ipv6: sit: better validate user provided tunnel names
[linux/fpc-iii.git] / ipc / sem.c
blob2994da8ccc7f6d77b72451e96d6c7f4dcc0764c0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
88 #include <linux/uaccess.h>
89 #include "util.h"
91 /* One semaphore structure for each semaphore in the system. */
92 struct sem {
93 int semval; /* current value */
95 * PID of the process that last modified the semaphore. For
96 * Linux, specifically these are:
97 * - semop
98 * - semctl, via SETVAL and SETALL.
99 * - at task exit when performing undo adjustments (see exit_sem).
101 struct pid *sempid;
102 spinlock_t lock; /* spinlock for fine-grained semtimedop */
103 struct list_head pending_alter; /* pending single-sop operations */
104 /* that alter the semaphore */
105 struct list_head pending_const; /* pending single-sop operations */
106 /* that do not alter the semaphore*/
107 time_t sem_otime; /* candidate for sem_otime */
108 } ____cacheline_aligned_in_smp;
110 /* One sem_array data structure for each set of semaphores in the system. */
111 struct sem_array {
112 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
113 time64_t sem_ctime; /* create/last semctl() time */
114 struct list_head pending_alter; /* pending operations */
115 /* that alter the array */
116 struct list_head pending_const; /* pending complex operations */
117 /* that do not alter semvals */
118 struct list_head list_id; /* undo requests on this array */
119 int sem_nsems; /* no. of semaphores in array */
120 int complex_count; /* pending complex operations */
121 unsigned int use_global_lock;/* >0: global lock required */
123 struct sem sems[];
124 } __randomize_layout;
126 /* One queue for each sleeping process in the system. */
127 struct sem_queue {
128 struct list_head list; /* queue of pending operations */
129 struct task_struct *sleeper; /* this process */
130 struct sem_undo *undo; /* undo structure */
131 struct pid *pid; /* process id of requesting process */
132 int status; /* completion status of operation */
133 struct sembuf *sops; /* array of pending operations */
134 struct sembuf *blocking; /* the operation that blocked */
135 int nsops; /* number of operations */
136 bool alter; /* does *sops alter the array? */
137 bool dupsop; /* sops on more than one sem_num */
140 /* Each task has a list of undo requests. They are executed automatically
141 * when the process exits.
143 struct sem_undo {
144 struct list_head list_proc; /* per-process list: *
145 * all undos from one process
146 * rcu protected */
147 struct rcu_head rcu; /* rcu struct for sem_undo */
148 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
149 struct list_head list_id; /* per semaphore array list:
150 * all undos for one array */
151 int semid; /* semaphore set identifier */
152 short *semadj; /* array of adjustments */
153 /* one per semaphore */
156 /* sem_undo_list controls shared access to the list of sem_undo structures
157 * that may be shared among all a CLONE_SYSVSEM task group.
159 struct sem_undo_list {
160 refcount_t refcnt;
161 spinlock_t lock;
162 struct list_head list_proc;
166 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
168 static int newary(struct ipc_namespace *, struct ipc_params *);
169 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
170 #ifdef CONFIG_PROC_FS
171 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
172 #endif
174 #define SEMMSL_FAST 256 /* 512 bytes on stack */
175 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
178 * Switching from the mode suitable for simple ops
179 * to the mode for complex ops is costly. Therefore:
180 * use some hysteresis
182 #define USE_GLOBAL_LOCK_HYSTERESIS 10
185 * Locking:
186 * a) global sem_lock() for read/write
187 * sem_undo.id_next,
188 * sem_array.complex_count,
189 * sem_array.pending{_alter,_const},
190 * sem_array.sem_undo
192 * b) global or semaphore sem_lock() for read/write:
193 * sem_array.sems[i].pending_{const,alter}:
195 * c) special:
196 * sem_undo_list.list_proc:
197 * * undo_list->lock for write
198 * * rcu for read
199 * use_global_lock:
200 * * global sem_lock() for write
201 * * either local or global sem_lock() for read.
203 * Memory ordering:
204 * Most ordering is enforced by using spin_lock() and spin_unlock().
205 * The special case is use_global_lock:
206 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
207 * using smp_store_release().
208 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
209 * smp_load_acquire().
210 * Setting it from 0 to non-zero must be ordered with regards to
211 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
212 * is inside a spin_lock() and after a write from 0 to non-zero a
213 * spin_lock()+spin_unlock() is done.
216 #define sc_semmsl sem_ctls[0]
217 #define sc_semmns sem_ctls[1]
218 #define sc_semopm sem_ctls[2]
219 #define sc_semmni sem_ctls[3]
221 int sem_init_ns(struct ipc_namespace *ns)
223 ns->sc_semmsl = SEMMSL;
224 ns->sc_semmns = SEMMNS;
225 ns->sc_semopm = SEMOPM;
226 ns->sc_semmni = SEMMNI;
227 ns->used_sems = 0;
228 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
231 #ifdef CONFIG_IPC_NS
232 void sem_exit_ns(struct ipc_namespace *ns)
234 free_ipcs(ns, &sem_ids(ns), freeary);
235 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
236 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
238 #endif
240 int __init sem_init(void)
242 const int err = sem_init_ns(&init_ipc_ns);
244 ipc_init_proc_interface("sysvipc/sem",
245 " key semid perms nsems uid gid cuid cgid otime ctime\n",
246 IPC_SEM_IDS, sysvipc_sem_proc_show);
247 return err;
251 * unmerge_queues - unmerge queues, if possible.
252 * @sma: semaphore array
254 * The function unmerges the wait queues if complex_count is 0.
255 * It must be called prior to dropping the global semaphore array lock.
257 static void unmerge_queues(struct sem_array *sma)
259 struct sem_queue *q, *tq;
261 /* complex operations still around? */
262 if (sma->complex_count)
263 return;
265 * We will switch back to simple mode.
266 * Move all pending operation back into the per-semaphore
267 * queues.
269 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
270 struct sem *curr;
271 curr = &sma->sems[q->sops[0].sem_num];
273 list_add_tail(&q->list, &curr->pending_alter);
275 INIT_LIST_HEAD(&sma->pending_alter);
279 * merge_queues - merge single semop queues into global queue
280 * @sma: semaphore array
282 * This function merges all per-semaphore queues into the global queue.
283 * It is necessary to achieve FIFO ordering for the pending single-sop
284 * operations when a multi-semop operation must sleep.
285 * Only the alter operations must be moved, the const operations can stay.
287 static void merge_queues(struct sem_array *sma)
289 int i;
290 for (i = 0; i < sma->sem_nsems; i++) {
291 struct sem *sem = &sma->sems[i];
293 list_splice_init(&sem->pending_alter, &sma->pending_alter);
297 static void sem_rcu_free(struct rcu_head *head)
299 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
300 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
302 security_sem_free(&sma->sem_perm);
303 kvfree(sma);
307 * Enter the mode suitable for non-simple operations:
308 * Caller must own sem_perm.lock.
310 static void complexmode_enter(struct sem_array *sma)
312 int i;
313 struct sem *sem;
315 if (sma->use_global_lock > 0) {
317 * We are already in global lock mode.
318 * Nothing to do, just reset the
319 * counter until we return to simple mode.
321 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
322 return;
324 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
326 for (i = 0; i < sma->sem_nsems; i++) {
327 sem = &sma->sems[i];
328 spin_lock(&sem->lock);
329 spin_unlock(&sem->lock);
334 * Try to leave the mode that disallows simple operations:
335 * Caller must own sem_perm.lock.
337 static void complexmode_tryleave(struct sem_array *sma)
339 if (sma->complex_count) {
340 /* Complex ops are sleeping.
341 * We must stay in complex mode
343 return;
345 if (sma->use_global_lock == 1) {
347 * Immediately after setting use_global_lock to 0,
348 * a simple op can start. Thus: all memory writes
349 * performed by the current operation must be visible
350 * before we set use_global_lock to 0.
