2 * linux/fs/jbd/checkpoint.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1999
6 * Copyright 1999 Red Hat Software --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Checkpoint routines for the generic filesystem journaling code.
13 * Part of the ext2fs journaling system.
15 * Checkpointing is the process of ensuring that a section of the log is
16 * committed fully to disk, so that that portion of the log can be
20 #include <linux/time.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
27 * Unlink a buffer from a transaction checkpoint list.
29 * Called with j_list_lock held.
31 static inline void __buffer_unlink_first(struct journal_head
*jh
)
33 transaction_t
*transaction
= jh
->b_cp_transaction
;
35 jh
->b_cpnext
->b_cpprev
= jh
->b_cpprev
;
36 jh
->b_cpprev
->b_cpnext
= jh
->b_cpnext
;
37 if (transaction
->t_checkpoint_list
== jh
) {
38 transaction
->t_checkpoint_list
= jh
->b_cpnext
;
39 if (transaction
->t_checkpoint_list
== jh
)
40 transaction
->t_checkpoint_list
= NULL
;
45 * Unlink a buffer from a transaction checkpoint(io) list.
47 * Called with j_list_lock held.
49 static inline void __buffer_unlink(struct journal_head
*jh
)
51 transaction_t
*transaction
= jh
->b_cp_transaction
;
53 __buffer_unlink_first(jh
);
54 if (transaction
->t_checkpoint_io_list
== jh
) {
55 transaction
->t_checkpoint_io_list
= jh
->b_cpnext
;
56 if (transaction
->t_checkpoint_io_list
== jh
)
57 transaction
->t_checkpoint_io_list
= NULL
;
62 * Move a buffer from the checkpoint list to the checkpoint io list
64 * Called with j_list_lock held
66 static inline void __buffer_relink_io(struct journal_head
*jh
)
68 transaction_t
*transaction
= jh
->b_cp_transaction
;
70 __buffer_unlink_first(jh
);
72 if (!transaction
->t_checkpoint_io_list
) {
73 jh
->b_cpnext
= jh
->b_cpprev
= jh
;
75 jh
->b_cpnext
= transaction
->t_checkpoint_io_list
;
76 jh
->b_cpprev
= transaction
->t_checkpoint_io_list
->b_cpprev
;
77 jh
->b_cpprev
->b_cpnext
= jh
;
78 jh
->b_cpnext
->b_cpprev
= jh
;
80 transaction
->t_checkpoint_io_list
= jh
;
84 * Try to release a checkpointed buffer from its transaction.
85 * Returns 1 if we released it and 2 if we also released the
88 * Requires j_list_lock
89 * Called under jbd_lock_bh_state(jh2bh(jh)), and drops it
91 static int __try_to_free_cp_buf(struct journal_head
*jh
)
94 struct buffer_head
*bh
= jh2bh(jh
);
96 if (jh
->b_jlist
== BJ_None
&& !buffer_locked(bh
) && !buffer_dirty(bh
)) {
97 JBUFFER_TRACE(jh
, "remove from checkpoint list");
98 ret
= __journal_remove_checkpoint(jh
) + 1;
99 jbd_unlock_bh_state(bh
);
100 journal_remove_journal_head(bh
);
101 BUFFER_TRACE(bh
, "release");
104 jbd_unlock_bh_state(bh
);
110 * __log_wait_for_space: wait until there is space in the journal.
112 * Called under j-state_lock *only*. It will be unlocked if we have to wait
113 * for a checkpoint to free up some space in the log.
115 void __log_wait_for_space(journal_t
*journal
)
118 assert_spin_locked(&journal
->j_state_lock
);
120 nblocks
= jbd_space_needed(journal
);
121 while (__log_space_left(journal
) < nblocks
) {
122 if (journal
->j_flags
& JFS_ABORT
)
124 spin_unlock(&journal
->j_state_lock
);
125 mutex_lock(&journal
->j_checkpoint_mutex
);
128 * Test again, another process may have checkpointed while we
129 * were waiting for the checkpoint lock
131 spin_lock(&journal
->j_state_lock
);
132 nblocks
= jbd_space_needed(journal
);
133 if (__log_space_left(journal
) < nblocks
) {
134 spin_unlock(&journal
->j_state_lock
);
135 log_do_checkpoint(journal
);
136 spin_lock(&journal
->j_state_lock
);
138 mutex_unlock(&journal
->j_checkpoint_mutex
);
143 * We were unable to perform jbd_trylock_bh_state() inside j_list_lock.
