2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30 #include <linux/mutex.h>
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 static unsigned int def_sampling_rate
;
52 #define MIN_SAMPLING_RATE_RATIO (2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
58 #define DEF_SAMPLING_DOWN_FACTOR (1)
59 #define MAX_SAMPLING_DOWN_FACTOR (10)
60 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
62 static void do_dbs_timer(void *data
);
64 struct cpu_dbs_info_s
{
65 struct cpufreq_policy
*cur_policy
;
66 unsigned int prev_cpu_idle_up
;
67 unsigned int prev_cpu_idle_down
;
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
72 static unsigned int dbs_enable
; /* number of CPUs using this policy */
74 static DEFINE_MUTEX (dbs_mutex
);
75 static DECLARE_WORK (dbs_work
, do_dbs_timer
, NULL
);
77 static struct workqueue_struct
*dbs_workq
;
80 unsigned int sampling_rate
;
81 unsigned int sampling_down_factor
;
82 unsigned int up_threshold
;
83 unsigned int ignore_nice
;
86 static struct dbs_tuners dbs_tuners_ins
= {
87 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
88 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
92 static inline unsigned int get_cpu_idle_time(unsigned int cpu
)
94 return kstat_cpu(cpu
).cpustat
.idle
+
95 kstat_cpu(cpu
).cpustat
.iowait
+
96 ( dbs_tuners_ins
.ignore_nice
?
97 kstat_cpu(cpu
).cpustat
.nice
:
101 /************************** sysfs interface ************************/
102 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
104 return sprintf (buf
, "%u\n", MAX_SAMPLING_RATE
);
107 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
109 return sprintf (buf
, "%u\n", MIN_SAMPLING_RATE
);
112 #define define_one_ro(_name) \
113 static struct freq_attr _name = \
114 __ATTR(_name, 0444, show_##_name, NULL)
116 define_one_ro(sampling_rate_max
);
117 define_one_ro(sampling_rate_min
);
119 /* cpufreq_ondemand Governor Tunables */
120 #define show_one(file_name, object) \
121 static ssize_t show_##file_name \
122 (struct cpufreq_policy *unused, char *buf) \
124 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
126 show_one(sampling_rate
, sampling_rate
);
127 show_one(sampling_down_factor
, sampling_down_factor
);
128 show_one(up_threshold
, up_threshold
);
129 show_one(ignore_nice_load
, ignore_nice
);
131 static ssize_t
store_sampling_down_factor(struct cpufreq_policy
*unused
,
132 const char *buf
, size_t count
)
136 ret
= sscanf (buf
, "%u", &input
);
140 if (input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
143 mutex_lock(&dbs_mutex
);
144 dbs_tuners_ins
.sampling_down_factor
= input
;
145 mutex_unlock(&dbs_mutex
);
150 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
151 const char *buf
, size_t count
)
155 ret
= sscanf (buf
, "%u", &input
);
157 mutex_lock(&dbs_mutex
);
158 if (ret
!= 1 || input
> MAX_SAMPLING_RATE
|| input
< MIN_SAMPLING_RATE
) {
159 mutex_unlock(&dbs_mutex
);
163 dbs_tuners_ins
.sampling_rate
= input
;
164 mutex_unlock(&dbs_mutex
);
169 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
170 const char *buf
, size_t count
)
174 ret
= sscanf (buf
, "%u", &input
);
176 mutex_lock(&dbs_mutex
);
177 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
178 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
179 mutex_unlock(&dbs_mutex
);
183 dbs_tuners_ins
.up_threshold
= input
;
184 mutex_unlock(&dbs_mutex
);
189 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
190 const char *buf
, size_t count
)
197 ret
= sscanf (buf
, "%u", &input
);
204 mutex_lock(&dbs_mutex
);
205 if ( input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
206 mutex_unlock(&dbs_mutex
);
209 dbs_tuners_ins
.ignore_nice
= input
;
211 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
212 for_each_online_cpu(j
) {
213 struct cpu_dbs_info_s
*j_dbs_info
;
214 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
215 j_dbs_info
->prev_cpu_idle_up
= get_cpu_idle_time(j
);
