2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
33 #include <trace/events/kmem.h>
37 * 1. slub_lock (Global Semaphore)
39 * 3. slab_lock(page) (Only on some arches and for debugging)
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache
*s
)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 #define MIN_PARTIAL 5
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
148 #define MAX_PARTIAL 10
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161 * Set of flags that will prevent slab merging
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178 static int kmem_size
= sizeof(struct kmem_cache
);
181 static struct notifier_block slab_notifier
;
185 DOWN
, /* No slab functionality available */
186 PARTIAL
, /* Kmem_cache_node works */
187 UP
, /* Everything works but does not show up in sysfs */
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock
);
193 static LIST_HEAD(slab_caches
);
196 * Tracking user of a slab.
198 #define TRACK_ADDRS_COUNT 16
200 unsigned long addr
; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
204 int cpu
; /* Was running on cpu */
205 int pid
; /* Pid context */
206 unsigned long when
; /* When did the operation occur */
209 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
212 static int sysfs_slab_add(struct kmem_cache
*);
213 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
214 static void sysfs_slab_remove(struct kmem_cache
*);
217 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
220 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 int slab_is_available(void)
241 return slab_state
>= UP
;
244 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
246 return s
->node
[node
];
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache
*s
,
251 struct page
*page
, const void *object
)
258 base
= page_address(page
);
259 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
260 (object
- base
) % s
->size
) {
267 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
269 return *(void **)(object
+ s
->offset
);
272 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
279 p
= get_freepointer(s
, object
);
284 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
286 *(void **)(object
+ s
->offset
) = fp
;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
297 return (p
- addr
) / s
->size
;
300 static inline size_t slab_ksize(const struct kmem_cache
*s
)
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
307 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
316 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
319 * Else we can use all the padding etc for the allocation
324 static inline int order_objects(int order
, unsigned long size
, int reserved
)
326 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
329 static inline struct kmem_cache_order_objects
oo_make(int order
,
330 unsigned long size
, int reserved
)
332 struct kmem_cache_order_objects x
= {
333 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
339 static inline int oo_order(struct kmem_cache_order_objects x
)
341 return x
.x
>> OO_SHIFT
;
344 static inline int oo_objects(struct kmem_cache_order_objects x
)
346 return x
.x
& OO_MASK
;
350 * Per slab locking using the pagelock
352 static __always_inline
void slab_lock(struct page
*page
)
354 bit_spin_lock(PG_locked
, &page
->flags
);
357 static __always_inline
void slab_unlock(struct page
*page
)
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
364 void *freelist_old
, unsigned long counters_old
,
365 void *freelist_new
, unsigned long counters_new
,
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s
->flags
& __CMPXCHG_DOUBLE
) {
372 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
373 freelist_old
, counters_old
,
374 freelist_new
, counters_new
))
380 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
381 page
->freelist
= freelist_new
;
382 page
->counters
= counters_new
;
390 stat(s
, CMPXCHG_DOUBLE_FAIL
);
392 #ifdef SLUB_DEBUG_CMPXCHG
393 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
399 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
400 void *freelist_old
, unsigned long counters_old
,
401 void *freelist_new
, unsigned long counters_new
,
404 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
405 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
406 if (s
->flags
& __CMPXCHG_DOUBLE
) {
407 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
408 freelist_old
, counters_old
,
409 freelist_new
, counters_new
))
416 local_irq_save(flags
);
418 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
419 page
->freelist
= freelist_new
;
420 page
->counters
= counters_new
;
422 local_irq_restore(flags
);
426 local_irq_restore(flags
);
430 stat(s
, CMPXCHG_DOUBLE_FAIL
);
432 #ifdef SLUB_DEBUG_CMPXCHG
433 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
439 #ifdef CONFIG_SLUB_DEBUG
441 * Determine a map of object in use on a page.
443 * Node listlock must be held to guarantee that the page does
444 * not vanish from under us.
446 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
449 void *addr
= page_address(page
);
451 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
452 set_bit(slab_index(p
, s
, addr
), map
);
458 #ifdef CONFIG_SLUB_DEBUG_ON
459 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
461 static int slub_debug
;
464 static char *slub_debug_slabs
;
465 static int disable_higher_order_debug
;
470 static void print_section(char *text
, u8
*addr
, unsigned int length
)
472 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
476 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
477 enum track_item alloc
)
482 p
= object
+ s
->offset
+ sizeof(void *);
484 p
= object
+ s
->inuse
;
489 static void set_track(struct kmem_cache
*s
, void *object
,
490 enum track_item alloc
, unsigned long addr
)
492 struct track
*p
= get_track(s
, object
, alloc
);
495 #ifdef CONFIG_STACKTRACE
496 struct stack_trace trace
;
499 trace
.nr_entries
= 0;
500 trace
.max_entries
= TRACK_ADDRS_COUNT
;
501 trace
.entries
= p
->addrs
;
503 save_stack_trace(&trace
);
505 /* See rant in lockdep.c */
506 if (trace
.nr_entries
!= 0 &&
507 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
510 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
514 p
->cpu
= smp_processor_id();
515 p
->pid
= current
->pid
;
518 memset(p
, 0, sizeof(struct track
));
521 static void init_tracking(struct kmem_cache
*s
, void *object
)
523 if (!(s
->flags
& SLAB_STORE_USER
))
526 set_track(s
, object
, TRACK_FREE
, 0UL);
527 set_track(s
, object
, TRACK_ALLOC
, 0UL);
530 static void print_track(const char *s
, struct track
*t
)
535 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
536 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
537 #ifdef CONFIG_STACKTRACE
540 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
542 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
549 static void print_tracking(struct kmem_cache
*s
, void *object
)
551 if (!(s
->flags
& SLAB_STORE_USER
))
554 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
555 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
558 static void print_page_info(struct page
*page
)
560 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
561 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
565 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
571 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
573 printk(KERN_ERR
"========================================"
574 "=====================================\n");
575 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
576 printk(KERN_ERR
"----------------------------------------"
577 "-------------------------------------\n\n");
580 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
586 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
588 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
591 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
593 unsigned int off
; /* Offset of last byte */
594 u8
*addr
= page_address(page
);
596 print_tracking(s
, p
);
598 print_page_info(page
);
600 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
601 p
, p
- addr
, get_freepointer(s
, p
));
604 print_section("Bytes b4 ", p
- 16, 16);
606 print_section("Object ", p
, min_t(unsigned long, s
->objsize
,
608 if (s
->flags
& SLAB_RED_ZONE
)
609 print_section("Redzone ", p
+ s
->objsize
,
610 s
->inuse
- s
->objsize
);
613 off
= s
->offset
+ sizeof(void *);
617 if (s
->flags
& SLAB_STORE_USER
)
618 off
+= 2 * sizeof(struct track
);
621 /* Beginning of the filler is the free pointer */
622 print_section("Padding ", p
+ off
, s
->size
- off
);
627 static void object_err(struct kmem_cache
*s
, struct page
*page
,
628 u8
*object
, char *reason
)
630 slab_bug(s
, "%s", reason
);
631 print_trailer(s
, page
, object
);
634 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
640 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
642 slab_bug(s
, "%s", buf
);
643 print_page_info(page
);
647 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
651 if (s
->flags
& __OBJECT_POISON
) {
652 memset(p
, POISON_FREE
, s
->objsize
- 1);
653 p
[s
->objsize
- 1] = POISON_END
;
656 if (s
->flags
& SLAB_RED_ZONE
)
657 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
660 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
661 void *from
, void *to
)
663 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
664 memset(from
, data
, to
- from
);
667 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
668 u8
*object
, char *what
,
669 u8
*start
, unsigned int value
, unsigned int bytes
)
674 fault
= memchr_inv(start
, value
, bytes
);
679 while (end
> fault
&& end
[-1] == value
)
682 slab_bug(s
, "%s overwritten", what
);
683 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
684 fault
, end
- 1, fault
[0], value
);
685 print_trailer(s
, page
, object
);
687 restore_bytes(s
, what
, value
, fault
, end
);
695 * Bytes of the object to be managed.
696 * If the freepointer may overlay the object then the free
697 * pointer is the first word of the object.
699 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
702 * object + s->objsize
703 * Padding to reach word boundary. This is also used for Redzoning.
704 * Padding is extended by another word if Redzoning is enabled and
707 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
708 * 0xcc (RED_ACTIVE) for objects in use.
711 * Meta data starts here.
713 * A. Free pointer (if we cannot overwrite object on free)
714 * B. Tracking data for SLAB_STORE_USER
715 * C. Padding to reach required alignment boundary or at mininum
716 * one word if debugging is on to be able to detect writes
717 * before the word boundary.
719 * Padding is done using 0x5a (POISON_INUSE)
722 * Nothing is used beyond s->size.
724 * If slabcaches are merged then the objsize and inuse boundaries are mostly
725 * ignored. And therefore no slab options that rely on these boundaries
726 * may be used with merged slabcaches.
729 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
731 unsigned long off
= s
->inuse
; /* The end of info */
734 /* Freepointer is placed after the object. */
735 off
+= sizeof(void *);
737 if (s
->flags
& SLAB_STORE_USER
)
738 /* We also have user information there */
739 off
+= 2 * sizeof(struct track
);
744 return check_bytes_and_report(s
, page
, p
, "Object padding",
745 p
+ off
, POISON_INUSE
, s
->size
- off
);
748 /* Check the pad bytes at the end of a slab page */
749 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
757 if (!(s
->flags
& SLAB_POISON
))
760 start
= page_address(page
);
761 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
762 end
= start
+ length
;
763 remainder
= length
% s
->size
;
767 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
770 while (end
> fault
&& end
[-1] == POISON_INUSE
)
773 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
774 print_section("Padding ", end
- remainder
, remainder
);
776 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
780 static int check_object(struct kmem_cache
*s
, struct page
*page
,
781 void *object
, u8 val
)
784 u8
*endobject
= object
+ s
->objsize
;
786 if (s
->flags
& SLAB_RED_ZONE
) {
787 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
788 endobject
, val
, s
->inuse
- s
->objsize
))
791 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
792 check_bytes_and_report(s
, page
, p
, "Alignment padding",
793 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
797 if (s
->flags
& SLAB_POISON
) {
798 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
799 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
800 POISON_FREE
, s
->objsize
- 1) ||
801 !check_bytes_and_report(s
, page
, p
, "Poison",
802 p
+ s
->objsize
- 1, POISON_END
, 1)))
805 * check_pad_bytes cleans up on its own.
807 check_pad_bytes(s
, page
, p
);
810 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
812 * Object and freepointer overlap. Cannot check
813 * freepointer while object is allocated.
817 /* Check free pointer validity */
818 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
819 object_err(s
, page
, p
, "Freepointer corrupt");
821 * No choice but to zap it and thus lose the remainder
822 * of the free objects in this slab. May cause
823 * another error because the object count is now wrong.
825 set_freepointer(s
, p
, NULL
);
831 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
835 VM_BUG_ON(!irqs_disabled());
837 if (!PageSlab(page
)) {
838 slab_err(s
, page
, "Not a valid slab page");
842 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
843 if (page
->objects
> maxobj
) {
844 slab_err(s
, page
, "objects %u > max %u",
845 s
->name
, page
->objects
, maxobj
);
848 if (page
->inuse
> page
->objects
) {
849 slab_err(s
, page
, "inuse %u > max %u",
850 s
->name
, page
->inuse
, page
->objects
);
853 /* Slab_pad_check fixes things up after itself */
854 slab_pad_check(s
, page
);
859 * Determine if a certain object on a page is on the freelist. Must hold the
860 * slab lock to guarantee that the chains are in a consistent state.
862 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
867 unsigned long max_objects
;
870 while (fp
&& nr
<= page
->objects
) {
873 if (!check_valid_pointer(s
, page
, fp
)) {
875 object_err(s
, page
, object
,
876 "Freechain corrupt");
877 set_freepointer(s
, object
, NULL
);
880 slab_err(s
, page
, "Freepointer corrupt");
881 page
->freelist
= NULL
;
882 page
->inuse
= page
->objects
;
883 slab_fix(s
, "Freelist cleared");
889 fp
= get_freepointer(s
, object
);
893 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
894 if (max_objects
> MAX_OBJS_PER_PAGE
)
895 max_objects
= MAX_OBJS_PER_PAGE
;
897 if (page
->objects
!= max_objects
) {
898 slab_err(s
, page
, "Wrong number of objects. Found %d but "
899 "should be %d", page
->objects
, max_objects
);
900 page
->objects
= max_objects
;
901 slab_fix(s
, "Number of objects adjusted.");
903 if (page
->inuse
!= page
->objects
- nr
) {
904 slab_err(s
, page
, "Wrong object count. Counter is %d but "
905 "counted were %d", page
->inuse
, page
->objects
- nr
);
906 page
->inuse
= page
->objects
- nr
;
907 slab_fix(s
, "Object count adjusted.");
909 return search
== NULL
;
912 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
915 if (s
->flags
& SLAB_TRACE
) {
916 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
918 alloc
? "alloc" : "free",
923 print_section("Object ", (void *)object
, s
->objsize
);
930 * Hooks for other subsystems that check memory allocations. In a typical
931 * production configuration these hooks all should produce no code at all.