144 * The caller must restart a list walk. Wait for someone else to run
145 * jbd_unlock_bh_state().
147 static void jbd_sync_bh(journal_t
*journal
, struct buffer_head
*bh
)
148 __releases(journal
->j_list_lock
)
151 spin_unlock(&journal
->j_list_lock
);
152 jbd_lock_bh_state(bh
);
153 jbd_unlock_bh_state(bh
);
158 * Clean up transaction's list of buffers submitted for io.
159 * We wait for any pending IO to complete and remove any clean
160 * buffers. Note that we take the buffers in the opposite ordering
161 * from the one in which they were submitted for IO.
163 * Called with j_list_lock held.
165 static void __wait_cp_io(journal_t
*journal
, transaction_t
*transaction
)
167 struct journal_head
*jh
;
168 struct buffer_head
*bh
;
172 this_tid
= transaction
->t_tid
;
174 /* Did somebody clean up the transaction in the meanwhile? */
175 if (journal
->j_checkpoint_transactions
!= transaction
||
176 transaction
->t_tid
!= this_tid
)
178 while (!released
&& transaction
->t_checkpoint_io_list
) {
179 jh
= transaction
->t_checkpoint_io_list
;
181 if (!jbd_trylock_bh_state(bh
)) {
182 jbd_sync_bh(journal
, bh
);
183 spin_lock(&journal
->j_list_lock
);
186 if (buffer_locked(bh
)) {
187 atomic_inc(&bh
->b_count
);
188 spin_unlock(&journal
->j_list_lock
);
189 jbd_unlock_bh_state(bh
);
191 /* the journal_head may have gone by now */
192 BUFFER_TRACE(bh
, "brelse");
194 spin_lock(&journal
->j_list_lock
);
198 * Now in whatever state the buffer currently is, we know that
199 * it has been written out and so we can drop it from the list
201 released
= __journal_remove_checkpoint(jh
);
202 jbd_unlock_bh_state(bh
);
203 journal_remove_journal_head(bh
);
211 __flush_batch(journal_t
*journal
, struct buffer_head
**bhs
, int *batch_count
)
215 ll_rw_block(SWRITE
, *batch_count
, bhs
);
216 for (i
= 0; i
< *batch_count
; i
++) {
217 struct buffer_head
*bh
= bhs
[i
];
218 clear_buffer_jwrite(bh
);
219 BUFFER_TRACE(bh
, "brelse");
226 * Try to flush one buffer from the checkpoint list to disk.
228 * Return 1 if something happened which requires us to abort the current
229 * scan of the checkpoint list.
231 * Called with j_list_lock held and drops it if 1 is returned
232 * Called under jbd_lock_bh_state(jh2bh(jh)), and drops it
234 static int __process_buffer(journal_t
*journal
, struct journal_head
*jh
,
235 struct buffer_head
**bhs
, int *batch_count
)
237 struct buffer_head
*bh
= jh2bh(jh
);
240 if (buffer_locked(bh
)) {
241 atomic_inc(&bh
->b_count
);
242 spin_unlock(&journal
->j_list_lock
);
243 jbd_unlock_bh_state(bh
);
245 /* the journal_head may have gone by now */
246 BUFFER_TRACE(bh
, "brelse");
249 } else if (jh
->b_transaction
!= NULL
) {
250 transaction_t
*t
= jh
->b_transaction
;
251 tid_t tid
= t
->t_tid
;
253 spin_unlock(&journal
->j_list_lock
);
254 jbd_unlock_bh_state(bh
);
255 log_start_commit(journal
, tid
);
256 log_wait_commit(journal
, tid
);
258 } else if (!buffer_dirty(bh
)) {
259 J_ASSERT_JH(jh
, !buffer_jbddirty(bh
));
260 BUFFER_TRACE(bh
, "remove from checkpoint");
261 __journal_remove_checkpoint(jh
);
262 spin_unlock(&journal
->j_list_lock
);
263 jbd_unlock_bh_state(bh
);
264 journal_remove_journal_head(bh
);
269 * Important: we are about to write the buffer, and
270 * possibly block, while still holding the journal lock.