216 j_dbs_info
->prev_cpu_idle_down
= j_dbs_info
->prev_cpu_idle_up
;
218 mutex_unlock(&dbs_mutex
);
223 #define define_one_rw(_name) \
224 static struct freq_attr _name = \
225 __ATTR(_name, 0644, show_##_name, store_##_name)
227 define_one_rw(sampling_rate
);
228 define_one_rw(sampling_down_factor
);
229 define_one_rw(up_threshold
);
230 define_one_rw(ignore_nice_load
);
232 static struct attribute
* dbs_attributes
[] = {
233 &sampling_rate_max
.attr
,
234 &sampling_rate_min
.attr
,
236 &sampling_down_factor
.attr
,
238 &ignore_nice_load
.attr
,
242 static struct attribute_group dbs_attr_group
= {
243 .attrs
= dbs_attributes
,
247 /************************** sysfs end ************************/
249 static void dbs_check_cpu(int cpu
)
251 unsigned int idle_ticks
, up_idle_ticks
, total_ticks
;
252 unsigned int freq_next
;
253 unsigned int freq_down_sampling_rate
;
254 static int down_skip
[NR_CPUS
];
255 struct cpu_dbs_info_s
*this_dbs_info
;
257 struct cpufreq_policy
*policy
;
260 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
261 if (!this_dbs_info
->enable
)
264 policy
= this_dbs_info
->cur_policy
;
266 * Every sampling_rate, we check, if current idle time is less
267 * than 20% (default), then we try to increase frequency
268 * Every sampling_rate*sampling_down_factor, we look for a the lowest
269 * frequency which can sustain the load while keeping idle time over
270 * 30%. If such a frequency exist, we try to decrease to this frequency.
272 * Any frequency increase takes it to the maximum frequency.
273 * Frequency reduction happens at minimum steps of
274 * 5% (default) of current frequency
277 /* Check for frequency increase */
278 idle_ticks
= UINT_MAX
;
279 for_each_cpu_mask(j
, policy
->cpus
) {
280 unsigned int tmp_idle_ticks
, total_idle_ticks
;
281 struct cpu_dbs_info_s
*j_dbs_info
;
283 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
284 total_idle_ticks
= get_cpu_idle_time(j
);
285 tmp_idle_ticks
= total_idle_ticks
-
286 j_dbs_info
->prev_cpu_idle_up
;
287 j_dbs_info
->prev_cpu_idle_up
= total_idle_ticks
;
289 if (tmp_idle_ticks
< idle_ticks
)
290 idle_ticks
= tmp_idle_ticks
;
293 /* Scale idle ticks by 100 and compare with up and down ticks */
295 up_idle_ticks
= (100 - dbs_tuners_ins
.up_threshold
) *
296 usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
298 if (idle_ticks
< up_idle_ticks
) {
300 for_each_cpu_mask(j
, policy
->cpus
) {
301 struct cpu_dbs_info_s
*j_dbs_info
;
303 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
304 j_dbs_info
->prev_cpu_idle_down
=
305 j_dbs_info
->prev_cpu_idle_up
;
307 /* if we are already at full speed then break out early */
308 if (policy
->cur
== policy
->max
)
311 __cpufreq_driver_target(policy
, policy
->max
,
316 /* Check for frequency decrease */
318 if (down_skip
[cpu
] < dbs_tuners_ins
.sampling_down_factor
)
321 idle_ticks
= UINT_MAX
;
322 for_each_cpu_mask(j
, policy
->cpus
) {
323 unsigned int tmp_idle_ticks
, total_idle_ticks
;
324 struct cpu_dbs_info_s
*j_dbs_info
;
326 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
327 /* Check for frequency decrease */
328 total_idle_ticks
= j_dbs_info
->prev_cpu_idle_up
;
329 tmp_idle_ticks
= total_idle_ticks
-
330 j_dbs_info
->prev_cpu_idle_down
;
331 j_dbs_info
->prev_cpu_idle_down
= total_idle_ticks
;
333 if (tmp_idle_ticks
< idle_ticks
)
334 idle_ticks
= tmp_idle_ticks
;
338 /* if we cannot reduce the frequency anymore, break out early */
339 if (policy
->cur
== policy
->min
)
342 /* Compute how many ticks there are between two measurements */
343 freq_down_sampling_rate
= dbs_tuners_ins
.sampling_rate
*
344 dbs_tuners_ins
.sampling_down_factor
;
345 total_ticks
= usecs_to_jiffies(freq_down_sampling_rate
);
348 * The optimal frequency is the frequency that is the lowest that
349 * can support the current CPU usage without triggering the up
350 * policy. To be safe, we focus 10 points under the threshold.
