
1850 return 0;
1853 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1854 unsigned int keylen)
1856 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1858 if (keylen == (DES_KEY_SIZE * 3)) {
1859 const u32 *K = (const u32 *)key;
1860 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1862 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1863 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1864 crypto_ablkcipher_set_flags(cipher, flags);
1865 return -EINVAL;
1868 ctx->cipher_type = CIPHER_TYPE_3DES;
1869 } else {
1870 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1871 return -EINVAL;
1873 return 0;
1876 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1877 unsigned int keylen)
1879 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1881 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1882 /* XTS includes two keys of equal length */
1883 keylen = keylen / 2;
1885 switch (keylen) {
1886 case AES_KEYSIZE_128:
1887 ctx->cipher_type = CIPHER_TYPE_AES128;
1888 break;
1889 case AES_KEYSIZE_192:
1890 ctx->cipher_type = CIPHER_TYPE_AES192;
1891 break;
1892 case AES_KEYSIZE_256:
1893 ctx->cipher_type = CIPHER_TYPE_AES256;
1894 break;
1895 default:
1896 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1897 return -EINVAL;
1899 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1900 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1901 return 0;
1904 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1905 unsigned int keylen)
1907 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1908 int i;
1910 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1912 ctx->enckey[0] = 0x00; /* 0x00 */
1913 ctx->enckey[1] = 0x00; /* i */
1914 ctx->enckey[2] = 0x00; /* 0x00 */
1915 ctx->enckey[3] = 0x00; /* j */
1916 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1917 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1919 ctx->cipher_type = CIPHER_TYPE_INIT;
1921 return 0;
1924 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1925 unsigned int keylen)
1927 struct spu_hw *spu = &iproc_priv.spu;
1928 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1929 struct spu_cipher_parms cipher_parms;
1930 u32 alloc_len = 0;
1931 int err;
1933 flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1934 flow_dump(" key: ", key, keylen);
1936 switch (ctx->cipher.alg) {
1937 case CIPHER_ALG_DES:
1938 err = des_setkey(cipher, key, keylen);
1939 break;
1940 case CIPHER_ALG_3DES:
1941 err = threedes_setkey(cipher, key, keylen);
1942 break;
1943 case CIPHER_ALG_AES:
1944 err = aes_setkey(cipher, key, keylen);
1945 break;
1946 case CIPHER_ALG_RC4:
1947 err = rc4_setkey(cipher, key, keylen);
1948 break;
1949 default:
1950 pr_err("%s() Error: unknown cipher alg\n", __func__);
1951 err = -EINVAL;
1953 if (err)
1954 return err;
1956 /* RC4 already populated ctx->enkey */
1957 if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1958 memcpy(ctx->enckey, key, keylen);
1959 ctx->enckeylen = keylen;
1961 /* SPU needs XTS keys in the reverse order the crypto API presents */
1962 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1963 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1964 unsigned int xts_keylen = keylen / 2;
1966 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1967 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1970 if (spu->spu_type == SPU_TYPE_SPUM)
1971 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1972 else if (spu->spu_type == SPU_TYPE_SPU2)
1973 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1974 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1975 cipher_parms.iv_buf = NULL;
1976 cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1977 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1979 cipher_parms.alg = ctx->cipher.alg;
1980 cipher_parms.mode = ctx->cipher.mode;
1981 cipher_parms.type = ctx->cipher_type;
1982 cipher_parms.key_buf = ctx->enckey;
1983 cipher_parms.key_len = ctx->enckeylen;
1985 /* Prepend SPU request message with BCM header */
1986 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1987 ctx->spu_req_hdr_len =
1988 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1989 &cipher_parms);
1991 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1992 ctx->enckeylen,
1993 false);
1995 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1997 return 0;
2000 static int ablkcipher_encrypt(struct ablkcipher_request *req)
2002 flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
2004 return ablkcipher_enqueue(req, true);
2007 static int ablkcipher_decrypt(struct ablkcipher_request *req)
2009 flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
2010 return ablkcipher_enqueue(req, false);
2013 static int ahash_enqueue(struct ahash_request *req)
2015 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2016 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2017 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2018 int err = 0;
2019 const char *alg_name;
2021 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2023 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2024 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2025 rctx->parent = &req->base;
2026 rctx->ctx = ctx;
2027 rctx->bd_suppress = true;
2028 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2030 /* Initialize position in src scatterlist */
2031 rctx->src_sg = req->src;
2032 rctx->src_skip = 0;
2033 rctx->src_nents = 0;
2034 rctx->dst_sg = NULL;
2035 rctx->dst_skip = 0;
2036 rctx->dst_nents = 0;
2038 /* SPU2 hardware does not compute hash of zero length data */
2039 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2040 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2041 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2042 flow_log("Doing %sfinal %s zero-len hash request in software\n",
2043 rctx->is_final ? "" : "non-", alg_name);
2044 err = do_shash((unsigned char *)alg_name, req->result,
2045 NULL, 0, NULL, 0, ctx->authkey,
2046 ctx->authkeylen);
2047 if (err < 0)
2048 flow_log("Hash request failed with error %d\n", err);
2049 return err;
2051 /* Choose a SPU to process this request */
2052 rctx->chan_idx = select_channel();
2054 err = handle_ahash_req(rctx);
2055 if (err != -EINPROGRESS)
2056 /* synchronous result */
2057 spu_chunk_cleanup(rctx);
2059 if (err == -EAGAIN)
2061 * we saved data in hash carry, but tell crypto API
2062 * we successfully completed request.
2064 err = 0;
2066 return err;
2069 static int __ahash_init(struct ahash_request *req)
2071 struct spu_hw *spu = &iproc_priv.spu;
2072 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2073 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2074 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2076 flow_log("%s()\n", __func__);
2078 /* Initialize the context */
2079 rctx->hash_carry_len = 0;
2080 rctx->is_final = 0;
2082 rctx->total_todo = 0;
2083 rctx->src_sent = 0;
2084 rctx->total_sent = 0;
2085 rctx->total_received = 0;
2087 ctx->digestsize = crypto_ahash_digestsize(tfm);
2088 /* If we add a hash whose digest is larger, catch it here. */
2089 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2091 rctx->is_sw_hmac = false;
2093 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2094 true);
2096 return 0;
2100 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2101 * @ctx: Crypto session context
2103 * SPU-2 does not support incremental hashing (we'll have to revisit and
2104 * condition based on chip revision or device tree entry if future versions do
2105 * support incremental hash)
2107 * SPU-M also doesn't support incremental hashing of AES-XCBC
2109 * Return: true if incremental hashing is not supported
2110 * false otherwise
2112 bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2114 struct spu_hw *spu = &iproc_priv.spu;
2116 if (spu->spu_type == SPU_TYPE_SPU2)
2117 return true;
2119 if ((ctx->auth.alg == HASH_ALG_AES) &&
2120 (ctx->auth.mode == HASH_MODE_XCBC))
2121 return true;
2123 /* Otherwise, incremental hashing is supported */
2124 return false;
2127 static int ahash_init(struct ahash_request *req)
2129 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2130 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2131 const char *alg_name;
2132 struct crypto_shash *hash;
2133 int ret;
2134 gfp_t gfp;
2136 if (spu_no_incr_hash(ctx)) {
2138 * If we get an incremental hashing request and it's not
2139 * supported by the hardware, we need to handle it in software
2140 * by calling synchronous hash functions.
2142 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2143 hash = crypto_alloc_shash(alg_name, 0, 0);
2144 if (IS_ERR(hash)) {
2145 ret = PTR_ERR(hash);
2146 goto err;
2149 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2150 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2151 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2152 crypto_shash_descsize(hash), gfp);
2153 if (!ctx->shash) {
2154 ret = -ENOMEM;
2155 goto err_hash;
2157 ctx->shash->tfm = hash;
2158 ctx->shash->flags = 0;
2160 /* Set the key using data we already have from setkey */
2161 if (ctx->authkeylen > 0) {
2162 ret = crypto_shash_setkey(hash, ctx->authkey,
2163 ctx->authkeylen);
2164 if (ret)
2165 goto err_shash;
2168 /* Initialize hash w/ this key and other params */
2169 ret = crypto_shash_init(ctx->shash);
2170 if (ret)
2171 goto err_shash;
2172 } else {
2173 /* Otherwise call the internal function which uses SPU hw */
2174 ret = __ahash_init(req);
2177 return ret;
2179 err_shash:
2180 kfree(ctx->shash);
2181 err_hash:
2182 crypto_free_shash(hash);
2183 err:
2184 return ret;
2187 static int __ahash_update(struct ahash_request *req)
2189 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2191 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2193 if (!req->nbytes)
2194 return 0;
2195 rctx->total_todo += req->nbytes;
2196 rctx->src_sent = 0;
2198 return ahash_enqueue(req);
2201 static int ahash_update(struct ahash_request *req)
2203 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2204 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2205 u8 *tmpbuf;
2206 int ret;
2207 int nents;
2208 gfp_t gfp;
2210 if (spu_no_incr_hash(ctx)) {
2212 * If we get an incremental hashing request and it's not
2213 * supported by the hardware, we need to handle it in software
2214 * by calling synchronous hash functions.
2216 if (req->src)
2217 nents = sg_nents(req->src);
2218 else
2219 return -EINVAL;
2221 /* Copy data from req scatterlist to tmp buffer */
2222 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2223 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2224 tmpbuf = kmalloc(req->nbytes, gfp);
2225 if (!tmpbuf)
2226 return -ENOMEM;
2228 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2229 req->nbytes) {
2230 kfree(tmpbuf);
2231 return -EINVAL;
2234 /* Call synchronous update */
2235 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2236 kfree(tmpbuf);
2237 } else {
2238 /* Otherwise call the internal function which uses SPU hw */
2239 ret = __ahash_update(req);
2242 return ret;
2245 static int __ahash_final(struct ahash_request *req)
2247 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2249 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2251 rctx->is_final = 1;
2253 return ahash_enqueue(req);
2256 static int ahash_final(struct ahash_request *req)
2258 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2259 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2260 int ret;
2262 if (spu_no_incr_hash(ctx)) {
2264 * If we get an incremental hashing request and it's not
2265 * supported by the hardware, we need to handle it in software
2266 * by calling synchronous hash functions.
2268 ret = crypto_shash_final(ctx->shash, req->result);
2270 /* Done with hash, can deallocate it now */
2271 crypto_free_shash(ctx->shash->tfm);
2272 kfree(ctx->shash);
2274 } else {
2275 /* Otherwise call the internal function which uses SPU hw */
2276 ret = __ahash_final(req);
2279 return ret;
2282 static int __ahash_finup(struct ahash_request *req)
2284 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2286 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2288 rctx->total_todo += req->nbytes;
2289 rctx->src_sent = 0;
2290 rctx->is_final = 1;
2292 return ahash_enqueue(req);
2295 static int ahash_finup(struct ahash_request *req)
2297 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2298 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2299 u8 *tmpbuf;
2300 int ret;
2301 int nents;
2302 gfp_t gfp;
2304 if (spu_no_incr_hash(ctx)) {
2306 * If we get an incremental hashing request and it's not
2307 * supported by the hardware, we need to handle it in software
2308 * by calling synchronous hash functions.