352 smp_store_release(&sma->use_global_lock, 0);
353 } else {
354 sma->use_global_lock--;
358 #define SEM_GLOBAL_LOCK (-1)
360 * If the request contains only one semaphore operation, and there are
361 * no complex transactions pending, lock only the semaphore involved.
362 * Otherwise, lock the entire semaphore array, since we either have
363 * multiple semaphores in our own semops, or we need to look at
364 * semaphores from other pending complex operations.
366 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
367 int nsops)
369 struct sem *sem;
371 if (nsops != 1) {
372 /* Complex operation - acquire a full lock */
373 ipc_lock_object(&sma->sem_perm);
375 /* Prevent parallel simple ops */
376 complexmode_enter(sma);
377 return SEM_GLOBAL_LOCK;
381 * Only one semaphore affected - try to optimize locking.
382 * Optimized locking is possible if no complex operation
383 * is either enqueued or processed right now.
385 * Both facts are tracked by use_global_mode.
387 sem = &sma->sems[sops->sem_num];
390 * Initial check for use_global_lock. Just an optimization,
391 * no locking, no memory barrier.
393 if (!sma->use_global_lock) {
395 * It appears that no complex operation is around.
396 * Acquire the per-semaphore lock.
398 spin_lock(&sem->lock);
400 /* pairs with smp_store_release() */
401 if (!smp_load_acquire(&sma->use_global_lock)) {
402 /* fast path successful! */
403 return sops->sem_num;
405 spin_unlock(&sem->lock);
408 /* slow path: acquire the full lock */
409 ipc_lock_object(&sma->sem_perm);
411 if (sma->use_global_lock == 0) {
413 * The use_global_lock mode ended while we waited for
414 * sma->sem_perm.lock. Thus we must switch to locking
415 * with sem->lock.
416 * Unlike in the fast path, there is no need to recheck
417 * sma->use_global_lock after we have acquired sem->lock:
418 * We own sma->sem_perm.lock, thus use_global_lock cannot
419 * change.
421 spin_lock(&sem->lock);
423 ipc_unlock_object(&sma->sem_perm);
424 return sops->sem_num;
425 } else {
427 * Not a false alarm, thus continue to use the global lock
428 * mode. No need for complexmode_enter(), this was done by
429 * the caller that has set use_global_mode to non-zero.
431 return SEM_GLOBAL_LOCK;
435 static inline void sem_unlock(struct sem_array *sma, int locknum)
437 if (locknum == SEM_GLOBAL_LOCK) {
438 unmerge_queues(sma);
439 complexmode_tryleave(sma);
440 ipc_unlock_object(&sma->sem_perm);
441 } else {
442 struct sem *sem = &sma->sems[locknum];
443 spin_unlock(&sem->lock);
448 * sem_lock_(check_) routines are called in the paths where the rwsem
449 * is not held.
451 * The caller holds the RCU read lock.
453 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
455 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
457 if (IS_ERR(ipcp))
458 return ERR_CAST(ipcp);
460 return container_of(ipcp, struct sem_array, sem_perm);
463 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
464 int id)
466 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
468 if (IS_ERR(ipcp))
469 return ERR_CAST(ipcp);
471 return container_of(ipcp, struct sem_array, sem_perm);
474 static inline void sem_lock_and_putref(struct sem_array *sma)
476 sem_lock(sma, NULL, -1);
477 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
480 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
482 ipc_rmid(&sem_ids(ns), &s->sem_perm);
485 static struct sem_array *sem_alloc(size_t nsems)
487 struct sem_array *sma;
488 size_t size;
490 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
491 return NULL;
493 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
494 sma = kvmalloc(size, GFP_KERNEL);
495 if (unlikely(!sma))
496 return NULL;
498 memset(sma, 0, size);
500 return sma;
504 * newary - Create a new semaphore set
505 * @ns: namespace
506 * @params: ptr to the structure that contains key, semflg and nsems
508 * Called with sem_ids.rwsem held (as a writer)
510 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
512 int retval;
513 struct sem_array *sma;
514 key_t key = params->key;
515 int nsems = params->u.nsems;
516 int semflg = params->flg;
517 int i;
519 if (!nsems)
520 return -EINVAL;
521 if (ns->used_sems + nsems > ns->sc_semmns)
522 return -ENOSPC;
524 sma = sem_alloc(nsems);
525 if (!sma)
526 return -ENOMEM;
528 sma->sem_perm.mode = (semflg & S_IRWXUGO);
529 sma->sem_perm.key = key;
531 sma->sem_perm.security = NULL;
532 retval = security_sem_alloc(&sma->sem_perm);
533 if (retval) {
534 kvfree(sma);
535 return retval;
538 for (i = 0; i < nsems; i++) {
539 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
540 INIT_LIST_HEAD(&sma->sems[i].pending_const);
541 spin_lock_init(&sma->sems[i].lock);
544 sma->complex_count = 0;
545 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
546 INIT_LIST_HEAD(&sma->pending_alter);
547 INIT_LIST_HEAD(&sma->pending_const);
548 INIT_LIST_HEAD(&sma->list_id);
549 sma->sem_nsems = nsems;
550 sma->sem_ctime = ktime_get_real_seconds();
552 /* ipc_addid() locks sma upon success. */
553 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
554 if (retval < 0) {
555 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
556 return retval;
558 ns->used_sems += nsems;
560 sem_unlock(sma, -1);
561 rcu_read_unlock();
563 return sma->sem_perm.id;
568 * Called with sem_ids.rwsem and ipcp locked.
570 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
571 struct ipc_params *params)
573 struct sem_array *sma;
575 sma = container_of(ipcp, struct sem_array, sem_perm);
576 if (params->u.nsems > sma->sem_nsems)
577 return -EINVAL;
579 return 0;
582 long ksys_semget(key_t key, int nsems, int semflg)
584 struct ipc_namespace *ns;
585 static const struct ipc_ops sem_ops = {
586 .getnew = newary,
587 .associate = security_sem_associate,
588 .more_checks = sem_more_checks,
590 struct ipc_params sem_params;
592 ns = current->nsproxy->ipc_ns;
594 if (nsems < 0 || nsems > ns->sc_semmsl)
595 return -EINVAL;
597 sem_params.key = key;
598 sem_params.flg = semflg;
599 sem_params.u.nsems = nsems;
601 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
604 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
606 return ksys_semget(key, nsems, semflg);
610 * perform_atomic_semop[_slow] - Attempt to perform semaphore
611 * operations on a given array.
612 * @sma: semaphore array
613 * @q: struct sem_queue that describes the operation
615 * Caller blocking are as follows, based the value
616 * indicated by the semaphore operation (sem_op):
618 * (1) >0 never blocks.
619 * (2) 0 (wait-for-zero operation): semval is non-zero.
620 * (3) <0 attempting to decrement semval to a value smaller than zero.
622 * Returns 0 if the operation was possible.
623 * Returns 1 if the operation is impossible, the caller must sleep.
624 * Returns <0 for error codes.
626 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
628 int result, sem_op, nsops;
629 struct pid *pid;
630 struct sembuf *sop;
631 struct sem *curr;
632 struct sembuf *sops;
633 struct sem_undo *un;
635 sops = q->sops;
636 nsops = q->nsops;
637 un = q->undo;
639 for (sop = sops; sop < sops + nsops; sop++) {
640 curr = &sma->sems[sop->sem_num];
641 sem_op = sop->sem_op;
642 result = curr->semval;
644 if (!sem_op && result)
645 goto would_block;
647 result += sem_op;
648 if (result < 0)
649 goto would_block;
650 if (result > SEMVMX)
651 goto out_of_range;
653 if (sop->sem_flg & SEM_UNDO) {
654 int undo = un->semadj[sop->sem_num] - sem_op;
655 /* Exceeding the undo range is an error. */
656 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
657 goto out_of_range;
658 un->semadj[sop->sem_num] = undo;
661 curr->semval = result;
664 sop--;
665 pid = q->pid;
666 while (sop >= sops) {
667 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
668 sop--;
671 return 0;
673 out_of_range:
674 result = -ERANGE;
675 goto undo;
677 would_block:
678 q->blocking = sop;
680 if (sop->sem_flg & IPC_NOWAIT)
681 result = -EAGAIN;
682 else
683 result = 1;
685 undo:
686 sop--;
687 while (sop >= sops) {
688 sem_op = sop->sem_op;
689 sma->sems[sop->sem_num].semval -= sem_op;
690 if (sop->sem_flg & SEM_UNDO)
691 un->semadj[sop->sem_num] += sem_op;
692 sop--;
695 return result;
698 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
700 int result, sem_op, nsops;
701 struct sembuf *sop;
702 struct sem *curr;
703 struct sembuf *sops;
704 struct sem_undo *un;
706 sops = q->sops;
707 nsops = q->nsops;
708 un = q->undo;
710 if (unlikely(q->dupsop))
711 return perform_atomic_semop_slow(sma, q);
714 * We scan the semaphore set twice, first to ensure that the entire
715 * operation can succeed, therefore avoiding any pointless writes
716 * to shared memory and having to undo such changes in order to block
717 * until the operations can go through.