271 * We cannot afford to let the transaction logic start
272 * messing around with this buffer before we write it to
273 * disk, as that would break recoverability.
275 BUFFER_TRACE(bh
, "queue");
277 J_ASSERT_BH(bh
, !buffer_jwrite(bh
));
278 set_buffer_jwrite(bh
);
279 bhs
[*batch_count
] = bh
;
280 __buffer_relink_io(jh
);
281 jbd_unlock_bh_state(bh
);
283 if (*batch_count
== NR_BATCH
) {
284 spin_unlock(&journal
->j_list_lock
);
285 __flush_batch(journal
, bhs
, batch_count
);
293 * Perform an actual checkpoint. We take the first transaction on the
294 * list of transactions to be checkpointed and send all its buffers
295 * to disk. We submit larger chunks of data at once.
297 * The journal should be locked before calling this function.
299 int log_do_checkpoint(journal_t
*journal
)
301 transaction_t
*transaction
;
305 jbd_debug(1, "Start checkpoint\n");
308 * First thing: if there are any transactions in the log which
309 * don't need checkpointing, just eliminate them from the
310 * journal straight away.
312 result
= cleanup_journal_tail(journal
);
313 jbd_debug(1, "cleanup_journal_tail returned %d\n", result
);
318 * OK, we need to start writing disk blocks. Take one transaction
321 spin_lock(&journal
->j_list_lock
);
322 if (!journal
->j_checkpoint_transactions
)
324 transaction
= journal
->j_checkpoint_transactions
;
325 this_tid
= transaction
->t_tid
;
328 * If someone cleaned up this transaction while we slept, we're
329 * done (maybe it's a new transaction, but it fell at the same
332 if (journal
->j_checkpoint_transactions
== transaction
&&
333 transaction
->t_tid
== this_tid
) {
335 struct buffer_head
*bhs
[NR_BATCH
];
336 struct journal_head
*jh
;
339 while (!retry
&& transaction
->t_checkpoint_list
) {
340 struct buffer_head
*bh
;
342 jh
= transaction
->t_checkpoint_list
;
344 if (!jbd_trylock_bh_state(bh
)) {
345 jbd_sync_bh(journal
, bh
);
349 retry
= __process_buffer(journal
, jh
, bhs
,&batch_count
);
350 if (!retry
&& lock_need_resched(&journal
->j_list_lock
)){
351 spin_unlock(&journal
->j_list_lock
);
359 spin_unlock(&journal
->j_list_lock
);
362 __flush_batch(journal
, bhs
, &batch_count
);
366 spin_lock(&journal
->j_list_lock
);
370 * Now we have cleaned up the first transaction's checkpoint
371 * list. Let's clean up the second one
373 __wait_cp_io(journal
, transaction
);
376 spin_unlock(&journal
->j_list_lock
);
377 result
= cleanup_journal_tail(journal
);
384 * Check the list of checkpoint transactions for the journal to see if
385 * we have already got rid of any since the last update of the log tail
386 * in the journal superblock. If so, we can instantly roll the
387 * superblock forward to remove those transactions from the log.
389 * Return <0 on error, 0 on success, 1 if there was nothing to clean up.
391 * Called with the journal lock held.
393 * This is the only part of the journaling code which really needs to be
394 * aware of transaction aborts. Checkpointing involves writing to the
395 * main filesystem area rather than to the journal, so it can proceed
396 * even in abort state, but we must not update the journal superblock if
397 * we have an abort error outstanding.
400 int cleanup_journal_tail(journal_t
*journal
)
402 transaction_t
* transaction
;
404 unsigned long blocknr
, freed
;
406 /* OK, work out the oldest transaction remaining in the log, and
407 * the log block it starts at.