2310 if (req->src) {
2311 nents = sg_nents(req->src);
2312 } else {
2313 ret = -EINVAL;
2314 goto ahash_finup_exit;
2317 /* Copy data from req scatterlist to tmp buffer */
2318 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2319 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2320 tmpbuf = kmalloc(req->nbytes, gfp);
2321 if (!tmpbuf) {
2322 ret = -ENOMEM;
2323 goto ahash_finup_exit;
2326 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2327 req->nbytes) {
2328 ret = -EINVAL;
2329 goto ahash_finup_free;
2332 /* Call synchronous update */
2333 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2334 req->result);
2335 } else {
2336 /* Otherwise call the internal function which uses SPU hw */
2337 return __ahash_finup(req);
2339 ahash_finup_free:
2340 kfree(tmpbuf);
2342 ahash_finup_exit:
2343 /* Done with hash, can deallocate it now */
2344 crypto_free_shash(ctx->shash->tfm);
2345 kfree(ctx->shash);
2346 return ret;
2349 static int ahash_digest(struct ahash_request *req)
2351 int err = 0;
2353 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2355 /* whole thing at once */
2356 err = __ahash_init(req);
2357 if (!err)
2358 err = __ahash_finup(req);
2360 return err;
2363 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2364 unsigned int keylen)
2366 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2368 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2369 __func__, ahash, key, keylen);
2370 flow_dump(" key: ", key, keylen);
2372 if (ctx->auth.alg == HASH_ALG_AES) {
2373 switch (keylen) {
2374 case AES_KEYSIZE_128:
2375 ctx->cipher_type = CIPHER_TYPE_AES128;
2376 break;
2377 case AES_KEYSIZE_192:
2378 ctx->cipher_type = CIPHER_TYPE_AES192;
2379 break;
2380 case AES_KEYSIZE_256:
2381 ctx->cipher_type = CIPHER_TYPE_AES256;
2382 break;
2383 default:
2384 pr_err("%s() Error: Invalid key length\n", __func__);
2385 return -EINVAL;
2387 } else {
2388 pr_err("%s() Error: unknown hash alg\n", __func__);
2389 return -EINVAL;
2391 memcpy(ctx->authkey, key, keylen);
2392 ctx->authkeylen = keylen;
2394 return 0;
2397 static int ahash_export(struct ahash_request *req, void *out)
2399 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2400 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2402 spu_exp->total_todo = rctx->total_todo;
2403 spu_exp->total_sent = rctx->total_sent;
2404 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2405 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2406 spu_exp->hash_carry_len = rctx->hash_carry_len;
2407 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2409 return 0;
2412 static int ahash_import(struct ahash_request *req, const void *in)
2414 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2415 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2417 rctx->total_todo = spu_exp->total_todo;
2418 rctx->total_sent = spu_exp->total_sent;
2419 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2420 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2421 rctx->hash_carry_len = spu_exp->hash_carry_len;
2422 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2424 return 0;
2427 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2428 unsigned int keylen)
2430 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2431 unsigned int blocksize =
2432 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2433 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2434 unsigned int index;
2435 int rc;
2437 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2438 __func__, ahash, key, keylen, blocksize, digestsize);
2439 flow_dump(" key: ", key, keylen);
2441 if (keylen > blocksize) {
2442 switch (ctx->auth.alg) {
2443 case HASH_ALG_MD5:
2444 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2445 0, NULL, 0);
2446 break;
2447 case HASH_ALG_SHA1:
2448 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2449 0, NULL, 0);
2450 break;
2451 case HASH_ALG_SHA224:
2452 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2453 0, NULL, 0);
2454 break;
2455 case HASH_ALG_SHA256:
2456 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2457 0, NULL, 0);
2458 break;
2459 case HASH_ALG_SHA384:
2460 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2461 0, NULL, 0);
2462 break;
2463 case HASH_ALG_SHA512:
2464 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2465 0, NULL, 0);
2466 break;
2467 case HASH_ALG_SHA3_224:
2468 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2469 NULL, 0, NULL, 0);
2470 break;
2471 case HASH_ALG_SHA3_256:
2472 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2473 NULL, 0, NULL, 0);
2474 break;
2475 case HASH_ALG_SHA3_384:
2476 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2477 NULL, 0, NULL, 0);
2478 break;
2479 case HASH_ALG_SHA3_512:
2480 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2481 NULL, 0, NULL, 0);
2482 break;
2483 default:
2484 pr_err("%s() Error: unknown hash alg\n", __func__);
2485 return -EINVAL;
2487 if (rc < 0) {
2488 pr_err("%s() Error %d computing shash for %s\n",
2489 __func__, rc, hash_alg_name[ctx->auth.alg]);
2490 return rc;
2492 ctx->authkeylen = digestsize;
2494 flow_log(" keylen > digestsize... hashed\n");
2495 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2496 } else {
2497 memcpy(ctx->authkey, key, keylen);
2498 ctx->authkeylen = keylen;
2502 * Full HMAC operation in SPUM is not verified,
2503 * So keeping the generation of IPAD, OPAD and
2504 * outer hashing in software.
2506 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2507 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2508 memset(ctx->ipad + ctx->authkeylen, 0,
2509 blocksize - ctx->authkeylen);
2510 ctx->authkeylen = 0;
2511 memcpy(ctx->opad, ctx->ipad, blocksize);
2513 for (index = 0; index < blocksize; index++) {
2514 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2515 ctx->opad[index] ^= HMAC_OPAD_VALUE;
2518 flow_dump(" ipad: ", ctx->ipad, blocksize);
2519 flow_dump(" opad: ", ctx->opad, blocksize);
2521 ctx->digestsize = digestsize;
2522 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2524 return 0;
2527 static int ahash_hmac_init(struct ahash_request *req)
2529 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2530 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2531 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2532 unsigned int blocksize =
2533 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2535 flow_log("ahash_hmac_init()\n");
2537 /* init the context as a hash */
2538 ahash_init(req);
2540 if (!spu_no_incr_hash(ctx)) {
2541 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2542 rctx->is_sw_hmac = true;
2543 ctx->auth.mode = HASH_MODE_HASH;
2544 /* start with a prepended ipad */
2545 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2546 rctx->hash_carry_len = blocksize;
2547 rctx->total_todo += blocksize;
2550 return 0;
2553 static int ahash_hmac_update(struct ahash_request *req)
2555 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2557 if (!req->nbytes)
2558 return 0;
2560 return ahash_update(req);
2563 static int ahash_hmac_final(struct ahash_request *req)
2565 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2567 return ahash_final(req);
2570 static int ahash_hmac_finup(struct ahash_request *req)
2572 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2574 return ahash_finup(req);
2577 static int ahash_hmac_digest(struct ahash_request *req)
2579 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2580 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2581 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2582 unsigned int blocksize =
2583 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2585 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2587 /* Perform initialization and then call finup */
2588 __ahash_init(req);
2590 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2592 * SPU2 supports full HMAC implementation in the
2593 * hardware, need not to generate IPAD, OPAD and
2594 * outer hash in software.
2595 * Only for hash key len > hash block size, SPU2
2596 * expects to perform hashing on the key, shorten
2597 * it to digest size and feed it as hash key.
2599 rctx->is_sw_hmac = false;
2600 ctx->auth.mode = HASH_MODE_HMAC;
2601 } else {
2602 rctx->is_sw_hmac = true;
2603 ctx->auth.mode = HASH_MODE_HASH;
2604 /* start with a prepended ipad */
2605 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2606 rctx->hash_carry_len = blocksize;
2607 rctx->total_todo += blocksize;
2610 return __ahash_finup(req);
2613 /* aead helpers */
2615 static int aead_need_fallback(struct aead_request *req)
2617 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2618 struct spu_hw *spu = &iproc_priv.spu;
2619 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2620 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2621 u32 payload_len;
2624 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2625 * and AAD are both 0 bytes long. So use fallback in this case.
2627 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2628 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2629 (req->assoclen == 0)) {
2630 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2631 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2632 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2633 return 1;
2637 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2638 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2639 (spu->spu_type == SPU_TYPE_SPUM) &&
2640 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2641 (ctx->digestsize != 16)) {
2642 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2643 __func__, ctx->digestsize);
2644 return 1;
2648 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2649 * when AAD size is 0
2651 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2652 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2653 (req->assoclen == 0)) {
2654 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2655 __func__);
2656 return 1;
2659 payload_len = req->cryptlen;
2660 if (spu->spu_type == SPU_TYPE_SPUM)
2661 payload_len += req->assoclen;
2663 flow_log("%s() payload len: %u\n", __func__, payload_len);
2665 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2666 return 0;
2667 else
2668 return payload_len > ctx->max_payload;
2671 static void aead_complete(struct crypto_async_request *areq, int err)
2673 struct aead_request *req =
2674 container_of(areq, struct aead_request, base);
2675 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2676 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2678 flow_log("%s() err:%d\n", __func__, err);
2680 areq->tfm = crypto_aead_tfm(aead);
2682 areq->complete = rctx->old_complete;
2683 areq->data = rctx->old_data;
2685 areq->complete(areq, err);
2688 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2690 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2691 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2692 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2693 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2694 int err;
2695 u32 req_flags;
2697 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2699 if (ctx->fallback_cipher) {
2700 /* Store the cipher tfm and then use the fallback tfm */
2701 rctx->old_tfm = tfm;
2702 aead_request_set_tfm(req, ctx->fallback_cipher);
2704 * Save the callback and chain ourselves in, so we can restore
2705 * the tfm
2707 rctx->old_complete = req->base.complete;
2708 rctx->old_data = req->base.data;
2709 req_flags = aead_request_flags(req);
2710 aead_request_set_callback(req, req_flags, aead_complete, req);
2711 err = is_encrypt ? crypto_aead_encrypt(req) :
2712 crypto_aead_decrypt(req);
2714 if (err == 0) {
2716 * fallback was synchronous (did not return
2717 * -EINPROGRESS). So restore request state here.
2719 aead_request_set_callback(req, req_flags,
2720 rctx->old_complete, req);
2721 req->base.data = rctx->old_data;
2722 aead_request_set_tfm(req, aead);
2723 flow_log("%s() fallback completed successfully\n\n",
2724 __func__);
2726 } else {
2727 err = -EINVAL;
2730 return err;
2733 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2735 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2736 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2737 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2738 int err;
2740 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2742 if (req->assoclen > MAX_ASSOC_SIZE) {
2743 pr_err
2744 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2745 __func__, req->assoclen, MAX_ASSOC_SIZE);
2746 return -EINVAL;
2749 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2750 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2751 rctx->parent = &req->base;
2752 rctx->is_encrypt = is_encrypt;
2753 rctx->bd_suppress = false;
2754 rctx->total_todo = req->cryptlen;
2755 rctx->src_sent = 0;
2756 rctx->total_sent = 0;
2757 rctx->total_received = 0;
2758 rctx->is_sw_hmac = false;
2759 rctx->ctx = ctx;
2760 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2762 /* assoc data is at start of src sg */
2763 rctx->assoc = req->src;
2766 * Init current position in src scatterlist to be after assoc data.
2767 * src_skip set to buffer offset where data begins. (Assoc data could
2768 * end in the middle of a buffer.)
