2 * AppliedMicro X-Gene Multi-purpose PHY driver
4 * Copyright (c) 2014, Applied Micro Circuits Corporation
5 * Author: Loc Ho <lho@apm.com>
6 * Tuan Phan <tphan@apm.com>
7 * Suman Tripathi <stripathi@apm.com>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
23 * The first PLL clock macro is used for internal reference clock. The second
24 * PLL clock macro is used to generate the clock for the PHY. This driver
25 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
26 * operate according to the mode of operation. The first PLL CMU is only
27 * required if internal clock is enabled.
29 * Logical Layer Out Of HW module units:
32 * | Internal | |------|
33 * | Ref PLL CMU |----| | ------------- ---------
34 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
36 * External Clock ------| | -------------
39 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
40 * indirectly from the SDS offset at 0x2000. It is only required for
41 * internal reference clock.
42 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
43 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
45 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
46 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
47 * it is located outside the PHY IP. This is the case for the PHY located
48 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
49 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
51 * Currently, this driver only supports Gen3 SATA mode with external clock.
53 #include <linux/module.h>
54 #include <linux/platform_device.h>
56 #include <linux/delay.h>
57 #include <linux/phy/phy.h>
58 #include <linux/clk.h>
60 /* Max 2 lanes per a PHY unit */
63 /* Register offset inside the PHY */
64 #define SERDES_PLL_INDIRECT_OFFSET 0x0000
65 #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
66 #define SERDES_INDIRECT_OFFSET 0x0400
67 #define SERDES_LANE_STRIDE 0x0200
69 /* Some default Serdes parameters */
70 #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
71 #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
72 #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
73 #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
74 #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
75 #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
76 #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
77 #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
79 #define SATA_SPD_SEL_GEN3 0x7
80 #define SATA_SPD_SEL_GEN2 0x3
81 #define SATA_SPD_SEL_GEN1 0x1
86 #define FBDIV_VAL_50M 0x77
87 #define REFDIV_VAL_50M 0x1
88 #define FBDIV_VAL_100M 0x3B
89 #define REFDIV_VAL_100M 0x0
91 /* SATA Clock/Reset CSR */
92 #define SATACLKENREG 0x00000000
93 #define SATA0_CORE_CLKEN 0x00000002
94 #define SATA1_CORE_CLKEN 0x00000004
95 #define SATASRESETREG 0x00000004
96 #define SATA_MEM_RESET_MASK 0x00000020
97 #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
98 #define SATA_SDS_RESET_MASK 0x00000004
99 #define SATA_CSR_RESET_MASK 0x00000001
100 #define SATA_CORE_RESET_MASK 0x00000002
101 #define SATA_PMCLK_RESET_MASK 0x00000010
102 #define SATA_PCLK_RESET_MASK 0x00000008
104 /* SDS CSR used for PHY Indirect access */
105 #define SATA_ENET_SDS_PCS_CTL0 0x00000000
106 #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
107 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
108 #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
109 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
110 #define SATA_ENET_SDS_CTL0 0x0000000c
111 #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
112 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
113 #define SATA_ENET_SDS_CTL1 0x00000010
114 #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
115 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
116 #define SATA_ENET_SDS_RST_CTL 0x00000024
117 #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
118 #define CFG_IND_WR_CMD_MASK 0x00000001
119 #define CFG_IND_RD_CMD_MASK 0x00000002
120 #define CFG_IND_CMD_DONE_MASK 0x00000004
121 #define CFG_IND_ADDR_SET(dst, src) \
122 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
123 #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
124 #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
125 #define SATA_ENET_CLK_MACRO_REG 0x0000004c
126 #define I_RESET_B_SET(dst, src) \
127 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
128 #define I_PLL_FBDIV_SET(dst, src) \
129 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
130 #define I_CUSTOMEROV_SET(dst, src) \
131 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
132 #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
133 #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
135 /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
136 #define CMU_REG0 0x00000
137 #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
138 #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
139 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
140 #define CMU_REG0_PDOWN_MASK 0x00004000
141 #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
142 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
143 #define CMU_REG1 0x00002
144 #define CMU_REG1_PLL_CP_SET(dst, src) \
145 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
146 #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
147 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
148 #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
149 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
150 #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
151 #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
152 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
153 #define CMU_REG2 0x00004
154 #define CMU_REG2_PLL_REFDIV_SET(dst, src) \
155 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
156 #define CMU_REG2_PLL_LFRES_SET(dst, src) \
157 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
158 #define CMU_REG2_PLL_FBDIV_SET(dst, src) \
159 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
160 #define CMU_REG3 0x00006
161 #define CMU_REG3_VCOVARSEL_SET(dst, src) \
162 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
163 #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
164 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
165 #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
166 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
167 #define CMU_REG4 0x00008
168 #define CMU_REG5 0x0000a
169 #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
170 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
171 #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
172 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
173 #define CMU_REG5_PLL_LFCAP_SET(dst, src) \
174 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
175 #define CMU_REG5_PLL_RESETB_MASK 0x00000001
176 #define CMU_REG6 0x0000c
177 #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
178 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
179 #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
180 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
181 #define CMU_REG7 0x0000e
182 #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
183 #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
184 #define CMU_REG8 0x00010
185 #define CMU_REG9 0x00012
186 #define CMU_REG9_WORD_LEN_8BIT 0x000
187 #define CMU_REG9_WORD_LEN_10BIT 0x001
188 #define CMU_REG9_WORD_LEN_16BIT 0x002
189 #define CMU_REG9_WORD_LEN_20BIT 0x003
190 #define CMU_REG9_WORD_LEN_32BIT 0x004
191 #define CMU_REG9_WORD_LEN_40BIT 0x005
192 #define CMU_REG9_WORD_LEN_64BIT 0x006
193 #define CMU_REG9_WORD_LEN_66BIT 0x007
194 #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
195 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
196 #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
197 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
198 #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
199 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
200 #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
201 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
202 #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
203 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
204 #define CMU_REG10 0x00014
205 #define CMU_REG10_VREG_REFSEL_SET(dst, src) \
206 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
207 #define CMU_REG11 0x00016
208 #define CMU_REG12 0x00018
209 #define CMU_REG12_STATE_DELAY9_SET(dst, src) \
210 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
211 #define CMU_REG13 0x0001a
212 #define CMU_REG14 0x0001c
213 #define CMU_REG15 0x0001e
214 #define CMU_REG16 0x00020
215 #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
216 #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
217 #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
218 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
219 #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
220 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
221 #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
222 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
223 #define CMU_REG17 0x00022
224 #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
225 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
226 #define CMU_REG17_RESERVED_7_SET(dst, src) \
227 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
228 #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
229 #define CMU_REG18 0x00024
230 #define CMU_REG19 0x00026
231 #define CMU_REG20 0x00028
232 #define CMU_REG21 0x0002a
233 #define CMU_REG22 0x0002c
234 #define CMU_REG23 0x0002e
235 #define CMU_REG24 0x00030
236 #define CMU_REG25 0x00032
237 #define CMU_REG26 0x00034
238 #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
239 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
240 #define CMU_REG27 0x00036
241 #define CMU_REG28 0x00038
242 #define CMU_REG29 0x0003a
243 #define CMU_REG30 0x0003c
244 #define CMU_REG30_LOCK_COUNT_SET(dst, src) \
245 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
246 #define CMU_REG30_PCIE_MODE_SET(dst, src) \
247 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
248 #define CMU_REG31 0x0003e
249 #define CMU_REG32 0x00040
250 #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
251 #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
252 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
253 #define CMU_REG32_IREF_ADJ_SET(dst, src) \
254 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
255 #define CMU_REG33 0x00042
256 #define CMU_REG34 0x00044
257 #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
258 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
259 #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
260 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
261 #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
262 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
263 #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
264 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
265 #define CMU_REG35 0x00046
266 #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
267 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
268 #define CMU_REG36 0x00048
269 #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
270 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
271 #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
272 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
273 #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
274 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
275 #define CMU_REG37 0x0004a
276 #define CMU_REG38 0x0004c
277 #define CMU_REG39 0x0004e
279 /* PHY lane CSR accessing from SDS indirectly */
280 #define RXTX_REG0 0x000
281 #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
282 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
283 #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
284 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
285 #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
286 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
287 #define RXTX_REG1 0x002
288 #define RXTX_REG1_RXACVCM_SET(dst, src) \