409 * If the log is now empty, we need to work out which is the
410 * next transaction ID we will write, and where it will
413 spin_lock(&journal
->j_state_lock
);
414 spin_lock(&journal
->j_list_lock
);
415 transaction
= journal
->j_checkpoint_transactions
;
417 first_tid
= transaction
->t_tid
;
418 blocknr
= transaction
->t_log_start
;
419 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
420 first_tid
= transaction
->t_tid
;
421 blocknr
= transaction
->t_log_start
;
422 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
423 first_tid
= transaction
->t_tid
;
424 blocknr
= journal
->j_head
;
426 first_tid
= journal
->j_transaction_sequence
;
427 blocknr
= journal
->j_head
;
429 spin_unlock(&journal
->j_list_lock
);
430 J_ASSERT(blocknr
!= 0);
432 /* If the oldest pinned transaction is at the tail of the log
433 already then there's not much we can do right now. */
434 if (journal
->j_tail_sequence
== first_tid
) {
435 spin_unlock(&journal
->j_state_lock
);
439 /* OK, update the superblock to recover the freed space.
440 * Physical blocks come first: have we wrapped beyond the end of
442 freed
= blocknr
- journal
->j_tail
;
443 if (blocknr
< journal
->j_tail
)
444 freed
= freed
+ journal
->j_last
- journal
->j_first
;
447 "Cleaning journal tail from %d to %d (offset %lu), "
449 journal
->j_tail_sequence
, first_tid
, blocknr
, freed
);
451 journal
->j_free
+= freed
;
452 journal
->j_tail_sequence
= first_tid
;
453 journal
->j_tail
= blocknr
;
454 spin_unlock(&journal
->j_state_lock
);
455 if (!(journal
->j_flags
& JFS_ABORT
))
456 journal_update_superblock(journal
, 1);
461 /* Checkpoint list management */
464 * journal_clean_one_cp_list
466 * Find all the written-back checkpoint buffers in the given list and release them.
468 * Called with the journal locked.
469 * Called with j_list_lock held.
470 * Returns number of bufers reaped (for debug)
473 static int journal_clean_one_cp_list(struct journal_head
*jh
, int *released
)
475 struct journal_head
*last_jh
;
476 struct journal_head
*next_jh
= jh
;
483 last_jh
= jh
->b_cpprev
;
486 next_jh
= jh
->b_cpnext
;
487 /* Use trylock because of the ranking */
488 if (jbd_trylock_bh_state(jh2bh(jh
))) {
489 ret
= __try_to_free_cp_buf(jh
);
499 * This function only frees up some memory
500 * if possible so we dont have an obligation
501 * to finish processing. Bail out if preemption
506 } while (jh
!= last_jh
);
512 * journal_clean_checkpoint_list
514 * Find all the written-back checkpoint buffers in the journal and release them.
516 * Called with the journal locked.
517 * Called with j_list_lock held.
518 * Returns number of buffers reaped (for debug)
521 int __journal_clean_checkpoint_list(journal_t
*journal
)
523 transaction_t
*transaction
, *last_transaction
, *next_transaction
;
527 transaction
= journal
->j_checkpoint_transactions
;
531 last_transaction
= transaction
->t_cpprev
;
532 next_transaction
= transaction
;
534 transaction
= next_transaction
;
535 next_transaction
= transaction
->t_cpnext
;
536 ret
+= journal_clean_one_cp_list(transaction
->
537 t_checkpoint_list
, &released
);
539 * This function only frees up some memory if possible so we
540 * dont have an obligation to finish processing. Bail out if
541 * preemption requested:
548 * It is essential that we are as careful as in the case of
549 * t_checkpoint_list with removing the buffer from the list as
550 * we can possibly see not yet submitted buffers on io_list
552 ret
+= journal_clean_one_cp_list(transaction
->
553 t_checkpoint_io_list
, &released
);
556 } while (transaction
!= last_transaction
);
562 * journal_remove_checkpoint: called after a buffer has been committed
563 * to disk (either by being write-back flushed to disk, or being
564 * committed to the log).
566 * We cannot safely clean a transaction out of the log until all of the
567 * buffer updates committed in that transaction have safely been stored
568 * elsewhere on disk. To achieve this, all of the buffers in a
569 * transaction need to be maintained on the transaction's checkpoint
570 * lists until they have been rewritten, at which point this function is
571 * called to remove the buffer from the existing transaction's
574 * The function returns 1 if it frees the transaction, 0 otherwise.
576 * This function is called with the journal locked.
577 * This function is called with j_list_lock held.