2770 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2771 &rctx->src_skip) < 0) {
2772 pr_err("%s() Error: Unable to find start of src data\n",
2773 __func__);
2774 return -EINVAL;
2777 rctx->src_nents = 0;
2778 rctx->dst_nents = 0;
2779 if (req->dst == req->src) {
2780 rctx->dst_sg = rctx->src_sg;
2781 rctx->dst_skip = rctx->src_skip;
2782 } else {
2784 * Expect req->dst to have room for assoc data followed by
2785 * output data and ICV, if encrypt. So initialize dst_sg
2786 * to point beyond assoc len offset.
2788 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2789 &rctx->dst_skip) < 0) {
2790 pr_err("%s() Error: Unable to find start of dst data\n",
2791 __func__);
2792 return -EINVAL;
2796 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2797 ctx->cipher.mode == CIPHER_MODE_CTR ||
2798 ctx->cipher.mode == CIPHER_MODE_OFB ||
2799 ctx->cipher.mode == CIPHER_MODE_XTS ||
2800 ctx->cipher.mode == CIPHER_MODE_GCM) {
2801 rctx->iv_ctr_len =
2802 ctx->salt_len +
2803 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2804 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2805 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2806 } else {
2807 rctx->iv_ctr_len = 0;
2810 rctx->hash_carry_len = 0;
2812 flow_log(" src sg: %p\n", req->src);
2813 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2814 rctx->src_sg, rctx->src_skip);
2815 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2816 flow_log(" dst sg: %p\n", req->dst);
2817 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2818 rctx->dst_sg, rctx->dst_skip);
2819 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2820 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2821 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2822 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2824 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2825 flow_log(" max_payload infinite");
2826 else
2827 flow_log(" max_payload: %u\n", ctx->max_payload);
2829 if (unlikely(aead_need_fallback(req)))
2830 return aead_do_fallback(req, is_encrypt);
2833 * Do memory allocations for request after fallback check, because if we
2834 * do fallback, we won't call finish_req() to dealloc.
2836 if (rctx->iv_ctr_len) {
2837 if (ctx->salt_len)
2838 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2839 ctx->salt, ctx->salt_len);
2840 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2841 req->iv,
2842 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2845 rctx->chan_idx = select_channel();
2846 err = handle_aead_req(rctx);
2847 if (err != -EINPROGRESS)
2848 /* synchronous result */
2849 spu_chunk_cleanup(rctx);
2851 return err;
2854 static int aead_authenc_setkey(struct crypto_aead *cipher,
2855 const u8 *key, unsigned int keylen)
2857 struct spu_hw *spu = &iproc_priv.spu;
2858 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2859 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2860 struct rtattr *rta = (void *)key;
2861 struct crypto_authenc_key_param *param;
2862 const u8 *origkey = key;
2863 const unsigned int origkeylen = keylen;
2865 int ret = 0;
2867 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2868 keylen);
2869 flow_dump(" key: ", key, keylen);
2871 if (!RTA_OK(rta, keylen))
2872 goto badkey;
2873 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
2874 goto badkey;
2875 if (RTA_PAYLOAD(rta) < sizeof(*param))
2876 goto badkey;
2878 param = RTA_DATA(rta);
2879 ctx->enckeylen = be32_to_cpu(param->enckeylen);
2881 key += RTA_ALIGN(rta->rta_len);
2882 keylen -= RTA_ALIGN(rta->rta_len);
2884 if (keylen < ctx->enckeylen)
2885 goto badkey;
2886 if (ctx->enckeylen > MAX_KEY_SIZE)
2887 goto badkey;
2889 ctx->authkeylen = keylen - ctx->enckeylen;
2891 if (ctx->authkeylen > MAX_KEY_SIZE)
2892 goto badkey;
2894 memcpy(ctx->enckey, key + ctx->authkeylen, ctx->enckeylen);
2895 /* May end up padding auth key. So make sure it's zeroed. */
2896 memset(ctx->authkey, 0, sizeof(ctx->authkey));
2897 memcpy(ctx->authkey, key, ctx->authkeylen);
2899 switch (ctx->alg->cipher_info.alg) {
2900 case CIPHER_ALG_DES:
2901 if (ctx->enckeylen == DES_KEY_SIZE) {
2902 u32 tmp[DES_EXPKEY_WORDS];
2903 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2905 if (des_ekey(tmp, key) == 0) {
2906 if (crypto_aead_get_flags(cipher) &
2907 CRYPTO_TFM_REQ_WEAK_KEY) {
2908 crypto_aead_set_flags(cipher, flags);
2909 return -EINVAL;
2913 ctx->cipher_type = CIPHER_TYPE_DES;
2914 } else {
2915 goto badkey;
2917 break;
2918 case CIPHER_ALG_3DES:
2919 if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
2920 const u32 *K = (const u32 *)key;
2921 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2923 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2924 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2925 crypto_aead_set_flags(cipher, flags);
2926 return -EINVAL;
2929 ctx->cipher_type = CIPHER_TYPE_3DES;
2930 } else {
2931 crypto_aead_set_flags(cipher,
2932 CRYPTO_TFM_RES_BAD_KEY_LEN);
2933 return -EINVAL;
2935 break;
2936 case CIPHER_ALG_AES:
2937 switch (ctx->enckeylen) {
2938 case AES_KEYSIZE_128:
2939 ctx->cipher_type = CIPHER_TYPE_AES128;
2940 break;
2941 case AES_KEYSIZE_192:
2942 ctx->cipher_type = CIPHER_TYPE_AES192;
2943 break;
2944 case AES_KEYSIZE_256:
2945 ctx->cipher_type = CIPHER_TYPE_AES256;
2946 break;
2947 default:
2948 goto badkey;
2950 break;
2951 case CIPHER_ALG_RC4:
2952 ctx->cipher_type = CIPHER_TYPE_INIT;
2953 break;
2954 default:
2955 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2956 return -EINVAL;
2959 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2960 ctx->authkeylen);
2961 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2962 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2964 /* setkey the fallback just in case we needto use it */
2965 if (ctx->fallback_cipher) {
2966 flow_log(" running fallback setkey()\n");
2968 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2969 ctx->fallback_cipher->base.crt_flags |=
2970 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2971 ret =
2972 crypto_aead_setkey(ctx->fallback_cipher, origkey,
2973 origkeylen);
2974 if (ret) {
2975 flow_log(" fallback setkey() returned:%d\n", ret);
2976 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2977 tfm->crt_flags |=
2978 (ctx->fallback_cipher->base.crt_flags &
2979 CRYPTO_TFM_RES_MASK);
2983 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2984 ctx->enckeylen,
2985 false);
2987 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2989 return ret;
2991 badkey:
2992 ctx->enckeylen = 0;
2993 ctx->authkeylen = 0;
2994 ctx->digestsize = 0;
2996 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2997 return -EINVAL;
3000 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
3001 const u8 *key, unsigned int keylen)
3003 struct spu_hw *spu = &iproc_priv.spu;
3004 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3005 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
3007 int ret = 0;
3009 flow_log("%s() keylen:%u\n", __func__, keylen);
3010 flow_dump(" key: ", key, keylen);
3012 if (!ctx->is_esp)
3013 ctx->digestsize = keylen;
3015 ctx->enckeylen = keylen;
3016 ctx->authkeylen = 0;
3017 memcpy(ctx->enckey, key, ctx->enckeylen);
3019 switch (ctx->enckeylen) {
3020 case AES_KEYSIZE_128:
3021 ctx->cipher_type = CIPHER_TYPE_AES128;
3022 break;
3023 case AES_KEYSIZE_192:
3024 ctx->cipher_type = CIPHER_TYPE_AES192;
3025 break;
3026 case AES_KEYSIZE_256:
3027 ctx->cipher_type = CIPHER_TYPE_AES256;
3028 break;
3029 default:
3030 goto badkey;
3033 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3034 ctx->authkeylen);
3035 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
3036 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
3038 /* setkey the fallback just in case we need to use it */
3039 if (ctx->fallback_cipher) {
3040 flow_log(" running fallback setkey()\n");
3042 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3043 ctx->fallback_cipher->base.crt_flags |=
3044 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3045 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3046 keylen + ctx->salt_len);
3047 if (ret) {
3048 flow_log(" fallback setkey() returned:%d\n", ret);
3049 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3050 tfm->crt_flags |=
3051 (ctx->fallback_cipher->base.crt_flags &
3052 CRYPTO_TFM_RES_MASK);
3056 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3057 ctx->enckeylen,
3058 false);
3060 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3062 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3063 ctx->authkeylen);
3065 return ret;
3067 badkey:
3068 ctx->enckeylen = 0;
3069 ctx->authkeylen = 0;
3070 ctx->digestsize = 0;
3072 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3073 return -EINVAL;
3077 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3078 * @cipher: AEAD structure
3079 * @key: Key followed by 4 bytes of salt
3080 * @keylen: Length of key plus salt, in bytes
3082 * Extracts salt from key and stores it to be prepended to IV on each request.
3083 * Digest is always 16 bytes
3085 * Return: Value from generic gcm setkey.
3087 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3088 const u8 *key, unsigned int keylen)
3090 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3092 flow_log("%s\n", __func__);
3093 ctx->salt_len = GCM_ESP_SALT_SIZE;
3094 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3095 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3096 keylen -= GCM_ESP_SALT_SIZE;
3097 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3098 ctx->is_esp = true;
3099 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3101 return aead_gcm_ccm_setkey(cipher, key, keylen);
3105 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3106 * cipher: AEAD structure
3107 * key: Key followed by 4 bytes of salt
3108 * keylen: Length of key plus salt, in bytes
3110 * Extracts salt from key and stores it to be prepended to IV on each request.
3111 * Digest is always 16 bytes
3113 * Return: Value from generic gcm setkey.
3115 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3116 const u8 *key, unsigned int keylen)
3118 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3120 flow_log("%s\n", __func__);
3121 ctx->salt_len = GCM_ESP_SALT_SIZE;
3122 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3123 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3124 keylen -= GCM_ESP_SALT_SIZE;
3125 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3126 ctx->is_esp = true;
3127 ctx->is_rfc4543 = true;
3128 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3130 return aead_gcm_ccm_setkey(cipher, key, keylen);
3134 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3135 * @cipher: AEAD structure
3136 * @key: Key followed by 4 bytes of salt
3137 * @keylen: Length of key plus salt, in bytes
3139 * Extracts salt from key and stores it to be prepended to IV on each request.
3140 * Digest is always 16 bytes
3142 * Return: Value from generic ccm setkey.
