nVMX x86: Check VPID value on vmentry of L2 guests
[linux/fpc-iii.git] / drivers / acpi / acpi_lpss.c
blobbf64cfa30febf173640729db80f9a567ce50b4b0
1 /*
2 * ACPI support for Intel Lynxpoint LPSS.
4 * Copyright (C) 2013, Intel Corporation
5 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
6 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/acpi.h>
14 #include <linux/clkdev.h>
15 #include <linux/clk-provider.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/mutex.h>
19 #include <linux/platform_device.h>
20 #include <linux/platform_data/clk-lpss.h>
21 #include <linux/platform_data/x86/pmc_atom.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pwm.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
28 #include "internal.h"
30 ACPI_MODULE_NAME("acpi_lpss");
32 #ifdef CONFIG_X86_INTEL_LPSS
34 #include <asm/cpu_device_id.h>
35 #include <asm/intel-family.h>
36 #include <asm/iosf_mbi.h>
38 #define LPSS_ADDR(desc) ((unsigned long)&desc)
40 #define LPSS_CLK_SIZE 0x04
41 #define LPSS_LTR_SIZE 0x18
43 /* Offsets relative to LPSS_PRIVATE_OFFSET */
44 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
45 #define LPSS_RESETS 0x04
46 #define LPSS_RESETS_RESET_FUNC BIT(0)
47 #define LPSS_RESETS_RESET_APB BIT(1)
48 #define LPSS_GENERAL 0x08
49 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
50 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
51 #define LPSS_SW_LTR 0x10
52 #define LPSS_AUTO_LTR 0x14
53 #define LPSS_LTR_SNOOP_REQ BIT(15)
54 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
55 #define LPSS_LTR_SNOOP_LAT_1US 0x800
56 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
57 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
58 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
59 #define LPSS_LTR_MAX_VAL 0x3FF
60 #define LPSS_TX_INT 0x20
61 #define LPSS_TX_INT_MASK BIT(1)
63 #define LPSS_PRV_REG_COUNT 9
65 /* LPSS Flags */
66 #define LPSS_CLK BIT(0)
67 #define LPSS_CLK_GATE BIT(1)
68 #define LPSS_CLK_DIVIDER BIT(2)
69 #define LPSS_LTR BIT(3)
70 #define LPSS_SAVE_CTX BIT(4)
71 #define LPSS_NO_D3_DELAY BIT(5)
73 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
74 #define BYT_CRC_HRV 2
75 #define CHT_CRC_HRV 3
77 struct lpss_private_data;
79 struct lpss_device_desc {
80 unsigned int flags;
81 const char *clk_con_id;
82 unsigned int prv_offset;
83 size_t prv_size_override;
84 struct property_entry *properties;
85 void (*setup)(struct lpss_private_data *pdata);
88 static const struct lpss_device_desc lpss_dma_desc = {
89 .flags = LPSS_CLK,
92 struct lpss_private_data {
93 struct acpi_device *adev;
94 void __iomem *mmio_base;
95 resource_size_t mmio_size;
96 unsigned int fixed_clk_rate;
97 struct clk *clk;
98 const struct lpss_device_desc *dev_desc;
99 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 /* LPSS run time quirks */
103 static unsigned int lpss_quirks;
106 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
108 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
109 * it can be powered off automatically whenever the last LPSS device goes down.
110 * In case of no power any access to the DMA controller will hang the system.
111 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
112 * well as on ASuS T100TA transformer.
114 * This quirk overrides power state of entire LPSS island to keep DMA powered
115 * on whenever we have at least one other device in use.
117 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
119 /* UART Component Parameter Register */
120 #define LPSS_UART_CPR 0xF4
121 #define LPSS_UART_CPR_AFCE BIT(4)
123 static void lpss_uart_setup(struct lpss_private_data *pdata)
125 unsigned int offset;
126 u32 val;
128 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
129 val = readl(pdata->mmio_base + offset);
130 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
132 val = readl(pdata->mmio_base + LPSS_UART_CPR);
133 if (!(val & LPSS_UART_CPR_AFCE)) {
134 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
135 val = readl(pdata->mmio_base + offset);
136 val |= LPSS_GENERAL_UART_RTS_OVRD;
137 writel(val, pdata->mmio_base + offset);
141 static void lpss_deassert_reset(struct lpss_private_data *pdata)
143 unsigned int offset;
144 u32 val;
146 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
147 val = readl(pdata->mmio_base + offset);
148 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
149 writel(val, pdata->mmio_base + offset);
153 * BYT PWM used for backlight control by the i915 driver on systems without
154 * the Crystal Cove PMIC.