289 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
290 #define RXTX_REG1_CTLE_EQ_SET(dst, src) \
291 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
292 #define RXTX_REG1_RXVREG1_SET(dst, src) \
293 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
294 #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
295 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
296 #define RXTX_REG2 0x004
297 #define RXTX_REG2_VTT_ENA_SET(dst, src) \
298 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
299 #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
300 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
301 #define RXTX_REG2_VTT_SEL_SET(dst, src) \
302 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
303 #define RXTX_REG4 0x008
304 #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
305 #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
306 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
307 #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
308 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
309 #define RXTX_REG5 0x00a
310 #define RXTX_REG5_TX_CN1_SET(dst, src) \
311 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
312 #define RXTX_REG5_TX_CP1_SET(dst, src) \
313 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
314 #define RXTX_REG5_TX_CN2_SET(dst, src) \
315 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
316 #define RXTX_REG6 0x00c
317 #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
318 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
319 #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
320 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
321 #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
322 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
323 #define RXTX_REG6_TX_IDLE_SET(dst, src) \
324 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
325 #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
326 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
327 #define RXTX_REG7 0x00e
328 #define RXTX_REG7_RESETB_RXD_MASK 0x00000100
329 #define RXTX_REG7_RESETB_RXA_MASK 0x00000080
330 #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
331 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
332 #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
333 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
334 #define RXTX_REG8 0x010
335 #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
336 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
337 #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
338 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
339 #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
340 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
341 #define RXTX_REG8_SD_VREF_SET(dst, src) \
342 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
343 #define RXTX_REG8_SD_DISABLE_SET(dst, src) \
344 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
345 #define RXTX_REG7 0x00e
346 #define RXTX_REG7_RESETB_RXD_SET(dst, src) \
347 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
348 #define RXTX_REG7_RESETB_RXA_SET(dst, src) \
349 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
350 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
351 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
352 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
353 #define RXTX_REG11 0x016
354 #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
355 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
356 #define RXTX_REG12 0x018
357 #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
358 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
359 #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
360 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
361 #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
362 #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
363 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
364 #define RXTX_REG13 0x01a
365 #define RXTX_REG14 0x01c
366 #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
367 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
368 #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
369 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
370 #define RXTX_REG26 0x034
371 #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
372 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
373 #define RXTX_REG26_BLWC_ENA_SET(dst, src) \
374 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
375 #define RXTX_REG21 0x02a
376 #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
377 #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
378 #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
379 #define RXTX_REG22 0x02c
380 #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
381 #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
382 #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
383 #define RXTX_REG23 0x02e
384 #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
385 #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
386 #define RXTX_REG24 0x030
387 #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
388 #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
389 #define RXTX_REG27 0x036
390 #define RXTX_REG28 0x038
391 #define RXTX_REG31 0x03e
392 #define RXTX_REG38 0x04c
393 #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
394 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
395 #define RXTX_REG39 0x04e
396 #define RXTX_REG40 0x050
397 #define RXTX_REG41 0x052
398 #define RXTX_REG42 0x054
399 #define RXTX_REG43 0x056
400 #define RXTX_REG44 0x058
401 #define RXTX_REG45 0x05a
402 #define RXTX_REG46 0x05c
403 #define RXTX_REG47 0x05e
404 #define RXTX_REG48 0x060
405 #define RXTX_REG49 0x062
406 #define RXTX_REG50 0x064
407 #define RXTX_REG51 0x066
408 #define RXTX_REG52 0x068
409 #define RXTX_REG53 0x06a
410 #define RXTX_REG54 0x06c
411 #define RXTX_REG55 0x06e
412 #define RXTX_REG61 0x07a
413 #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
414 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
415 #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
416 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
417 #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
418 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
419 #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
420 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
421 #define RXTX_REG62 0x07c
422 #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
423 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
424 #define RXTX_REG81 0x0a2
425 #define RXTX_REG89_MU_TH7_SET(dst, src) \
426 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
427 #define RXTX_REG89_MU_TH8_SET(dst, src) \
428 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
429 #define RXTX_REG89_MU_TH9_SET(dst, src) \
430 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
431 #define RXTX_REG96 0x0c0
432 #define RXTX_REG96_MU_FREQ1_SET(dst, src) \
433 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
434 #define RXTX_REG96_MU_FREQ2_SET(dst, src) \
435 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
436 #define RXTX_REG96_MU_FREQ3_SET(dst, src) \
437 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
438 #define RXTX_REG99 0x0c6
439 #define RXTX_REG99_MU_PHASE1_SET(dst, src) \
440 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
441 #define RXTX_REG99_MU_PHASE2_SET(dst, src) \
442 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
443 #define RXTX_REG99_MU_PHASE3_SET(dst, src) \
444 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
445 #define RXTX_REG102 0x0cc
446 #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
447 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
448 #define RXTX_REG114 0x0e4
449 #define RXTX_REG121 0x0f2
450 #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
451 #define RXTX_REG125 0x0fa
452 #define RXTX_REG125_PQ_REG_SET(dst, src) \
453 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
454 #define RXTX_REG125_SIGN_PQ_SET(dst, src) \
455 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
456 #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
457 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
458 #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
459 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
460 #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
461 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
462 #define RXTX_REG127 0x0fe
463 #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
464 #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
465 #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
466 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
467 #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
468 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
469 #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
470 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
471 #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
472 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473 #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
474 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475 #define RXTX_REG128 0x100
476 #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
477 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
478 #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
479 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
480 #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
481 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
482 #define RXTX_REG129 0x102
483 #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
484 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
485 #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
486 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
487 #define RXTX_REG130 0x104
488 #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
489 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
490 #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
491 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
492 #define RXTX_REG145 0x122
493 #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
494 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
495 #define RXTX_REG145_RXES_ENA_SET(dst, src) \
496 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
497 #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
498 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
499 #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
500 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
501 #define RXTX_REG147 0x126
502 #define RXTX_REG148 0x128
504 /* Clock macro type */
506 REF_CMU
= 0, /* Clock macro is the internal reference clock */
507 PHY_CMU
= 1, /* Clock macro is the PLL for the Serdes */
511 MUX_SELECT_ATA
= 0, /* Switch the MUX to ATA */
512 MUX_SELECT_SGMMII
= 0, /* Switch the MUX to SGMII */
516 CLK_EXT_DIFF
= 0, /* External differential */
517 CLK_INT_DIFF
= 1, /* Internal differential */
518 CLK_INT_SING
= 2, /* Internal single ended */
522 MODE_SATA
= 0, /* List them for simple reference */
530 struct xgene_sata_override_param
{
531 u32 speed
[MAX_LANE
]; /* Index for override parameter per lane */
532 u32 txspeed
[3]; /* Tx speed */
533 u32 txboostgain
[MAX_LANE
*3]; /* Tx freq boost and gain control */
534 u32 txeyetuning
[MAX_LANE
*3]; /* Tx eye tuning */
535 u32 txeyedirection
[MAX_LANE
*3]; /* Tx eye tuning direction */
536 u32 txamplitude
[MAX_LANE
*3]; /* Tx amplitude control */
537 u32 txprecursor_cn1
[MAX_LANE
*3]; /* Tx emphasis taps 1st pre-cursor */
538 u32 txprecursor_cn2
[MAX_LANE
*3]; /* Tx emphasis taps 2nd pre-cursor */
539 u32 txpostcursor_cp1
[MAX_LANE
*3]; /* Tx emphasis taps post-cursor */
542 struct xgene_phy_ctx
{
545 enum phy_mode mode
; /* Mode of operation */
546 enum clk_type_t clk_type
; /* Input clock selection */
547 void __iomem
*sds_base
; /* PHY CSR base addr */
548 struct clk
*clk
; /* Optional clock */
550 /* Override Serdes parameters */
551 struct xgene_sata_override_param sata_param
;
555 * For chip earlier than A3 version, enable this flag.