933 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
935 flags
&= gfp_allowed_mask
;
936 lockdep_trace_alloc(flags
);
937 might_sleep_if(flags
& __GFP_WAIT
);
939 return should_failslab(s
->objsize
, flags
, s
->flags
);
942 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
944 flags
&= gfp_allowed_mask
;
945 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
946 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
949 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
951 kmemleak_free_recursive(x
, s
->flags
);
954 * Trouble is that we may no longer disable interupts in the fast path
955 * So in order to make the debug calls that expect irqs to be
956 * disabled we need to disable interrupts temporarily.
958 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
962 local_irq_save(flags
);
963 kmemcheck_slab_free(s
, x
, s
->objsize
);
964 debug_check_no_locks_freed(x
, s
->objsize
);
965 local_irq_restore(flags
);
968 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
969 debug_check_no_obj_freed(x
, s
->objsize
);
973 * Tracking of fully allocated slabs for debugging purposes.
975 * list_lock must be held.
977 static void add_full(struct kmem_cache
*s
,
978 struct kmem_cache_node
*n
, struct page
*page
)
980 if (!(s
->flags
& SLAB_STORE_USER
))
983 list_add(&page
->lru
, &n
->full
);
987 * list_lock must be held.
989 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
991 if (!(s
->flags
& SLAB_STORE_USER
))
994 list_del(&page
->lru
);
997 /* Tracking of the number of slabs for debugging purposes */
998 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1000 struct kmem_cache_node
*n
= get_node(s
, node
);
1002 return atomic_long_read(&n
->nr_slabs
);
1005 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1007 return atomic_long_read(&n
->nr_slabs
);
1010 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1012 struct kmem_cache_node
*n
= get_node(s
, node
);
1015 * May be called early in order to allocate a slab for the
1016 * kmem_cache_node structure. Solve the chicken-egg
1017 * dilemma by deferring the increment of the count during
1018 * bootstrap (see early_kmem_cache_node_alloc).
1021 atomic_long_inc(&n
->nr_slabs
);
1022 atomic_long_add(objects
, &n
->total_objects
);
1025 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1027 struct kmem_cache_node
*n
= get_node(s
, node
);
1029 atomic_long_dec(&n
->nr_slabs
);
1030 atomic_long_sub(objects
, &n
->total_objects
);
1033 /* Object debug checks for alloc/free paths */
1034 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1037 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1040 init_object(s
, object
, SLUB_RED_INACTIVE
);
1041 init_tracking(s
, object
);
1044 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1045 void *object
, unsigned long addr
)
1047 if (!check_slab(s
, page
))
1050 if (!check_valid_pointer(s
, page
, object
)) {
1051 object_err(s
, page
, object
, "Freelist Pointer check fails");
1055 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1058 /* Success perform special debug activities for allocs */
1059 if (s
->flags
& SLAB_STORE_USER
)
1060 set_track(s
, object
, TRACK_ALLOC
, addr
);
1061 trace(s
, page
, object
, 1);
1062 init_object(s
, object
, SLUB_RED_ACTIVE
);
1066 if (PageSlab(page
)) {
1068 * If this is a slab page then lets do the best we can
1069 * to avoid issues in the future. Marking all objects
1070 * as used avoids touching the remaining objects.
1072 slab_fix(s
, "Marking all objects used");
1073 page
->inuse
= page
->objects
;
1074 page
->freelist
= NULL
;
1079 static noinline
int free_debug_processing(struct kmem_cache
*s
,
1080 struct page
*page
, void *object
, unsigned long addr
)
1082 unsigned long flags
;
1085 local_irq_save(flags
);
1088 if (!check_slab(s
, page
))
1091 if (!check_valid_pointer(s
, page
, object
)) {
1092 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1096 if (on_freelist(s
, page
, object
)) {
1097 object_err(s
, page
, object
, "Object already free");
1101 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1104 if (unlikely(s
!= page
->slab
)) {
1105 if (!PageSlab(page
)) {
1106 slab_err(s
, page
, "Attempt to free object(0x%p) "
1107 "outside of slab", object
);
1108 } else if (!page
->slab
) {
1110 "SLUB <none>: no slab for object 0x%p.\n",
1114 object_err(s
, page
, object
,
1115 "page slab pointer corrupt.");
1119 if (s
->flags
& SLAB_STORE_USER
)
1120 set_track(s
, object
, TRACK_FREE
, addr
);
1121 trace(s
, page
, object
, 0);
1122 init_object(s
, object
, SLUB_RED_INACTIVE
);
1126 local_irq_restore(flags
);
1130 slab_fix(s
, "Object at 0x%p not freed", object
);
1134 static int __init
setup_slub_debug(char *str
)
1136 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1137 if (*str
++ != '=' || !*str
)
1139 * No options specified. Switch on full debugging.
1145 * No options but restriction on slabs. This means full
1146 * debugging for slabs matching a pattern.
1150 if (tolower(*str
) == 'o') {
1152 * Avoid enabling debugging on caches if its minimum order
1153 * would increase as a result.
1155 disable_higher_order_debug
= 1;
1162 * Switch off all debugging measures.
1167 * Determine which debug features should be switched on
1169 for (; *str
&& *str
!= ','; str
++) {
1170 switch (tolower(*str
)) {
1172 slub_debug
|= SLAB_DEBUG_FREE
;
1175 slub_debug
|= SLAB_RED_ZONE
;
1178 slub_debug
|= SLAB_POISON
;
1181 slub_debug
|= SLAB_STORE_USER
;
1184 slub_debug
|= SLAB_TRACE
;
1187 slub_debug
|= SLAB_FAILSLAB
;
1190 printk(KERN_ERR
"slub_debug option '%c' "
1191 "unknown. skipped\n", *str
);
1197 slub_debug_slabs
= str
+ 1;
1202 __setup("slub_debug", setup_slub_debug
);
1204 static unsigned long kmem_cache_flags(unsigned long objsize
,
1205 unsigned long flags
, const char *name
,
1206 void (*ctor
)(void *))
1209 * Enable debugging if selected on the kernel commandline.
1211 if (slub_debug
&& (!slub_debug_slabs
||
1212 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1213 flags
|= slub_debug
;
1218 static inline void setup_object_debug(struct kmem_cache
*s
,
1219 struct page
*page
, void *object
) {}
1221 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1222 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1224 static inline int free_debug_processing(struct kmem_cache
*s
,
1225 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1227 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1229 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1230 void *object
, u8 val
) { return 1; }
1231 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1232 struct page
*page
) {}
1233 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1234 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1235 unsigned long flags
, const char *name
,
1236 void (*ctor
)(void *))
1240 #define slub_debug 0
1242 #define disable_higher_order_debug 0
1244 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1246 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1248 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1250 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1253 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1256 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1259 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1261 #endif /* CONFIG_SLUB_DEBUG */
1264 * Slab allocation and freeing
1266 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1267 struct kmem_cache_order_objects oo
)
1269 int order
= oo_order(oo
);
1271 flags
|= __GFP_NOTRACK
;
1273 if (node
== NUMA_NO_NODE
)
1274 return alloc_pages(flags
, order
);
1276 return alloc_pages_exact_node(node
, flags
, order
);
1279 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1282 struct kmem_cache_order_objects oo
= s
->oo
;
1285 flags
&= gfp_allowed_mask
;
1287 if (flags
& __GFP_WAIT
)
1290 flags
|= s
->allocflags
;
1293 * Let the initial higher-order allocation fail under memory pressure
1294 * so we fall-back to the minimum order allocation.
1296 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1298 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1299 if (unlikely(!page
)) {
1302 * Allocation may have failed due to fragmentation.
1303 * Try a lower order alloc if possible
1305 page
= alloc_slab_page(flags
, node
, oo
);
1308 stat(s
, ORDER_FALLBACK
);
1311 if (flags
& __GFP_WAIT
)
1312 local_irq_disable();
1317 if (kmemcheck_enabled
1318 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1319 int pages
= 1 << oo_order(oo
);
1321 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1324 * Objects from caches that have a constructor don't get
1325 * cleared when they're allocated, so we need to do it here.
1328 kmemcheck_mark_uninitialized_pages(page
, pages
);
1330 kmemcheck_mark_unallocated_pages(page
, pages
);
1333 page
->objects
= oo_objects(oo
);
1334 mod_zone_page_state(page_zone(page
),
1335 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1336 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1342 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1345 setup_object_debug(s
, page
, object
);
1346 if (unlikely(s
->ctor
))
1350 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1357 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1359 page
= allocate_slab(s
,
1360 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1364 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1366 page
->flags
|= 1 << PG_slab
;
1368 start
= page_address(page
);
1370 if (unlikely(s
->flags
& SLAB_POISON
))
1371 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1374 for_each_object(p
, s
, start
, page
->objects
) {
1375 setup_object(s
, page
, last
);
1376 set_freepointer(s
, last
, p
);
1379 setup_object(s
, page
, last
);
1380 set_freepointer(s
, last
, NULL
);
1382 page
->freelist
= start
;
1383 page
->inuse
= page
->objects
;
1389 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1391 int order
= compound_order(page
);
1392 int pages
= 1 << order
;
1394 if (kmem_cache_debug(s
)) {
1397 slab_pad_check(s
, page
);
1398 for_each_object(p
, s
, page_address(page
),
1400 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1403 kmemcheck_free_shadow(page
, compound_order(page
));
1405 mod_zone_page_state(page_zone(page
),
1406 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1407 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1410 __ClearPageSlab(page
);
1411 reset_page_mapcount(page
);
1412 if (current
->reclaim_state
)
1413 current
->reclaim_state
->reclaimed_slab
+= pages
;
1414 __free_pages(page
, order
);
1417 #define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1420 static void rcu_free_slab(struct rcu_head
*h
)
1424 if (need_reserve_slab_rcu
)
1425 page
= virt_to_head_page(h
);
1427 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1429 __free_slab(page
->slab
, page
);
1432 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1434 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1435 struct rcu_head
*head
;
1437 if (need_reserve_slab_rcu
) {
1438 int order
= compound_order(page
);
1439 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1441 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1442 head
= page_address(page
) + offset
;
1445 * RCU free overloads the RCU head over the LRU
1447 head
= (void *)&page
->lru
;
1450 call_rcu(head
, rcu_free_slab
);
1452 __free_slab(s
, page
);
1455 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1457 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1462 * Management of partially allocated slabs.
1464 * list_lock must be held.
1466 static inline void add_partial(struct kmem_cache_node
*n
,
1467 struct page
*page
, int tail
)
1470 if (tail
== DEACTIVATE_TO_TAIL
)
1471 list_add_tail(&page
->lru
, &n
->partial
);
1473 list_add(&page
->lru
, &n
->partial
);
1477 * list_lock must be held.
1479 static inline void remove_partial(struct kmem_cache_node
*n
,
1482 list_del(&page
->lru
);
1487 * Lock slab, remove from the partial list and put the object into the
1490 * Returns a list of objects or NULL if it fails.
1492 * Must hold list_lock.
1494 static inline void *acquire_slab(struct kmem_cache
*s
,
1495 struct kmem_cache_node
*n
, struct page
*page
,
1499 unsigned long counters
;
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1508 freelist
= page
->freelist
;
1509 counters
= page
->counters
;
1510 new.counters
= counters
;
1512 new.inuse
= page
->objects
;
1514 VM_BUG_ON(new.frozen
);
1517 } while (!__cmpxchg_double_slab(s
, page
,
1520 "lock and freeze"));
1522 remove_partial(n
, page
);
1526 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1529 * Try to allocate a partial slab from a specific node.
1531 static void *get_partial_node(struct kmem_cache
*s
,
1532 struct kmem_cache_node
*n
, struct kmem_cache_cpu
*c
)
1534 struct page
*page
, *page2
;
1535 void *object
= NULL
;
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1543 if (!n
|| !n
->nr_partial
)
1546 spin_lock(&n
->list_lock
);
1547 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1548 void *t
= acquire_slab(s
, n
, page
, object
== NULL
);
1556 c
->node
= page_to_nid(page
);
1557 stat(s
, ALLOC_FROM_PARTIAL
);
1559 available
= page
->objects
- page
->inuse
;
1562 available
= put_cpu_partial(s
, page
, 0);
1564 if (kmem_cache_debug(s
) || available
> s
->cpu_partial
/ 2)
1568 spin_unlock(&n
->list_lock
);
1573 * Get a page from somewhere. Search in increasing NUMA distances.
1575 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1576 struct kmem_cache_cpu
*c
)
1579 struct zonelist
*zonelist
;
1582 enum zone_type high_zoneidx
= gfp_zone(flags
);
1586 * The defrag ratio allows a configuration of the tradeoffs between
1587 * inter node defragmentation and node local allocations. A lower
1588 * defrag_ratio increases the tendency to do local allocations
1589 * instead of attempting to obtain partial slabs from other nodes.