719 for (sop = sops; sop < sops + nsops; sop++) {
720 curr = &sma->sems[sop->sem_num];
721 sem_op = sop->sem_op;
722 result = curr->semval;
724 if (!sem_op && result)
725 goto would_block; /* wait-for-zero */
727 result += sem_op;
728 if (result < 0)
729 goto would_block;
731 if (result > SEMVMX)
732 return -ERANGE;
734 if (sop->sem_flg & SEM_UNDO) {
735 int undo = un->semadj[sop->sem_num] - sem_op;
737 /* Exceeding the undo range is an error. */
738 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
739 return -ERANGE;
743 for (sop = sops; sop < sops + nsops; sop++) {
744 curr = &sma->sems[sop->sem_num];
745 sem_op = sop->sem_op;
746 result = curr->semval;
748 if (sop->sem_flg & SEM_UNDO) {
749 int undo = un->semadj[sop->sem_num] - sem_op;
751 un->semadj[sop->sem_num] = undo;
753 curr->semval += sem_op;
754 ipc_update_pid(&curr->sempid, q->pid);
757 return 0;
759 would_block:
760 q->blocking = sop;
761 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
764 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
765 struct wake_q_head *wake_q)
767 wake_q_add(wake_q, q->sleeper);
769 * Rely on the above implicit barrier, such that we can
770 * ensure that we hold reference to the task before setting
771 * q->status. Otherwise we could race with do_exit if the
772 * task is awoken by an external event before calling
773 * wake_up_process().
775 WRITE_ONCE(q->status, error);
778 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
780 list_del(&q->list);
781 if (q->nsops > 1)
782 sma->complex_count--;
785 /** check_restart(sma, q)
786 * @sma: semaphore array
787 * @q: the operation that just completed
789 * update_queue is O(N^2) when it restarts scanning the whole queue of
790 * waiting operations. Therefore this function checks if the restart is
791 * really necessary. It is called after a previously waiting operation
792 * modified the array.
793 * Note that wait-for-zero operations are handled without restart.
795 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
797 /* pending complex alter operations are too difficult to analyse */
798 if (!list_empty(&sma->pending_alter))
799 return 1;
801 /* we were a sleeping complex operation. Too difficult */
802 if (q->nsops > 1)
803 return 1;
805 /* It is impossible that someone waits for the new value:
806 * - complex operations always restart.
807 * - wait-for-zero are handled seperately.
808 * - q is a previously sleeping simple operation that
809 * altered the array. It must be a decrement, because
810 * simple increments never sleep.
811 * - If there are older (higher priority) decrements
812 * in the queue, then they have observed the original
813 * semval value and couldn't proceed. The operation
814 * decremented to value - thus they won't proceed either.
816 return 0;
820 * wake_const_ops - wake up non-alter tasks
821 * @sma: semaphore array.
822 * @semnum: semaphore that was modified.
823 * @wake_q: lockless wake-queue head.
825 * wake_const_ops must be called after a semaphore in a semaphore array
826 * was set to 0. If complex const operations are pending, wake_const_ops must
827 * be called with semnum = -1, as well as with the number of each modified
828 * semaphore.
829 * The tasks that must be woken up are added to @wake_q. The return code
830 * is stored in q->pid.
831 * The function returns 1 if at least one operation was completed successfully.
833 static int wake_const_ops(struct sem_array *sma, int semnum,
834 struct wake_q_head *wake_q)
836 struct sem_queue *q, *tmp;
837 struct list_head *pending_list;
838 int semop_completed = 0;
840 if (semnum == -1)
841 pending_list = &sma->pending_const;
842 else
843 pending_list = &sma->sems[semnum].pending_const;
845 list_for_each_entry_safe(q, tmp, pending_list, list) {
846 int error = perform_atomic_semop(sma, q);
848 if (error > 0)
849 continue;
850 /* operation completed, remove from queue & wakeup */
851 unlink_queue(sma, q);
853 wake_up_sem_queue_prepare(q, error, wake_q);
854 if (error == 0)
855 semop_completed = 1;
858 return semop_completed;
862 * do_smart_wakeup_zero - wakeup all wait for zero tasks
863 * @sma: semaphore array
864 * @sops: operations that were performed
865 * @nsops: number of operations
866 * @wake_q: lockless wake-queue head
868 * Checks all required queue for wait-for-zero operations, based
869 * on the actual changes that were performed on the semaphore array.
870 * The function returns 1 if at least one operation was completed successfully.
872 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
873 int nsops, struct wake_q_head *wake_q)
875 int i;
876 int semop_completed = 0;
877 int got_zero = 0;
879 /* first: the per-semaphore queues, if known */
880 if (sops) {
881 for (i = 0; i < nsops; i++) {
882 int num = sops[i].sem_num;
884 if (sma->sems[num].semval == 0) {
885 got_zero = 1;
886 semop_completed |= wake_const_ops(sma, num, wake_q);
889 } else {
891 * No sops means modified semaphores not known.
892 * Assume all were changed.
894 for (i = 0; i < sma->sem_nsems; i++) {
895 if (sma->sems[i].semval == 0) {
896 got_zero = 1;
897 semop_completed |= wake_const_ops(sma, i, wake_q);
902 * If one of the modified semaphores got 0,
903 * then check the global queue, too.
905 if (got_zero)
906 semop_completed |= wake_const_ops(sma, -1, wake_q);
908 return semop_completed;
913 * update_queue - look for tasks that can be completed.
914 * @sma: semaphore array.
915 * @semnum: semaphore that was modified.
916 * @wake_q: lockless wake-queue head.
918 * update_queue must be called after a semaphore in a semaphore array
919 * was modified. If multiple semaphores were modified, update_queue must
920 * be called with semnum = -1, as well as with the number of each modified
921 * semaphore.
922 * The tasks that must be woken up are added to @wake_q. The return code
923 * is stored in q->pid.
924 * The function internally checks if const operations can now succeed.
926 * The function return 1 if at least one semop was completed successfully.
928 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
930 struct sem_queue *q, *tmp;
931 struct list_head *pending_list;
932 int semop_completed = 0;
934 if (semnum == -1)
935 pending_list = &sma->pending_alter;
936 else
937 pending_list = &sma->sems[semnum].pending_alter;
939 again:
940 list_for_each_entry_safe(q, tmp, pending_list, list) {
941 int error, restart;
943 /* If we are scanning the single sop, per-semaphore list of
944 * one semaphore and that semaphore is 0, then it is not
945 * necessary to scan further: simple increments
946 * that affect only one entry succeed immediately and cannot
947 * be in the per semaphore pending queue, and decrements
948 * cannot be successful if the value is already 0.
950 if (semnum != -1 && sma->sems[semnum].semval == 0)
951 break;
953 error = perform_atomic_semop(sma, q);
955 /* Does q->sleeper still need to sleep? */
956 if (error > 0)
957 continue;
959 unlink_queue(sma, q);
961 if (error) {
962 restart = 0;
963 } else {
964 semop_completed = 1;
965 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
966 restart = check_restart(sma, q);
969 wake_up_sem_queue_prepare(q, error, wake_q);
970 if (restart)
971 goto again;
973 return semop_completed;
977 * set_semotime - set sem_otime
978 * @sma: semaphore array
979 * @sops: operations that modified the array, may be NULL
981 * sem_otime is replicated to avoid cache line trashing.