556 * To enable, pass boot argument phy_xgene.preA3Chip=1
558 static int preA3Chip
;
559 MODULE_PARM_DESC(preA3Chip
, "Enable pre-A3 chip support (1=enable 0=disable)");
560 module_param_named(preA3Chip
, preA3Chip
, int, 0444);
562 static void sds_wr(void __iomem
*csr_base
, u32 indirect_cmd_reg
,
563 u32 indirect_data_reg
, u32 addr
, u32 data
)
565 unsigned long deadline
= jiffies
+ HZ
;
569 cmd
= CFG_IND_WR_CMD_MASK
| CFG_IND_CMD_DONE_MASK
;
570 cmd
= CFG_IND_ADDR_SET(cmd
, addr
);
571 writel(data
, csr_base
+ indirect_data_reg
);
572 readl(csr_base
+ indirect_data_reg
); /* Force a barrier */
573 writel(cmd
, csr_base
+ indirect_cmd_reg
);
574 readl(csr_base
+ indirect_cmd_reg
); /* Force a barrier */
576 val
= readl(csr_base
+ indirect_cmd_reg
);
577 } while (!(val
& CFG_IND_CMD_DONE_MASK
) &&
578 time_before(jiffies
, deadline
));
579 if (!(val
& CFG_IND_CMD_DONE_MASK
))
580 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
581 csr_base
+ indirect_cmd_reg
, addr
, data
);
584 static void sds_rd(void __iomem
*csr_base
, u32 indirect_cmd_reg
,
585 u32 indirect_data_reg
, u32 addr
, u32
*data
)
587 unsigned long deadline
= jiffies
+ HZ
;
591 cmd
= CFG_IND_RD_CMD_MASK
| CFG_IND_CMD_DONE_MASK
;
592 cmd
= CFG_IND_ADDR_SET(cmd
, addr
);
593 writel(cmd
, csr_base
+ indirect_cmd_reg
);
594 readl(csr_base
+ indirect_cmd_reg
); /* Force a barrier */
596 val
= readl(csr_base
+ indirect_cmd_reg
);
597 } while (!(val
& CFG_IND_CMD_DONE_MASK
) &&
598 time_before(jiffies
, deadline
));
599 *data
= readl(csr_base
+ indirect_data_reg
);
600 if (!(val
& CFG_IND_CMD_DONE_MASK
))
601 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
602 csr_base
+ indirect_cmd_reg
, addr
, *data
);
605 static void cmu_wr(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
608 void __iomem
*sds_base
= ctx
->sds_base
;
611 if (cmu_type
== REF_CMU
)
612 reg
+= SERDES_PLL_REF_INDIRECT_OFFSET
;
614 reg
+= SERDES_PLL_INDIRECT_OFFSET
;
615 sds_wr(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
616 SATA_ENET_SDS_IND_WDATA_REG
, reg
, data
);
617 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
618 SATA_ENET_SDS_IND_RDATA_REG
, reg
, &val
);
619 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg
, data
, val
);
622 static void cmu_rd(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
625 void __iomem
*sds_base
= ctx
->sds_base
;
627 if (cmu_type
== REF_CMU
)
628 reg
+= SERDES_PLL_REF_INDIRECT_OFFSET
;
630 reg
+= SERDES_PLL_INDIRECT_OFFSET
;
631 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
632 SATA_ENET_SDS_IND_RDATA_REG
, reg
, data
);
633 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg
, *data
);
636 static void cmu_toggle1to0(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
641 cmu_rd(ctx
, cmu_type
, reg
, &val
);
643 cmu_wr(ctx
, cmu_type
, reg
, val
);
644 cmu_rd(ctx
, cmu_type
, reg
, &val
);
646 cmu_wr(ctx
, cmu_type
, reg
, val
);
649 static void cmu_clrbits(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
654 cmu_rd(ctx
, cmu_type
, reg
, &val
);
656 cmu_wr(ctx
, cmu_type
, reg
, val
);
659 static void cmu_setbits(struct xgene_phy_ctx
*ctx
, enum cmu_type_t cmu_type
,
664 cmu_rd(ctx
, cmu_type
, reg
, &val
);
666 cmu_wr(ctx
, cmu_type
, reg
, val
);
669 static void serdes_wr(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
, u32 data
)
671 void __iomem
*sds_base
= ctx
->sds_base
;
674 reg
+= SERDES_INDIRECT_OFFSET
;
675 reg
+= lane
* SERDES_LANE_STRIDE
;
676 sds_wr(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
677 SATA_ENET_SDS_IND_WDATA_REG
, reg
, data
);
678 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
679 SATA_ENET_SDS_IND_RDATA_REG
, reg
, &val
);
680 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg
, data
,
684 static void serdes_rd(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
, u32
*data
)
686 void __iomem
*sds_base
= ctx
->sds_base
;
688 reg
+= SERDES_INDIRECT_OFFSET
;
689 reg
+= lane
* SERDES_LANE_STRIDE
;
690 sds_rd(sds_base
, SATA_ENET_SDS_IND_CMD_REG
,
691 SATA_ENET_SDS_IND_RDATA_REG
, reg
, data
);
692 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg
, *data
);
695 static void serdes_clrbits(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
,
700 serdes_rd(ctx
, lane
, reg
, &val
);
702 serdes_wr(ctx
, lane
, reg
, val
);
705 static void serdes_setbits(struct xgene_phy_ctx
*ctx
, int lane
, u32 reg
,
710 serdes_rd(ctx
, lane
, reg
, &val
);
712 serdes_wr(ctx
, lane
, reg
, val
);
715 static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx
*ctx
,
716 enum cmu_type_t cmu_type
,
717 enum clk_type_t clk_type
)
721 /* Set the reset sequence delay for TX ready assertion */
722 cmu_rd(ctx
, cmu_type
, CMU_REG12
, &val
);
723 val
= CMU_REG12_STATE_DELAY9_SET(val
, 0x1);
724 cmu_wr(ctx
, cmu_type
, CMU_REG12
, val
);
725 /* Set the programmable stage delays between various enable stages */
726 cmu_wr(ctx
, cmu_type
, CMU_REG13
, 0x0222);
727 cmu_wr(ctx
, cmu_type
, CMU_REG14
, 0x2225);
729 /* Configure clock type */
730 if (clk_type
== CLK_EXT_DIFF
) {
731 /* Select external clock mux */
732 cmu_rd(ctx
, cmu_type
, CMU_REG0
, &val
);
733 val
= CMU_REG0_PLL_REF_SEL_SET(val
, 0x0);
734 cmu_wr(ctx
, cmu_type
, CMU_REG0
, val
);
735 /* Select CMOS as reference clock */
736 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
737 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x0);
738 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
739 dev_dbg(ctx
->dev
, "Set external reference clock\n");
740 } else if (clk_type
== CLK_INT_DIFF
) {
741 /* Select internal clock mux */
742 cmu_rd(ctx
, cmu_type
, CMU_REG0
, &val
);
743 val
= CMU_REG0_PLL_REF_SEL_SET(val
, 0x1);
744 cmu_wr(ctx
, cmu_type
, CMU_REG0
, val
);
745 /* Select CMOS as reference clock */
746 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
747 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x1);
748 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
749 dev_dbg(ctx
->dev
, "Set internal reference clock\n");
750 } else if (clk_type
== CLK_INT_SING
) {
752 * NOTE: This clock type is NOT support for controller
753 * whose internal clock shared in the PCIe controller
755 * Select internal clock mux
757 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
758 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x1);
759 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
760 /* Select CML as reference clock */
761 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
762 val
= CMU_REG1_REFCLK_CMOS_SEL_SET(val
, 0x0);
763 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
765 "Set internal single ended reference clock\n");
769 static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx
*ctx
,
770 enum cmu_type_t cmu_type
,
771 enum clk_type_t clk_type
)
776 if (cmu_type
== REF_CMU
) {
777 /* Set VCO calibration voltage threshold */
778 cmu_rd(ctx