1591 * If the defrag_ratio is set to 0 then kmalloc() always
1592 * returns node local objects. If the ratio is higher then kmalloc()
1593 * may return off node objects because partial slabs are obtained
1594 * from other nodes and filled up.
1596 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1597 * defrag_ratio = 1000) then every (well almost) allocation will
1598 * first attempt to defrag slab caches on other nodes. This means
1599 * scanning over all nodes to look for partial slabs which may be
1600 * expensive if we do it every time we are trying to find a slab
1601 * with available objects.
1603 if (!s
->remote_node_defrag_ratio
||
1604 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1608 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1609 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1610 struct kmem_cache_node
*n
;
1612 n
= get_node(s
, zone_to_nid(zone
));
1614 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1615 n
->nr_partial
> s
->min_partial
) {
1616 object
= get_partial_node(s
, n
, c
);
1629 * Get a partial page, lock it and return it.
1631 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1632 struct kmem_cache_cpu
*c
)
1635 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1637 object
= get_partial_node(s
, get_node(s
, searchnode
), c
);
1638 if (object
|| node
!= NUMA_NO_NODE
)
1641 return get_any_partial(s
, flags
, c
);
1644 #ifdef CONFIG_PREEMPT
1646 * Calculate the next globally unique transaction for disambiguiation
1647 * during cmpxchg. The transactions start with the cpu number and are then
1648 * incremented by CONFIG_NR_CPUS.
1650 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1653 * No preemption supported therefore also no need to check for
1659 static inline unsigned long next_tid(unsigned long tid
)
1661 return tid
+ TID_STEP
;
1664 static inline unsigned int tid_to_cpu(unsigned long tid
)
1666 return tid
% TID_STEP
;
1669 static inline unsigned long tid_to_event(unsigned long tid
)
1671 return tid
/ TID_STEP
;
1674 static inline unsigned int init_tid(int cpu
)
1679 static inline void note_cmpxchg_failure(const char *n
,
1680 const struct kmem_cache
*s
, unsigned long tid
)
1682 #ifdef SLUB_DEBUG_CMPXCHG
1683 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1685 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1687 #ifdef CONFIG_PREEMPT
1688 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1689 printk("due to cpu change %d -> %d\n",
1690 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1693 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1694 printk("due to cpu running other code. Event %ld->%ld\n",
1695 tid_to_event(tid
), tid_to_event(actual_tid
));
1697 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1698 actual_tid
, tid
, next_tid(tid
));
1700 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1703 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1707 for_each_possible_cpu(cpu
)
1708 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1712 * Remove the cpu slab
1714 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1716 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1717 struct page
*page
= c
->page
;
1718 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1720 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1723 int tail
= DEACTIVATE_TO_HEAD
;
1727 if (page
->freelist
) {
1728 stat(s
, DEACTIVATE_REMOTE_FREES
);
1729 tail
= DEACTIVATE_TO_TAIL
;
1732 c
->tid
= next_tid(c
->tid
);
1734 freelist
= c
->freelist
;
1738 * Stage one: Free all available per cpu objects back
1739 * to the page freelist while it is still frozen. Leave the
1742 * There is no need to take the list->lock because the page
1745 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1747 unsigned long counters
;
1750 prior
= page
->freelist
;
1751 counters
= page
->counters
;
1752 set_freepointer(s
, freelist
, prior
);
1753 new.counters
= counters
;
1755 VM_BUG_ON(!new.frozen
);
1757 } while (!__cmpxchg_double_slab(s
, page
,
1759 freelist
, new.counters
,
1760 "drain percpu freelist"));
1762 freelist
= nextfree
;
1766 * Stage two: Ensure that the page is unfrozen while the
1767 * list presence reflects the actual number of objects
1770 * We setup the list membership and then perform a cmpxchg
1771 * with the count. If there is a mismatch then the page
1772 * is not unfrozen but the page is on the wrong list.
1774 * Then we restart the process which may have to remove
1775 * the page from the list that we just put it on again
1776 * because the number of objects in the slab may have
1781 old
.freelist
= page
->freelist
;
1782 old
.counters
= page
->counters
;
1783 VM_BUG_ON(!old
.frozen
);
1785 /* Determine target state of the slab */
1786 new.counters
= old
.counters
;
1789 set_freepointer(s
, freelist
, old
.freelist
);
1790 new.freelist
= freelist
;
1792 new.freelist
= old
.freelist
;
1796 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1798 else if (new.freelist
) {
1803 * Taking the spinlock removes the possiblity
1804 * that acquire_slab() will see a slab page that
1807 spin_lock(&n
->list_lock
);
1811 if (kmem_cache_debug(s
) && !lock
) {
1814 * This also ensures that the scanning of full
1815 * slabs from diagnostic functions will not see
1818 spin_lock(&n
->list_lock
);
1826 remove_partial(n
, page
);
1828 else if (l
== M_FULL
)
1830 remove_full(s
, page
);
1832 if (m
== M_PARTIAL
) {
1834 add_partial(n
, page
, tail
);
1837 } else if (m
== M_FULL
) {
1839 stat(s
, DEACTIVATE_FULL
);
1840 add_full(s
, n
, page
);
1846 if (!__cmpxchg_double_slab(s
, page
,
1847 old
.freelist
, old
.counters
,
1848 new.freelist
, new.counters
,
1853 spin_unlock(&n
->list_lock
);
1856 stat(s
, DEACTIVATE_EMPTY
);
1857 discard_slab(s
, page
);
1862 /* Unfreeze all the cpu partial slabs */
1863 static void unfreeze_partials(struct kmem_cache
*s
)
1865 struct kmem_cache_node
*n
= NULL
;
1866 struct kmem_cache_cpu
*c
= this_cpu_ptr(s
->cpu_slab
);
1867 struct page
*page
, *discard_page
= NULL
;
1869 while ((page
= c
->partial
)) {
1870 enum slab_modes
{ M_PARTIAL
, M_FREE
};
1871 enum slab_modes l
, m
;
1875 c
->partial
= page
->next
;
1880 old
.freelist
= page
->freelist
;
1881 old
.counters
= page
->counters
;
1882 VM_BUG_ON(!old
.frozen
);
1884 new.counters
= old
.counters
;
1885 new.freelist
= old
.freelist
;
1889 if (!new.inuse
&& (!n
|| n
->nr_partial
> s
->min_partial
))
1892 struct kmem_cache_node
*n2
= get_node(s
,
1898 spin_unlock(&n
->list_lock
);
1901 spin_lock(&n
->list_lock
);
1906 if (l
== M_PARTIAL
) {
1907 remove_partial(n
, page
);
1908 stat(s
, FREE_REMOVE_PARTIAL
);
1910 add_partial(n
, page
,
1911 DEACTIVATE_TO_TAIL
);
1912 stat(s
, FREE_ADD_PARTIAL
);
1918 } while (!cmpxchg_double_slab(s
, page
,
1919 old
.freelist
, old
.counters
,
1920 new.freelist
, new.counters
,
1921 "unfreezing slab"));
1924 page
->next
= discard_page
;
1925 discard_page
= page
;
1930 spin_unlock(&n
->list_lock
);
1932 while (discard_page
) {
1933 page
= discard_page
;
1934 discard_page
= discard_page
->next
;
1936 stat(s
, DEACTIVATE_EMPTY
);
1937 discard_slab(s
, page
);
1943 * Put a page that was just frozen (in __slab_free) into a partial page
1944 * slot if available. This is done without interrupts disabled and without
1945 * preemption disabled. The cmpxchg is racy and may put the partial page
1946 * onto a random cpus partial slot.
1948 * If we did not find a slot then simply move all the partials to the
1949 * per node partial list.
1951 int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
1953 struct page
*oldpage
;
1960 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
1963 pobjects
= oldpage
->pobjects
;
1964 pages
= oldpage
->pages
;
1965 if (drain
&& pobjects
> s
->cpu_partial
) {
1966 unsigned long flags
;
1968 * partial array is full. Move the existing
1969 * set to the per node partial list.
1971 local_irq_save(flags
);
1972 unfreeze_partials(s
);
1973 local_irq_restore(flags
);
1980 pobjects
+= page
->objects
- page
->inuse
;
1982 page
->pages
= pages
;
1983 page
->pobjects
= pobjects
;
1984 page
->next
= oldpage
;
1986 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
1987 stat(s
, CPU_PARTIAL_FREE
);
1991 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1993 stat(s
, CPUSLAB_FLUSH
);
1994 deactivate_slab(s
, c
);
2000 * Called from IPI handler with interrupts disabled.
2002 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2004 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2010 unfreeze_partials(s
);
2014 static void flush_cpu_slab(void *d
)
2016 struct kmem_cache
*s
= d
;
2018 __flush_cpu_slab(s
, smp_processor_id());
2021 static void flush_all(struct kmem_cache
*s
)
2023 on_each_cpu(flush_cpu_slab
, s
, 1);
2027 * Check if the objects in a per cpu structure fit numa
2028 * locality expectations.
2030 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
2033 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
2039 static int count_free(struct page
*page
)
2041 return page
->objects
- page
->inuse
;
2044 static unsigned long count_partial(struct kmem_cache_node
*n
,
2045 int (*get_count
)(struct page
*))
2047 unsigned long flags
;
2048 unsigned long x
= 0;
2051 spin_lock_irqsave(&n
->list_lock
, flags
);
2052 list_for_each_entry(page
, &n
->partial
, lru
)
2053 x
+= get_count(page
);
2054 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2058 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2060 #ifdef CONFIG_SLUB_DEBUG
2061 return atomic_long_read(&n
->total_objects
);
2067 static noinline
void
2068 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2073 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2075 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2076 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
2077 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2079 if (oo_order(s
->min
) > get_order(s
->objsize
))
2080 printk(KERN_WARNING
" %s debugging increased min order, use "
2081 "slub_debug=O to disable.\n", s
->name
);
2083 for_each_online_node(node
) {
2084 struct kmem_cache_node
*n
= get_node(s
, node
);
2085 unsigned long nr_slabs
;
2086 unsigned long nr_objs
;
2087 unsigned long nr_free
;
2092 nr_free
= count_partial(n
, count_free
);
2093 nr_slabs
= node_nr_slabs(n
);
2094 nr_objs
= node_nr_objs(n
);
2097 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2098 node
, nr_slabs
, nr_objs
, nr_free
);
2102 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2103 int node
, struct kmem_cache_cpu
**pc
)
2106 struct kmem_cache_cpu
*c
;
2107 struct page
*page
= new_slab(s
, flags
, node
);
2110 c
= __this_cpu_ptr(s
->cpu_slab
);
2115 * No other reference to the page yet so we can
2116 * muck around with it freely without cmpxchg
2118 object
= page
->freelist
;
2119 page
->freelist
= NULL
;
2121 stat(s
, ALLOC_SLAB
);
2122 c
->node
= page_to_nid(page
);
2132 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2133 * or deactivate the page.
2135 * The page is still frozen if the return value is not NULL.
2137 * If this function returns NULL then the page has been unfrozen.
2139 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2142 unsigned long counters
;
2146 freelist
= page
->freelist
;
2147 counters
= page
->counters
;
2148 new.counters
= counters
;
2149 VM_BUG_ON(!new.frozen
);
2151 new.inuse
= page
->objects
;
2152 new.frozen
= freelist
!= NULL
;
2154 } while (!cmpxchg_double_slab(s
, page
,
2163 * Slow path. The lockless freelist is empty or we need to perform
2166 * Processing is still very fast if new objects have been freed to the
2167 * regular freelist. In that case we simply take over the regular freelist
2168 * as the lockless freelist and zap the regular freelist.
2170 * If that is not working then we fall back to the partial lists. We take the
2171 * first element of the freelist as the object to allocate now and move the
2172 * rest of the freelist to the lockless freelist.
2174 * And if we were unable to get a new slab from the partial slab lists then
2175 * we need to allocate a new slab. This is the slowest path since it involves
2176 * a call to the page allocator and the setup of a new slab.
2178 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2179 unsigned long addr
, struct kmem_cache_cpu
*c
)
2182 unsigned long flags
;
2184 local_irq_save(flags
);
2185 #ifdef CONFIG_PREEMPT
2187 * We may have been preempted and rescheduled on a different
2188 * cpu before disabling interrupts. Need to reload cpu area
2191 c
= this_cpu_ptr(s
->cpu_slab
);
2197 if (unlikely(!node_match(c
, node
))) {
2198 stat(s
, ALLOC_NODE_MISMATCH
);
2199 deactivate_slab(s
, c
);
2203 /* must check again c->freelist in case of cpu migration or IRQ */
2204 object
= c
->freelist
;
2208 stat(s
, ALLOC_SLOWPATH
);
2210 object
= get_freelist(s
, c
->page
);
2214 stat(s
, DEACTIVATE_BYPASS
);
2218 stat(s
, ALLOC_REFILL
);
2221 c
->freelist
= get_freepointer(s
, object
);
2222 c
->tid
= next_tid(c
->tid
);
2223 local_irq_restore(flags
);
2229 c
->page
= c
->partial
;
2230 c
->partial
= c
->page
->next
;
2231 c
->node
= page_to_nid(c
->page
);
2232 stat(s
, CPU_PARTIAL_ALLOC
);
2237 /* Then do expensive stuff like retrieving pages from the partial lists */
2238 object
= get_partial(s
, gfpflags
, node
, c
);
2240 if (unlikely(!object
)) {
2242 object
= new_slab_objects(s
, gfpflags
, node
, &c
);
2244 if (unlikely(!object
)) {
2245 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2246 slab_out_of_memory(s
, gfpflags
, node
);
2248 local_irq_restore(flags
);
2253 if (likely(!kmem_cache_debug(s
)))
2256 /* Only entered in the debug case */
2257 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
2258 goto new_slab
; /* Slab failed checks. Next slab needed */
2260 c
->freelist
= get_freepointer(s
, object
);
2261 deactivate_slab(s
, c
);
2262 c
->node
= NUMA_NO_NODE
;
2263 local_irq_restore(flags
);
2268 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2269 * have the fastpath folded into their functions. So no function call
2270 * overhead for requests that can be satisfied on the fastpath.