3144 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3145 const u8 *key, unsigned int keylen)
3147 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3149 flow_log("%s\n", __func__);
3150 ctx->salt_len = CCM_ESP_SALT_SIZE;
3151 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3152 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3153 keylen -= CCM_ESP_SALT_SIZE;
3154 ctx->is_esp = true;
3155 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3157 return aead_gcm_ccm_setkey(cipher, key, keylen);
3160 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3162 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3163 int ret = 0;
3165 flow_log("%s() authkeylen:%u authsize:%u\n",
3166 __func__, ctx->authkeylen, authsize);
3168 ctx->digestsize = authsize;
3170 /* setkey the fallback just in case we needto use it */
3171 if (ctx->fallback_cipher) {
3172 flow_log(" running fallback setauth()\n");
3174 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3175 if (ret)
3176 flow_log(" fallback setauth() returned:%d\n", ret);
3179 return ret;
3182 static int aead_encrypt(struct aead_request *req)
3184 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3185 req->cryptlen);
3186 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3187 flow_log(" assoc_len:%u\n", req->assoclen);
3189 return aead_enqueue(req, true);
3192 static int aead_decrypt(struct aead_request *req)
3194 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3195 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3196 flow_log(" assoc_len:%u\n", req->assoclen);
3198 return aead_enqueue(req, false);
3201 /* ==================== Supported Cipher Algorithms ==================== */
3203 static struct iproc_alg_s driver_algs[] = {
3205 .type = CRYPTO_ALG_TYPE_AEAD,
3206 .alg.aead = {
3207 .base = {
3208 .cra_name = "gcm(aes)",
3209 .cra_driver_name = "gcm-aes-iproc",
3210 .cra_blocksize = AES_BLOCK_SIZE,
3211 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3213 .setkey = aead_gcm_ccm_setkey,
3214 .ivsize = GCM_AES_IV_SIZE,
3215 .maxauthsize = AES_BLOCK_SIZE,
3217 .cipher_info = {
3218 .alg = CIPHER_ALG_AES,
3219 .mode = CIPHER_MODE_GCM,
3221 .auth_info = {
3222 .alg = HASH_ALG_AES,
3223 .mode = HASH_MODE_GCM,
3225 .auth_first = 0,
3228 .type = CRYPTO_ALG_TYPE_AEAD,
3229 .alg.aead = {
3230 .base = {
3231 .cra_name = "ccm(aes)",
3232 .cra_driver_name = "ccm-aes-iproc",
3233 .cra_blocksize = AES_BLOCK_SIZE,
3234 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3236 .setkey = aead_gcm_ccm_setkey,
3237 .ivsize = CCM_AES_IV_SIZE,
3238 .maxauthsize = AES_BLOCK_SIZE,
3240 .cipher_info = {
3241 .alg = CIPHER_ALG_AES,
3242 .mode = CIPHER_MODE_CCM,
3244 .auth_info = {
3245 .alg = HASH_ALG_AES,
3246 .mode = HASH_MODE_CCM,
3248 .auth_first = 0,
3251 .type = CRYPTO_ALG_TYPE_AEAD,
3252 .alg.aead = {
3253 .base = {
3254 .cra_name = "rfc4106(gcm(aes))",
3255 .cra_driver_name = "gcm-aes-esp-iproc",
3256 .cra_blocksize = AES_BLOCK_SIZE,
3257 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3259 .setkey = aead_gcm_esp_setkey,
3260 .ivsize = GCM_ESP_IV_SIZE,
3261 .maxauthsize = AES_BLOCK_SIZE,
3263 .cipher_info = {
3264 .alg = CIPHER_ALG_AES,
3265 .mode = CIPHER_MODE_GCM,
3267 .auth_info = {
3268 .alg = HASH_ALG_AES,
3269 .mode = HASH_MODE_GCM,
3271 .auth_first = 0,
3274 .type = CRYPTO_ALG_TYPE_AEAD,
3275 .alg.aead = {
3276 .base = {
3277 .cra_name = "rfc4309(ccm(aes))",
3278 .cra_driver_name = "ccm-aes-esp-iproc",
3279 .cra_blocksize = AES_BLOCK_SIZE,
3280 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3282 .setkey = aead_ccm_esp_setkey,
3283 .ivsize = CCM_AES_IV_SIZE,
3284 .maxauthsize = AES_BLOCK_SIZE,
3286 .cipher_info = {
3287 .alg = CIPHER_ALG_AES,
3288 .mode = CIPHER_MODE_CCM,
3290 .auth_info = {
3291 .alg = HASH_ALG_AES,
3292 .mode = HASH_MODE_CCM,
3294 .auth_first = 0,
3297 .type = CRYPTO_ALG_TYPE_AEAD,
3298 .alg.aead = {
3299 .base = {
3300 .cra_name = "rfc4543(gcm(aes))",
3301 .cra_driver_name = "gmac-aes-esp-iproc",
3302 .cra_blocksize = AES_BLOCK_SIZE,
3303 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3305 .setkey = rfc4543_gcm_esp_setkey,
3306 .ivsize = GCM_ESP_IV_SIZE,
3307 .maxauthsize = AES_BLOCK_SIZE,
3309 .cipher_info = {
3310 .alg = CIPHER_ALG_AES,
3311 .mode = CIPHER_MODE_GCM,
3313 .auth_info = {
3314 .alg = HASH_ALG_AES,
3315 .mode = HASH_MODE_GCM,
3317 .auth_first = 0,
3320 .type = CRYPTO_ALG_TYPE_AEAD,
3321 .alg.aead = {
3322 .base = {
3323 .cra_name = "authenc(hmac(md5),cbc(aes))",
3324 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3325 .cra_blocksize = AES_BLOCK_SIZE,
3326 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3328 .setkey = aead_authenc_setkey,
3329 .ivsize = AES_BLOCK_SIZE,
3330 .maxauthsize = MD5_DIGEST_SIZE,
3332 .cipher_info = {
3333 .alg = CIPHER_ALG_AES,
3334 .mode = CIPHER_MODE_CBC,
3336 .auth_info = {
3337 .alg = HASH_ALG_MD5,
3338 .mode = HASH_MODE_HMAC,
3340 .auth_first = 0,
3343 .type = CRYPTO_ALG_TYPE_AEAD,
3344 .alg.aead = {
3345 .base = {
3346 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3347 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3348 .cra_blocksize = AES_BLOCK_SIZE,
3349 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3351 .setkey = aead_authenc_setkey,
3352 .ivsize = AES_BLOCK_SIZE,
3353 .maxauthsize = SHA1_DIGEST_SIZE,
3355 .cipher_info = {
3356 .alg = CIPHER_ALG_AES,
3357 .mode = CIPHER_MODE_CBC,
3359 .auth_info = {
3360 .alg = HASH_ALG_SHA1,
3361 .mode = HASH_MODE_HMAC,
3363 .auth_first = 0,
3366 .type = CRYPTO_ALG_TYPE_AEAD,
3367 .alg.aead = {
3368 .base = {
3369 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3370 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3371 .cra_blocksize = AES_BLOCK_SIZE,
3372 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3374 .setkey = aead_authenc_setkey,
3375 .ivsize = AES_BLOCK_SIZE,
3376 .maxauthsize = SHA256_DIGEST_SIZE,
3378 .cipher_info = {
3379 .alg = CIPHER_ALG_AES,
3380 .mode = CIPHER_MODE_CBC,
3382 .auth_info = {
3383 .alg = HASH_ALG_SHA256,
3384 .mode = HASH_MODE_HMAC,
3386 .auth_first = 0,
3389 .type = CRYPTO_ALG_TYPE_AEAD,
3390 .alg.aead = {
3391 .base = {
3392 .cra_name = "authenc(hmac(md5),cbc(des))",
3393 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3394 .cra_blocksize = DES_BLOCK_SIZE,
3395 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3397 .setkey = aead_authenc_setkey,
3398 .ivsize = DES_BLOCK_SIZE,
3399 .maxauthsize = MD5_DIGEST_SIZE,
3401 .cipher_info = {
3402 .alg = CIPHER_ALG_DES,
3403 .mode = CIPHER_MODE_CBC,
3405 .auth_info = {
3406 .alg = HASH_ALG_MD5,
3407 .mode = HASH_MODE_HMAC,
3409 .auth_first = 0,
3412 .type = CRYPTO_ALG_TYPE_AEAD,
3413 .alg.aead = {
3414 .base = {
3415 .cra_name = "authenc(hmac(sha1),cbc(des))",
3416 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3417 .cra_blocksize = DES_BLOCK_SIZE,
3418 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3420 .setkey = aead_authenc_setkey,
3421 .ivsize = DES_BLOCK_SIZE,
3422 .maxauthsize = SHA1_DIGEST_SIZE,
3424 .cipher_info = {
3425 .alg = CIPHER_ALG_DES,
3426 .mode = CIPHER_MODE_CBC,
3428 .auth_info = {
3429 .alg = HASH_ALG_SHA1,
3430 .mode = HASH_MODE_HMAC,
3432 .auth_first = 0,
3435 .type = CRYPTO_ALG_TYPE_AEAD,
3436 .alg.aead = {
3437 .base = {
3438 .cra_name = "authenc(hmac(sha224),cbc(des))",
3439 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3440 .cra_blocksize = DES_BLOCK_SIZE,
3441 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3443 .setkey = aead_authenc_setkey,
3444 .ivsize = DES_BLOCK_SIZE,
3445 .maxauthsize = SHA224_DIGEST_SIZE,
3447 .cipher_info = {
3448 .alg = CIPHER_ALG_DES,
3449 .mode = CIPHER_MODE_CBC,
3451 .auth_info = {
3452 .alg = HASH_ALG_SHA224,
3453 .mode = HASH_MODE_HMAC,
3455 .auth_first = 0,
3458 .type = CRYPTO_ALG_TYPE_AEAD,
3459 .alg.aead = {
3460 .base = {
3461 .cra_name = "authenc(hmac(sha256),cbc(des))",
3462 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3463 .cra_blocksize = DES_BLOCK_SIZE,
3464 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3466 .setkey = aead_authenc_setkey,
3467 .ivsize = DES_BLOCK_SIZE,
3468 .maxauthsize = SHA256_DIGEST_SIZE,
3470 .cipher_info = {
3471 .alg = CIPHER_ALG_DES,
3472 .mode = CIPHER_MODE_CBC,
3474 .auth_info = {
3475 .alg = HASH_ALG_SHA256,
3476 .mode = HASH_MODE_HMAC,
3478 .auth_first = 0,
3481 .type = CRYPTO_ALG_TYPE_AEAD,
3482 .alg.aead = {
3483 .base = {
3484 .cra_name = "authenc(hmac(sha384),cbc(des))",
3485 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3486 .cra_blocksize = DES_BLOCK_SIZE,