, cmu_type
, CMU_REG34
, &val
);
779 val
= CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val
, 0x7);
780 val
= CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val
, 0xc);
781 val
= CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val
, 0x3);
782 val
= CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val
, 0x8);
783 cmu_wr(ctx
, cmu_type
, CMU_REG34
, val
);
786 /* Set the VCO calibration counter */
787 cmu_rd(ctx
, cmu_type
, CMU_REG0
, &val
);
788 if (cmu_type
== REF_CMU
|| preA3Chip
)
789 val
= CMU_REG0_CAL_COUNT_RESOL_SET(val
, 0x4);
791 val
= CMU_REG0_CAL_COUNT_RESOL_SET(val
, 0x7);
792 cmu_wr(ctx
, cmu_type
, CMU_REG0
, val
);
794 /* Configure PLL for calibration */
795 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
796 val
= CMU_REG1_PLL_CP_SET(val
, 0x1);
797 if (cmu_type
== REF_CMU
|| preA3Chip
)
798 val
= CMU_REG1_PLL_CP_SEL_SET(val
, 0x5);
800 val
= CMU_REG1_PLL_CP_SEL_SET(val
, 0x3);
801 if (cmu_type
== REF_CMU
)
802 val
= CMU_REG1_PLL_MANUALCAL_SET(val
, 0x0);
804 val
= CMU_REG1_PLL_MANUALCAL_SET(val
, 0x1);
805 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
807 if (cmu_type
!= REF_CMU
)
808 cmu_clrbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
810 /* Configure the PLL for either 100MHz or 50MHz */
811 cmu_rd(ctx
, cmu_type
, CMU_REG2
, &val
);
812 if (cmu_type
== REF_CMU
) {
813 val
= CMU_REG2_PLL_LFRES_SET(val
, 0xa);
816 val
= CMU_REG2_PLL_LFRES_SET(val
, 0x3);
817 if (clk_type
== CLK_EXT_DIFF
)
823 val
= CMU_REG2_PLL_FBDIV_SET(val
, FBDIV_VAL_100M
);
824 val
= CMU_REG2_PLL_REFDIV_SET(val
, REFDIV_VAL_100M
);
826 val
= CMU_REG2_PLL_FBDIV_SET(val
, FBDIV_VAL_50M
);
827 val
= CMU_REG2_PLL_REFDIV_SET(val
, REFDIV_VAL_50M
);
829 cmu_wr(ctx
, cmu_type
, CMU_REG2
, val
);
831 /* Configure the VCO */
832 cmu_rd(ctx
, cmu_type
, CMU_REG3
, &val
);
833 if (cmu_type
== REF_CMU
) {
834 val
= CMU_REG3_VCOVARSEL_SET(val
, 0x3);
835 val
= CMU_REG3_VCO_MOMSEL_INIT_SET(val
, 0x10);
837 val
= CMU_REG3_VCOVARSEL_SET(val
, 0xF);
839 val
= CMU_REG3_VCO_MOMSEL_INIT_SET(val
, 0x15);
841 val
= CMU_REG3_VCO_MOMSEL_INIT_SET(val
, 0x1a);
842 val
= CMU_REG3_VCO_MANMOMSEL_SET(val
, 0x15);
844 cmu_wr(ctx
, cmu_type
, CMU_REG3
, val
);
846 /* Disable force PLL lock */
847 cmu_rd(ctx
, cmu_type
, CMU_REG26
, &val
);
848 val
= CMU_REG26_FORCE_PLL_LOCK_SET(val
, 0x0);
849 cmu_wr(ctx
, cmu_type
, CMU_REG26
, val
);
851 /* Setup PLL loop filter */
852 cmu_rd(ctx
, cmu_type
, CMU_REG5
, &val
);
853 val
= CMU_REG5_PLL_LFSMCAP_SET(val
, 0x3);
854 val
= CMU_REG5_PLL_LFCAP_SET(val
, 0x3);
855 if (cmu_type
== REF_CMU
|| !preA3Chip
)
856 val
= CMU_REG5_PLL_LOCK_RESOLUTION_SET(val
, 0x7);
858 val
= CMU_REG5_PLL_LOCK_RESOLUTION_SET(val
, 0x4);
859 cmu_wr(ctx
, cmu_type
, CMU_REG5
, val
);
861 /* Enable or disable manual calibration */
862 cmu_rd(ctx
, cmu_type
, CMU_REG6
, &val
);
863 val
= CMU_REG6_PLL_VREGTRIM_SET(val
, preA3Chip
? 0x0 : 0x2);
864 val
= CMU_REG6_MAN_PVT_CAL_SET(val
, preA3Chip
? 0x1 : 0x0);
865 cmu_wr(ctx
, cmu_type
, CMU_REG6
, val
);
867 /* Configure lane for 20-bits */
868 if (cmu_type
== PHY_CMU
) {
869 cmu_rd(ctx
, cmu_type
, CMU_REG9
, &val
);
870 val
= CMU_REG9_TX_WORD_MODE_CH1_SET(val
,
871 CMU_REG9_WORD_LEN_20BIT
);
872 val
= CMU_REG9_TX_WORD_MODE_CH0_SET(val
,
873 CMU_REG9_WORD_LEN_20BIT
);
874 val
= CMU_REG9_PLL_POST_DIVBY2_SET(val
, 0x1);
876 val
= CMU_REG9_VBG_BYPASSB_SET(val
, 0x0);
877 val
= CMU_REG9_IGEN_BYPASS_SET(val
, 0x0);
879 cmu_wr(ctx
, cmu_type
, CMU_REG9
, val
);
882 cmu_rd(ctx
, cmu_type
, CMU_REG10
, &val
);
883 val
= CMU_REG10_VREG_REFSEL_SET(val
, 0x1);
884 cmu_wr(ctx
, cmu_type
, CMU_REG10
, val
);
888 cmu_rd(ctx
, cmu_type
, CMU_REG16
, &val
);
889 val
= CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val
, 0x1);
890 val
= CMU_REG16_BYPASS_PLL_LOCK_SET(val
, 0x1);
891 if (cmu_type
== REF_CMU
|| preA3Chip
)
892 val
= CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val
, 0x4);
894 val
= CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val
, 0x7);
895 cmu_wr(ctx
, cmu_type
, CMU_REG16
, val
);
897 /* Configure for SATA */
898 cmu_rd(ctx
, cmu_type
, CMU_REG30
, &val
);
899 val
= CMU_REG30_PCIE_MODE_SET(val
, 0x0);
900 val
= CMU_REG30_LOCK_COUNT_SET(val
, 0x3);
901 cmu_wr(ctx
, cmu_type
, CMU_REG30
, val
);
903 /* Disable state machine bypass */
904 cmu_wr(ctx
, cmu_type
, CMU_REG31
, 0xF);
906 cmu_rd(ctx
, cmu_type
, CMU_REG32
, &val
);
907 val
= CMU_REG32_PVT_CAL_WAIT_SEL_SET(val
, 0x3);
908 if (cmu_type
== REF_CMU
|| preA3Chip
)
909 val
= CMU_REG32_IREF_ADJ_SET(val
, 0x3);
911 val
= CMU_REG32_IREF_ADJ_SET(val
, 0x1);
912 cmu_wr(ctx
, cmu_type
, CMU_REG32
, val
);
914 /* Set VCO calibration threshold */
915 if (cmu_type
!= REF_CMU
&& preA3Chip
)
916 cmu_wr(ctx
, cmu_type
, CMU_REG34
, 0x8d27);
918 cmu_wr(ctx
, cmu_type
, CMU_REG34
, 0x873c);
920 /* Set CTLE Override and override waiting from state machine */
921 cmu_wr(ctx
, cmu_type
, CMU_REG37
, 0xF00F);
924 static void xgene_phy_ssc_enable(struct xgene_phy_ctx
*ctx
,
925 enum cmu_type_t cmu_type
)
929 /* Set SSC modulation value */
930 cmu_rd(ctx
, cmu_type
, CMU_REG35
, &val
);
931 val
= CMU_REG35_PLL_SSC_MOD_SET(val
, 98);
932 cmu_wr(ctx
, cmu_type
, CMU_REG35
, val
);
934 /* Enable SSC, set vertical step and DSM value */
935 cmu_rd(ctx
, cmu_type
, CMU_REG36
, &val
);
936 val
= CMU_REG36_PLL_SSC_VSTEP_SET(val
, 30);
937 val
= CMU_REG36_PLL_SSC_EN_SET(val
, 1);
938 val
= CMU_REG36_PLL_SSC_DSMSEL_SET(val
, 1);
939 cmu_wr(ctx
, cmu_type
, CMU_REG36
, val
);
942 cmu_clrbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
943 cmu_setbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
945 /* Force VCO calibration to restart */
946 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG32
,
947 CMU_REG32_FORCE_VCOCAL_START_MASK
);
950 static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx
*ctx
)
957 for (lane
= 0; lane
< MAX_LANE
; lane
++) {
958 serdes_wr(ctx
, lane
, RXTX_REG147
, 0x6);
960 /* Set boost control for quarter, half, and full rate */
961 serdes_rd(ctx
, lane
, RXTX_REG0
, &val
);
962 val
= RXTX_REG0_CTLE_EQ_HR_SET(val
, 0x10);
963 val
= RXTX_REG0_CTLE_EQ_QR_SET(val
, 0x10);
964 val
= RXTX_REG0_CTLE_EQ_FR_SET(val
, 0x10);
965 serdes_wr(ctx
, lane
, RXTX_REG0
, val
);
967 /* Set boost control value */
968 serdes_rd(ctx
, lane
, RXTX_REG1
, &val
);
969 val
= RXTX_REG1_RXACVCM_SET(val
, 0x7);
970 val
= RXTX_REG1_CTLE_EQ_SET(val
,
971 ctx
->sata_param
.txboostgain
[lane
* 3 +
972 ctx
->sata_param
.speed
[lane
]]);
973 serdes_wr(ctx
, lane
, RXTX_REG1
, val
);
975 /* Latch VTT value based on the termination to ground and
977 serdes_rd(ctx
, lane
, RXTX_REG2
, &val
);
978 val
= RXTX_REG2_VTT_ENA_SET(val
, 0x1);
979 val
= RXTX_REG2_VTT_SEL_SET(val
, 0x1);
980 val
= RXTX_REG2_TX_FIFO_ENA_SET(val
, 0x1);
981 serdes_wr(ctx
, lane
, RXTX_REG2
, val
);