2272 * The fastpath works by first checking if the lockless freelist can be used.
2273 * If not then __slab_alloc is called for slow processing.
2275 * Otherwise we can simply pick the next object from the lockless free list.
2277 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2278 gfp_t gfpflags
, int node
, unsigned long addr
)
2281 struct kmem_cache_cpu
*c
;
2284 if (slab_pre_alloc_hook(s
, gfpflags
))
2290 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2291 * enabled. We may switch back and forth between cpus while
2292 * reading from one cpu area. That does not matter as long
2293 * as we end up on the original cpu again when doing the cmpxchg.
2295 c
= __this_cpu_ptr(s
->cpu_slab
);
2298 * The transaction ids are globally unique per cpu and per operation on
2299 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2300 * occurs on the right processor and that there was no operation on the
2301 * linked list in between.
2306 object
= c
->freelist
;
2307 if (unlikely(!object
|| !node_match(c
, node
)))
2309 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2313 * The cmpxchg will only match if there was no additional
2314 * operation and if we are on the right processor.
2316 * The cmpxchg does the following atomically (without lock semantics!)
2317 * 1. Relocate first pointer to the current per cpu area.
2318 * 2. Verify that tid and freelist have not been changed
2319 * 3. If they were not changed replace tid and freelist
2321 * Since this is without lock semantics the protection is only against
2322 * code executing on this cpu *not* from access by other cpus.
2324 if (unlikely(!this_cpu_cmpxchg_double(
2325 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2327 get_freepointer_safe(s
, object
), next_tid(tid
)))) {
2329 note_cmpxchg_failure("slab_alloc", s
, tid
);
2332 stat(s
, ALLOC_FASTPATH
);
2335 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2336 memset(object
, 0, s
->objsize
);
2338 slab_post_alloc_hook(s
, gfpflags
, object
);
2343 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2345 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2347 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
2351 EXPORT_SYMBOL(kmem_cache_alloc
);
2353 #ifdef CONFIG_TRACING
2354 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2356 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2357 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2360 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2362 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2364 void *ret
= kmalloc_order(size
, flags
, order
);
2365 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2368 EXPORT_SYMBOL(kmalloc_order_trace
);
2372 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2374 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2376 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2377 s
->objsize
, s
->size
, gfpflags
, node
);
2381 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2383 #ifdef CONFIG_TRACING
2384 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2386 int node
, size_t size
)
2388 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2390 trace_kmalloc_node(_RET_IP_
, ret
,
2391 size
, s
->size
, gfpflags
, node
);
2394 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2399 * Slow patch handling. This may still be called frequently since objects
2400 * have a longer lifetime than the cpu slabs in most processing loads.
2402 * So we still attempt to reduce cache line usage. Just take the slab
2403 * lock and free the item. If there is no additional partial page
2404 * handling required then we can return immediately.
2406 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2407 void *x
, unsigned long addr
)
2410 void **object
= (void *)x
;
2414 unsigned long counters
;
2415 struct kmem_cache_node
*n
= NULL
;
2416 unsigned long uninitialized_var(flags
);
2418 stat(s
, FREE_SLOWPATH
);
2420 if (kmem_cache_debug(s
) && !free_debug_processing(s
, page
, x
, addr
))
2424 prior
= page
->freelist
;
2425 counters
= page
->counters
;
2426 set_freepointer(s
, object
, prior
);
2427 new.counters
= counters
;
2428 was_frozen
= new.frozen
;
2430 if ((!new.inuse
|| !prior
) && !was_frozen
&& !n
) {
2432 if (!kmem_cache_debug(s
) && !prior
)
2435 * Slab was on no list before and will be partially empty
2436 * We can defer the list move and instead freeze it.
2440 else { /* Needs to be taken off a list */
2442 n
= get_node(s
, page_to_nid(page
));
2444 * Speculatively acquire the list_lock.
2445 * If the cmpxchg does not succeed then we may
2446 * drop the list_lock without any processing.
2448 * Otherwise the list_lock will synchronize with
2449 * other processors updating the list of slabs.
2451 spin_lock_irqsave(&n
->list_lock
, flags
);
2457 } while (!cmpxchg_double_slab(s
, page
,
2459 object
, new.counters
,
2465 * If we just froze the page then put it onto the
2466 * per cpu partial list.
2468 if (new.frozen
&& !was_frozen
)
2469 put_cpu_partial(s
, page
, 1);
2472 * The list lock was not taken therefore no list
2473 * activity can be necessary.
2476 stat(s
, FREE_FROZEN
);
2481 * was_frozen may have been set after we acquired the list_lock in
2482 * an earlier loop. So we need to check it here again.
2485 stat(s
, FREE_FROZEN
);
2487 if (unlikely(!inuse
&& n
->nr_partial
> s
->min_partial
))
2491 * Objects left in the slab. If it was not on the partial list before
2494 if (unlikely(!prior
)) {
2495 remove_full(s
, page
);
2496 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2497 stat(s
, FREE_ADD_PARTIAL
);
2500 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2506 * Slab on the partial list.
2508 remove_partial(n
, page
);
2509 stat(s
, FREE_REMOVE_PARTIAL
);
2511 /* Slab must be on the full list */
2512 remove_full(s
, page
);
2514 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2516 discard_slab(s
, page
);
2520 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2521 * can perform fastpath freeing without additional function calls.
2523 * The fastpath is only possible if we are freeing to the current cpu slab
2524 * of this processor. This typically the case if we have just allocated
2527 * If fastpath is not possible then fall back to __slab_free where we deal
2528 * with all sorts of special processing.
2530 static __always_inline
void slab_free(struct kmem_cache
*s
,
2531 struct page
*page
, void *x
, unsigned long addr
)
2533 void **object
= (void *)x
;
2534 struct kmem_cache_cpu
*c
;
2537 slab_free_hook(s
, x
);
2541 * Determine the currently cpus per cpu slab.
2542 * The cpu may change afterward. However that does not matter since
2543 * data is retrieved via this pointer. If we are on the same cpu
2544 * during the cmpxchg then the free will succedd.
2546 c
= __this_cpu_ptr(s
->cpu_slab
);
2551 if (likely(page
== c
->page
)) {
2552 set_freepointer(s
, object
, c
->freelist
);
2554 if (unlikely(!this_cpu_cmpxchg_double(
2555 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2557 object
, next_tid(tid
)))) {
2559 note_cmpxchg_failure("slab_free", s
, tid
);
2562 stat(s
, FREE_FASTPATH
);
2564 __slab_free(s
, page
, x
, addr
);
2568 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2572 page
= virt_to_head_page(x
);
2574 slab_free(s
, page
, x
, _RET_IP_
);
2576 trace_kmem_cache_free(_RET_IP_
, x
);
2578 EXPORT_SYMBOL(kmem_cache_free
);
2581 * Object placement in a slab is made very easy because we always start at
2582 * offset 0. If we tune the size of the object to the alignment then we can
2583 * get the required alignment by putting one properly sized object after
2586 * Notice that the allocation order determines the sizes of the per cpu
2587 * caches. Each processor has always one slab available for allocations.
2588 * Increasing the allocation order reduces the number of times that slabs
2589 * must be moved on and off the partial lists and is therefore a factor in
2594 * Mininum / Maximum order of slab pages. This influences locking overhead
2595 * and slab fragmentation. A higher order reduces the number of partial slabs
2596 * and increases the number of allocations possible without having to
2597 * take the list_lock.
2599 static int slub_min_order
;
2600 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2601 static int slub_min_objects
;
2604 * Merge control. If this is set then no merging of slab caches will occur.
2605 * (Could be removed. This was introduced to pacify the merge skeptics.)
2607 static int slub_nomerge
;
2610 * Calculate the order of allocation given an slab object size.
2612 * The order of allocation has significant impact on performance and other
2613 * system components. Generally order 0 allocations should be preferred since
2614 * order 0 does not cause fragmentation in the page allocator. Larger objects
2615 * be problematic to put into order 0 slabs because there may be too much
2616 * unused space left. We go to a higher order if more than 1/16th of the slab
2619 * In order to reach satisfactory performance we must ensure that a minimum
2620 * number of objects is in one slab. Otherwise we may generate too much
2621 * activity on the partial lists which requires taking the list_lock. This is
2622 * less a concern for large slabs though which are rarely used.
2624 * slub_max_order specifies the order where we begin to stop considering the
2625 * number of objects in a slab as critical. If we reach slub_max_order then
2626 * we try to keep the page order as low as possible. So we accept more waste
2627 * of space in favor of a small page order.
2629 * Higher order allocations also allow the placement of more objects in a
2630 * slab and thereby reduce object handling overhead. If the user has
2631 * requested a higher mininum order then we start with that one instead of
2632 * the smallest order which will fit the object.
2634 static inline int slab_order(int size
, int min_objects
,
2635 int max_order
, int fract_leftover
, int reserved
)
2639 int min_order
= slub_min_order
;
2641 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2642 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2644 for (order
= max(min_order
,
2645 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2646 order
<= max_order
; order
++) {
2648 unsigned long slab_size
= PAGE_SIZE
<< order
;
2650 if (slab_size
< min_objects
* size
+ reserved
)
2653 rem
= (slab_size
- reserved
) % size
;
2655 if (rem
<= slab_size
/ fract_leftover
)
2663 static inline int calculate_order(int size
, int reserved
)
2671 * Attempt to find best configuration for a slab. This
2672 * works by first attempting to generate a layout with
2673 * the best configuration and backing off gradually.
2675 * First we reduce the acceptable waste in a slab. Then
2676 * we reduce the minimum objects required in a slab.
2678 min_objects
= slub_min_objects
;
2680 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2681 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2682 min_objects
= min(min_objects
, max_objects
);
2684 while (min_objects
> 1) {
2686 while (fraction
>= 4) {
2687 order
= slab_order(size
, min_objects
,
2688 slub_max_order
, fraction
, reserved
);
2689 if (order
<= slub_max_order
)
2697 * We were unable to place multiple objects in a slab. Now
2698 * lets see if we can place a single object there.
2700 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2701 if (order
<= slub_max_order
)
2705 * Doh this slab cannot be placed using slub_max_order.
2707 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2708 if (order
< MAX_ORDER
)
2714 * Figure out what the alignment of the objects will be.
2716 static unsigned long calculate_alignment(unsigned long flags
,
2717 unsigned long align
, unsigned long size
)
2720 * If the user wants hardware cache aligned objects then follow that
2721 * suggestion if the object is sufficiently large.
2723 * The hardware cache alignment cannot override the specified
2724 * alignment though. If that is greater then use it.
2726 if (flags
& SLAB_HWCACHE_ALIGN
) {
2727 unsigned long ralign
= cache_line_size();
2728 while (size
<= ralign
/ 2)
2730 align
= max(align
, ralign
);
2733 if (align
< ARCH_SLAB_MINALIGN
)
2734 align
= ARCH_SLAB_MINALIGN
;
2736 return ALIGN(align
, sizeof(void *));
2740 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2743 spin_lock_init(&n
->list_lock
);
2744 INIT_LIST_HEAD(&n
->partial
);
2745 #ifdef CONFIG_SLUB_DEBUG
2746 atomic_long_set(&n
->nr_slabs
, 0);
2747 atomic_long_set(&n
->total_objects
, 0);
2748 INIT_LIST_HEAD(&n
->full
);
2752 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2754 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2755 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2758 * Must align to double word boundary for the double cmpxchg
2759 * instructions to work; see __pcpu_double_call_return_bool().
2761 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2762 2 * sizeof(void *));
2767 init_kmem_cache_cpus(s
);
2772 static struct kmem_cache
*kmem_cache_node
;
2775 * No kmalloc_node yet so do it by hand. We know that this is the first
2776 * slab on the node for this slabcache. There are no concurrent accesses
2779 * Note that this function only works on the kmalloc_node_cache
2780 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2781 * memory on a fresh node that has no slab structures yet.