3487 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3489 .setkey = aead_authenc_setkey,
3490 .ivsize = DES_BLOCK_SIZE,
3491 .maxauthsize = SHA384_DIGEST_SIZE,
3493 .cipher_info = {
3494 .alg = CIPHER_ALG_DES,
3495 .mode = CIPHER_MODE_CBC,
3497 .auth_info = {
3498 .alg = HASH_ALG_SHA384,
3499 .mode = HASH_MODE_HMAC,
3501 .auth_first = 0,
3504 .type = CRYPTO_ALG_TYPE_AEAD,
3505 .alg.aead = {
3506 .base = {
3507 .cra_name = "authenc(hmac(sha512),cbc(des))",
3508 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3509 .cra_blocksize = DES_BLOCK_SIZE,
3510 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3512 .setkey = aead_authenc_setkey,
3513 .ivsize = DES_BLOCK_SIZE,
3514 .maxauthsize = SHA512_DIGEST_SIZE,
3516 .cipher_info = {
3517 .alg = CIPHER_ALG_DES,
3518 .mode = CIPHER_MODE_CBC,
3520 .auth_info = {
3521 .alg = HASH_ALG_SHA512,
3522 .mode = HASH_MODE_HMAC,
3524 .auth_first = 0,
3527 .type = CRYPTO_ALG_TYPE_AEAD,
3528 .alg.aead = {
3529 .base = {
3530 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3531 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3532 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3533 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3535 .setkey = aead_authenc_setkey,
3536 .ivsize = DES3_EDE_BLOCK_SIZE,
3537 .maxauthsize = MD5_DIGEST_SIZE,
3539 .cipher_info = {
3540 .alg = CIPHER_ALG_3DES,
3541 .mode = CIPHER_MODE_CBC,
3543 .auth_info = {
3544 .alg = HASH_ALG_MD5,
3545 .mode = HASH_MODE_HMAC,
3547 .auth_first = 0,
3550 .type = CRYPTO_ALG_TYPE_AEAD,
3551 .alg.aead = {
3552 .base = {
3553 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3554 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3555 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3556 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3558 .setkey = aead_authenc_setkey,
3559 .ivsize = DES3_EDE_BLOCK_SIZE,
3560 .maxauthsize = SHA1_DIGEST_SIZE,
3562 .cipher_info = {
3563 .alg = CIPHER_ALG_3DES,
3564 .mode = CIPHER_MODE_CBC,
3566 .auth_info = {
3567 .alg = HASH_ALG_SHA1,
3568 .mode = HASH_MODE_HMAC,
3570 .auth_first = 0,
3573 .type = CRYPTO_ALG_TYPE_AEAD,
3574 .alg.aead = {
3575 .base = {
3576 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3577 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3578 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3579 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3581 .setkey = aead_authenc_setkey,
3582 .ivsize = DES3_EDE_BLOCK_SIZE,
3583 .maxauthsize = SHA224_DIGEST_SIZE,
3585 .cipher_info = {
3586 .alg = CIPHER_ALG_3DES,
3587 .mode = CIPHER_MODE_CBC,
3589 .auth_info = {
3590 .alg = HASH_ALG_SHA224,
3591 .mode = HASH_MODE_HMAC,
3593 .auth_first = 0,
3596 .type = CRYPTO_ALG_TYPE_AEAD,
3597 .alg.aead = {
3598 .base = {
3599 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3600 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3601 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3602 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3604 .setkey = aead_authenc_setkey,
3605 .ivsize = DES3_EDE_BLOCK_SIZE,
3606 .maxauthsize = SHA256_DIGEST_SIZE,
3608 .cipher_info = {
3609 .alg = CIPHER_ALG_3DES,
3610 .mode = CIPHER_MODE_CBC,
3612 .auth_info = {
3613 .alg = HASH_ALG_SHA256,
3614 .mode = HASH_MODE_HMAC,
3616 .auth_first = 0,
3619 .type = CRYPTO_ALG_TYPE_AEAD,
3620 .alg.aead = {
3621 .base = {
3622 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3623 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3624 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3625 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3627 .setkey = aead_authenc_setkey,
3628 .ivsize = DES3_EDE_BLOCK_SIZE,
3629 .maxauthsize = SHA384_DIGEST_SIZE,
3631 .cipher_info = {
3632 .alg = CIPHER_ALG_3DES,
3633 .mode = CIPHER_MODE_CBC,
3635 .auth_info = {
3636 .alg = HASH_ALG_SHA384,
3637 .mode = HASH_MODE_HMAC,
3639 .auth_first = 0,
3642 .type = CRYPTO_ALG_TYPE_AEAD,
3643 .alg.aead = {
3644 .base = {
3645 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3646 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3647 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3648 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3650 .setkey = aead_authenc_setkey,
3651 .ivsize = DES3_EDE_BLOCK_SIZE,
3652 .maxauthsize = SHA512_DIGEST_SIZE,
3654 .cipher_info = {
3655 .alg = CIPHER_ALG_3DES,
3656 .mode = CIPHER_MODE_CBC,
3658 .auth_info = {
3659 .alg = HASH_ALG_SHA512,
3660 .mode = HASH_MODE_HMAC,
3662 .auth_first = 0,
3665 /* ABLKCIPHER algorithms. */
3667 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3668 .alg.crypto = {
3669 .cra_name = "ecb(arc4)",
3670 .cra_driver_name = "ecb-arc4-iproc",
3671 .cra_blocksize = ARC4_BLOCK_SIZE,
3672 .cra_ablkcipher = {
3673 .min_keysize = ARC4_MIN_KEY_SIZE,
3674 .max_keysize = ARC4_MAX_KEY_SIZE,
3675 .ivsize = 0,
3678 .cipher_info = {
3679 .alg = CIPHER_ALG_RC4,
3680 .mode = CIPHER_MODE_NONE,
3682 .auth_info = {
3683 .alg = HASH_ALG_NONE,
3684 .mode = HASH_MODE_NONE,
3688 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3689 .alg.crypto = {
3690 .cra_name = "ofb(des)",
3691 .cra_driver_name = "ofb-des-iproc",
3692 .cra_blocksize = DES_BLOCK_SIZE,
3693 .cra_ablkcipher = {
3694 .min_keysize = DES_KEY_SIZE,
3695 .max_keysize = DES_KEY_SIZE,
3696 .ivsize = DES_BLOCK_SIZE,
3699 .cipher_info = {
3700 .alg = CIPHER_ALG_DES,
3701 .mode = CIPHER_MODE_OFB,
3703 .auth_info = {
3704 .alg = HASH_ALG_NONE,
3705 .mode = HASH_MODE_NONE,
3709 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3710 .alg.crypto = {
3711 .cra_name = "cbc(des)",
3712 .cra_driver_name = "cbc-des-iproc",
3713 .cra_blocksize = DES_BLOCK_SIZE,
3714 .cra_ablkcipher = {
3715 .min_keysize = DES_KEY_SIZE,
3716 .max_keysize = DES_KEY_SIZE,
3717 .ivsize = DES_BLOCK_SIZE,
3720 .cipher_info = {
3721 .alg = CIPHER_ALG_DES,
3722 .mode = CIPHER_MODE_CBC,
3724 .auth_info = {
3725 .alg = HASH_ALG_NONE,
3726 .mode = HASH_MODE_NONE,
3730 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3731 .alg.crypto = {
3732 .cra_name = "ecb(des)",
3733 .cra_driver_name = "ecb-des-iproc",
3734 .cra_blocksize = DES_BLOCK_SIZE,
3735 .cra_ablkcipher = {
3736 .min_keysize = DES_KEY_SIZE,
3737 .max_keysize = DES_KEY_SIZE,
3738 .ivsize = 0,
3741 .cipher_info = {
3742 .alg = CIPHER_ALG_DES,
3743 .mode = CIPHER_MODE_ECB,
3745 .auth_info = {
3746 .alg = HASH_ALG_NONE,
3747 .mode = HASH_MODE_NONE,
3751 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3752 .alg.crypto = {
3753 .cra_name = "ofb(des3_ede)",
3754 .cra_driver_name = "ofb-des3-iproc",
3755 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3756 .cra_ablkcipher = {
3757 .min_keysize = DES3_EDE_KEY_SIZE,
3758 .max_keysize = DES3_EDE_KEY_SIZE,
3759 .ivsize = DES3_EDE_BLOCK_SIZE,
3762 .cipher_info = {
3763 .alg = CIPHER_ALG_3DES,
3764 .mode = CIPHER_MODE_OFB,
3766 .auth_info = {
3767 .alg = HASH_ALG_NONE,
3768 .mode = HASH_MODE_NONE,
3772 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3773 .alg.crypto = {
3774 .cra_name = "cbc(des3_ede)",
3775 .cra_driver_name = "cbc-des3-iproc",
3776 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3777 .cra_ablkcipher = {
3778 .min_keysize = DES3_EDE_KEY_SIZE,
3779 .max_keysize = DES3_EDE_KEY_SIZE,
3780 .ivsize = DES3_EDE_BLOCK_SIZE,
3783 .cipher_info = {
3784 .alg = CIPHER_ALG_3DES,
3785 .mode = CIPHER_MODE_CBC,
3787 .auth_info = {
3788 .alg = HASH_ALG_NONE,
3789 .mode = HASH_MODE_NONE,
3793 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3794 .alg.crypto = {
3795 .cra_name = "ecb(des3_ede)",
3796 .cra_driver_name = "ecb-des3-iproc",
3797 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3798 .cra_ablkcipher = {
3799 .min_keysize = DES3_EDE_KEY_SIZE,
3800 .max_keysize = DES3_EDE_KEY_SIZE,
3801 .ivsize = 0,
3804 .cipher_info = {
3805 .alg = CIPHER_ALG_3DES,
3806 .mode = CIPHER_MODE_ECB,
3808 .auth_info = {
3809 .alg = HASH_ALG_NONE,
3810 .mode = HASH_MODE_NONE,
3814 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3815 .alg.crypto = {
3816 .cra_name = "ofb(aes)",
3817 .cra_driver_name = "ofb-aes-iproc",
3818 .cra_blocksize = AES_BLOCK_SIZE,
3819 .cra_ablkcipher = {
3820 .min_keysize = AES_MIN_KEY_SIZE,
3821 .max_keysize = AES_MAX_KEY_SIZE,
3822 .ivsize = AES_BLOCK_SIZE,
3825 .cipher_info = {
3826 .alg = CIPHER_ALG_AES,
3827 .mode = CIPHER_MODE_OFB,
3829 .auth_info = {
3830 .alg = HASH_ALG_NONE,
3831 .mode = HASH_MODE_NONE,
3835 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3836 .alg.crypto = {
3837 .cra_name = "cbc(aes)",