983 /* Configure Tx for 20-bits */
984 serdes_rd(ctx
, lane
, RXTX_REG4
, &val
);
985 val
= RXTX_REG4_TX_WORD_MODE_SET(val
, CMU_REG9_WORD_LEN_20BIT
);
986 serdes_wr(ctx
, lane
, RXTX_REG4
, val
);
989 serdes_rd(ctx
, lane
, RXTX_REG1
, &val
);
990 val
= RXTX_REG1_RXVREG1_SET(val
, 0x2);
991 val
= RXTX_REG1_RXIREF_ADJ_SET(val
, 0x2);
992 serdes_wr(ctx
, lane
, RXTX_REG1
, val
);
995 /* Set pre-emphasis first 1 and 2, and post-emphasis values */
996 serdes_rd(ctx
, lane
, RXTX_REG5
, &val
);
997 val
= RXTX_REG5_TX_CN1_SET(val
,
998 ctx
->sata_param
.txprecursor_cn1
[lane
* 3 +
999 ctx
->sata_param
.speed
[lane
]]);
1000 val
= RXTX_REG5_TX_CP1_SET(val
,
1001 ctx
->sata_param
.txpostcursor_cp1
[lane
* 3 +
1002 ctx
->sata_param
.speed
[lane
]]);
1003 val
= RXTX_REG5_TX_CN2_SET(val
,
1004 ctx
->sata_param
.txprecursor_cn2
[lane
* 3 +
1005 ctx
->sata_param
.speed
[lane
]]);
1006 serdes_wr(ctx
, lane
, RXTX_REG5
, val
);
1008 /* Set TX amplitude value */
1009 serdes_rd(ctx
, lane
, RXTX_REG6
, &val
);
1010 val
= RXTX_REG6_TXAMP_CNTL_SET(val
,
1011 ctx
->sata_param
.txamplitude
[lane
* 3 +
1012 ctx
->sata_param
.speed
[lane
]]);
1013 val
= RXTX_REG6_TXAMP_ENA_SET(val
, 0x1);
1014 val
= RXTX_REG6_TX_IDLE_SET(val
, 0x0);
1015 val
= RXTX_REG6_RX_BIST_RESYNC_SET(val
, 0x0);
1016 val
= RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val
, 0x0);
1017 serdes_wr(ctx
, lane
, RXTX_REG6
, val
);
1019 /* Configure Rx for 20-bits */
1020 serdes_rd(ctx
, lane
, RXTX_REG7
, &val
);
1021 val
= RXTX_REG7_BIST_ENA_RX_SET(val
, 0x0);
1022 val
= RXTX_REG7_RX_WORD_MODE_SET(val
, CMU_REG9_WORD_LEN_20BIT
);
1023 serdes_wr(ctx
, lane
, RXTX_REG7
, val
);
1025 /* Set CDR and LOS values and enable Rx SSC */
1026 serdes_rd(ctx
, lane
, RXTX_REG8
, &val
);
1027 val
= RXTX_REG8_CDR_LOOP_ENA_SET(val
, 0x1);
1028 val
= RXTX_REG8_CDR_BYPASS_RXLOS_SET(val
, 0x0);
1029 val
= RXTX_REG8_SSC_ENABLE_SET(val
, 0x1);
1030 val
= RXTX_REG8_SD_DISABLE_SET(val
, 0x0);
1031 val
= RXTX_REG8_SD_VREF_SET(val
, 0x4);
1032 serdes_wr(ctx
, lane
, RXTX_REG8
, val
);
1034 /* Set phase adjust upper/lower limits */
1035 serdes_rd(ctx
, lane
, RXTX_REG11
, &val
);
1036 val
= RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val
, 0x0);
1037 serdes_wr(ctx
, lane
, RXTX_REG11
, val
);
1039 /* Enable Latch Off; disable SUMOS and Tx termination */
1040 serdes_rd(ctx
, lane
, RXTX_REG12
, &val
);
1041 val
= RXTX_REG12_LATCH_OFF_ENA_SET(val
, 0x1);
1042 val
= RXTX_REG12_SUMOS_ENABLE_SET(val
, 0x0);
1043 val
= RXTX_REG12_RX_DET_TERM_ENABLE_SET(val
, 0x0);
1044 serdes_wr(ctx
, lane
, RXTX_REG12
, val
);
1046 /* Set period error latch to 512T and enable BWL */
1047 serdes_rd(ctx
, lane
, RXTX_REG26
, &val
);
1048 val
= RXTX_REG26_PERIOD_ERROR_LATCH_SET(val
, 0x0);
1049 val
= RXTX_REG26_BLWC_ENA_SET(val
, 0x1);
1050 serdes_wr(ctx
, lane
, RXTX_REG26
, val
);
1052 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x0);
1054 /* Set DFE loop preset value */
1055 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x0);
1057 /* Set Eye Monitor counter width to 12-bit */
1058 serdes_rd(ctx
, lane
, RXTX_REG61
, &val
);
1059 val
= RXTX_REG61_ISCAN_INBERT_SET(val
, 0x1);
1060 val
= RXTX_REG61_LOADFREQ_SHIFT_SET(val
, 0x0);
1061 val
= RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val
, 0x0);
1062 serdes_wr(ctx
, lane
, RXTX_REG61
, val
);
1064 serdes_rd(ctx
, lane
, RXTX_REG62
, &val
);
1065 val
= RXTX_REG62_PERIOD_H1_QLATCH_SET(val
, 0x0);
1066 serdes_wr(ctx
, lane
, RXTX_REG62
, val
);
1068 /* Set BW select tap X for DFE loop */
1069 for (i
= 0; i
< 9; i
++) {
1070 reg
= RXTX_REG81
+ i
* 2;
1071 serdes_rd(ctx
, lane
, reg
, &val
);
1072 val
= RXTX_REG89_MU_TH7_SET(val
, 0xe);
1073 val
= RXTX_REG89_MU_TH8_SET(val
, 0xe);
1074 val
= RXTX_REG89_MU_TH9_SET(val
, 0xe);
1075 serdes_wr(ctx
, lane
, reg
, val
);
1078 /* Set BW select tap X for frequency adjust loop */
1079 for (i
= 0; i
< 3; i
++) {
1080 reg
= RXTX_REG96
+ i
* 2;
1081 serdes_rd(ctx
, lane
, reg
, &val
);
1082 val
= RXTX_REG96_MU_FREQ1_SET(val
, 0x10);
1083 val
= RXTX_REG96_MU_FREQ2_SET(val
, 0x10);
1084 val
= RXTX_REG96_MU_FREQ3_SET(val
, 0x10);
1085 serdes_wr(ctx
, lane
, reg
, val
);
1088 /* Set BW select tap X for phase adjust loop */
1089 for (i
= 0; i
< 3; i
++) {
1090 reg
= RXTX_REG99
+ i
* 2;
1091 serdes_rd(ctx
, lane
, reg
, &val
);
1092 val
= RXTX_REG99_MU_PHASE1_SET(val
, 0x7);
1093 val
= RXTX_REG99_MU_PHASE2_SET(val
, 0x7);
1094 val
= RXTX_REG99_MU_PHASE3_SET(val
, 0x7);
1095 serdes_wr(ctx
, lane
, reg
, val
);
1098 serdes_rd(ctx
, lane
, RXTX_REG102
, &val
);
1099 val
= RXTX_REG102_FREQLOOP_LIMIT_SET(val
, 0x0);
1100 serdes_wr(ctx
, lane
, RXTX_REG102
, val
);
1102 serdes_wr(ctx
, lane
, RXTX_REG114
, 0xffe0);
1104 serdes_rd(ctx
, lane
, RXTX_REG125
, &val
);
1105 val
= RXTX_REG125_SIGN_PQ_SET(val
,
1106 ctx
->sata_param
.txeyedirection
[lane
* 3 +
1107 ctx
->sata_param
.speed
[lane
]]);
1108 val
= RXTX_REG125_PQ_REG_SET(val
,
1109 ctx
->sata_param
.txeyetuning
[lane
* 3 +
1110 ctx
->sata_param
.speed
[lane
]]);
1111 val
= RXTX_REG125_PHZ_MANUAL_SET(val
, 0x1);
1112 serdes_wr(ctx
, lane
, RXTX_REG125
, val
);
1114 serdes_rd(ctx
, lane
, RXTX_REG127
, &val
);
1115 val
= RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val
, 0x0);
1116 serdes_wr(ctx
, lane
, RXTX_REG127
, val
);
1118 serdes_rd(ctx
, lane
, RXTX_REG128
, &val
);
1119 val
= RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val
, 0x3);
1120 serdes_wr(ctx
, lane
, RXTX_REG128
, val
);
1122 serdes_rd(ctx
, lane
, RXTX_REG145
, &val
);
1123 val
= RXTX_REG145_RXDFE_CONFIG_SET(val
, 0x3);
1124 val
= RXTX_REG145_TX_IDLE_SATA_SET(val
, 0x0);
1126 val
= RXTX_REG145_RXES_ENA_SET(val
, 0x1);
1127 val
= RXTX_REG145_RXVWES_LATENA_SET(val
, 0x1);
1129 val
= RXTX_REG145_RXES_ENA_SET(val
, 0x0);
1130 val
= RXTX_REG145_RXVWES_LATENA_SET(val
, 0x0);
1132 serdes_wr(ctx
, lane
, RXTX_REG145
, val
);
1135 * Set Rx LOS filter clock rate, sample rate, and threshold
1138 for (i
= 0; i
< 4; i
++) {
1139 reg
= RXTX_REG148
+ i
* 2;
1140 serdes_wr(ctx
, lane
, reg
, 0xFFFF);
1145 static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx
*ctx
,
1146 enum cmu_type_t cmu_type
,
1147 enum clk_type_t clk_type
)
1149 void __iomem
*csr_serdes
= ctx
->sds_base
;
1153 /* Release PHY main reset */
1154 writel(0xdf, csr_serdes
+ SATA_ENET_SDS_RST_CTL
);
1155 readl(csr_serdes
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1157 if (cmu_type
!= REF_CMU
) {
1158 cmu_setbits(ctx
, cmu_type
, CMU_REG5
, CMU_REG5_PLL_RESETB_MASK
);
1160 * As per PHY design spec, the PLL reset requires a minimum
1163 usleep_range(800, 1000);
1165 cmu_rd(ctx
, cmu_type
, CMU_REG1
, &val
);
1166 val
= CMU_REG1_PLL_MANUALCAL_SET(val
, 0x0);
1167 cmu_wr(ctx
, cmu_type
, CMU_REG1
, val
);
1169 * As per PHY design spec, the PLL auto calibration requires
1170 * a minimum of 800us.