982 * This function sets one instance to the current time.
984 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
986 if (sops == NULL) {
987 sma->sems[0].sem_otime = get_seconds();
988 } else {
989 sma->sems[sops[0].sem_num].sem_otime =
990 get_seconds();
995 * do_smart_update - optimized update_queue
996 * @sma: semaphore array
997 * @sops: operations that were performed
998 * @nsops: number of operations
999 * @otime: force setting otime
1000 * @wake_q: lockless wake-queue head
1002 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1003 * based on the actual changes that were performed on the semaphore array.
1004 * Note that the function does not do the actual wake-up: the caller is
1005 * responsible for calling wake_up_q().
1006 * It is safe to perform this call after dropping all locks.
1008 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1009 int otime, struct wake_q_head *wake_q)
1011 int i;
1013 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1015 if (!list_empty(&sma->pending_alter)) {
1016 /* semaphore array uses the global queue - just process it. */
1017 otime |= update_queue(sma, -1, wake_q);
1018 } else {
1019 if (!sops) {
1021 * No sops, thus the modified semaphores are not
1022 * known. Check all.
1024 for (i = 0; i < sma->sem_nsems; i++)
1025 otime |= update_queue(sma, i, wake_q);
1026 } else {
1028 * Check the semaphores that were increased:
1029 * - No complex ops, thus all sleeping ops are
1030 * decrease.
1031 * - if we decreased the value, then any sleeping
1032 * semaphore ops wont be able to run: If the
1033 * previous value was too small, then the new
1034 * value will be too small, too.
1036 for (i = 0; i < nsops; i++) {
1037 if (sops[i].sem_op > 0) {
1038 otime |= update_queue(sma,
1039 sops[i].sem_num, wake_q);
1044 if (otime)
1045 set_semotime(sma, sops);
1049 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1051 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1052 bool count_zero)
1054 struct sembuf *sop = q->blocking;
1057 * Linux always (since 0.99.10) reported a task as sleeping on all
1058 * semaphores. This violates SUS, therefore it was changed to the
1059 * standard compliant behavior.
1060 * Give the administrators a chance to notice that an application
1061 * might misbehave because it relies on the Linux behavior.
1063 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1064 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1065 current->comm, task_pid_nr(current));
1067 if (sop->sem_num != semnum)
1068 return 0;
1070 if (count_zero && sop->sem_op == 0)
1071 return 1;
1072 if (!count_zero && sop->sem_op < 0)
1073 return 1;
1075 return 0;
1078 /* The following counts are associated to each semaphore:
1079 * semncnt number of tasks waiting on semval being nonzero
1080 * semzcnt number of tasks waiting on semval being zero
1082 * Per definition, a task waits only on the semaphore of the first semop
1083 * that cannot proceed, even if additional operation would block, too.
1085 static int count_semcnt(struct sem_array *sma, ushort semnum,
1086 bool count_zero)
1088 struct list_head *l;
1089 struct sem_queue *q;
1090 int semcnt;
1092 semcnt = 0;
1093 /* First: check the simple operations. They are easy to evaluate */
1094 if (count_zero)
1095 l = &sma->sems[semnum].pending_const;
1096 else
1097 l = &sma->sems[semnum].pending_alter;
1099 list_for_each_entry(q, l, list) {
1100 /* all task on a per-semaphore list sleep on exactly
1101 * that semaphore
1103 semcnt++;
1106 /* Then: check the complex operations. */
1107 list_for_each_entry(q, &sma->pending_alter, list) {
1108 semcnt += check_qop(sma, semnum, q, count_zero);
1110 if (count_zero) {
1111 list_for_each_entry(q, &sma->pending_const, list) {
1112 semcnt += check_qop(sma, semnum, q, count_zero);
1115 return semcnt;
1118 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1119 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1120 * remains locked on exit.
1122 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1124 struct sem_undo *un, *tu;
1125 struct sem_queue *q, *tq;
1126 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1127 int i;
1128 DEFINE_WAKE_Q(wake_q);
1130 /* Free the existing undo structures for this semaphore set. */
1131 ipc_assert_locked_object(&sma->sem_perm);
1132 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1133 list_del(&un->list_id);
1134 spin_lock(&un->ulp->lock);
1135 un->semid = -1;
1136 list_del_rcu(&un->list_proc);
1137 spin_unlock(&un->ulp->lock);
1138 kfree_rcu(un, rcu);
1141 /* Wake up all pending processes and let them fail with EIDRM. */
1142 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1143 unlink_queue(sma, q);
1144 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1147 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1148 unlink_queue(sma, q);
1149 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1151 for (i = 0; i < sma->sem_nsems; i++) {
1152 struct sem *sem = &sma->sems[i];
1153 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1154 unlink_queue(sma, q);
1155 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1157 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1158 unlink_queue(sma, q);
1159 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1161 ipc_update_pid(&sem->sempid, NULL);
1164 /* Remove the semaphore set from the IDR */
1165 sem_rmid(ns, sma);
1166 sem_unlock(sma, -1);
1167 rcu_read_unlock();
1169 wake_up_q(&wake_q);
1170 ns->used_sems -= sma->sem_nsems;
1171 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1174 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1176 switch (version) {
1177 case IPC_64:
1178 return copy_to_user(buf, in, sizeof(*in));
1179 case IPC_OLD:
1181 struct semid_ds out;
1183 memset(&out, 0, sizeof(out));
1185 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1187 out.sem_otime = in->sem_otime;
1188 out.sem_ctime = in->sem_ctime;
1189 out.sem_nsems = in->sem_nsems;
1191 return copy_to_user(buf, &out, sizeof(out));
1193 default:
1194 return -EINVAL;
1198 static time64_t get_semotime(struct sem_array *sma)
1200 int i;
1201 time64_t res;
1203 res = sma->sems[0].sem_otime;
1204 for (i = 1; i < sma->sem_nsems; i++) {
1205 time64_t to = sma->sems[i].sem_otime;
1207 if (to > res)
1208 res = to;
1210 return res;
1213 static int semctl_stat(struct ipc_namespace *ns, int semid,
1214 int cmd, struct semid64_ds *semid64)
1216 struct sem_array *sma;
1217 int id = 0;
1218 int err;
1220 memset(semid64, 0, sizeof(*semid64));
1222 rcu_read_lock();
1223 if (cmd == SEM_STAT) {
1224 sma = sem_obtain_object(ns, semid);
1225 if (IS_ERR(sma)) {
1226 err = PTR_ERR(sma);
1227 goto out_unlock;
1229 id = sma->sem_perm.id;
1230 } else {
1231 sma = sem_obtain_object_check(ns, semid);
1232 if (IS_ERR(sma)) {
1233 err = PTR_ERR(sma);
1234 goto out_unlock;
1238 err = -EACCES;
1239 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1240 goto out_unlock;
1242 err = security_sem_semctl(&sma->sem_perm, cmd);
1243 if (err)
1244 goto out_unlock;
1246 ipc_lock_object(&sma->sem_perm);
1248 if (!ipc_valid_object(&sma->sem_perm)) {
1249 ipc_unlock_object(&sma->sem_perm);
1250 err = -EIDRM;