3838 .cra_driver_name = "cbc-aes-iproc",
3839 .cra_blocksize = AES_BLOCK_SIZE,
3840 .cra_ablkcipher = {
3841 .min_keysize = AES_MIN_KEY_SIZE,
3842 .max_keysize = AES_MAX_KEY_SIZE,
3843 .ivsize = AES_BLOCK_SIZE,
3846 .cipher_info = {
3847 .alg = CIPHER_ALG_AES,
3848 .mode = CIPHER_MODE_CBC,
3850 .auth_info = {
3851 .alg = HASH_ALG_NONE,
3852 .mode = HASH_MODE_NONE,
3856 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3857 .alg.crypto = {
3858 .cra_name = "ecb(aes)",
3859 .cra_driver_name = "ecb-aes-iproc",
3860 .cra_blocksize = AES_BLOCK_SIZE,
3861 .cra_ablkcipher = {
3862 .min_keysize = AES_MIN_KEY_SIZE,
3863 .max_keysize = AES_MAX_KEY_SIZE,
3864 .ivsize = 0,
3867 .cipher_info = {
3868 .alg = CIPHER_ALG_AES,
3869 .mode = CIPHER_MODE_ECB,
3871 .auth_info = {
3872 .alg = HASH_ALG_NONE,
3873 .mode = HASH_MODE_NONE,
3877 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3878 .alg.crypto = {
3879 .cra_name = "ctr(aes)",
3880 .cra_driver_name = "ctr-aes-iproc",
3881 .cra_blocksize = AES_BLOCK_SIZE,
3882 .cra_ablkcipher = {
3883 /* .geniv = "chainiv", */
3884 .min_keysize = AES_MIN_KEY_SIZE,
3885 .max_keysize = AES_MAX_KEY_SIZE,
3886 .ivsize = AES_BLOCK_SIZE,
3889 .cipher_info = {
3890 .alg = CIPHER_ALG_AES,
3891 .mode = CIPHER_MODE_CTR,
3893 .auth_info = {
3894 .alg = HASH_ALG_NONE,
3895 .mode = HASH_MODE_NONE,
3899 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3900 .alg.crypto = {
3901 .cra_name = "xts(aes)",
3902 .cra_driver_name = "xts-aes-iproc",
3903 .cra_blocksize = AES_BLOCK_SIZE,
3904 .cra_ablkcipher = {
3905 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3906 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3907 .ivsize = AES_BLOCK_SIZE,
3910 .cipher_info = {
3911 .alg = CIPHER_ALG_AES,
3912 .mode = CIPHER_MODE_XTS,
3914 .auth_info = {
3915 .alg = HASH_ALG_NONE,
3916 .mode = HASH_MODE_NONE,
3920 /* AHASH algorithms. */
3922 .type = CRYPTO_ALG_TYPE_AHASH,
3923 .alg.hash = {
3924 .halg.digestsize = MD5_DIGEST_SIZE,
3925 .halg.base = {
3926 .cra_name = "md5",
3927 .cra_driver_name = "md5-iproc",
3928 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3929 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
3930 CRYPTO_ALG_ASYNC,
3933 .cipher_info = {
3934 .alg = CIPHER_ALG_NONE,
3935 .mode = CIPHER_MODE_NONE,
3937 .auth_info = {
3938 .alg = HASH_ALG_MD5,
3939 .mode = HASH_MODE_HASH,
3943 .type = CRYPTO_ALG_TYPE_AHASH,
3944 .alg.hash = {
3945 .halg.digestsize = MD5_DIGEST_SIZE,
3946 .halg.base = {
3947 .cra_name = "hmac(md5)",
3948 .cra_driver_name = "hmac-md5-iproc",
3949 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3952 .cipher_info = {
3953 .alg = CIPHER_ALG_NONE,
3954 .mode = CIPHER_MODE_NONE,
3956 .auth_info = {
3957 .alg = HASH_ALG_MD5,
3958 .mode = HASH_MODE_HMAC,
3961 {.type = CRYPTO_ALG_TYPE_AHASH,
3962 .alg.hash = {
3963 .halg.digestsize = SHA1_DIGEST_SIZE,
3964 .halg.base = {
3965 .cra_name = "sha1",
3966 .cra_driver_name = "sha1-iproc",
3967 .cra_blocksize = SHA1_BLOCK_SIZE,
3970 .cipher_info = {
3971 .alg = CIPHER_ALG_NONE,
3972 .mode = CIPHER_MODE_NONE,
3974 .auth_info = {
3975 .alg = HASH_ALG_SHA1,
3976 .mode = HASH_MODE_HASH,
3979 {.type = CRYPTO_ALG_TYPE_AHASH,
3980 .alg.hash = {
3981 .halg.digestsize = SHA1_DIGEST_SIZE,
3982 .halg.base = {
3983 .cra_name = "hmac(sha1)",
3984 .cra_driver_name = "hmac-sha1-iproc",
3985 .cra_blocksize = SHA1_BLOCK_SIZE,
3988 .cipher_info = {
3989 .alg = CIPHER_ALG_NONE,
3990 .mode = CIPHER_MODE_NONE,
3992 .auth_info = {
3993 .alg = HASH_ALG_SHA1,
3994 .mode = HASH_MODE_HMAC,
3997 {.type = CRYPTO_ALG_TYPE_AHASH,
3998 .alg.hash = {
3999 .halg.digestsize = SHA224_DIGEST_SIZE,
4000 .halg.base = {
4001 .cra_name = "sha224",
4002 .cra_driver_name = "sha224-iproc",
4003 .cra_blocksize = SHA224_BLOCK_SIZE,
4006 .cipher_info = {
4007 .alg = CIPHER_ALG_NONE,
4008 .mode = CIPHER_MODE_NONE,
4010 .auth_info = {
4011 .alg = HASH_ALG_SHA224,
4012 .mode = HASH_MODE_HASH,
4015 {.type = CRYPTO_ALG_TYPE_AHASH,
4016 .alg.hash = {
4017 .halg.digestsize = SHA224_DIGEST_SIZE,
4018 .halg.base = {
4019 .cra_name = "hmac(sha224)",
4020 .cra_driver_name = "hmac-sha224-iproc",
4021 .cra_blocksize = SHA224_BLOCK_SIZE,
4024 .cipher_info = {
4025 .alg = CIPHER_ALG_NONE,
4026 .mode = CIPHER_MODE_NONE,
4028 .auth_info = {
4029 .alg = HASH_ALG_SHA224,
4030 .mode = HASH_MODE_HMAC,
4033 {.type = CRYPTO_ALG_TYPE_AHASH,
4034 .alg.hash = {
4035 .halg.digestsize = SHA256_DIGEST_SIZE,
4036 .halg.base = {
4037 .cra_name = "sha256",
4038 .cra_driver_name = "sha256-iproc",
4039 .cra_blocksize = SHA256_BLOCK_SIZE,
4042 .cipher_info = {
4043 .alg = CIPHER_ALG_NONE,
4044 .mode = CIPHER_MODE_NONE,
4046 .auth_info = {
4047 .alg = HASH_ALG_SHA256,
4048 .mode = HASH_MODE_HASH,
4051 {.type = CRYPTO_ALG_TYPE_AHASH,
4052 .alg.hash = {
4053 .halg.digestsize = SHA256_DIGEST_SIZE,
4054 .halg.base = {
4055 .cra_name = "hmac(sha256)",
4056 .cra_driver_name = "hmac-sha256-iproc",
4057 .cra_blocksize = SHA256_BLOCK_SIZE,
4060 .cipher_info = {
4061 .alg = CIPHER_ALG_NONE,
4062 .mode = CIPHER_MODE_NONE,
4064 .auth_info = {
4065 .alg = HASH_ALG_SHA256,
4066 .mode = HASH_MODE_HMAC,
4070 .type = CRYPTO_ALG_TYPE_AHASH,
4071 .alg.hash = {
4072 .halg.digestsize = SHA384_DIGEST_SIZE,
4073 .halg.base = {
4074 .cra_name = "sha384",
4075 .cra_driver_name = "sha384-iproc",
4076 .cra_blocksize = SHA384_BLOCK_SIZE,
4079 .cipher_info = {
4080 .alg = CIPHER_ALG_NONE,
4081 .mode = CIPHER_MODE_NONE,
4083 .auth_info = {
4084 .alg = HASH_ALG_SHA384,
4085 .mode = HASH_MODE_HASH,
4089 .type = CRYPTO_ALG_TYPE_AHASH,
4090 .alg.hash = {
4091 .halg.digestsize = SHA384_DIGEST_SIZE,
4092 .halg.base = {
4093 .cra_name = "hmac(sha384)",
4094 .cra_driver_name = "hmac-sha384-iproc",
4095 .cra_blocksize = SHA384_BLOCK_SIZE,
4098 .cipher_info = {
4099 .alg = CIPHER_ALG_NONE,
4100 .mode = CIPHER_MODE_NONE,
4102 .auth_info = {
4103 .alg = HASH_ALG_SHA384,
4104 .mode = HASH_MODE_HMAC,
4108 .type = CRYPTO_ALG_TYPE_AHASH,
4109 .alg.hash = {
4110 .halg.digestsize = SHA512_DIGEST_SIZE,
4111 .halg.base = {
4112 .cra_name = "sha512",
4113 .cra_driver_name = "sha512-iproc",
4114 .cra_blocksize = SHA512_BLOCK_SIZE,
4117 .cipher_info = {
4118 .alg = CIPHER_ALG_NONE,
4119 .mode = CIPHER_MODE_NONE,
4121 .auth_info = {
4122 .alg = HASH_ALG_SHA512,
4123 .mode = HASH_MODE_HASH,
4127 .type = CRYPTO_ALG_TYPE_AHASH,
4128 .alg.hash = {
4129 .halg.digestsize = SHA512_DIGEST_SIZE,
4130 .halg.base = {
4131 .cra_name = "hmac(sha512)",
4132 .cra_driver_name = "hmac-sha512-iproc",
4133 .cra_blocksize = SHA512_BLOCK_SIZE,
4136 .cipher_info = {
4137 .alg = CIPHER_ALG_NONE,
4138 .mode = CIPHER_MODE_NONE,
4140 .auth_info = {
4141 .alg = HASH_ALG_SHA512,
4142 .mode = HASH_MODE_HMAC,
4146 .type = CRYPTO_ALG_TYPE_AHASH,
4147 .alg.hash = {
4148 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4149 .halg.base = {
4150 .cra_name = "sha3-224",
4151 .cra_driver_name = "sha3-224-iproc",
4152 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4155 .cipher_info = {
4156 .alg = CIPHER_ALG_NONE,
4157 .mode = CIPHER_MODE_NONE,
4159 .auth_info = {
4160 .alg = HASH_ALG_SHA3_224,
4161 .mode = HASH_MODE_HASH,
4165 .type = CRYPTO_ALG_TYPE_AHASH,
4166 .alg.hash = {
4167 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4168 .halg.base = {
4169 .cra_name = "hmac(sha3-224)",
4170 .cra_driver_name = "hmac-sha3-224-iproc",
4171 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4174 .cipher_info = {
4175 .alg = CIPHER_ALG_NONE,
4176 .mode = CIPHER_MODE_NONE,
4178 .auth_info = {
4179 .alg = HASH_ALG_SHA3_224,
4180 .mode = HASH_MODE_HMAC
4184 .type = CRYPTO_ALG_TYPE_AHASH,
4185 .alg.hash = {
4186 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4187 .halg.base = {
4188 .cra_name = "sha3-256",
4189 .cra_driver_name = "sha3-256-iproc",
4190 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4193 .cipher_info = {
4194 .alg = CIPHER_ALG_NONE,
4195 .mode = CIPHER_MODE_NONE,
4197 .auth_info = {
4198 .alg = HASH_ALG_SHA3_256,
4199 .mode = HASH_MODE_HASH,
4203 .type = CRYPTO_ALG_TYPE_AHASH,
4204 .alg.hash = {
4205 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4206 .halg.base = {
4207 .cra_name = "hmac(sha3-256)",
4208 .cra_driver_name = "hmac-sha3-256-iproc",
4209 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4212 .cipher_info = {
4213 .alg = CIPHER_ALG_NONE,
4214 .mode = CIPHER_MODE_NONE,
4216 .auth_info = {
4217 .alg = HASH_ALG_SHA3_256,
4218 .mode = HASH_MODE_HMAC,
4222 .type = CRYPTO_ALG_TYPE_AHASH,
4223 .alg.hash = {