2783 static void early_kmem_cache_node_alloc(int node
)
2786 struct kmem_cache_node
*n
;
2788 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2790 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2793 if (page_to_nid(page
) != node
) {
2794 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2796 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2797 "in order to be able to continue\n");
2802 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2805 kmem_cache_node
->node
[node
] = n
;
2806 #ifdef CONFIG_SLUB_DEBUG
2807 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2808 init_tracking(kmem_cache_node
, n
);
2810 init_kmem_cache_node(n
, kmem_cache_node
);
2811 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2813 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2816 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2820 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2821 struct kmem_cache_node
*n
= s
->node
[node
];
2824 kmem_cache_free(kmem_cache_node
, n
);
2826 s
->node
[node
] = NULL
;
2830 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2834 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2835 struct kmem_cache_node
*n
;
2837 if (slab_state
== DOWN
) {
2838 early_kmem_cache_node_alloc(node
);
2841 n
= kmem_cache_alloc_node(kmem_cache_node
,
2845 free_kmem_cache_nodes(s
);
2850 init_kmem_cache_node(n
, s
);
2855 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2857 if (min
< MIN_PARTIAL
)
2859 else if (min
> MAX_PARTIAL
)
2861 s
->min_partial
= min
;
2865 * calculate_sizes() determines the order and the distribution of data within
2868 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2870 unsigned long flags
= s
->flags
;
2871 unsigned long size
= s
->objsize
;
2872 unsigned long align
= s
->align
;
2876 * Round up object size to the next word boundary. We can only
2877 * place the free pointer at word boundaries and this determines
2878 * the possible location of the free pointer.
2880 size
= ALIGN(size
, sizeof(void *));
2882 #ifdef CONFIG_SLUB_DEBUG
2884 * Determine if we can poison the object itself. If the user of
2885 * the slab may touch the object after free or before allocation
2886 * then we should never poison the object itself.
2888 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2890 s
->flags
|= __OBJECT_POISON
;
2892 s
->flags
&= ~__OBJECT_POISON
;
2896 * If we are Redzoning then check if there is some space between the
2897 * end of the object and the free pointer. If not then add an
2898 * additional word to have some bytes to store Redzone information.
2900 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2901 size
+= sizeof(void *);
2905 * With that we have determined the number of bytes in actual use
2906 * by the object. This is the potential offset to the free pointer.
2910 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2913 * Relocate free pointer after the object if it is not
2914 * permitted to overwrite the first word of the object on
2917 * This is the case if we do RCU, have a constructor or
2918 * destructor or are poisoning the objects.
2921 size
+= sizeof(void *);
2924 #ifdef CONFIG_SLUB_DEBUG
2925 if (flags
& SLAB_STORE_USER
)
2927 * Need to store information about allocs and frees after
2930 size
+= 2 * sizeof(struct track
);
2932 if (flags
& SLAB_RED_ZONE
)
2934 * Add some empty padding so that we can catch
2935 * overwrites from earlier objects rather than let
2936 * tracking information or the free pointer be
2937 * corrupted if a user writes before the start
2940 size
+= sizeof(void *);
2944 * Determine the alignment based on various parameters that the
2945 * user specified and the dynamic determination of cache line size
2948 align
= calculate_alignment(flags
, align
, s
->objsize
);
2952 * SLUB stores one object immediately after another beginning from
2953 * offset 0. In order to align the objects we have to simply size
2954 * each object to conform to the alignment.
2956 size
= ALIGN(size
, align
);
2958 if (forced_order
>= 0)
2959 order
= forced_order
;
2961 order
= calculate_order(size
, s
->reserved
);
2968 s
->allocflags
|= __GFP_COMP
;
2970 if (s
->flags
& SLAB_CACHE_DMA
)
2971 s
->allocflags
|= SLUB_DMA
;
2973 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2974 s
->allocflags
|= __GFP_RECLAIMABLE
;
2977 * Determine the number of objects per slab
2979 s
->oo
= oo_make(order
, size
, s
->reserved
);
2980 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2981 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2984 return !!oo_objects(s
->oo
);
2988 static int kmem_cache_open(struct kmem_cache
*s
,
2989 const char *name
, size_t size
,
2990 size_t align
, unsigned long flags
,
2991 void (*ctor
)(void *))
2993 memset(s
, 0, kmem_size
);
2998 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
3001 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3002 s
->reserved
= sizeof(struct rcu_head
);
3004 if (!calculate_sizes(s
, -1))
3006 if (disable_higher_order_debug
) {
3008 * Disable debugging flags that store metadata if the min slab
3011 if (get_order(s
->size
) > get_order(s
->objsize
)) {
3012 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3014 if (!calculate_sizes(s
, -1))
3019 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3020 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3021 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3022 /* Enable fast mode */
3023 s
->flags
|= __CMPXCHG_DOUBLE
;
3027 * The larger the object size is, the more pages we want on the partial
3028 * list to avoid pounding the page allocator excessively.
3030 set_min_partial(s
, ilog2(s
->size
) / 2);
3033 * cpu_partial determined the maximum number of objects kept in the
3034 * per cpu partial lists of a processor.
3036 * Per cpu partial lists mainly contain slabs that just have one
3037 * object freed. If they are used for allocation then they can be
3038 * filled up again with minimal effort. The slab will never hit the
3039 * per node partial lists and therefore no locking will be required.
3041 * This setting also determines
3043 * A) The number of objects from per cpu partial slabs dumped to the
3044 * per node list when we reach the limit.
3045 * B) The number of objects in cpu partial slabs to extract from the
3046 * per node list when we run out of per cpu objects. We only fetch 50%
3047 * to keep some capacity around for frees.
3049 if (kmem_cache_debug(s
))
3051 else if (s
->size
>= PAGE_SIZE
)
3053 else if (s
->size
>= 1024)
3055 else if (s
->size
>= 256)
3056 s
->cpu_partial
= 13;
3058 s
->cpu_partial
= 30;
3062 s
->remote_node_defrag_ratio
= 1000;
3064 if (!init_kmem_cache_nodes(s
))
3067 if (alloc_kmem_cache_cpus(s
))
3070 free_kmem_cache_nodes(s
);
3072 if (flags
& SLAB_PANIC
)
3073 panic("Cannot create slab %s size=%lu realsize=%u "
3074 "order=%u offset=%u flags=%lx\n",
3075 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
3081 * Determine the size of a slab object
3083 unsigned int kmem_cache_size(struct kmem_cache
*s
)
3087 EXPORT_SYMBOL(kmem_cache_size
);
3089 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3092 #ifdef CONFIG_SLUB_DEBUG
3093 void *addr
= page_address(page
);
3095 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3096 sizeof(long), GFP_ATOMIC
);
3099 slab_err(s
, page
, "%s", text
);
3102 get_map(s
, page
, map
);
3103 for_each_object(p
, s
, addr
, page
->objects
) {
3105 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3106 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3108 print_tracking(s
, p
);
3117 * Attempt to free all partial slabs on a node.
3118 * This is called from kmem_cache_close(). We must be the last thread
3119 * using the cache and therefore we do not need to lock anymore.
3121 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3123 struct page
*page
, *h
;
3125 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3127 remove_partial(n
, page
);
3128 discard_slab(s
, page
);
3130 list_slab_objects(s
, page
,
3131 "Objects remaining on kmem_cache_close()");
3137 * Release all resources used by a slab cache.
3139 static inline int kmem_cache_close(struct kmem_cache
*s
)
3144 free_percpu(s
->cpu_slab
);
3145 /* Attempt to free all objects */
3146 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3147 struct kmem_cache_node
*n
= get_node(s
, node
);
3150 if (n
->nr_partial
|| slabs_node(s
, node
))
3153 free_kmem_cache_nodes(s
);
3158 * Close a cache and release the kmem_cache structure
3159 * (must be used for caches created using kmem_cache_create)
3161 void kmem_cache_destroy(struct kmem_cache
*s
)
3163 down_write(&slub_lock
);
3167 up_write(&slub_lock
);
3168 if (kmem_cache_close(s
)) {
3169 printk(KERN_ERR
"SLUB %s: %s called for cache that "
3170 "still has objects.\n", s
->name
, __func__
);
3173 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
3175 sysfs_slab_remove(s
);
3177 up_write(&slub_lock
);
3179 EXPORT_SYMBOL(kmem_cache_destroy
);
3181 /********************************************************************
3183 *******************************************************************/
3185 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
3186 EXPORT_SYMBOL(kmalloc_caches
);
3188 static struct kmem_cache
*kmem_cache
;
3190 #ifdef CONFIG_ZONE_DMA
3191 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3194 static int __init
setup_slub_min_order(char *str
)
3196 get_option(&str
, &slub_min_order
);
3201 __setup("slub_min_order=", setup_slub_min_order
);
3203 static int __init
setup_slub_max_order(char *str
)
3205 get_option(&str
, &slub_max_order
);
3206 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3211 __setup("slub_max_order=", setup_slub_max_order
);
3213 static int __init
setup_slub_min_objects(char *str
)
3215 get_option(&str
, &slub_min_objects
);
3220 __setup("slub_min_objects=", setup_slub_min_objects
);
3222 static int __init
setup_slub_nomerge(char *str
)
3228 __setup("slub_nomerge", setup_slub_nomerge
);
3230 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
3231 int size
, unsigned int flags
)
3233 struct kmem_cache
*s
;
3235 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3238 * This function is called with IRQs disabled during early-boot on
3239 * single CPU so there's no need to take slub_lock here.
3241 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
3245 list_add(&s
->list
, &slab_caches
);
3249 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
3254 * Conversion table for small slabs sizes / 8 to the index in the
3255 * kmalloc array. This is necessary for slabs < 192 since we have non power
3256 * of two cache sizes there. The size of larger slabs can be determined using
3259 static s8 size_index
[24] = {
3286 static inline int size_index_elem(size_t bytes
)
3288 return (bytes
- 1) / 8;
3291 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3297 return ZERO_SIZE_PTR
;
3299 index
= size_index
[size_index_elem(size
)];
3301 index
= fls(size
- 1);
3303 #ifdef CONFIG_ZONE_DMA
3304 if (unlikely((flags
& SLUB_DMA
)))
3305 return kmalloc_dma_caches
[index
];
3308 return kmalloc_caches
[index
];
3311 void *__kmalloc(size_t size
, gfp_t flags
)
3313 struct kmem_cache
*s
;
3316 if (unlikely(size
> SLUB_MAX_SIZE
))
3317 return kmalloc_large(size
, flags
);
3319 s
= get_slab(size
, flags
);
3321 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3324 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
3326 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3330 EXPORT_SYMBOL(__kmalloc
);
3333 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3338 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3339 page
= alloc_pages_node(node
, flags
, get_order(size
));
3341 ptr
= page_address(page
);
3343 kmemleak_alloc(ptr
, size
, 1, flags
);
3347 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3349 struct kmem_cache
*s
;
3352 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3353 ret
= kmalloc_large_node(size
, flags
, node
);
3355 trace_kmalloc_node(_RET_IP_
, ret
,
3356 size
, PAGE_SIZE
<< get_order(size
),
3362 s
= get_slab(size
, flags
);
3364 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3367 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
3369 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3373 EXPORT_SYMBOL(__kmalloc_node
);
3376 size_t ksize(const void *object
)
3380 if (unlikely(object
== ZERO_SIZE_PTR
))
3383 page
= virt_to_head_page(object
);
3385 if (unlikely(!PageSlab(page
))) {
3386 WARN_ON(!PageCompound(page
));
3387 return PAGE_SIZE
<< compound_order(page
);
3390 return slab_ksize(page
->slab
);
3392 EXPORT_SYMBOL(ksize
);
3394 #ifdef CONFIG_SLUB_DEBUG
3395 bool verify_mem_not_deleted(const void *x
)
3398 void *object
= (void *)x
;
3399 unsigned long flags
;
3402 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3405 local_irq_save(flags
);
3407 page
= virt_to_head_page(x
);
3408 if (unlikely(!PageSlab(page
))) {
3409 /* maybe it was from stack? */
3415 if (on_freelist(page
->slab
, page
, object
)) {
3416 object_err(page
->slab
, page
, object
, "Object is on free-list");
3424 local_irq_restore(flags
);
3427 EXPORT_SYMBOL(verify_mem_not_deleted
);
3430 void kfree(const void *x
)
3433 void *object
= (void *)x
;
3435 trace_kfree(_RET_IP_
, x
);
3437 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3440 page
= virt_to_head_page(x
);
3441 if (unlikely(!PageSlab(page
))) {
3442 BUG_ON(!PageCompound(page
));
3447 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3449 EXPORT_SYMBOL(kfree
);
3452 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3453 * the remaining slabs by the number of items in use. The slabs with the
3454 * most items in use come first. New allocations will then fill those up
3455 * and thus they can be removed from the partial lists.
3457 * The slabs with the least items are placed last. This results in them
3458 * being allocated from last increasing the chance that the last objects
3459 * are freed in them.
3461 int kmem_cache_shrink(struct kmem_cache
*s
)
3465 struct kmem_cache_node
*n
;
3468 int objects
= oo_objects(s
->max
);
3469 struct list_head
*slabs_by_inuse
=
3470 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3471 unsigned long flags
;
3473 if (!slabs_by_inuse
)
3477 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3478 n
= get_node(s
, node
);
3483 for (i
= 0; i
< objects
; i
++)
3484 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3486 spin_lock_irqsave(&n
->list_lock
, flags
);
3489 * Build lists indexed by the items in use in each slab.