1251 goto out_unlock;
1254 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1255 semid64->sem_otime = get_semotime(sma);
1256 semid64->sem_ctime = sma->sem_ctime;
1257 semid64->sem_nsems = sma->sem_nsems;
1259 ipc_unlock_object(&sma->sem_perm);
1260 rcu_read_unlock();
1261 return id;
1263 out_unlock:
1264 rcu_read_unlock();
1265 return err;
1268 static int semctl_info(struct ipc_namespace *ns, int semid,
1269 int cmd, void __user *p)
1271 struct seminfo seminfo;
1272 int max_id;
1273 int err;
1275 err = security_sem_semctl(NULL, cmd);
1276 if (err)
1277 return err;
1279 memset(&seminfo, 0, sizeof(seminfo));
1280 seminfo.semmni = ns->sc_semmni;
1281 seminfo.semmns = ns->sc_semmns;
1282 seminfo.semmsl = ns->sc_semmsl;
1283 seminfo.semopm = ns->sc_semopm;
1284 seminfo.semvmx = SEMVMX;
1285 seminfo.semmnu = SEMMNU;
1286 seminfo.semmap = SEMMAP;
1287 seminfo.semume = SEMUME;
1288 down_read(&sem_ids(ns).rwsem);
1289 if (cmd == SEM_INFO) {
1290 seminfo.semusz = sem_ids(ns).in_use;
1291 seminfo.semaem = ns->used_sems;
1292 } else {
1293 seminfo.semusz = SEMUSZ;
1294 seminfo.semaem = SEMAEM;
1296 max_id = ipc_get_maxid(&sem_ids(ns));
1297 up_read(&sem_ids(ns).rwsem);
1298 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1299 return -EFAULT;
1300 return (max_id < 0) ? 0 : max_id;
1303 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1304 int val)
1306 struct sem_undo *un;
1307 struct sem_array *sma;
1308 struct sem *curr;
1309 int err;
1310 DEFINE_WAKE_Q(wake_q);
1312 if (val > SEMVMX || val < 0)
1313 return -ERANGE;
1315 rcu_read_lock();
1316 sma = sem_obtain_object_check(ns, semid);
1317 if (IS_ERR(sma)) {
1318 rcu_read_unlock();
1319 return PTR_ERR(sma);
1322 if (semnum < 0 || semnum >= sma->sem_nsems) {
1323 rcu_read_unlock();
1324 return -EINVAL;
1328 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1329 rcu_read_unlock();
1330 return -EACCES;
1333 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1334 if (err) {
1335 rcu_read_unlock();
1336 return -EACCES;
1339 sem_lock(sma, NULL, -1);
1341 if (!ipc_valid_object(&sma->sem_perm)) {
1342 sem_unlock(sma, -1);
1343 rcu_read_unlock();
1344 return -EIDRM;
1347 curr = &sma->sems[semnum];
1349 ipc_assert_locked_object(&sma->sem_perm);
1350 list_for_each_entry(un, &sma->list_id, list_id)
1351 un->semadj[semnum] = 0;
1353 curr->semval = val;
1354 ipc_update_pid(&curr->sempid, task_tgid(current));
1355 sma->sem_ctime = ktime_get_real_seconds();
1356 /* maybe some queued-up processes were waiting for this */
1357 do_smart_update(sma, NULL, 0, 0, &wake_q);
1358 sem_unlock(sma, -1);
1359 rcu_read_unlock();
1360 wake_up_q(&wake_q);
1361 return 0;
1364 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1365 int cmd, void __user *p)
1367 struct sem_array *sma;
1368 struct sem *curr;
1369 int err, nsems;
1370 ushort fast_sem_io[SEMMSL_FAST];
1371 ushort *sem_io = fast_sem_io;
1372 DEFINE_WAKE_Q(wake_q);
1374 rcu_read_lock();
1375 sma = sem_obtain_object_check(ns, semid);
1376 if (IS_ERR(sma)) {
1377 rcu_read_unlock();
1378 return PTR_ERR(sma);
1381 nsems = sma->sem_nsems;
1383 err = -EACCES;
1384 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1385 goto out_rcu_wakeup;
1387 err = security_sem_semctl(&sma->sem_perm, cmd);
1388 if (err)
1389 goto out_rcu_wakeup;
1391 err = -EACCES;
1392 switch (cmd) {
1393 case GETALL:
1395 ushort __user *array = p;
1396 int i;
1398 sem_lock(sma, NULL, -1);
1399 if (!ipc_valid_object(&sma->sem_perm)) {
1400 err = -EIDRM;
1401 goto out_unlock;
1403 if (nsems > SEMMSL_FAST) {
1404 if (!ipc_rcu_getref(&sma->sem_perm)) {
1405 err = -EIDRM;
1406 goto out_unlock;
1408 sem_unlock(sma, -1);
1409 rcu_read_unlock();
1410 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1411 GFP_KERNEL);
1412 if (sem_io == NULL) {
1413 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1414 return -ENOMEM;
1417 rcu_read_lock();
1418 sem_lock_and_putref(sma);
1419 if (!ipc_valid_object(&sma->sem_perm)) {
1420 err = -EIDRM;
1421 goto out_unlock;
1424 for (i = 0; i < sma->sem_nsems; i++)
1425 sem_io[i] = sma->sems[i].semval;
1426 sem_unlock(sma, -1);
1427 rcu_read_unlock();
1428 err = 0;
1429 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1430 err = -EFAULT;
1431 goto out_free;
1433 case SETALL:
1435 int i;
1436 struct sem_undo *un;
1438 if (!ipc_rcu_getref(&sma->sem_perm)) {
1439 err = -EIDRM;
1440 goto out_rcu_wakeup;
1442 rcu_read_unlock();
1444 if (nsems > SEMMSL_FAST) {
1445 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1446 GFP_KERNEL);
1447 if (sem_io == NULL) {
1448 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1449 return -ENOMEM;
1453 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1454 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1455 err = -EFAULT;
1456 goto out_free;
1459 for (i = 0; i < nsems; i++) {
1460 if (sem_io[i] > SEMVMX) {
1461 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1462 err = -ERANGE;
1463 goto out_free;
1466 rcu_read_lock();
1467 sem_lock_and_putref(sma);
1468 if (!ipc_valid_object(&sma->sem_perm)) {
1469 err = -EIDRM;
1470 goto out_unlock;
1473 for (i = 0; i < nsems; i++) {
1474 sma->sems[i].semval = sem_io[i];
1475 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1478 ipc_assert_locked_object(&sma->sem_perm);
1479 list_for_each_entry(un, &sma->list_id, list_id) {
1480 for (i = 0; i < nsems; i++)
1481 un->semadj[i] = 0;
1483 sma->sem_ctime = ktime_get_real_seconds();
1484 /* maybe some queued-up processes were waiting for this */
1485 do_smart_update(sma, NULL, 0, 0, &wake_q);
1486 err = 0;
1487 goto out_unlock;
1489 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1491 err = -EINVAL;
1492 if (semnum < 0 || semnum >= nsems)
1493 goto out_rcu_wakeup;
1495 sem_lock(sma, NULL, -1);
1496 if (!ipc_valid_object(&sma->sem_perm)) {
1497 err = -EIDRM;
1498 goto out_unlock;
1500 curr = &sma->sems[semnum];
1502 switch (cmd) {
1503 case GETVAL:
1504 err = curr->semval;
1505 goto out_unlock;
1506 case GETPID:
1507 err = pid_vnr(curr->sempid);
1508 goto out_unlock;
1509 case GETNCNT:
1510 err = count_semcnt(sma, semnum, 0);
1511 goto out_unlock;
1512 case GETZCNT:
1513 err = count_semcnt(sma, semnum, 1);
1514 goto out_unlock;
1517 out_unlock:
1518 sem_unlock(sma, -1);
1519 out_rcu_wakeup:
1520 rcu_read_unlock();
1521 wake_up_q(&wake_q);
1522 out_free:
1523 if (sem_io != fast_sem_io)
1524 kvfree(sem_io);
1525 return err;
1528 static inline unsigned long
1529 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1531 switch (version) {
1532 case IPC_64:
1533 if (copy_from_user(out, buf, sizeof(*out)))
1534 return -EFAULT;
1535 return 0;
1536 case IPC_OLD:
1538 struct semid_ds tbuf_old;
1540 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1541 return -EFAULT;
1543 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1544 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1545 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1547 return 0;
1549 default:
1550 return -EINVAL;
1555 * This function handles some semctl commands which require the rwsem
1556 * to be held in write mode.
1557 * NOTE: no locks must be held, the rwsem is taken inside this function.