352 freq_next
= ((total_ticks
- idle_ticks
) * 100) / total_ticks
;
353 freq_next
= (freq_next
* policy
->cur
) /
354 (dbs_tuners_ins
.up_threshold
- 10);
356 if (freq_next
< policy
->min
)
357 freq_next
= policy
->min
;
359 if (freq_next
<= ((policy
->cur
* 95) / 100))
360 __cpufreq_driver_target(policy
, freq_next
, CPUFREQ_RELATION_L
);
363 static void do_dbs_timer(void *data
)
366 mutex_lock(&dbs_mutex
);
367 for_each_online_cpu(i
)
369 queue_delayed_work(dbs_workq
, &dbs_work
,
370 usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
));
371 mutex_unlock(&dbs_mutex
);
374 static inline void dbs_timer_init(void)
376 INIT_WORK(&dbs_work
, do_dbs_timer
, NULL
);
378 dbs_workq
= create_singlethread_workqueue("ondemand");
380 printk(KERN_ERR
"ondemand: Cannot initialize kernel thread\n");
383 queue_delayed_work(dbs_workq
, &dbs_work
,
384 usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
));
388 static inline void dbs_timer_exit(void)
391 cancel_rearming_delayed_workqueue(dbs_workq
, &dbs_work
);
394 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
397 unsigned int cpu
= policy
->cpu
;
398 struct cpu_dbs_info_s
*this_dbs_info
;
401 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
404 case CPUFREQ_GOV_START
:
405 if ((!cpu_online(cpu
)) ||
409 if (policy
->cpuinfo
.transition_latency
>
410 (TRANSITION_LATENCY_LIMIT
* 1000)) {
411 printk(KERN_WARNING
"ondemand governor failed to load "
412 "due to too long transition latency\n");
415 if (this_dbs_info
->enable
) /* Already enabled */
418 mutex_lock(&dbs_mutex
);
419 for_each_cpu_mask(j
, policy
->cpus
) {
420 struct cpu_dbs_info_s
*j_dbs_info
;
421 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
422 j_dbs_info
->cur_policy
= policy
;
424 j_dbs_info
->prev_cpu_idle_up
= get_cpu_idle_time(j
);
425 j_dbs_info
->prev_cpu_idle_down
426 = j_dbs_info
->prev_cpu_idle_up
;
428 this_dbs_info
->enable
= 1;
429 sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
432 * Start the timerschedule work, when this governor
433 * is used for first time
435 if (dbs_enable
== 1) {
436 unsigned int latency
;
437 /* policy latency is in nS. Convert it to uS first */
438 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
442 def_sampling_rate
= latency
*
443 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER
;
445 if (def_sampling_rate
< MIN_STAT_SAMPLING_RATE
)
446 def_sampling_rate
= MIN_STAT_SAMPLING_RATE
;
448 dbs_tuners_ins
.sampling_rate
= def_sampling_rate
;
452 mutex_unlock(&dbs_mutex
);
455 case CPUFREQ_GOV_STOP
:
456 mutex_lock(&dbs_mutex
);
457 this_dbs_info
->enable
= 0;
458 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
461 * Stop the timerschedule work, when this governor
462 * is used for first time
467 mutex_unlock(&dbs_mutex
);
471 case CPUFREQ_GOV_LIMITS
:
472 mutex_lock(&dbs_mutex
);
473 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
474 __cpufreq_driver_target(
475 this_dbs_info
->cur_policy
,
476 policy
->max
, CPUFREQ_RELATION_H
);
477 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
478 __cpufreq_driver_target(
479 this_dbs_info
->cur_policy
,
480 policy
->min
, CPUFREQ_RELATION_L
);
481 mutex_unlock(&dbs_mutex
);
487 static struct cpufreq_governor cpufreq_gov_dbs
= {
489 .governor
= cpufreq_governor_dbs
,
490 .owner
= THIS_MODULE
,
493 static int __init
cpufreq_gov_dbs_init(void)
495 return cpufreq_register_governor(&cpufreq_gov_dbs
);
498 static void __exit
cpufreq_gov_dbs_exit(void)
500 /* Make sure that the scheduled work is indeed not running.
501 Assumes the timer has been cancelled first. */
503 flush_workqueue(dbs_workq
);
504 destroy_workqueue(dbs_workq
);
507 cpufreq_unregister_governor(&cpufreq_gov_dbs
);
511 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
512 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
513 "Low Latency Frequency Transition capable processors");
514 MODULE_LICENSE ("GPL");
516 module_init(cpufreq_gov_dbs_init
);
517 module_exit(cpufreq_gov_dbs_exit
);