4224 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4225 .halg.base = {
4226 .cra_name = "sha3-384",
4227 .cra_driver_name = "sha3-384-iproc",
4228 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4231 .cipher_info = {
4232 .alg = CIPHER_ALG_NONE,
4233 .mode = CIPHER_MODE_NONE,
4235 .auth_info = {
4236 .alg = HASH_ALG_SHA3_384,
4237 .mode = HASH_MODE_HASH,
4241 .type = CRYPTO_ALG_TYPE_AHASH,
4242 .alg.hash = {
4243 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4244 .halg.base = {
4245 .cra_name = "hmac(sha3-384)",
4246 .cra_driver_name = "hmac-sha3-384-iproc",
4247 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4250 .cipher_info = {
4251 .alg = CIPHER_ALG_NONE,
4252 .mode = CIPHER_MODE_NONE,
4254 .auth_info = {
4255 .alg = HASH_ALG_SHA3_384,
4256 .mode = HASH_MODE_HMAC,
4260 .type = CRYPTO_ALG_TYPE_AHASH,
4261 .alg.hash = {
4262 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4263 .halg.base = {
4264 .cra_name = "sha3-512",
4265 .cra_driver_name = "sha3-512-iproc",
4266 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4269 .cipher_info = {
4270 .alg = CIPHER_ALG_NONE,
4271 .mode = CIPHER_MODE_NONE,
4273 .auth_info = {
4274 .alg = HASH_ALG_SHA3_512,
4275 .mode = HASH_MODE_HASH,
4279 .type = CRYPTO_ALG_TYPE_AHASH,
4280 .alg.hash = {
4281 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4282 .halg.base = {
4283 .cra_name = "hmac(sha3-512)",
4284 .cra_driver_name = "hmac-sha3-512-iproc",
4285 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4288 .cipher_info = {
4289 .alg = CIPHER_ALG_NONE,
4290 .mode = CIPHER_MODE_NONE,
4292 .auth_info = {
4293 .alg = HASH_ALG_SHA3_512,
4294 .mode = HASH_MODE_HMAC,
4298 .type = CRYPTO_ALG_TYPE_AHASH,
4299 .alg.hash = {
4300 .halg.digestsize = AES_BLOCK_SIZE,
4301 .halg.base = {
4302 .cra_name = "xcbc(aes)",
4303 .cra_driver_name = "xcbc-aes-iproc",
4304 .cra_blocksize = AES_BLOCK_SIZE,
4307 .cipher_info = {
4308 .alg = CIPHER_ALG_NONE,
4309 .mode = CIPHER_MODE_NONE,
4311 .auth_info = {
4312 .alg = HASH_ALG_AES,
4313 .mode = HASH_MODE_XCBC,
4317 .type = CRYPTO_ALG_TYPE_AHASH,
4318 .alg.hash = {
4319 .halg.digestsize = AES_BLOCK_SIZE,
4320 .halg.base = {
4321 .cra_name = "cmac(aes)",
4322 .cra_driver_name = "cmac-aes-iproc",
4323 .cra_blocksize = AES_BLOCK_SIZE,
4326 .cipher_info = {
4327 .alg = CIPHER_ALG_NONE,
4328 .mode = CIPHER_MODE_NONE,
4330 .auth_info = {
4331 .alg = HASH_ALG_AES,
4332 .mode = HASH_MODE_CMAC,
4337 static int generic_cra_init(struct crypto_tfm *tfm,
4338 struct iproc_alg_s *cipher_alg)
4340 struct spu_hw *spu = &iproc_priv.spu;
4341 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4342 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4344 flow_log("%s()\n", __func__);
4346 ctx->alg = cipher_alg;
4347 ctx->cipher = cipher_alg->cipher_info;
4348 ctx->auth = cipher_alg->auth_info;
4349 ctx->auth_first = cipher_alg->auth_first;
4350 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4351 ctx->cipher.mode,
4352 blocksize);
4353 ctx->fallback_cipher = NULL;
4355 ctx->enckeylen = 0;
4356 ctx->authkeylen = 0;
4358 atomic_inc(&iproc_priv.stream_count);
4359 atomic_inc(&iproc_priv.session_count);
4361 return 0;
4364 static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4366 struct crypto_alg *alg = tfm->__crt_alg;
4367 struct iproc_alg_s *cipher_alg;
4369 flow_log("%s()\n", __func__);
4371 tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4373 cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4374 return generic_cra_init(tfm, cipher_alg);
4377 static int ahash_cra_init(struct crypto_tfm *tfm)
4379 int err;
4380 struct crypto_alg *alg = tfm->__crt_alg;
4381 struct iproc_alg_s *cipher_alg;
4383 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4384 alg.hash);
4386 err = generic_cra_init(tfm, cipher_alg);
4387 flow_log("%s()\n", __func__);
4390 * export state size has to be < 512 bytes. So don't include msg bufs
4391 * in state size.
4393 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4394 sizeof(struct iproc_reqctx_s));
4396 return err;
4399 static int aead_cra_init(struct crypto_aead *aead)
4401 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4402 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4403 struct crypto_alg *alg = tfm->__crt_alg;
4404 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4405 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4406 alg.aead);
4408 int err = generic_cra_init(tfm, cipher_alg);
4410 flow_log("%s()\n", __func__);
4412 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4413 ctx->is_esp = false;
4414 ctx->salt_len = 0;
4415 ctx->salt_offset = 0;
4417 /* random first IV */
4418 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4419 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4421 if (!err) {
4422 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4423 flow_log("%s() creating fallback cipher\n", __func__);
4425 ctx->fallback_cipher =
4426 crypto_alloc_aead(alg->cra_name, 0,
4427 CRYPTO_ALG_ASYNC |
4428 CRYPTO_ALG_NEED_FALLBACK);
4429 if (IS_ERR(ctx->fallback_cipher)) {
4430 pr_err("%s() Error: failed to allocate fallback for %s\n",
4431 __func__, alg->cra_name);
4432 return PTR_ERR(ctx->fallback_cipher);
4437 return err;
4440 static void generic_cra_exit(struct crypto_tfm *tfm)
4442 atomic_dec(&iproc_priv.session_count);
4445 static void aead_cra_exit(struct crypto_aead *aead)
4447 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4448 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4450 generic_cra_exit(tfm);
4452 if (ctx->fallback_cipher) {
4453 crypto_free_aead(ctx->fallback_cipher);
4454 ctx->fallback_cipher = NULL;
4459 * spu_functions_register() - Specify hardware-specific SPU functions based on
4460 * SPU type read from device tree.
4461 * @dev: device structure
4462 * @spu_type: SPU hardware generation
4463 * @spu_subtype: SPU hardware version
4465 static void spu_functions_register(struct device *dev,
4466 enum spu_spu_type spu_type,
4467 enum spu_spu_subtype spu_subtype)
4469 struct spu_hw *spu = &iproc_priv.spu;
4471 if (spu_type == SPU_TYPE_SPUM) {
4472 dev_dbg(dev, "Registering SPUM functions");
4473 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4474 spu->spu_payload_length = spum_payload_length;
4475 spu->spu_response_hdr_len = spum_response_hdr_len;
4476 spu->spu_hash_pad_len = spum_hash_pad_len;
4477 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4478 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4479 spu->spu_aead_ivlen = spum_aead_ivlen;
4480 spu->spu_hash_type = spum_hash_type;
4481 spu->spu_digest_size = spum_digest_size;
4482 spu->spu_create_request = spum_create_request;
4483 spu->spu_cipher_req_init = spum_cipher_req_init;
4484 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4485 spu->spu_request_pad = spum_request_pad;
4486 spu->spu_tx_status_len = spum_tx_status_len;
4487 spu->spu_rx_status_len = spum_rx_status_len;
4488 spu->spu_status_process = spum_status_process;
4489 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4490 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4491 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4492 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4493 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4494 else
4495 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4496 } else {
4497 dev_dbg(dev, "Registering SPU2 functions");
4498 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4499 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4500 spu->spu_payload_length = spu2_payload_length;
4501 spu->spu_response_hdr_len = spu2_response_hdr_len;
4502 spu->spu_hash_pad_len = spu2_hash_pad_len;
4503 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4504 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4505 spu->spu_aead_ivlen = spu2_aead_ivlen;
4506 spu->spu_hash_type = spu2_hash_type;
4507 spu->spu_digest_size = spu2_digest_size;
4508 spu->spu_create_request = spu2_create_request;
4509 spu->spu_cipher_req_init = spu2_cipher_req_init;
4510 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4511 spu->spu_request_pad = spu2_request_pad;
4512 spu->spu_tx_status_len = spu2_tx_status_len;
4513 spu->spu_rx_status_len = spu2_rx_status_len;
4514 spu->spu_status_process = spu2_status_process;
4515 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4516 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4517 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4522 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4523 * channel for the SPU being probed.