3491 * Note that concurrent frees may occur while we hold the
3492 * list_lock. page->inuse here is the upper limit.
3494 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3495 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3501 * Rebuild the partial list with the slabs filled up most
3502 * first and the least used slabs at the end.
3504 for (i
= objects
- 1; i
> 0; i
--)
3505 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3507 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3509 /* Release empty slabs */
3510 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3511 discard_slab(s
, page
);
3514 kfree(slabs_by_inuse
);
3517 EXPORT_SYMBOL(kmem_cache_shrink
);
3519 #if defined(CONFIG_MEMORY_HOTPLUG)
3520 static int slab_mem_going_offline_callback(void *arg
)
3522 struct kmem_cache
*s
;
3524 down_read(&slub_lock
);
3525 list_for_each_entry(s
, &slab_caches
, list
)
3526 kmem_cache_shrink(s
);
3527 up_read(&slub_lock
);
3532 static void slab_mem_offline_callback(void *arg
)
3534 struct kmem_cache_node
*n
;
3535 struct kmem_cache
*s
;
3536 struct memory_notify
*marg
= arg
;
3539 offline_node
= marg
->status_change_nid
;
3542 * If the node still has available memory. we need kmem_cache_node
3545 if (offline_node
< 0)
3548 down_read(&slub_lock
);
3549 list_for_each_entry(s
, &slab_caches
, list
) {
3550 n
= get_node(s
, offline_node
);
3553 * if n->nr_slabs > 0, slabs still exist on the node
3554 * that is going down. We were unable to free them,
3555 * and offline_pages() function shouldn't call this
3556 * callback. So, we must fail.
3558 BUG_ON(slabs_node(s
, offline_node
));
3560 s
->node
[offline_node
] = NULL
;
3561 kmem_cache_free(kmem_cache_node
, n
);
3564 up_read(&slub_lock
);
3567 static int slab_mem_going_online_callback(void *arg
)
3569 struct kmem_cache_node
*n
;
3570 struct kmem_cache
*s
;
3571 struct memory_notify
*marg
= arg
;
3572 int nid
= marg
->status_change_nid
;
3576 * If the node's memory is already available, then kmem_cache_node is
3577 * already created. Nothing to do.
3583 * We are bringing a node online. No memory is available yet. We must
3584 * allocate a kmem_cache_node structure in order to bring the node
3587 down_read(&slub_lock
);
3588 list_for_each_entry(s
, &slab_caches
, list
) {
3590 * XXX: kmem_cache_alloc_node will fallback to other nodes
3591 * since memory is not yet available from the node that
3594 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3599 init_kmem_cache_node(n
, s
);
3603 up_read(&slub_lock
);
3607 static int slab_memory_callback(struct notifier_block
*self
,
3608 unsigned long action
, void *arg
)
3613 case MEM_GOING_ONLINE
:
3614 ret
= slab_mem_going_online_callback(arg
);
3616 case MEM_GOING_OFFLINE
:
3617 ret
= slab_mem_going_offline_callback(arg
);
3620 case MEM_CANCEL_ONLINE
:
3621 slab_mem_offline_callback(arg
);
3624 case MEM_CANCEL_OFFLINE
:
3628 ret
= notifier_from_errno(ret
);
3634 #endif /* CONFIG_MEMORY_HOTPLUG */
3636 /********************************************************************
3637 * Basic setup of slabs
3638 *******************************************************************/
3641 * Used for early kmem_cache structures that were allocated using
3642 * the page allocator
3645 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3649 list_add(&s
->list
, &slab_caches
);
3652 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3653 struct kmem_cache_node
*n
= get_node(s
, node
);
3657 list_for_each_entry(p
, &n
->partial
, lru
)
3660 #ifdef CONFIG_SLUB_DEBUG
3661 list_for_each_entry(p
, &n
->full
, lru
)
3668 void __init
kmem_cache_init(void)
3672 struct kmem_cache
*temp_kmem_cache
;
3674 struct kmem_cache
*temp_kmem_cache_node
;
3675 unsigned long kmalloc_size
;
3677 if (debug_guardpage_minorder())
3680 kmem_size
= offsetof(struct kmem_cache
, node
) +
3681 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3683 /* Allocate two kmem_caches from the page allocator */
3684 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3685 order
= get_order(2 * kmalloc_size
);
3686 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3689 * Must first have the slab cache available for the allocations of the
3690 * struct kmem_cache_node's. There is special bootstrap code in
3691 * kmem_cache_open for slab_state == DOWN.
3693 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3695 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3696 sizeof(struct kmem_cache_node
),
3697 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3699 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3701 /* Able to allocate the per node structures */
3702 slab_state
= PARTIAL
;
3704 temp_kmem_cache
= kmem_cache
;
3705 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3706 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3707 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3708 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3711 * Allocate kmem_cache_node properly from the kmem_cache slab.
3712 * kmem_cache_node is separately allocated so no need to
3713 * update any list pointers.
3715 temp_kmem_cache_node
= kmem_cache_node
;
3717 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3718 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3720 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3723 kmem_cache_bootstrap_fixup(kmem_cache
);
3725 /* Free temporary boot structure */
3726 free_pages((unsigned long)temp_kmem_cache
, order
);
3728 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3731 * Patch up the size_index table if we have strange large alignment
3732 * requirements for the kmalloc array. This is only the case for
3733 * MIPS it seems. The standard arches will not generate any code here.
3735 * Largest permitted alignment is 256 bytes due to the way we
3736 * handle the index determination for the smaller caches.
3738 * Make sure that nothing crazy happens if someone starts tinkering
3739 * around with ARCH_KMALLOC_MINALIGN
3741 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3742 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3744 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3745 int elem
= size_index_elem(i
);
3746 if (elem
>= ARRAY_SIZE(size_index
))
3748 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3751 if (KMALLOC_MIN_SIZE
== 64) {
3753 * The 96 byte size cache is not used if the alignment
3756 for (i
= 64 + 8; i
<= 96; i
+= 8)
3757 size_index
[size_index_elem(i
)] = 7;
3758 } else if (KMALLOC_MIN_SIZE
== 128) {
3760 * The 192 byte sized cache is not used if the alignment
3761 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3764 for (i
= 128 + 8; i
<= 192; i
+= 8)
3765 size_index
[size_index_elem(i
)] = 8;
3768 /* Caches that are not of the two-to-the-power-of size */
3769 if (KMALLOC_MIN_SIZE
<= 32) {
3770 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3774 if (KMALLOC_MIN_SIZE
<= 64) {
3775 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3779 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3780 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3786 /* Provide the correct kmalloc names now that the caches are up */
3787 if (KMALLOC_MIN_SIZE
<= 32) {
3788 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3789 BUG_ON(!kmalloc_caches
[1]->name
);
3792 if (KMALLOC_MIN_SIZE
<= 64) {
3793 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3794 BUG_ON(!kmalloc_caches
[2]->name
);
3797 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3798 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3801 kmalloc_caches
[i
]->name
= s
;
3805 register_cpu_notifier(&slab_notifier
);
3808 #ifdef CONFIG_ZONE_DMA
3809 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3810 struct kmem_cache
*s
= kmalloc_caches
[i
];
3813 char *name
= kasprintf(GFP_NOWAIT
,
3814 "dma-kmalloc-%d", s
->objsize
);
3817 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3818 s
->objsize
, SLAB_CACHE_DMA
);
3823 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3824 " CPUs=%d, Nodes=%d\n",
3825 caches
, cache_line_size(),
3826 slub_min_order
, slub_max_order
, slub_min_objects
,
3827 nr_cpu_ids
, nr_node_ids
);
3830 void __init
kmem_cache_init_late(void)
3835 * Find a mergeable slab cache
3837 static int slab_unmergeable(struct kmem_cache
*s
)
3839 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3846 * We may have set a slab to be unmergeable during bootstrap.
3848 if (s
->refcount
< 0)
3854 static struct kmem_cache
*find_mergeable(size_t size
,
3855 size_t align
, unsigned long flags
, const char *name
,
3856 void (*ctor
)(void *))
3858 struct kmem_cache
*s
;
3860 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3866 size
= ALIGN(size
, sizeof(void *));
3867 align
= calculate_alignment(flags
, align
, size
);
3868 size
= ALIGN(size
, align
);
3869 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3871 list_for_each_entry(s
, &slab_caches
, list
) {
3872 if (slab_unmergeable(s
))
3878 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3881 * Check if alignment is compatible.
3882 * Courtesy of Adrian Drzewiecki
3884 if ((s
->size
& ~(align
- 1)) != s
->size
)
3887 if (s
->size
- size
>= sizeof(void *))
3895 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3896 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3898 struct kmem_cache
*s
;
3904 down_write(&slub_lock
);
3905 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3909 * Adjust the object sizes so that we clear
3910 * the complete object on kzalloc.
3912 s
->objsize
= max(s
->objsize
, (int)size
);
3913 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3915 if (sysfs_slab_alias(s
, name
)) {
3919 up_write(&slub_lock
);
3923 n
= kstrdup(name
, GFP_KERNEL
);
3927 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3929 if (kmem_cache_open(s
, n
,
3930 size
, align
, flags
, ctor
)) {
3931 list_add(&s
->list
, &slab_caches
);
3932 up_write(&slub_lock
);
3933 if (sysfs_slab_add(s
)) {
3934 down_write(&slub_lock
);
3946 up_write(&slub_lock
);
3948 if (flags
& SLAB_PANIC
)
3949 panic("Cannot create slabcache %s\n", name
);
3954 EXPORT_SYMBOL(kmem_cache_create
);
3958 * Use the cpu notifier to insure that the cpu slabs are flushed when
3961 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3962 unsigned long action
, void *hcpu
)
3964 long cpu
= (long)hcpu
;
3965 struct kmem_cache
*s
;
3966 unsigned long flags
;
3969 case CPU_UP_CANCELED
:
3970 case CPU_UP_CANCELED_FROZEN
:
3972 case CPU_DEAD_FROZEN
:
3973 down_read(&slub_lock
);
3974 list_for_each_entry(s
, &slab_caches
, list
) {
3975 local_irq_save(flags
);
3976 __flush_cpu_slab(s
, cpu
);
3977 local_irq_restore(flags
);
3979 up_read(&slub_lock
);
3987 static struct notifier_block __cpuinitdata slab_notifier
= {
3988 .notifier_call
= slab_cpuup_callback
3993 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3995 struct kmem_cache
*s
;
3998 if (unlikely(size
> SLUB_MAX_SIZE
))
3999 return kmalloc_large(size
, gfpflags
);
4001 s
= get_slab(size
, gfpflags
);
4003 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4006 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
4008 /* Honor the call site pointer we received. */
4009 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4015 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4016 int node
, unsigned long caller
)
4018 struct kmem_cache
*s
;
4021 if (unlikely(size
> SLUB_MAX_SIZE
)) {
4022 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4024 trace_kmalloc_node(caller
, ret
,
4025 size
, PAGE_SIZE
<< get_order(size
),
4031 s
= get_slab(size
, gfpflags
);
4033 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4036 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
4038 /* Honor the call site pointer we received. */
4039 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4046 static int count_inuse(struct page
*page
)
4051 static int count_total(struct page
*page
)
4053 return page
->objects
;
4057 #ifdef CONFIG_SLUB_DEBUG
4058 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4062 void *addr
= page_address(page
);
4064 if (!check_slab(s
, page
) ||
4065 !on_freelist(s
, page
, NULL
))
4068 /* Now we know that a valid freelist exists */
4069 bitmap_zero(map
, page
->objects
);
4071 get_map(s
, page
, map
);
4072 for_each_object(p
, s
, addr
, page
->objects
) {
4073 if (test_bit(slab_index(p
, s
, addr
), map
))
4074 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4078 for_each_object(p
, s
, addr
, page
->objects
)
4079 if (!test_bit(slab_index(p
, s
, addr
), map
))
4080 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4085 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4089 validate_slab(s
, page
, map
);
4093 static int validate_slab_node(struct kmem_cache
*s
,
4094 struct kmem_cache_node
*n
, unsigned long *map
)
4096 unsigned long count
= 0;
4098 unsigned long flags
;
4100 spin_lock_irqsave(&n
->list_lock
, flags
);
4102 list_for_each_entry(page
, &n
->partial
, lru
) {
4103 validate_slab_slab(s
, page
, map
);
4106 if (count
!= n
->nr_partial
)
4107 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
4108 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
4110 if (!(s
->flags
& SLAB_STORE_USER
))
4113 list_for_each_entry(page
, &n
->full
, lru
) {
4114 validate_slab_slab(s
, page
, map
);
4117 if (count
!= atomic_long_read(&n
->nr_slabs
))
4118 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
4119 "counter=%ld\n", s
->name
, count
,
4120 atomic_long_read(&n
->nr_slabs
));
4123 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4127 static long validate_slab_cache(struct kmem_cache
*s
)
4130 unsigned long count
= 0;
4131 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4132 sizeof(unsigned long), GFP_KERNEL
);
4138 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4139 struct kmem_cache_node
*n
= get_node(s
, node
);
4141 count
+= validate_slab_node(s
, n
, map
);
4147 * Generate lists of code addresses where slabcache objects are allocated
4152 unsigned long count
;
4159 DECLARE_BITMAP(cpus
, NR_CPUS
);
4165 unsigned long count
;
4166 struct location
*loc
;
4169 static void free_loc_track(struct loc_track
*t
)
4172 free_pages((unsigned long)t
->loc
,
4173 get_order(sizeof(struct location
) * t
->max
));
4176 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4181 order
= get_order(sizeof(struct location
) * max
);
4183 l
= (void *)__get_free_pages(flags
, order
);
4188 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4196 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4197 const struct track
*track
)
4199 long start
, end
, pos
;
4201 unsigned long caddr
;
4202 unsigned long age
= jiffies
- track
->when
;
4208 pos
= start
+ (end
- start
+ 1) / 2;
4211 * There is nothing at "end". If we end up there
4212 * we need to add something to before end.