156 static struct pwm_lookup byt_pwm_lookup[] = {
157 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
158 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
159 "pwm-lpss-platform"),
162 static void byt_pwm_setup(struct lpss_private_data *pdata)
164 struct acpi_device *adev = pdata->adev;
166 /* Only call pwm_add_table for the first PWM controller */
167 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
168 return;
170 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
171 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
174 #define LPSS_I2C_ENABLE 0x6c
176 static void byt_i2c_setup(struct lpss_private_data *pdata)
178 lpss_deassert_reset(pdata);
180 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
181 pdata->fixed_clk_rate = 133000000;
183 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
186 /* BSW PWM used for backlight control by the i915 driver */
187 static struct pwm_lookup bsw_pwm_lookup[] = {
188 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
189 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
190 "pwm-lpss-platform"),
193 static void bsw_pwm_setup(struct lpss_private_data *pdata)
195 struct acpi_device *adev = pdata->adev;
197 /* Only call pwm_add_table for the first PWM controller */
198 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
199 return;
201 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
204 static const struct lpss_device_desc lpt_dev_desc = {
205 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
206 .prv_offset = 0x800,
209 static const struct lpss_device_desc lpt_i2c_dev_desc = {
210 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
211 .prv_offset = 0x800,
214 static struct property_entry uart_properties[] = {
215 PROPERTY_ENTRY_U32("reg-io-width", 4),
216 PROPERTY_ENTRY_U32("reg-shift", 2),
217 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
218 { },
221 static const struct lpss_device_desc lpt_uart_dev_desc = {
222 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
223 .clk_con_id = "baudclk",
224 .prv_offset = 0x800,
225 .setup = lpss_uart_setup,
226 .properties = uart_properties,
229 static const struct lpss_device_desc lpt_sdio_dev_desc = {
230 .flags = LPSS_LTR,
231 .prv_offset = 0x1000,
232 .prv_size_override = 0x1018,
235 static const struct lpss_device_desc byt_pwm_dev_desc = {
236 .flags = LPSS_SAVE_CTX,
237 .prv_offset = 0x800,
238 .setup = byt_pwm_setup,
241 static const struct lpss_device_desc bsw_pwm_dev_desc = {
242 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
243 .prv_offset = 0x800,
244 .setup = bsw_pwm_setup,
247 static const struct lpss_device_desc byt_uart_dev_desc = {
248 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
249 .clk_con_id = "baudclk",
250 .prv_offset = 0x800,
251 .setup = lpss_uart_setup,
252 .properties = uart_properties,
255 static const struct lpss_device_desc bsw_uart_dev_desc = {
256 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
257 | LPSS_NO_D3_DELAY,
258 .clk_con_id = "baudclk",
259 .prv_offset = 0x800,
260 .setup = lpss_uart_setup,
261 .properties = uart_properties,
264 static const struct lpss_device_desc byt_spi_dev_desc = {
265 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
266 .prv_offset = 0x400,
269 static const struct lpss_device_desc byt_sdio_dev_desc = {
270 .flags = LPSS_CLK,
273 static const struct lpss_device_desc byt_i2c_dev_desc = {
274 .flags = LPSS_CLK | LPSS_SAVE_CTX,
275 .prv_offset = 0x800,
276 .setup = byt_i2c_setup,
279 static const struct lpss_device_desc bsw_i2c_dev_desc = {
280 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
281 .prv_offset = 0x800,
282 .setup = byt_i2c_setup,
285 static const struct lpss_device_desc bsw_spi_dev_desc = {
286 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
287 | LPSS_NO_D3_DELAY,
288 .prv_offset = 0x400,
289 .setup = lpss_deassert_reset,
292 #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
294 static const struct x86_cpu_id lpss_cpu_ids[] = {
295 ICPU(INTEL_FAM6_ATOM_SILVERMONT1), /* Valleyview, Bay Trail */
296 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
300 #else
302 #define LPSS_ADDR(desc) (0UL)
304 #endif /* CONFIG_X86_INTEL_LPSS */
306 static const struct acpi_device_id acpi_lpss_device_ids[] = {
307 /* Generic LPSS devices */
308 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
310 /* Lynxpoint LPSS devices */
311 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
312 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
313 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
314 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
315 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
316 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
317 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
318 { "INT33C7", },
320 /* BayTrail LPSS devices */
321 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
322 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
323 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
324 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
325 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
326 { "INT33B2", },
327 { "INT33FC", },
329 /* Braswell LPSS devices */
330 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