1559 static int semctl_down(struct ipc_namespace *ns, int semid,
1560 int cmd, struct semid64_ds *semid64)
1562 struct sem_array *sma;
1563 int err;
1564 struct kern_ipc_perm *ipcp;
1566 down_write(&sem_ids(ns).rwsem);
1567 rcu_read_lock();
1569 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1570 &semid64->sem_perm, 0);
1571 if (IS_ERR(ipcp)) {
1572 err = PTR_ERR(ipcp);
1573 goto out_unlock1;
1576 sma = container_of(ipcp, struct sem_array, sem_perm);
1578 err = security_sem_semctl(&sma->sem_perm, cmd);
1579 if (err)
1580 goto out_unlock1;
1582 switch (cmd) {
1583 case IPC_RMID:
1584 sem_lock(sma, NULL, -1);
1585 /* freeary unlocks the ipc object and rcu */
1586 freeary(ns, ipcp);
1587 goto out_up;
1588 case IPC_SET:
1589 sem_lock(sma, NULL, -1);
1590 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1591 if (err)
1592 goto out_unlock0;
1593 sma->sem_ctime = ktime_get_real_seconds();
1594 break;
1595 default:
1596 err = -EINVAL;
1597 goto out_unlock1;
1600 out_unlock0:
1601 sem_unlock(sma, -1);
1602 out_unlock1:
1603 rcu_read_unlock();
1604 out_up:
1605 up_write(&sem_ids(ns).rwsem);
1606 return err;
1609 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1611 int version;
1612 struct ipc_namespace *ns;
1613 void __user *p = (void __user *)arg;
1614 struct semid64_ds semid64;
1615 int err;
1617 if (semid < 0)
1618 return -EINVAL;
1620 version = ipc_parse_version(&cmd);
1621 ns = current->nsproxy->ipc_ns;
1623 switch (cmd) {
1624 case IPC_INFO:
1625 case SEM_INFO:
1626 return semctl_info(ns, semid, cmd, p);
1627 case IPC_STAT:
1628 case SEM_STAT:
1629 err = semctl_stat(ns, semid, cmd, &semid64);
1630 if (err < 0)
1631 return err;
1632 if (copy_semid_to_user(p, &semid64, version))
1633 err = -EFAULT;
1634 return err;
1635 case GETALL:
1636 case GETVAL:
1637 case GETPID:
1638 case GETNCNT:
1639 case GETZCNT:
1640 case SETALL:
1641 return semctl_main(ns, semid, semnum, cmd, p);
1642 case SETVAL: {
1643 int val;
1644 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1645 /* big-endian 64bit */
1646 val = arg >> 32;
1647 #else
1648 /* 32bit or little-endian 64bit */
1649 val = arg;
1650 #endif
1651 return semctl_setval(ns, semid, semnum, val);
1653 case IPC_SET:
1654 if (copy_semid_from_user(&semid64, p, version))
1655 return -EFAULT;
1656 case IPC_RMID:
1657 return semctl_down(ns, semid, cmd, &semid64);
1658 default:
1659 return -EINVAL;
1663 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1665 return ksys_semctl(semid, semnum, cmd, arg);
1668 #ifdef CONFIG_COMPAT
1670 struct compat_semid_ds {
1671 struct compat_ipc_perm sem_perm;
1672 compat_time_t sem_otime;
1673 compat_time_t sem_ctime;
1674 compat_uptr_t sem_base;
1675 compat_uptr_t sem_pending;
1676 compat_uptr_t sem_pending_last;
1677 compat_uptr_t undo;
1678 unsigned short sem_nsems;
1681 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1682 int version)
1684 memset(out, 0, sizeof(*out));
1685 if (version == IPC_64) {
1686 struct compat_semid64_ds __user *p = buf;
1687 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1688 } else {
1689 struct compat_semid_ds __user *p = buf;
1690 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1694 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1695 int version)
1697 if (version == IPC_64) {
1698 struct compat_semid64_ds v;
1699 memset(&v, 0, sizeof(v));
1700 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1701 v.sem_otime = in->sem_otime;
1702 v.sem_ctime = in->sem_ctime;
1703 v.sem_nsems = in->sem_nsems;
1704 return copy_to_user(buf, &v, sizeof(v));
1705 } else {
1706 struct compat_semid_ds v;
1707 memset(&v, 0, sizeof(v));
1708 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1709 v.sem_otime = in->sem_otime;
1710 v.sem_ctime = in->sem_ctime;
1711 v.sem_nsems = in->sem_nsems;
1712 return copy_to_user(buf, &v, sizeof(v));
1716 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1718 void __user *p = compat_ptr(arg);
1719 struct ipc_namespace *ns;
1720 struct semid64_ds semid64;
1721 int version = compat_ipc_parse_version(&cmd);
1722 int err;
1724 ns = current->nsproxy->ipc_ns;
1726 if (semid < 0)
1727 return -EINVAL;
1729 switch (cmd & (~IPC_64)) {
1730 case IPC_INFO:
1731 case SEM_INFO:
1732 return semctl_info(ns, semid, cmd, p);
1733 case IPC_STAT:
1734 case SEM_STAT:
1735 err = semctl_stat(ns, semid, cmd, &semid64);
1736 if (err < 0)
1737 return err;
1738 if (copy_compat_semid_to_user(p, &semid64, version))
1739 err = -EFAULT;
1740 return err;
1741 case GETVAL:
1742 case GETPID:
1743 case GETNCNT:
1744 case GETZCNT:
1745 case GETALL:
1746 case SETALL:
1747 return semctl_main(ns, semid, semnum, cmd, p);
1748 case SETVAL:
1749 return semctl_setval(ns, semid, semnum, arg);
1750 case IPC_SET:
1751 if (copy_compat_semid_from_user(&semid64, p, version))
1752 return -EFAULT;
1753 /* fallthru */
1754 case IPC_RMID:
1755 return semctl_down(ns, semid, cmd, &semid64);
1756 default:
1757 return -EINVAL;
1761 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1763 return compat_ksys_semctl(semid, semnum, cmd, arg);
1765 #endif
1767 /* If the task doesn't already have a undo_list, then allocate one
1768 * here. We guarantee there is only one thread using this undo list,
1769 * and current is THE ONE
1771 * If this allocation and assignment succeeds, but later
1772 * portions of this code fail, there is no need to free the sem_undo_list.
1773 * Just let it stay associated with the task, and it'll be freed later
1774 * at exit time.
1776 * This can block, so callers must hold no locks.
1778 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1780 struct sem_undo_list *undo_list;
1782 undo_list = current->sysvsem.undo_list;
1783 if (!undo_list) {
1784 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1785 if (undo_list == NULL)
1786 return -ENOMEM;
1787 spin_lock_init(&undo_list->lock);
1788 refcount_set(&undo_list->refcnt, 1);
1789 INIT_LIST_HEAD(&undo_list->list_proc);
1791 current->sysvsem.undo_list = undo_list;
1793 *undo_listp = undo_list;
1794 return 0;
1797 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1799 struct sem_undo *un;
1801 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1802 if (un->semid == semid)
1803 return un;
1805 return NULL;
1808 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1810 struct sem_undo *un;
1812 assert_spin_locked(&ulp->lock);
1814 un = __lookup_undo(ulp, semid);
1815 if (un) {
1816 list_del_rcu(&un->list_proc);
1817 list_add_rcu(&un->list_proc, &ulp->list_proc);
1819 return un;
1823 * find_alloc_undo - lookup (and if not present create) undo array
1824 * @ns: namespace
1825 * @semid: semaphore array id
1827 * The function looks up (and if not present creates) the undo structure.
1828 * The size of the undo structure depends on the size of the semaphore
1829 * array, thus the alloc path is not that straightforward.
1830 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1831 * performs a rcu_read_lock().