4217 caddr
= t
->loc
[pos
].addr
;
4218 if (track
->addr
== caddr
) {
4224 if (age
< l
->min_time
)
4226 if (age
> l
->max_time
)
4229 if (track
->pid
< l
->min_pid
)
4230 l
->min_pid
= track
->pid
;
4231 if (track
->pid
> l
->max_pid
)
4232 l
->max_pid
= track
->pid
;
4234 cpumask_set_cpu(track
->cpu
,
4235 to_cpumask(l
->cpus
));
4237 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4241 if (track
->addr
< caddr
)
4248 * Not found. Insert new tracking element.
4250 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4256 (t
->count
- pos
) * sizeof(struct location
));
4259 l
->addr
= track
->addr
;
4263 l
->min_pid
= track
->pid
;
4264 l
->max_pid
= track
->pid
;
4265 cpumask_clear(to_cpumask(l
->cpus
));
4266 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4267 nodes_clear(l
->nodes
);
4268 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4272 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4273 struct page
*page
, enum track_item alloc
,
4276 void *addr
= page_address(page
);
4279 bitmap_zero(map
, page
->objects
);
4280 get_map(s
, page
, map
);
4282 for_each_object(p
, s
, addr
, page
->objects
)
4283 if (!test_bit(slab_index(p
, s
, addr
), map
))
4284 add_location(t
, s
, get_track(s
, p
, alloc
));
4287 static int list_locations(struct kmem_cache
*s
, char *buf
,
4288 enum track_item alloc
)
4292 struct loc_track t
= { 0, 0, NULL
};
4294 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4295 sizeof(unsigned long), GFP_KERNEL
);
4297 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4300 return sprintf(buf
, "Out of memory\n");
4302 /* Push back cpu slabs */
4305 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4306 struct kmem_cache_node
*n
= get_node(s
, node
);
4307 unsigned long flags
;
4310 if (!atomic_long_read(&n
->nr_slabs
))
4313 spin_lock_irqsave(&n
->list_lock
, flags
);
4314 list_for_each_entry(page
, &n
->partial
, lru
)
4315 process_slab(&t
, s
, page
, alloc
, map
);
4316 list_for_each_entry(page
, &n
->full
, lru
)
4317 process_slab(&t
, s
, page
, alloc
, map
);
4318 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4321 for (i
= 0; i
< t
.count
; i
++) {
4322 struct location
*l
= &t
.loc
[i
];
4324 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4326 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4329 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4331 len
+= sprintf(buf
+ len
, "<not-available>");
4333 if (l
->sum_time
!= l
->min_time
) {
4334 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4336 (long)div_u64(l
->sum_time
, l
->count
),
4339 len
+= sprintf(buf
+ len
, " age=%ld",
4342 if (l
->min_pid
!= l
->max_pid
)
4343 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4344 l
->min_pid
, l
->max_pid
);
4346 len
+= sprintf(buf
+ len
, " pid=%ld",
4349 if (num_online_cpus() > 1 &&
4350 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4351 len
< PAGE_SIZE
- 60) {
4352 len
+= sprintf(buf
+ len
, " cpus=");
4353 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4354 to_cpumask(l
->cpus
));
4357 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4358 len
< PAGE_SIZE
- 60) {
4359 len
+= sprintf(buf
+ len
, " nodes=");
4360 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4364 len
+= sprintf(buf
+ len
, "\n");
4370 len
+= sprintf(buf
, "No data\n");
4375 #ifdef SLUB_RESILIENCY_TEST
4376 static void resiliency_test(void)
4380 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4382 printk(KERN_ERR
"SLUB resiliency testing\n");
4383 printk(KERN_ERR
"-----------------------\n");
4384 printk(KERN_ERR
"A. Corruption after allocation\n");
4386 p
= kzalloc(16, GFP_KERNEL
);
4388 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4389 " 0x12->0x%p\n\n", p
+ 16);
4391 validate_slab_cache(kmalloc_caches
[4]);
4393 /* Hmmm... The next two are dangerous */
4394 p
= kzalloc(32, GFP_KERNEL
);
4395 p
[32 + sizeof(void *)] = 0x34;
4396 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4397 " 0x34 -> -0x%p\n", p
);
4399 "If allocated object is overwritten then not detectable\n\n");
4401 validate_slab_cache(kmalloc_caches
[5]);
4402 p
= kzalloc(64, GFP_KERNEL
);
4403 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4405 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4408 "If allocated object is overwritten then not detectable\n\n");
4409 validate_slab_cache(kmalloc_caches
[6]);
4411 printk(KERN_ERR
"\nB. Corruption after free\n");
4412 p
= kzalloc(128, GFP_KERNEL
);
4415 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4416 validate_slab_cache(kmalloc_caches
[7]);
4418 p
= kzalloc(256, GFP_KERNEL
);
4421 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4423 validate_slab_cache(kmalloc_caches
[8]);
4425 p
= kzalloc(512, GFP_KERNEL
);
4428 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4429 validate_slab_cache(kmalloc_caches
[9]);
4433 static void resiliency_test(void) {};
4438 enum slab_stat_type
{
4439 SL_ALL
, /* All slabs */
4440 SL_PARTIAL
, /* Only partially allocated slabs */
4441 SL_CPU
, /* Only slabs used for cpu caches */
4442 SL_OBJECTS
, /* Determine allocated objects not slabs */
4443 SL_TOTAL
/* Determine object capacity not slabs */
4446 #define SO_ALL (1 << SL_ALL)
4447 #define SO_PARTIAL (1 << SL_PARTIAL)
4448 #define SO_CPU (1 << SL_CPU)
4449 #define SO_OBJECTS (1 << SL_OBJECTS)
4450 #define SO_TOTAL (1 << SL_TOTAL)
4452 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4453 char *buf
, unsigned long flags
)
4455 unsigned long total
= 0;
4458 unsigned long *nodes
;
4459 unsigned long *per_cpu
;
4461 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4464 per_cpu
= nodes
+ nr_node_ids
;
4466 if (flags
& SO_CPU
) {
4469 for_each_possible_cpu(cpu
) {
4470 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4471 int node
= ACCESS_ONCE(c
->node
);
4476 page
= ACCESS_ONCE(c
->page
);
4478 if (flags
& SO_TOTAL
)
4480 else if (flags
& SO_OBJECTS
)
4499 lock_memory_hotplug();
4500 #ifdef CONFIG_SLUB_DEBUG
4501 if (flags
& SO_ALL
) {
4502 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4503 struct kmem_cache_node
*n
= get_node(s
, node
);
4505 if (flags
& SO_TOTAL
)
4506 x
= atomic_long_read(&n
->total_objects
);
4507 else if (flags
& SO_OBJECTS
)
4508 x
= atomic_long_read(&n
->total_objects
) -
4509 count_partial(n
, count_free
);
4512 x
= atomic_long_read(&n
->nr_slabs
);
4519 if (flags
& SO_PARTIAL
) {
4520 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4521 struct kmem_cache_node
*n
= get_node(s
, node
);
4523 if (flags
& SO_TOTAL
)
4524 x
= count_partial(n
, count_total
);
4525 else if (flags
& SO_OBJECTS
)
4526 x
= count_partial(n
, count_inuse
);
4533 x
= sprintf(buf
, "%lu", total
);
4535 for_each_node_state(node
, N_NORMAL_MEMORY
)
4537 x
+= sprintf(buf
+ x
, " N%d=%lu",
4540 unlock_memory_hotplug();
4542 return x
+ sprintf(buf
+ x
, "\n");
4545 #ifdef CONFIG_SLUB_DEBUG
4546 static int any_slab_objects(struct kmem_cache
*s
)
4550 for_each_online_node(node
) {
4551 struct kmem_cache_node
*n
= get_node(s
, node
);
4556 if (atomic_long_read(&n
->total_objects
))
4563 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4564 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4566 struct slab_attribute
{
4567 struct attribute attr
;
4568 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4569 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4572 #define SLAB_ATTR_RO(_name) \
4573 static struct slab_attribute _name##_attr = \
4574 __ATTR(_name, 0400, _name##_show, NULL)
4576 #define SLAB_ATTR(_name) \
4577 static struct slab_attribute _name##_attr = \
4578 __ATTR(_name, 0600, _name##_show, _name##_store)
4580 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4582 return sprintf(buf
, "%d\n", s
->size
);
4584 SLAB_ATTR_RO(slab_size
);
4586 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4588 return sprintf(buf
, "%d\n", s
->align
);
4590 SLAB_ATTR_RO(align
);
4592 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4594 return sprintf(buf
, "%d\n", s
->objsize
);
4596 SLAB_ATTR_RO(object_size
);
4598 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4600 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4602 SLAB_ATTR_RO(objs_per_slab
);
4604 static ssize_t
order_store(struct kmem_cache
*s
,
4605 const char *buf
, size_t length
)
4607 unsigned long order
;
4610 err
= strict_strtoul(buf
, 10, &order
);
4614 if (order
> slub_max_order
|| order
< slub_min_order
)
4617 calculate_sizes(s
, order
);
4621 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4623 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4627 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4629 return sprintf(buf
, "%lu\n", s
->min_partial
);
4632 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4638 err
= strict_strtoul(buf
, 10, &min
);
4642 set_min_partial(s
, min
);
4645 SLAB_ATTR(min_partial
);
4647 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4649 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4652 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4655 unsigned long objects
;
4658 err
= strict_strtoul(buf
, 10, &objects
);
4661 if (objects
&& kmem_cache_debug(s
))
4664 s
->cpu_partial
= objects
;
4668 SLAB_ATTR(cpu_partial
);
4670 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4674 return sprintf(buf
, "%pS\n", s
->ctor
);
4678 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4680 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4682 SLAB_ATTR_RO(aliases
);
4684 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4686 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4688 SLAB_ATTR_RO(partial
);
4690 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4692 return show_slab_objects(s
, buf
, SO_CPU
);
4694 SLAB_ATTR_RO(cpu_slabs
);
4696 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4698 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4700 SLAB_ATTR_RO(objects
);
4702 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4704 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4706 SLAB_ATTR_RO(objects_partial
);
4708 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4715 for_each_online_cpu(cpu
) {
4716 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4719 pages
+= page
->pages
;
4720 objects
+= page
->pobjects
;
4724 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4727 for_each_online_cpu(cpu
) {
4728 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4730 if (page
&& len
< PAGE_SIZE
- 20)
4731 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4732 page
->pobjects
, page
->pages
);
4735 return len
+ sprintf(buf
+ len
, "\n");
4737 SLAB_ATTR_RO(slabs_cpu_partial
);
4739 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4741 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4744 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4745 const char *buf
, size_t length
)
4747 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4749 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4752 SLAB_ATTR(reclaim_account
);
4754 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4756 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4758 SLAB_ATTR_RO(hwcache_align
);
4760 #ifdef CONFIG_ZONE_DMA
4761 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4763 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4765 SLAB_ATTR_RO(cache_dma
);
4768 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4770 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4772 SLAB_ATTR_RO(destroy_by_rcu
);
4774 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4776 return sprintf(buf
, "%d\n", s
->reserved
);
4778 SLAB_ATTR_RO(reserved
);
4780 #ifdef CONFIG_SLUB_DEBUG
4781 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4783 return show_slab_objects(s
, buf
, SO_ALL
);
4785 SLAB_ATTR_RO(slabs
);
4787 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4789 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4791 SLAB_ATTR_RO(total_objects
);
4793 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4795 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4798 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4799 const char *buf
, size_t length
)
4801 s
->flags
&= ~SLAB_DEBUG_FREE
;
4802 if (buf
[0] == '1') {
4803 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4804 s
->flags
|= SLAB_DEBUG_FREE
;
4808 SLAB_ATTR(sanity_checks
);
4810 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4812 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4815 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4818 s
->flags
&= ~SLAB_TRACE
;
4819 if (buf
[0] == '1') {
4820 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4821 s
->flags
|= SLAB_TRACE
;
4827 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4829 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4832 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4833 const char *buf
, size_t length
)
4835 if (any_slab_objects(s
))
4838 s
->flags
&= ~SLAB_RED_ZONE
;
4839 if (buf
[0] == '1') {
4840 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4841 s
->flags
|= SLAB_RED_ZONE
;
4843 calculate_sizes(s
, -1);
4846 SLAB_ATTR(red_zone
);