1172 usleep_range(800, 1000);
1174 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG32
,
1175 CMU_REG32_FORCE_VCOCAL_START_MASK
);
1177 * As per PHY design spec, the PLL requires a minimum of
1180 usleep_range(800, 1000);
1184 goto skip_manual_cal
;
1187 * Configure the termination resister calibration
1188 * The serial receive pins, RXP/RXN, have TERMination resistor
1189 * that is required to be calibrated.
1191 cmu_rd(ctx
, cmu_type
, CMU_REG17
, &val
);
1192 val
= CMU_REG17_PVT_CODE_R2A_SET(val
, 0x12);
1193 val
= CMU_REG17_RESERVED_7_SET(val
, 0x0);
1194 cmu_wr(ctx
, cmu_type
, CMU_REG17
, val
);
1195 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG17
,
1196 CMU_REG17_PVT_TERM_MAN_ENA_MASK
);
1198 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1199 * resistors that are required to the calibrated.
1200 * Configure the pull DOWN calibration
1202 cmu_rd(ctx
, cmu_type
, CMU_REG17
, &val
);
1203 val
= CMU_REG17_PVT_CODE_R2A_SET(val
, 0x29);
1204 val
= CMU_REG17_RESERVED_7_SET(val
, 0x0);
1205 cmu_wr(ctx
, cmu_type
, CMU_REG17
, val
);
1206 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG16
,
1207 CMU_REG16_PVT_DN_MAN_ENA_MASK
);
1208 /* Configure the pull UP calibration */
1209 cmu_rd(ctx
, cmu_type
, CMU_REG17
, &val
);
1210 val
= CMU_REG17_PVT_CODE_R2A_SET(val
, 0x28);
1211 val
= CMU_REG17_RESERVED_7_SET(val
, 0x0);
1212 cmu_wr(ctx
, cmu_type
, CMU_REG17
, val
);
1213 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG16
,
1214 CMU_REG16_PVT_UP_MAN_ENA_MASK
);
1217 /* Poll the PLL calibration completion status for at least 1 ms */
1220 cmu_rd(ctx
, cmu_type
, CMU_REG7
, &val
);
1221 if (CMU_REG7_PLL_CALIB_DONE_RD(val
))
1224 * As per PHY design spec, PLL calibration status requires
1225 * a minimum of 10us to be updated.
1227 usleep_range(10, 100);
1228 } while (--loop
> 0);
1230 cmu_rd(ctx
, cmu_type
, CMU_REG7
, &val
);
1231 dev_dbg(ctx
->dev
, "PLL calibration %s\n",
1232 CMU_REG7_PLL_CALIB_DONE_RD(val
) ? "done" : "failed");
1233 if (CMU_REG7_VCO_CAL_FAIL_RD(val
)) {
1235 "PLL calibration failed due to VCO failure\n");
1238 dev_dbg(ctx
->dev
, "PLL calibration successful\n");
1240 cmu_rd(ctx
, cmu_type
, CMU_REG15
, &val
);
1241 dev_dbg(ctx
->dev
, "PHY Tx is %sready\n", val
& 0x300 ? "" : "not ");
1245 static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx
*ctx
,
1246 enum cmu_type_t cmu_type
,
1247 enum clk_type_t clk_type
)
1251 dev_dbg(ctx
->dev
, "Reset VCO and re-start again\n");
1252 if (cmu_type
== PHY_CMU
) {
1253 cmu_rd(ctx
, cmu_type
, CMU_REG16
, &val
);
1254 val
= CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val
, 0x7);
1255 cmu_wr(ctx
, cmu_type
, CMU_REG16
, val
);
1258 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG0
, CMU_REG0_PDOWN_MASK
);
1259 cmu_toggle1to0(ctx
, cmu_type
, CMU_REG32
,
1260 CMU_REG32_FORCE_VCOCAL_START_MASK
);
1263 static int xgene_phy_hw_init_sata(struct xgene_phy_ctx
*ctx
,
1264 enum clk_type_t clk_type
, int ssc_enable
)
1266 void __iomem
*sds_base
= ctx
->sds_base
;
1270 /* Configure the PHY for operation */
1271 dev_dbg(ctx
->dev
, "Reset PHY\n");
1272 /* Place PHY into reset */
1273 writel(0x0, sds_base
+ SATA_ENET_SDS_RST_CTL
);
1274 val
= readl(sds_base
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1275 /* Release PHY lane from reset (active high) */
1276 writel(0x20, sds_base
+ SATA_ENET_SDS_RST_CTL
);
1277 readl(sds_base
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1278 /* Release all PHY module out of reset except PHY main reset */
1279 writel(0xde, sds_base
+ SATA_ENET_SDS_RST_CTL
);
1280 readl(sds_base
+ SATA_ENET_SDS_RST_CTL
); /* Force a barrier */
1282 /* Set the operation speed */
1283 val
= readl(sds_base
+ SATA_ENET_SDS_CTL1
);
1284 val
= CFG_I_SPD_SEL_CDR_OVR1_SET(val
,
1285 ctx
->sata_param
.txspeed
[ctx
->sata_param
.speed
[0]]);
1286 writel(val
, sds_base
+ SATA_ENET_SDS_CTL1
);
1288 dev_dbg(ctx
->dev
, "Set the customer pin mode to SATA\n");
1289 val
= readl(sds_base
+ SATA_ENET_SDS_CTL0
);
1290 val
= REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val
, 0x4421);
1291 writel(val
, sds_base
+ SATA_ENET_SDS_CTL0
);
1293 /* Configure the clock macro unit (CMU) clock type */
1294 xgene_phy_cfg_cmu_clk_type(ctx
, PHY_CMU
, clk_type
);
1296 /* Configure the clock macro */
1297 xgene_phy_sata_cfg_cmu_core(ctx
, PHY_CMU
, clk_type
);
1299 /* Enable SSC if enabled */
1301 xgene_phy_ssc_enable(ctx
, PHY_CMU
);
1303 /* Configure PHY lanes */
1304 xgene_phy_sata_cfg_lanes(ctx
);
1306 /* Set Rx/Tx 20-bit */
1307 val
= readl(sds_base
+ SATA_ENET_SDS_PCS_CTL0
);
1308 val
= REGSPEC_CFG_I_RX_WORDMODE0_SET(val
, 0x3);
1309 val
= REGSPEC_CFG_I_TX_WORDMODE0_SET(val
, 0x3);
1310 writel(val
, sds_base
+ SATA_ENET_SDS_PCS_CTL0
);
1312 /* Start PLL calibration and try for three times */
1315 if (!xgene_phy_cal_rdy_chk(ctx
, PHY_CMU
, clk_type
))
1317 /* If failed, toggle the VCO power signal and start again */
1318 xgene_phy_pdwn_force_vco(ctx
, PHY_CMU
, clk_type
);
1320 /* Even on failure, allow to continue any way */
1322 dev_err(ctx
->dev
, "PLL calibration failed\n");
1327 static int xgene_phy_hw_initialize(struct xgene_phy_ctx
*ctx
,
1328 enum clk_type_t clk_type
,
1333 dev_dbg(ctx
->dev
, "PHY init clk type %d\n", clk_type
);
1335 if (ctx
->mode
== MODE_SATA
) {
1336 rc
= xgene_phy_hw_init_sata(ctx
, clk_type
, ssc_enable
);
1340 dev_err(ctx
->dev
, "Un-supported customer pin mode %d\n",
1349 * Receiver Offset Calibration:
1351 * Calibrate the receiver signal path offset in two steps - summar and
1352 * latch calibrations
1354 static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx
*ctx
, int lane
)
1362 {RXTX_REG39
, 0xff00},
1363 {RXTX_REG40
, 0xffff},
1364 {RXTX_REG41
, 0xffff},
1365 {RXTX_REG42
, 0xffff},
1366 {RXTX_REG43
, 0xffff},
1367 {RXTX_REG44
, 0xffff},
1368 {RXTX_REG45
, 0xffff},
1369 {RXTX_REG46
, 0xffff},
1370 {RXTX_REG47
, 0xfffc},
1381 /* Start SUMMER calibration */
1382 serdes_setbits(ctx
, lane
, RXTX_REG127
,
1383 RXTX_REG127_FORCE_SUM_CAL_START_MASK
);
1385 * As per PHY design spec, the Summer calibration requires a minimum
1386 * of 100us to complete.