1833 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1835 struct sem_array *sma;
1836 struct sem_undo_list *ulp;
1837 struct sem_undo *un, *new;
1838 int nsems, error;
1840 error = get_undo_list(&ulp);
1841 if (error)
1842 return ERR_PTR(error);
1844 rcu_read_lock();
1845 spin_lock(&ulp->lock);
1846 un = lookup_undo(ulp, semid);
1847 spin_unlock(&ulp->lock);
1848 if (likely(un != NULL))
1849 goto out;
1851 /* no undo structure around - allocate one. */
1852 /* step 1: figure out the size of the semaphore array */
1853 sma = sem_obtain_object_check(ns, semid);
1854 if (IS_ERR(sma)) {
1855 rcu_read_unlock();
1856 return ERR_CAST(sma);
1859 nsems = sma->sem_nsems;
1860 if (!ipc_rcu_getref(&sma->sem_perm)) {
1861 rcu_read_unlock();
1862 un = ERR_PTR(-EIDRM);
1863 goto out;
1865 rcu_read_unlock();
1867 /* step 2: allocate new undo structure */
1868 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1869 if (!new) {
1870 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1871 return ERR_PTR(-ENOMEM);
1874 /* step 3: Acquire the lock on semaphore array */
1875 rcu_read_lock();
1876 sem_lock_and_putref(sma);
1877 if (!ipc_valid_object(&sma->sem_perm)) {
1878 sem_unlock(sma, -1);
1879 rcu_read_unlock();
1880 kfree(new);
1881 un = ERR_PTR(-EIDRM);
1882 goto out;
1884 spin_lock(&ulp->lock);
1887 * step 4: check for races: did someone else allocate the undo struct?
1889 un = lookup_undo(ulp, semid);
1890 if (un) {
1891 kfree(new);
1892 goto success;
1894 /* step 5: initialize & link new undo structure */
1895 new->semadj = (short *) &new[1];
1896 new->ulp = ulp;
1897 new->semid = semid;
1898 assert_spin_locked(&ulp->lock);
1899 list_add_rcu(&new->list_proc, &ulp->list_proc);
1900 ipc_assert_locked_object(&sma->sem_perm);
1901 list_add(&new->list_id, &sma->list_id);
1902 un = new;
1904 success:
1905 spin_unlock(&ulp->lock);
1906 sem_unlock(sma, -1);
1907 out:
1908 return un;
1911 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1912 unsigned nsops, const struct timespec64 *timeout)
1914 int error = -EINVAL;
1915 struct sem_array *sma;
1916 struct sembuf fast_sops[SEMOPM_FAST];
1917 struct sembuf *sops = fast_sops, *sop;
1918 struct sem_undo *un;
1919 int max, locknum;
1920 bool undos = false, alter = false, dupsop = false;
1921 struct sem_queue queue;
1922 unsigned long dup = 0, jiffies_left = 0;
1923 struct ipc_namespace *ns;
1925 ns = current->nsproxy->ipc_ns;
1927 if (nsops < 1 || semid < 0)
1928 return -EINVAL;
1929 if (nsops > ns->sc_semopm)
1930 return -E2BIG;
1931 if (nsops > SEMOPM_FAST) {
1932 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1933 if (sops == NULL)
1934 return -ENOMEM;
1937 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1938 error = -EFAULT;
1939 goto out_free;
1942 if (timeout) {
1943 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1944 timeout->tv_nsec >= 1000000000L) {
1945 error = -EINVAL;
1946 goto out_free;
1948 jiffies_left = timespec64_to_jiffies(timeout);
1951 max = 0;
1952 for (sop = sops; sop < sops + nsops; sop++) {
1953 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1955 if (sop->sem_num >= max)
1956 max = sop->sem_num;
1957 if (sop->sem_flg & SEM_UNDO)
1958 undos = true;
1959 if (dup & mask) {
1961 * There was a previous alter access that appears
1962 * to have accessed the same semaphore, thus use
1963 * the dupsop logic. "appears", because the detection
1964 * can only check % BITS_PER_LONG.
1966 dupsop = true;
1968 if (sop->sem_op != 0) {
1969 alter = true;
1970 dup |= mask;
1974 if (undos) {
1975 /* On success, find_alloc_undo takes the rcu_read_lock */
1976 un = find_alloc_undo(ns, semid);
1977 if (IS_ERR(un)) {
1978 error = PTR_ERR(un);
1979 goto out_free;
1981 } else {
1982 un = NULL;
1983 rcu_read_lock();
1986 sma = sem_obtain_object_check(ns, semid);
1987 if (IS_ERR(sma)) {
1988 rcu_read_unlock();
1989 error = PTR_ERR(sma);
1990 goto out_free;
1993 error = -EFBIG;
1994 if (max >= sma->sem_nsems) {
1995 rcu_read_unlock();
1996 goto out_free;
1999 error = -EACCES;
2000 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2001 rcu_read_unlock();
2002 goto out_free;
2005 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2006 if (error) {
2007 rcu_read_unlock();
2008 goto out_free;
2011 error = -EIDRM;
2012 locknum = sem_lock(sma, sops, nsops);
2014 * We eventually might perform the following check in a lockless
2015 * fashion, considering ipc_valid_object() locking constraints.
2016 * If nsops == 1 and there is no contention for sem_perm.lock, then
2017 * only a per-semaphore lock is held and it's OK to proceed with the
2018 * check below. More details on the fine grained locking scheme
2019 * entangled here and why it's RMID race safe on comments at sem_lock()
2021 if (!ipc_valid_object(&sma->sem_perm))
2022 goto out_unlock_free;
2024 * semid identifiers are not unique - find_alloc_undo may have
2025 * allocated an undo structure, it was invalidated by an RMID
2026 * and now a new array with received the same id. Check and fail.
2027 * This case can be detected checking un->semid. The existence of
2028 * "un" itself is guaranteed by rcu.
2030 if (un && un->semid == -1)
2031 goto out_unlock_free;
2033 queue.sops = sops;
2034 queue.nsops = nsops;
2035 queue.undo = un;
2036 queue.pid = task_tgid(current);
2037 queue.alter = alter;
2038 queue.dupsop = dupsop;
2040 error = perform_atomic_semop(sma, &queue);
2041 if (error == 0) { /* non-blocking succesfull path */
2042 DEFINE_WAKE_Q(wake_q);
2045 * If the operation was successful, then do
2046 * the required updates.
2048 if (alter)
2049 do_smart_update(sma, sops, nsops, 1, &wake_q);
2050 else
2051 set_semotime(sma, sops);
2053 sem_unlock(sma, locknum);
2054 rcu_read_unlock();
2055 wake_up_q(&wake_q);
2057 goto out_free;
2059 if (error < 0) /* non-blocking error path */
2060 goto out_unlock_free;
2063 * We need to sleep on this operation, so we put the current
2064 * task into the pending queue and go to sleep.
2066 if (nsops == 1) {
2067 struct sem *curr;
2068 curr = &sma->sems[sops->sem_num];
2070 if (alter) {
2071 if (sma->complex_count) {
2072 list_add_tail(&queue.list,
2073 &sma->pending_alter);
2074 } else {
2076 list_add_tail(&queue.list,
2077 &curr->pending_alter);
2079 } else {
2080 list_add_tail(&queue.list, &curr->pending_const);
2082 } else {
2083 if (!sma->complex_count)
2084 merge_queues(sma);
2086 if (alter)
2087 list_add_tail(&queue.list, &sma->pending_alter);
2088 else
2089 list_add_tail(&queue.list, &sma->pending_const);
2091 sma->complex_count++;
2094 do {
2095 queue.status = -EINTR;
2096 queue.sleeper = current;
2098 __set_current_state(TASK_INTERRUPTIBLE);
2099 sem_unlock(sma, locknum);
2100 rcu_read_unlock();
2102 if (timeout)
2103 jiffies_left = schedule_timeout(jiffies_left);
2104 else
2105 schedule();
2108 * fastpath: the semop has completed, either successfully or
2109 * not, from the syscall pov, is quite irrelevant to us at this
2110 * point; we're done.
2112 * We _do_ care, nonetheless, about being awoken by a signal or
2113 * spuriously. The queue.status is checked again in the
2114 * slowpath (aka after taking sem_lock), such that we can detect
2115 * scenarios where we were awakened externally, during the
2116 * window between wake_q_add() and wake_up_q().