578 * This function is called with jbd_lock_bh_state(jh2bh(jh))
581 int __journal_remove_checkpoint(struct journal_head
*jh
)
583 transaction_t
*transaction
;
587 JBUFFER_TRACE(jh
, "entry");
589 if ((transaction
= jh
->b_cp_transaction
) == NULL
) {
590 JBUFFER_TRACE(jh
, "not on transaction");
593 journal
= transaction
->t_journal
;
596 jh
->b_cp_transaction
= NULL
;
598 if (transaction
->t_checkpoint_list
!= NULL
||
599 transaction
->t_checkpoint_io_list
!= NULL
)
601 JBUFFER_TRACE(jh
, "transaction has no more buffers");
604 * There is one special case to worry about: if we have just pulled the
605 * buffer off a running or committing transaction's checkpoing list,
606 * then even if the checkpoint list is empty, the transaction obviously
609 * The locking here around t_state is a bit sleazy.
610 * See the comment at the end of journal_commit_transaction().
612 if (transaction
->t_state
!= T_FINISHED
) {
613 JBUFFER_TRACE(jh
, "belongs to running/committing transaction");
617 /* OK, that was the last buffer for the transaction: we can now
618 safely remove this transaction from the log */
620 __journal_drop_transaction(journal
, transaction
);
622 /* Just in case anybody was waiting for more transactions to be
624 wake_up(&journal
->j_wait_logspace
);
627 JBUFFER_TRACE(jh
, "exit");
632 * journal_insert_checkpoint: put a committed buffer onto a checkpoint
633 * list so that we know when it is safe to clean the transaction out of
636 * Called with the journal locked.
637 * Called with j_list_lock held.
639 void __journal_insert_checkpoint(struct journal_head
*jh
,
640 transaction_t
*transaction
)
642 JBUFFER_TRACE(jh
, "entry");
643 J_ASSERT_JH(jh
, buffer_dirty(jh2bh(jh
)) || buffer_jbddirty(jh2bh(jh
)));
644 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
646 jh
->b_cp_transaction
= transaction
;
648 if (!transaction
->t_checkpoint_list
) {
649 jh
->b_cpnext
= jh
->b_cpprev
= jh
;
651 jh
->b_cpnext
= transaction
->t_checkpoint_list
;
652 jh
->b_cpprev
= transaction
->t_checkpoint_list
->b_cpprev
;
653 jh
->b_cpprev
->b_cpnext
= jh
;
654 jh
->b_cpnext
->b_cpprev
= jh
;
656 transaction
->t_checkpoint_list
= jh
;
660 * We've finished with this transaction structure: adios...
662 * The transaction must have no links except for the checkpoint by this
665 * Called with the journal locked.
666 * Called with j_list_lock held.
669 void __journal_drop_transaction(journal_t
*journal
, transaction_t
*transaction
)
671 assert_spin_locked(&journal
->j_list_lock
);
672 if (transaction
->t_cpnext
) {
673 transaction
->t_cpnext
->t_cpprev
= transaction
->t_cpprev
;
674 transaction
->t_cpprev
->t_cpnext
= transaction
->t_cpnext
;
675 if (journal
->j_checkpoint_transactions
== transaction
)
676 journal
->j_checkpoint_transactions
=
677 transaction
->t_cpnext
;
678 if (journal
->j_checkpoint_transactions
== transaction
)
679 journal
->j_checkpoint_transactions
= NULL
;
682 J_ASSERT(transaction
->t_state
== T_FINISHED
);
683 J_ASSERT(transaction
->t_buffers
== NULL
);
684 J_ASSERT(transaction
->t_sync_datalist
== NULL
);
685 J_ASSERT(transaction
->t_forget
== NULL
);
686 J_ASSERT(transaction
->t_iobuf_list
== NULL
);
687 J_ASSERT(transaction
->t_shadow_list
== NULL
);
688 J_ASSERT(transaction
->t_log_list
== NULL
);
689 J_ASSERT(transaction
->t_checkpoint_list
== NULL
);
690 J_ASSERT(transaction
->t_checkpoint_io_list
== NULL
);
691 J_ASSERT(transaction
->t_updates
== 0);
692 J_ASSERT(journal
->j_committing_transaction
!= transaction
);
693 J_ASSERT(journal
->j_running_transaction
!= transaction
);
695 jbd_debug(1, "Dropping transaction %d, all done\n", transaction
->t_tid
);