4524 * @dev: SPU driver device structure
4526 * Return: 0 if successful
4527 * < 0 otherwise
4529 static int spu_mb_init(struct device *dev)
4531 struct mbox_client *mcl = &iproc_priv.mcl[iproc_priv.spu.num_spu];
4532 int err;
4534 mcl->dev = dev;
4535 mcl->tx_block = false;
4536 mcl->tx_tout = 0;
4537 mcl->knows_txdone = false;
4538 mcl->rx_callback = spu_rx_callback;
4539 mcl->tx_done = NULL;
4541 iproc_priv.mbox[iproc_priv.spu.num_spu] =
4542 mbox_request_channel(mcl, 0);
4543 if (IS_ERR(iproc_priv.mbox[iproc_priv.spu.num_spu])) {
4544 err = (int)PTR_ERR(iproc_priv.mbox[iproc_priv.spu.num_spu]);
4545 dev_err(dev,
4546 "Mbox channel %d request failed with err %d",
4547 iproc_priv.spu.num_spu, err);
4548 iproc_priv.mbox[iproc_priv.spu.num_spu] = NULL;
4549 return err;
4552 return 0;
4555 static void spu_mb_release(struct platform_device *pdev)
4557 int i;
4559 for (i = 0; i < iproc_priv.spu.num_spu; i++)
4560 mbox_free_channel(iproc_priv.mbox[i]);
4563 static void spu_counters_init(void)
4565 int i;
4566 int j;
4568 atomic_set(&iproc_priv.session_count, 0);
4569 atomic_set(&iproc_priv.stream_count, 0);
4570 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_spu);
4571 atomic64_set(&iproc_priv.bytes_in, 0);
4572 atomic64_set(&iproc_priv.bytes_out, 0);
4573 for (i = 0; i < SPU_OP_NUM; i++) {
4574 atomic_set(&iproc_priv.op_counts[i], 0);
4575 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4577 for (i = 0; i < CIPHER_ALG_LAST; i++)
4578 for (j = 0; j < CIPHER_MODE_LAST; j++)
4579 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4581 for (i = 0; i < HASH_ALG_LAST; i++) {
4582 atomic_set(&iproc_priv.hash_cnt[i], 0);
4583 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4585 for (i = 0; i < AEAD_TYPE_LAST; i++)
4586 atomic_set(&iproc_priv.aead_cnt[i], 0);
4588 atomic_set(&iproc_priv.mb_no_spc, 0);
4589 atomic_set(&iproc_priv.mb_send_fail, 0);
4590 atomic_set(&iproc_priv.bad_icv, 0);
4593 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4595 struct spu_hw *spu = &iproc_priv.spu;
4596 struct crypto_alg *crypto = &driver_alg->alg.crypto;
4597 int err;
4599 /* SPU2 does not support RC4 */
4600 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4601 (spu->spu_type == SPU_TYPE_SPU2))
4602 return 0;
4604 crypto->cra_module = THIS_MODULE;
4605 crypto->cra_priority = cipher_pri;
4606 crypto->cra_alignmask = 0;
4607 crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4608 INIT_LIST_HEAD(&crypto->cra_list);
4610 crypto->cra_init = ablkcipher_cra_init;
4611 crypto->cra_exit = generic_cra_exit;
4612 crypto->cra_type = &crypto_ablkcipher_type;
4613 crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4614 CRYPTO_ALG_KERN_DRIVER_ONLY;
4616 crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4617 crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4618 crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4620 err = crypto_register_alg(crypto);
4621 /* Mark alg as having been registered, if successful */
4622 if (err == 0)
4623 driver_alg->registered = true;
4624 pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name);
4625 return err;
4628 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4630 struct spu_hw *spu = &iproc_priv.spu;
4631 struct ahash_alg *hash = &driver_alg->alg.hash;
4632 int err;
4634 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4635 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4636 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4637 (spu->spu_type == SPU_TYPE_SPUM))
4638 return 0;
4640 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4641 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4642 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4643 return 0;
4645 hash->halg.base.cra_module = THIS_MODULE;
4646 hash->halg.base.cra_priority = hash_pri;
4647 hash->halg.base.cra_alignmask = 0;
4648 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4649 hash->halg.base.cra_init = ahash_cra_init;
4650 hash->halg.base.cra_exit = generic_cra_exit;
4651 hash->halg.base.cra_type = &crypto_ahash_type;
4652 hash->halg.base.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC;
4653 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4655 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4656 hash->setkey = ahash_setkey;
4657 hash->init = ahash_init;
4658 hash->update = ahash_update;
4659 hash->final = ahash_final;
4660 hash->finup = ahash_finup;
4661 hash->digest = ahash_digest;
4662 } else {
4663 hash->setkey = ahash_hmac_setkey;
4664 hash->init = ahash_hmac_init;
4665 hash->update = ahash_hmac_update;
4666 hash->final = ahash_hmac_final;
4667 hash->finup = ahash_hmac_finup;
4668 hash->digest = ahash_hmac_digest;
4670 hash->export = ahash_export;
4671 hash->import = ahash_import;
4673 err = crypto_register_ahash(hash);
4674 /* Mark alg as having been registered, if successful */
4675 if (err == 0)
4676 driver_alg->registered = true;
4677 pr_debug(" registered ahash %s\n",
4678 hash->halg.base.cra_driver_name);
4679 return err;
4682 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4684 struct aead_alg *aead = &driver_alg->alg.aead;
4685 int err;
4687 aead->base.cra_module = THIS_MODULE;
4688 aead->base.cra_priority = aead_pri;
4689 aead->base.cra_alignmask = 0;
4690 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4691 INIT_LIST_HEAD(&aead->base.cra_list);
4693 aead->base.cra_flags |= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
4694 /* setkey set in alg initialization */
4695 aead->setauthsize = aead_setauthsize;
4696 aead->encrypt = aead_encrypt;
4697 aead->decrypt = aead_decrypt;
4698 aead->init = aead_cra_init;
4699 aead->exit = aead_cra_exit;
4701 err = crypto_register_aead(aead);
4702 /* Mark alg as having been registered, if successful */
4703 if (err == 0)
4704 driver_alg->registered = true;
4705 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4706 return err;
4709 /* register crypto algorithms the device supports */
4710 static int spu_algs_register(struct device *dev)
4712 int i, j;
4713 int err;
4715 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4716 switch (driver_algs[i].type) {
4717 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4718 err = spu_register_ablkcipher(&driver_algs[i]);
4719 break;
4720 case CRYPTO_ALG_TYPE_AHASH:
4721 err = spu_register_ahash(&driver_algs[i]);
4722 break;
4723 case CRYPTO_ALG_TYPE_AEAD:
4724 err = spu_register_aead(&driver_algs[i]);
4725 break;
4726 default:
4727 dev_err(dev,
4728 "iproc-crypto: unknown alg type: %d",
4729 driver_algs[i].type);
4730 err = -EINVAL;
4733 if (err) {
4734 dev_err(dev, "alg registration failed with error %d\n",
4735 err);
4736 goto err_algs;
4740 return 0;
4742 err_algs:
4743 for (j = 0; j < i; j++) {
4744 /* Skip any algorithm not registered */
4745 if (!driver_algs[j].registered)
4746 continue;
4747 switch (driver_algs[j].type) {
4748 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4749 crypto_unregister_alg(&driver_algs[j].alg.crypto);
4750 driver_algs[j].registered = false;
4751 break;
4752 case CRYPTO_ALG_TYPE_AHASH:
4753 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4754 driver_algs[j].registered = false;
4755 break;
4756 case CRYPTO_ALG_TYPE_AEAD:
4757 crypto_unregister_aead(&driver_algs[j].alg.aead);
4758 driver_algs[j].registered = false;
4759 break;
4762 return err;
4765 /* ==================== Kernel Platform API ==================== */
4767 static struct spu_type_subtype spum_ns2_types = {
4768 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4771 static struct spu_type_subtype spum_nsp_types = {
4772 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4775 static struct spu_type_subtype spu2_types = {
4776 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4779 static struct spu_type_subtype spu2_v2_types = {
4780 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4783 static const struct of_device_id bcm_spu_dt_ids[] = {
4785 .compatible = "brcm,spum-crypto",
4786 .data = &spum_ns2_types,
4789 .compatible = "brcm,spum-nsp-crypto",
4790 .data = &spum_nsp_types,
4793 .compatible = "brcm,spu2-crypto",
4794 .data = &spu2_types,
4797 .compatible = "brcm,spu2-v2-crypto",
4798 .data = &spu2_v2_types,
4800 { /* sentinel */ }
4803 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4805 static int spu_dt_read(struct platform_device *pdev)
4807 struct device *dev = &pdev->dev;
4808 struct spu_hw *spu = &iproc_priv.spu;
4809 struct resource *spu_ctrl_regs;
4810 const struct of_device_id *match;
4811 const struct spu_type_subtype *matched_spu_type;
4812 void __iomem *spu_reg_vbase[MAX_SPUS];
4813 int err;
4815 match = of_match_device(of_match_ptr(bcm_spu_dt_ids), dev);
4816 matched_spu_type = match->data;
4818 if (iproc_priv.spu.num_spu > 1) {
4819 /* If this is 2nd or later SPU, make sure it's same type */
4820 if ((spu->spu_type != matched_spu_type->type) ||
4821 (spu->spu_subtype != matched_spu_type->subtype)) {
4822 err = -EINVAL;
4823 dev_err(&pdev->dev, "Multiple SPU types not allowed");
4824 return err;
4826 } else {
4827 /* Record type of first SPU */
4828 spu->spu_type = matched_spu_type->type;
4829 spu->spu_subtype = matched_spu_type->subtype;
4832 /* Get and map SPU registers */
4833 spu_ctrl_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4834 if (!spu_ctrl_regs) {
4835 err = -EINVAL;
4836 dev_err(&pdev->dev, "Invalid/missing registers for SPU\n");
4837 return err;
4840 spu_reg_vbase[iproc_priv.spu.num_spu] =
4841 devm_ioremap_resource(dev, spu_ctrl_regs);
4842 if (IS_ERR(spu_reg_vbase[iproc_priv.spu.num_spu])) {
4843 err = PTR_ERR(spu_reg_vbase[iproc_priv.spu.num_spu]);
4844 dev_err(&pdev->dev, "Failed to map registers: %d\n",
4845 err);
4846 spu_reg_vbase[iproc_priv.spu.num_spu] = NULL;
4847 return err;
4850 dev_dbg(dev, "SPU %d detected.", iproc_priv.spu.num_spu);
4852 spu->reg_vbase[iproc_priv.spu.num_spu] = spu_reg_vbase;
4854 return 0;
4857 int bcm_spu_probe(struct platform_device *pdev)
4859 struct device *dev = &pdev->dev;
4860 struct spu_hw *spu = &iproc_priv.spu;
4861 int err = 0;
4863 iproc_priv.pdev[iproc_priv.spu.num_spu] = pdev;
4864 platform_set_drvdata(iproc_priv.pdev[iproc_priv.spu.num_spu],
4865 &iproc_priv);
4867 err = spu_dt_read(pdev);
4868 if (err < 0)
4869 goto failure;
4871 err = spu_mb_init(&pdev->dev);
4872 if (err < 0)
4873 goto failure;
4875 iproc_priv.spu.num_spu++;
4877 /* If already initialized, we've just added another SPU and are done */
4878 if (iproc_priv.inited)
4879 return 0;
4881 if (spu->spu_type == SPU_TYPE_SPUM)
4882 iproc_priv.bcm_hdr_len = 8;
4883 else if (spu->spu_type == SPU_TYPE_SPU2)
4884 iproc_priv.bcm_hdr_len = 0;
4886 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4888 spu_counters_init();
4890 spu_setup_debugfs();
4892 err = spu_algs_register(dev);
4893 if (err < 0)
4894 goto fail_reg;
4896 iproc_priv.inited = true;
4898 return 0;
4900 fail_reg:
4901 spu_free_debugfs();
4902 failure:
4903 spu_mb_release(pdev);
4904 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4906 return err;
4909 int bcm_spu_remove(struct platform_device *pdev)
4911 int i;
4912 struct device *dev = &pdev->dev;
4913 char *cdn;
4915 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4917 * Not all algorithms were registered, depending on whether
4918 * hardware is SPU or SPU2. So here we make sure to skip
4919 * those algorithms that were not previously registered.
4921 if (!driver_algs[i].registered)
4922 continue;
4924 switch (driver_algs[i].type) {
4925 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4926 crypto_unregister_alg(&driver_algs[i].alg.crypto);
4927 dev_dbg(dev, " unregistered cipher %s\n",
4928 driver_algs[i].alg.crypto.cra_driver_name);
4929 driver_algs[i].registered = false;
4930 break;
4931 case CRYPTO_ALG_TYPE_AHASH:
4932 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4933 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4934 dev_dbg(dev, " unregistered hash %s\n", cdn);
4935 driver_algs[i].registered = false;
4936 break;
4937 case CRYPTO_ALG_TYPE_AEAD:
4938 crypto_unregister_aead(&driver_algs[i].alg.aead);
4939 dev_dbg(dev, " unregistered aead %s\n",
4940 driver_algs[i].alg.aead.base.cra_driver_name);
4941 driver_algs[i].registered = false;
4942 break;
4945 spu_free_debugfs();
4946 spu_mb_release(pdev);
4947 return 0;
4950 /* ===== Kernel Module API ===== */
4952 static struct platform_driver bcm_spu_pdriver = {
4953 .driver = {
4954 .name = "brcm-spu-crypto",
4955 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4957 .probe = bcm_spu_probe,
4958 .remove = bcm_spu_remove,
4960 module_platform_driver(bcm_spu_pdriver);
4962 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4963 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4964 MODULE_LICENSE("GPL v2");