2118 error = READ_ONCE(queue.status);
2119 if (error != -EINTR) {
2121 * User space could assume that semop() is a memory
2122 * barrier: Without the mb(), the cpu could
2123 * speculatively read in userspace stale data that was
2124 * overwritten by the previous owner of the semaphore.
2126 smp_mb();
2127 goto out_free;
2130 rcu_read_lock();
2131 locknum = sem_lock(sma, sops, nsops);
2133 if (!ipc_valid_object(&sma->sem_perm))
2134 goto out_unlock_free;
2136 error = READ_ONCE(queue.status);
2139 * If queue.status != -EINTR we are woken up by another process.
2140 * Leave without unlink_queue(), but with sem_unlock().
2142 if (error != -EINTR)
2143 goto out_unlock_free;
2146 * If an interrupt occurred we have to clean up the queue.
2148 if (timeout && jiffies_left == 0)
2149 error = -EAGAIN;
2150 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2152 unlink_queue(sma, &queue);
2154 out_unlock_free:
2155 sem_unlock(sma, locknum);
2156 rcu_read_unlock();
2157 out_free:
2158 if (sops != fast_sops)
2159 kvfree(sops);
2160 return error;
2163 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2164 unsigned int nsops, const struct timespec __user *timeout)
2166 if (timeout) {
2167 struct timespec64 ts;
2168 if (get_timespec64(&ts, timeout))
2169 return -EFAULT;
2170 return do_semtimedop(semid, tsops, nsops, &ts);
2172 return do_semtimedop(semid, tsops, nsops, NULL);
2175 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2176 unsigned int, nsops, const struct timespec __user *, timeout)
2178 return ksys_semtimedop(semid, tsops, nsops, timeout);
2181 #ifdef CONFIG_COMPAT
2182 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2183 unsigned int nsops,
2184 const struct compat_timespec __user *timeout)
2186 if (timeout) {
2187 struct timespec64 ts;
2188 if (compat_get_timespec64(&ts, timeout))
2189 return -EFAULT;
2190 return do_semtimedop(semid, tsems, nsops, &ts);
2192 return do_semtimedop(semid, tsems, nsops, NULL);
2195 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2196 unsigned int, nsops,
2197 const struct compat_timespec __user *, timeout)
2199 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2201 #endif
2203 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2204 unsigned, nsops)
2206 return do_semtimedop(semid, tsops, nsops, NULL);
2209 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2210 * parent and child tasks.
2213 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2215 struct sem_undo_list *undo_list;
2216 int error;
2218 if (clone_flags & CLONE_SYSVSEM) {
2219 error = get_undo_list(&undo_list);
2220 if (error)
2221 return error;
2222 refcount_inc(&undo_list->refcnt);
2223 tsk->sysvsem.undo_list = undo_list;
2224 } else
2225 tsk->sysvsem.undo_list = NULL;
2227 return 0;
2231 * add semadj values to semaphores, free undo structures.
2232 * undo structures are not freed when semaphore arrays are destroyed
2233 * so some of them may be out of date.
2234 * IMPLEMENTATION NOTE: There is some confusion over whether the
2235 * set of adjustments that needs to be done should be done in an atomic
2236 * manner or not. That is, if we are attempting to decrement the semval
2237 * should we queue up and wait until we can do so legally?
2238 * The original implementation attempted to do this (queue and wait).
2239 * The current implementation does not do so. The POSIX standard
2240 * and SVID should be consulted to determine what behavior is mandated.
2242 void exit_sem(struct task_struct *tsk)
2244 struct sem_undo_list *ulp;
2246 ulp = tsk->sysvsem.undo_list;
2247 if (!ulp)
2248 return;
2249 tsk->sysvsem.undo_list = NULL;
2251 if (!refcount_dec_and_test(&ulp->refcnt))
2252 return;
2254 for (;;) {
2255 struct sem_array *sma;
2256 struct sem_undo *un;
2257 int semid, i;
2258 DEFINE_WAKE_Q(wake_q);
2260 cond_resched();
2262 rcu_read_lock();
2263 un = list_entry_rcu(ulp->list_proc.next,
2264 struct sem_undo, list_proc);
2265 if (&un->list_proc == &ulp->list_proc) {
2267 * We must wait for freeary() before freeing this ulp,
2268 * in case we raced with last sem_undo. There is a small
2269 * possibility where we exit while freeary() didn't
2270 * finish unlocking sem_undo_list.
2272 spin_lock(&ulp->lock);
2273 spin_unlock(&ulp->lock);
2274 rcu_read_unlock();
2275 break;
2277 spin_lock(&ulp->lock);
2278 semid = un->semid;
2279 spin_unlock(&ulp->lock);
2281 /* exit_sem raced with IPC_RMID, nothing to do */
2282 if (semid == -1) {
2283 rcu_read_unlock();
2284 continue;
2287 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2288 /* exit_sem raced with IPC_RMID, nothing to do */
2289 if (IS_ERR(sma)) {
2290 rcu_read_unlock();
2291 continue;
2294 sem_lock(sma, NULL, -1);
2295 /* exit_sem raced with IPC_RMID, nothing to do */
2296 if (!ipc_valid_object(&sma->sem_perm)) {
2297 sem_unlock(sma, -1);
2298 rcu_read_unlock();
2299 continue;
2301 un = __lookup_undo(ulp, semid);
2302 if (un == NULL) {
2303 /* exit_sem raced with IPC_RMID+semget() that created
2304 * exactly the same semid. Nothing to do.
2306 sem_unlock(sma, -1);
2307 rcu_read_unlock();
2308 continue;
2311 /* remove un from the linked lists */
2312 ipc_assert_locked_object(&sma->sem_perm);
2313 list_del(&un->list_id);
2315 /* we are the last process using this ulp, acquiring ulp->lock
2316 * isn't required. Besides that, we are also protected against
2317 * IPC_RMID as we hold sma->sem_perm lock now
2319 list_del_rcu(&un->list_proc);
2321 /* perform adjustments registered in un */
2322 for (i = 0; i < sma->sem_nsems; i++) {
2323 struct sem *semaphore = &sma->sems[i];
2324 if (un->semadj[i]) {
2325 semaphore->semval += un->semadj[i];
2327 * Range checks of the new semaphore value,
2328 * not defined by sus:
2329 * - Some unices ignore the undo entirely
2330 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2331 * - some cap the value (e.g. FreeBSD caps
2332 * at 0, but doesn't enforce SEMVMX)
2334 * Linux caps the semaphore value, both at 0
2335 * and at SEMVMX.
2337 * Manfred <manfred@colorfullife.com>
2339 if (semaphore->semval < 0)
2340 semaphore->semval = 0;
2341 if (semaphore->semval > SEMVMX)
2342 semaphore->semval = SEMVMX;
2343 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2346 /* maybe some queued-up processes were waiting for this */
2347 do_smart_update(sma, NULL, 0, 1, &wake_q);
2348 sem_unlock(sma, -1);
2349 rcu_read_unlock();
2350 wake_up_q(&wake_q);
2352 kfree_rcu(un, rcu);
2354 kfree(ulp);
2357 #ifdef CONFIG_PROC_FS
2358 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2360 struct user_namespace *user_ns = seq_user_ns(s);
2361 struct kern_ipc_perm *ipcp = it;
2362 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2363 time64_t sem_otime;
2366 * The proc interface isn't aware of sem_lock(), it calls
2367 * ipc_lock_object() directly (in sysvipc_find_ipc).
2368 * In order to stay compatible with sem_lock(), we must
2369 * enter / leave complex_mode.
2371 complexmode_enter(sma);
2373 sem_otime = get_semotime(sma);
2375 seq_printf(s,
2376 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2377 sma->sem_perm.key,
2378 sma->sem_perm.id,
2379 sma->sem_perm.mode,
2380 sma->sem_nsems,
2381 from_kuid_munged(user_ns, sma->sem_perm.uid),
2382 from_kgid_munged(user_ns, sma->sem_perm.gid),
2383 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2384 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2385 sem_otime,
2386 sma->sem_ctime);
2388 complexmode_tryleave(sma);
2390 return 0;
2392 #endif