4848 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4850 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4853 static ssize_t
poison_store(struct kmem_cache
*s
,
4854 const char *buf
, size_t length
)
4856 if (any_slab_objects(s
))
4859 s
->flags
&= ~SLAB_POISON
;
4860 if (buf
[0] == '1') {
4861 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4862 s
->flags
|= SLAB_POISON
;
4864 calculate_sizes(s
, -1);
4869 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4871 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4874 static ssize_t
store_user_store(struct kmem_cache
*s
,
4875 const char *buf
, size_t length
)
4877 if (any_slab_objects(s
))
4880 s
->flags
&= ~SLAB_STORE_USER
;
4881 if (buf
[0] == '1') {
4882 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4883 s
->flags
|= SLAB_STORE_USER
;
4885 calculate_sizes(s
, -1);
4888 SLAB_ATTR(store_user
);
4890 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4895 static ssize_t
validate_store(struct kmem_cache
*s
,
4896 const char *buf
, size_t length
)
4900 if (buf
[0] == '1') {
4901 ret
= validate_slab_cache(s
);
4907 SLAB_ATTR(validate
);
4909 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4911 if (!(s
->flags
& SLAB_STORE_USER
))
4913 return list_locations(s
, buf
, TRACK_ALLOC
);
4915 SLAB_ATTR_RO(alloc_calls
);
4917 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4919 if (!(s
->flags
& SLAB_STORE_USER
))
4921 return list_locations(s
, buf
, TRACK_FREE
);
4923 SLAB_ATTR_RO(free_calls
);
4924 #endif /* CONFIG_SLUB_DEBUG */
4926 #ifdef CONFIG_FAILSLAB
4927 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4929 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4932 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4935 s
->flags
&= ~SLAB_FAILSLAB
;
4937 s
->flags
|= SLAB_FAILSLAB
;
4940 SLAB_ATTR(failslab
);
4943 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4948 static ssize_t
shrink_store(struct kmem_cache
*s
,
4949 const char *buf
, size_t length
)
4951 if (buf
[0] == '1') {
4952 int rc
= kmem_cache_shrink(s
);
4963 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4965 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4968 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4969 const char *buf
, size_t length
)
4971 unsigned long ratio
;
4974 err
= strict_strtoul(buf
, 10, &ratio
);
4979 s
->remote_node_defrag_ratio
= ratio
* 10;
4983 SLAB_ATTR(remote_node_defrag_ratio
);
4986 #ifdef CONFIG_SLUB_STATS
4987 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4989 unsigned long sum
= 0;
4992 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4997 for_each_online_cpu(cpu
) {
4998 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5004 len
= sprintf(buf
, "%lu", sum
);
5007 for_each_online_cpu(cpu
) {
5008 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5009 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5013 return len
+ sprintf(buf
+ len
, "\n");
5016 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5020 for_each_online_cpu(cpu
)
5021 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5024 #define STAT_ATTR(si, text) \
5025 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5027 return show_stat(s, buf, si); \
5029 static ssize_t text##_store(struct kmem_cache *s, \
5030 const char *buf, size_t length) \
5032 if (buf[0] != '0') \
5034 clear_stat(s, si); \
5039 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5040 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5041 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5042 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5043 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5044 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5045 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5046 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5047 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5048 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5049 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5050 STAT_ATTR(FREE_SLAB
, free_slab
);
5051 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5052 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5053 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5054 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5055 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5056 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5057 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5058 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5059 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5060 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5061 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5062 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5065 static struct attribute
*slab_attrs
[] = {
5066 &slab_size_attr
.attr
,
5067 &object_size_attr
.attr
,
5068 &objs_per_slab_attr
.attr
,
5070 &min_partial_attr
.attr
,
5071 &cpu_partial_attr
.attr
,
5073 &objects_partial_attr
.attr
,
5075 &cpu_slabs_attr
.attr
,
5079 &hwcache_align_attr
.attr
,
5080 &reclaim_account_attr
.attr
,
5081 &destroy_by_rcu_attr
.attr
,
5083 &reserved_attr
.attr
,
5084 &slabs_cpu_partial_attr
.attr
,
5085 #ifdef CONFIG_SLUB_DEBUG
5086 &total_objects_attr
.attr
,
5088 &sanity_checks_attr
.attr
,
5090 &red_zone_attr
.attr
,
5092 &store_user_attr
.attr
,
5093 &validate_attr
.attr
,
5094 &alloc_calls_attr
.attr
,
5095 &free_calls_attr
.attr
,
5097 #ifdef CONFIG_ZONE_DMA
5098 &cache_dma_attr
.attr
,
5101 &remote_node_defrag_ratio_attr
.attr
,
5103 #ifdef CONFIG_SLUB_STATS
5104 &alloc_fastpath_attr
.attr
,
5105 &alloc_slowpath_attr
.attr
,
5106 &free_fastpath_attr
.attr
,
5107 &free_slowpath_attr
.attr
,
5108 &free_frozen_attr
.attr
,
5109 &free_add_partial_attr
.attr
,
5110 &free_remove_partial_attr
.attr
,
5111 &alloc_from_partial_attr
.attr
,
5112 &alloc_slab_attr
.attr
,
5113 &alloc_refill_attr
.attr
,
5114 &alloc_node_mismatch_attr
.attr
,
5115 &free_slab_attr
.attr
,
5116 &cpuslab_flush_attr
.attr
,
5117 &deactivate_full_attr
.attr
,
5118 &deactivate_empty_attr
.attr
,
5119 &deactivate_to_head_attr
.attr
,
5120 &deactivate_to_tail_attr
.attr
,
5121 &deactivate_remote_frees_attr
.attr
,
5122 &deactivate_bypass_attr
.attr
,
5123 &order_fallback_attr
.attr
,
5124 &cmpxchg_double_fail_attr
.attr
,
5125 &cmpxchg_double_cpu_fail_attr
.attr
,
5126 &cpu_partial_alloc_attr
.attr
,
5127 &cpu_partial_free_attr
.attr
,
5129 #ifdef CONFIG_FAILSLAB
5130 &failslab_attr
.attr
,
5136 static struct attribute_group slab_attr_group
= {
5137 .attrs
= slab_attrs
,
5140 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5141 struct attribute
*attr
,
5144 struct slab_attribute
*attribute
;
5145 struct kmem_cache
*s
;
5148 attribute
= to_slab_attr(attr
);
5151 if (!attribute
->show
)
5154 err
= attribute
->show(s
, buf
);
5159 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5160 struct attribute
*attr
,
5161 const char *buf
, size_t len
)
5163 struct slab_attribute
*attribute
;
5164 struct kmem_cache
*s
;
5167 attribute
= to_slab_attr(attr
);
5170 if (!attribute
->store
)
5173 err
= attribute
->store(s
, buf
, len
);
5178 static void kmem_cache_release(struct kobject
*kobj
)
5180 struct kmem_cache
*s
= to_slab(kobj
);
5186 static const struct sysfs_ops slab_sysfs_ops
= {
5187 .show
= slab_attr_show
,
5188 .store
= slab_attr_store
,
5191 static struct kobj_type slab_ktype
= {
5192 .sysfs_ops
= &slab_sysfs_ops
,
5193 .release
= kmem_cache_release
5196 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5198 struct kobj_type
*ktype
= get_ktype(kobj
);
5200 if (ktype
== &slab_ktype
)
5205 static const struct kset_uevent_ops slab_uevent_ops
= {
5206 .filter
= uevent_filter
,
5209 static struct kset
*slab_kset
;
5211 #define ID_STR_LENGTH 64
5213 /* Create a unique string id for a slab cache:
5215 * Format :[flags-]size
5217 static char *create_unique_id(struct kmem_cache
*s
)
5219 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5226 * First flags affecting slabcache operations. We will only
5227 * get here for aliasable slabs so we do not need to support
5228 * too many flags. The flags here must cover all flags that
5229 * are matched during merging to guarantee that the id is
5232 if (s
->flags
& SLAB_CACHE_DMA
)
5234 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5236 if (s
->flags
& SLAB_DEBUG_FREE
)
5238 if (!(s
->flags
& SLAB_NOTRACK
))
5242 p
+= sprintf(p
, "%07d", s
->size
);
5243 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5247 static int sysfs_slab_add(struct kmem_cache
*s
)
5253 if (slab_state
< SYSFS
)
5254 /* Defer until later */
5257 unmergeable
= slab_unmergeable(s
);
5260 * Slabcache can never be merged so we can use the name proper.
5261 * This is typically the case for debug situations. In that
5262 * case we can catch duplicate names easily.
5264 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5268 * Create a unique name for the slab as a target
5271 name
= create_unique_id(s
);
5274 s
->kobj
.kset
= slab_kset
;
5275 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5277 kobject_put(&s
->kobj
);
5281 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5283 kobject_del(&s
->kobj
);
5284 kobject_put(&s
->kobj
);
5287 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5289 /* Setup first alias */
5290 sysfs_slab_alias(s
, s
->name
);
5296 static void sysfs_slab_remove(struct kmem_cache
*s
)
5298 if (slab_state
< SYSFS
)
5300 * Sysfs has not been setup yet so no need to remove the
5305 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5306 kobject_del(&s
->kobj
);
5307 kobject_put(&s
->kobj
);
5311 * Need to buffer aliases during bootup until sysfs becomes
5312 * available lest we lose that information.
5314 struct saved_alias
{
5315 struct kmem_cache
*s
;
5317 struct saved_alias
*next
;
5320 static struct saved_alias
*alias_list
;
5322 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5324 struct saved_alias
*al
;
5326 if (slab_state
== SYSFS
) {
5328 * If we have a leftover link then remove it.
5330 sysfs_remove_link(&slab_kset
->kobj
, name
);
5331 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5334 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5340 al
->next
= alias_list
;
5345 static int __init
slab_sysfs_init(void)
5347 struct kmem_cache
*s
;
5350 down_write(&slub_lock
);
5352 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5354 up_write(&slub_lock
);
5355 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5361 list_for_each_entry(s
, &slab_caches
, list
) {
5362 err
= sysfs_slab_add(s
);
5364 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5365 " to sysfs\n", s
->name
);
5368 while (alias_list
) {
5369 struct saved_alias
*al
= alias_list
;
5371 alias_list
= alias_list
->next
;
5372 err
= sysfs_slab_alias(al
->s
, al
->name
);
5374 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5375 " %s to sysfs\n", s
->name
);
5379 up_write(&slub_lock
);
5384 __initcall(slab_sysfs_init
);
5385 #endif /* CONFIG_SYSFS */
5388 * The /proc/slabinfo ABI
5390 #ifdef CONFIG_SLABINFO
5391 static void print_slabinfo_header(struct seq_file
*m
)
5393 seq_puts(m
, "slabinfo - version: 2.1\n");
5394 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
5395 "<objperslab> <pagesperslab>");
5396 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
5397 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5401 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
5405 down_read(&slub_lock
);
5407 print_slabinfo_header(m
);
5409 return seq_list_start(&slab_caches
, *pos
);
5412 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
5414 return seq_list_next(p
, &slab_caches
, pos
);
5417 static void s_stop(struct seq_file
*m
, void *p
)
5419 up_read(&slub_lock
);
5422 static int s_show(struct seq_file
*m
, void *p
)
5424 unsigned long nr_partials
= 0;
5425 unsigned long nr_slabs
= 0;
5426 unsigned long nr_inuse
= 0;
5427 unsigned long nr_objs
= 0;
5428 unsigned long nr_free
= 0;
5429 struct kmem_cache
*s
;
5432 s
= list_entry(p
, struct kmem_cache
, list
);
5434 for_each_online_node(node
) {
5435 struct kmem_cache_node
*n
= get_node(s
, node
);
5440 nr_partials
+= n
->nr_partial
;
5441 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5442 nr_objs
+= atomic_long_read(&n
->total_objects
);
5443 nr_free
+= count_partial(n
, count_free
);
5446 nr_inuse
= nr_objs
- nr_free
;
5448 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
5449 nr_objs
, s
->size
, oo_objects(s
->oo
),
5450 (1 << oo_order(s
->oo
)));
5451 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
5452 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
5458 static const struct seq_operations slabinfo_op
= {
5465 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
5467 return seq_open(file
, &slabinfo_op
);
5470 static const struct file_operations proc_slabinfo_operations
= {
5471 .open
= slabinfo_open
,
5473 .llseek
= seq_lseek
,
5474 .release
= seq_release
,
5477 static int __init
slab_proc_init(void)
5479 proc_create("slabinfo", S_IRUSR
, NULL
, &proc_slabinfo_operations
);
5482 module_init(slab_proc_init
);
5483 #endif /* CONFIG_SLABINFO */