1388 usleep_range(100, 500);
1389 serdes_clrbits(ctx
, lane
, RXTX_REG127
,
1390 RXTX_REG127_FORCE_SUM_CAL_START_MASK
);
1392 * As per PHY design spec, the auto calibration requires a minimum
1393 * of 100us to complete.
1395 usleep_range(100, 500);
1397 /* Start latch calibration */
1398 serdes_setbits(ctx
, lane
, RXTX_REG127
,
1399 RXTX_REG127_FORCE_LAT_CAL_START_MASK
);
1401 * As per PHY design spec, the latch calibration requires a minimum
1402 * of 100us to complete.
1404 usleep_range(100, 500);
1405 serdes_clrbits(ctx
, lane
, RXTX_REG127
,
1406 RXTX_REG127_FORCE_LAT_CAL_START_MASK
);
1408 /* Configure the PHY lane for calibration */
1409 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x7);
1410 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x7e00);
1411 serdes_clrbits(ctx
, lane
, RXTX_REG4
,
1412 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK
);
1413 serdes_clrbits(ctx
, lane
, RXTX_REG7
,
1414 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK
);
1415 for (i
= 0; i
< ARRAY_SIZE(serdes_reg
); i
++)
1416 serdes_wr(ctx
, lane
, serdes_reg
[i
].reg
,
1420 static void xgene_phy_reset_rxd(struct xgene_phy_ctx
*ctx
, int lane
)
1422 /* Reset digital Rx */
1423 serdes_clrbits(ctx
, lane
, RXTX_REG7
, RXTX_REG7_RESETB_RXD_MASK
);
1424 /* As per PHY design spec, the reset requires a minimum of 100us. */
1425 usleep_range(100, 150);
1426 serdes_setbits(ctx
, lane
, RXTX_REG7
, RXTX_REG7_RESETB_RXD_MASK
);
1429 static int xgene_phy_get_avg(int accum
, int samples
)
1431 return (accum
+ (samples
/ 2)) / samples
;
1434 static void xgene_phy_gen_avg_val(struct xgene_phy_ctx
*ctx
, int lane
)
1438 int lat_do
= 0, lat_xo
= 0, lat_eo
= 0, lat_so
= 0;
1439 int lat_de
= 0, lat_xe
= 0, lat_ee
= 0, lat_se
= 0;
1441 int lat_do_itr
, lat_xo_itr
, lat_eo_itr
, lat_so_itr
;
1442 int lat_de_itr
, lat_xe_itr
, lat_ee_itr
, lat_se_itr
;
1448 dev_dbg(ctx
->dev
, "Generating avg calibration value for lane %d\n",
1451 /* Enable RX Hi-Z termination */
1452 serdes_setbits(ctx
, lane
, RXTX_REG12
,
1453 RXTX_REG12_RX_DET_TERM_ENABLE_MASK
);
1455 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x0000);
1456 /* DFE Presets to zero */
1457 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x0000);
1460 * Receiver Offset Calibration:
1461 * Calibrate the receiver signal path offset in two steps - summar
1462 * and latch calibration.
1463 * Runs the "Receiver Offset Calibration multiple times to determine
1464 * the average value to use.
1466 while (avg_loop
< max_loop
) {
1467 /* Start the calibration */
1468 xgene_phy_force_lat_summer_cal(ctx
, lane
);
1470 serdes_rd(ctx
, lane
, RXTX_REG21
, &val
);
1471 lat_do_itr
= RXTX_REG21_DO_LATCH_CALOUT_RD(val
);
1472 lat_xo_itr
= RXTX_REG21_XO_LATCH_CALOUT_RD(val
);
1473 fail_odd
= RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val
);
1475 serdes_rd(ctx
, lane
, RXTX_REG22
, &val
);
1476 lat_eo_itr
= RXTX_REG22_EO_LATCH_CALOUT_RD(val
);
1477 lat_so_itr
= RXTX_REG22_SO_LATCH_CALOUT_RD(val
);
1478 fail_even
= RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val
);
1480 serdes_rd(ctx
, lane
, RXTX_REG23
, &val
);
1481 lat_de_itr
= RXTX_REG23_DE_LATCH_CALOUT_RD(val
);
1482 lat_xe_itr
= RXTX_REG23_XE_LATCH_CALOUT_RD(val
);
1484 serdes_rd(ctx
, lane
, RXTX_REG24
, &val
);
1485 lat_ee_itr
= RXTX_REG24_EE_LATCH_CALOUT_RD(val
);
1486 lat_se_itr
= RXTX_REG24_SE_LATCH_CALOUT_RD(val
);
1488 serdes_rd(ctx
, lane
, RXTX_REG121
, &val
);
1489 sum_cal_itr
= RXTX_REG121_SUMOS_CAL_CODE_RD(val
);
1491 /* Check for failure. If passed, sum them for averaging */
1492 if ((fail_even
== 0 || fail_even
== 1) &&
1493 (fail_odd
== 0 || fail_odd
== 1)) {
1494 lat_do
+= lat_do_itr
;
1495 lat_xo
+= lat_xo_itr
;
1496 lat_eo
+= lat_eo_itr
;
1497 lat_so
+= lat_so_itr
;
1498 lat_de
+= lat_de_itr
;
1499 lat_xe
+= lat_xe_itr
;
1500 lat_ee
+= lat_ee_itr
;
1501 lat_se
+= lat_se_itr
;
1502 sum_cal
+= sum_cal_itr
;
1504 dev_dbg(ctx
->dev
, "Iteration %d:\n", avg_loop
);
1505 dev_dbg(ctx
->dev
, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1506 lat_do_itr
, lat_xo_itr
, lat_eo_itr
,
1508 dev_dbg(ctx
->dev
, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1509 lat_de_itr
, lat_xe_itr
, lat_ee_itr
,
1511 dev_dbg(ctx
->dev
, "SUM 0x%x\n", sum_cal_itr
);
1515 "Receiver calibration failed at %d loop\n",
1518 xgene_phy_reset_rxd(ctx
, lane
);
1521 /* Update latch manual calibration with average value */
1522 serdes_rd(ctx
, lane
, RXTX_REG127
, &val
);
1523 val
= RXTX_REG127_DO_LATCH_MANCAL_SET(val
,
1524 xgene_phy_get_avg(lat_do
, max_loop
));
1525 val
= RXTX_REG127_XO_LATCH_MANCAL_SET(val
,
1526 xgene_phy_get_avg(lat_xo
, max_loop
));
1527 serdes_wr(ctx
, lane
, RXTX_REG127
, val
);
1529 serdes_rd(ctx
, lane
, RXTX_REG128
, &val
);
1530 val
= RXTX_REG128_EO_LATCH_MANCAL_SET(val
,
1531 xgene_phy_get_avg(lat_eo
, max_loop
));
1532 val
= RXTX_REG128_SO_LATCH_MANCAL_SET(val
,
1533 xgene_phy_get_avg(lat_so
, max_loop
));
1534 serdes_wr(ctx
, lane
, RXTX_REG128
, val
);
1536 serdes_rd(ctx
, lane
, RXTX_REG129
, &val
);
1537 val
= RXTX_REG129_DE_LATCH_MANCAL_SET(val
,
1538 xgene_phy_get_avg(lat_de
, max_loop
));
1539 val
= RXTX_REG129_XE_LATCH_MANCAL_SET(val
,
1540 xgene_phy_get_avg(lat_xe
, max_loop
));
1541 serdes_wr(ctx
, lane
, RXTX_REG129
, val
);
1543 serdes_rd(ctx
, lane
, RXTX_REG130
, &val
);
1544 val
= RXTX_REG130_EE_LATCH_MANCAL_SET(val
,
1545 xgene_phy_get_avg(lat_ee
, max_loop
));
1546 val
= RXTX_REG130_SE_LATCH_MANCAL_SET(val
,
1547 xgene_phy_get_avg(lat_se
, max_loop
));
1548 serdes_wr(ctx
, lane
, RXTX_REG130
, val
);
1550 /* Update SUMMER calibration with average value */
1551 serdes_rd(ctx
, lane
, RXTX_REG14
, &val
);
1552 val
= RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val
,
1553 xgene_phy_get_avg(sum_cal
, max_loop
));
1554 serdes_wr(ctx
, lane
, RXTX_REG14
, val
);
1556 dev_dbg(ctx
->dev
, "Average Value:\n");
1557 dev_dbg(ctx
->dev
, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1558 xgene_phy_get_avg(lat_do
, max_loop
),
1559 xgene_phy_get_avg(lat_xo
, max_loop
),
1560 xgene_phy_get_avg(lat_eo
, max_loop
),
1561 xgene_phy_get_avg(lat_so
, max_loop
));
1562 dev_dbg(ctx
->dev
, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1563 xgene_phy_get_avg(lat_de
, max_loop
),
1564 xgene_phy_get_avg(lat_xe
, max_loop
),
1565 xgene_phy_get_avg(lat_ee
, max_loop
),
1566 xgene_phy_get_avg(lat_se
, max_loop
));
1567 dev_dbg(ctx
->dev
, "SUM 0x%x\n",
1568 xgene_phy_get_avg(sum_cal
, max_loop
));
1570 serdes_rd(ctx
, lane
, RXTX_REG14
, &val
);
1571 val
= RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val
, 0x1);
1572 serdes_wr(ctx
, lane
, RXTX_REG14
, val
);
1573 dev_dbg(ctx
->dev
, "Enable Manual Summer calibration\n");
1575 serdes_rd(ctx
, lane
, RXTX_REG127
, &val
);
1576 val
= RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val
, 0x1);
1577 dev_dbg(ctx
->dev
, "Enable Manual Latch calibration\n");
1578 serdes_wr(ctx
, lane
, RXTX_REG127
, val
);
1580 /* Disable RX Hi-Z termination */
1581 serdes_rd(ctx
, lane
, RXTX_REG12
, &val
);
1582 val
= RXTX_REG12_RX_DET_TERM_ENABLE_SET(val
, 0);
1583 serdes_wr(ctx
, lane
, RXTX_REG12
, val
);
1585 serdes_wr(ctx
, lane
, RXTX_REG28
, 0x0007);
1586 /* Set DFE preset */
1587 serdes_wr(ctx
, lane
, RXTX_REG31
, 0x7e00);
1590 static int xgene_phy_hw_init(struct phy
*phy
)
1592 struct xgene_phy_ctx
*ctx
= phy_get_drvdata(phy
);
1596 rc
= xgene_phy_hw_initialize(ctx
, CLK_EXT_DIFF
, SSC_DISABLE
);
1598 dev_err(ctx
->dev
, "PHY initialize failed %d\n", rc
);
1602 /* Setup clock properly after PHY configuration */
1603 if (!IS_ERR(ctx
->clk
)) {
1604 /* HW requires an toggle of the clock */
1605 clk_prepare_enable(ctx
->clk
);
1606 clk_disable_unprepare(ctx
->clk
);
1607 clk_prepare_enable(ctx
->clk
);
1610 /* Compute average value */
1611 for (i
= 0; i
< MAX_LANE
; i
++)
1612 xgene_phy_gen_avg_val(ctx
, i
);
1614 dev_dbg(ctx
->dev
, "PHY initialized\n");
1618 static const struct phy_ops xgene_phy_ops
= {
1619 .init
= xgene_phy_hw_init
,
1620 .owner
= THIS_MODULE
,
1623 static struct phy
*xgene_phy_xlate(struct device
*dev
,
1624 struct of_phandle_args
*args
)
1626 struct xgene_phy_ctx
*ctx
= dev_get_drvdata(dev
);
1628 if (args
->args_count
<= 0)
1629 return ERR_PTR(-EINVAL
);
1630 if (args
->args
[0] < MODE_SATA
|| args
->args
[0] >= MODE_MAX
)
1631 return ERR_PTR(-EINVAL
);
1633 ctx
->mode
= args
->args
[0];
1637 static void xgene_phy_get_param(struct platform_device
*pdev
,
1638 const char *name
, u32
*buffer
,
1639 int count
, u32
*default_val
,
1644 if (!of_property_read_u32_array(pdev
->dev
.of_node
, name
, buffer
,
1646 for (i
= 0; i
< count
; i
++)
1647 buffer
[i
] /= conv_factor
;
1650 /* Does not exist, load default */
1651 for (i
= 0; i
< count
; i
++)
1652 buffer
[i
] = default_val
[i
% 3];
1655 static int xgene_phy_probe(struct platform_device
*pdev
)
1657 struct phy_provider
*phy_provider
;
1658 struct xgene_phy_ctx
*ctx
;
1659 struct resource
*res
;
1660 u32 default_spd
[] = DEFAULT_SATA_SPD_SEL
;
1661 u32 default_txboost_gain
[] = DEFAULT_SATA_TXBOOST_GAIN
;
1662 u32 default_txeye_direction
[] = DEFAULT_SATA_TXEYEDIRECTION
;
1663 u32 default_txeye_tuning
[] = DEFAULT_SATA_TXEYETUNING
;
1664 u32 default_txamp
[] = DEFAULT_SATA_TXAMP
;
1665 u32 default_txcn1
[] = DEFAULT_SATA_TXCN1
;
1666 u32 default_txcn2
[] = DEFAULT_SATA_TXCN2
;
1667 u32 default_txcp1
[] = DEFAULT_SATA_TXCP1
;
1670 ctx
= devm_kzalloc(&pdev
->dev
, sizeof(*ctx
), GFP_KERNEL
);
1674 ctx
->dev
= &pdev
->dev
;
1676 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1677 ctx
->sds_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1678 if (IS_ERR(ctx
->sds_base
))
1679 return PTR_ERR(ctx
->sds_base
);
1681 /* Retrieve optional clock */
1682 ctx
->clk
= clk_get(&pdev
->dev
, NULL
);
1684 /* Load override paramaters */
1685 xgene_phy_get_param(pdev
, "apm,tx-eye-tuning",
1686 ctx
->sata_param
.txeyetuning
, 6, default_txeye_tuning
, 1);
1687 xgene_phy_get_param(pdev
, "apm,tx-eye-direction",
1688 ctx
->sata_param
.txeyedirection
, 6, default_txeye_direction
, 1);
1689 xgene_phy_get_param(pdev
, "apm,tx-boost-gain",
1690 ctx
->sata_param
.txboostgain
, 6, default_txboost_gain
, 1);
1691 xgene_phy_get_param(pdev
, "apm,tx-amplitude",
1692 ctx
->sata_param
.txamplitude
, 6, default_txamp
, 13300);
1693 xgene_phy_get_param(pdev
, "apm,tx-pre-cursor1",
1694 ctx
->sata_param
.txprecursor_cn1
, 6, default_txcn1
, 18200);
1695 xgene_phy_get_param(pdev
, "apm,tx-pre-cursor2",
1696 ctx
->sata_param
.txprecursor_cn2
, 6, default_txcn2
, 18200);
1697 xgene_phy_get_param(pdev
, "apm,tx-post-cursor",
1698 ctx
->sata_param
.txpostcursor_cp1
, 6, default_txcp1
, 18200);
1699 xgene_phy_get_param(pdev
, "apm,tx-speed",
1700 ctx
->sata_param
.txspeed
, 3, default_spd
, 1);
1701 for (i
= 0; i
< MAX_LANE
; i
++)
1702 ctx
->sata_param
.speed
[i
] = 2; /* Default to Gen3 */
1704 platform_set_drvdata(pdev
, ctx
);
1706 ctx
->phy
= devm_phy_create(ctx
->dev
, NULL
, &xgene_phy_ops
);
1707 if (IS_ERR(ctx
->phy
)) {
1708 dev_dbg(&pdev
->dev
, "Failed to create PHY\n");
1709 return PTR_ERR(ctx
->phy
);
1711 phy_set_drvdata(ctx
->phy
, ctx
);
1713 phy_provider
= devm_of_phy_provider_register(ctx
->dev
, xgene_phy_xlate
);
1714 return PTR_ERR_OR_ZERO(phy_provider
);
1717 static const struct of_device_id xgene_phy_of_match
[] = {
1718 {.compatible
= "apm,xgene-phy",},
1721 MODULE_DEVICE_TABLE(of
, xgene_phy_of_match
);
1723 static struct platform_driver xgene_phy_driver
= {
1724 .probe
= xgene_phy_probe
,
1726 .name
= "xgene-phy",
1727 .of_match_table
= xgene_phy_of_match
,
1730 module_platform_driver(xgene_phy_driver
);
1732 MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1733 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1734 MODULE_LICENSE("GPL v2");
1735 MODULE_VERSION("0.1");