331 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
332 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
333 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
335 /* Broadwell LPSS devices */
336 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
337 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
338 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
339 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
340 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
341 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
342 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
343 { "INT3437", },
345 /* Wildcat Point LPSS devices */
346 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
351 #ifdef CONFIG_X86_INTEL_LPSS
353 static int is_memory(struct acpi_resource *res, void *not_used)
355 struct resource r;
356 return !acpi_dev_resource_memory(res, &r);
359 /* LPSS main clock device. */
360 static struct platform_device *lpss_clk_dev;
362 static inline void lpt_register_clock_device(void)
364 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
367 static int register_device_clock(struct acpi_device *adev,
368 struct lpss_private_data *pdata)
370 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
371 const char *devname = dev_name(&adev->dev);
372 struct clk *clk;
373 struct lpss_clk_data *clk_data;
374 const char *parent, *clk_name;
375 void __iomem *prv_base;
377 if (!lpss_clk_dev)
378 lpt_register_clock_device();
380 clk_data = platform_get_drvdata(lpss_clk_dev);
381 if (!clk_data)
382 return -ENODEV;
383 clk = clk_data->clk;
385 if (!pdata->mmio_base
386 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
387 return -ENODATA;
389 parent = clk_data->name;
390 prv_base = pdata->mmio_base + dev_desc->prv_offset;
392 if (pdata->fixed_clk_rate) {
393 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
394 pdata->fixed_clk_rate);
395 goto out;
398 if (dev_desc->flags & LPSS_CLK_GATE) {
399 clk = clk_register_gate(NULL, devname, parent, 0,
400 prv_base, 0, 0, NULL);
401 parent = devname;
404 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
405 /* Prevent division by zero */
406 if (!readl(prv_base))
407 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
409 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
410 if (!clk_name)
411 return -ENOMEM;
412 clk = clk_register_fractional_divider(NULL, clk_name, parent,
413 0, prv_base,
414 1, 15, 16, 15, 0, NULL);
415 parent = clk_name;
417 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
418 if (!clk_name) {
419 kfree(parent);
420 return -ENOMEM;
422 clk = clk_register_gate(NULL, clk_name, parent,
423 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
424 prv_base, 31, 0, NULL);
425 kfree(parent);
426 kfree(clk_name);
428 out:
429 if (IS_ERR(clk))
430 return PTR_ERR(clk);
432 pdata->clk = clk;
433 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
434 return 0;
437 struct lpss_device_links {
438 const char *supplier_hid;
439 const char *supplier_uid;
440 const char *consumer_hid;
441 const char *consumer_uid;
442 u32 flags;
446 * The _DEP method is used to identify dependencies but instead of creating
447 * device links for every handle in _DEP, only links in the following list are
448 * created. That is necessary because, in the general case, _DEP can refer to
449 * devices that might not have drivers, or that are on different buses, or where
450 * the supplier is not enumerated until after the consumer is probed.
452 static const struct lpss_device_links lpss_device_links[] = {
453 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
456 static bool hid_uid_match(const char *hid1, const char *uid1,
457 const char *hid2, const char *uid2)
459 return !strcmp(hid1, hid2) && uid1 && uid2 && !strcmp(uid1, uid2);
462 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
463 const struct lpss_device_links *link)
465 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
466 link->supplier_hid, link->supplier_uid);
469 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
470 const struct lpss_device_links *link)
472 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
473 link->consumer_hid, link->consumer_uid);
476 struct hid_uid {
477 const char *hid;
478 const char *uid;
481 static int match_hid_uid(struct device *dev, void *data)
483 struct acpi_device *adev = ACPI_COMPANION(dev);
484 struct hid_uid *id = data;
486 if (!adev)
487 return 0;
489 return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
490 id->hid, id->uid);
493 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
495 struct hid_uid data = {
496 .hid = hid,
497 .uid = uid,
500 return bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
503 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
505 struct acpi_handle_list dep_devices;
506 acpi_status status;
507 int i;
509 if (!acpi_has_method(adev->handle, "_DEP"))
510 return false;
512 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
513 &dep_devices);
514 if (ACPI_FAILURE(status)) {
515 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
516 return false;
519 for (i = 0; i < dep_devices.count; i++) {
520 if (dep_devices.handles[i] == handle)
521 return true;
524 return false;
527 static void acpi_lpss_link_consumer(struct device *dev1,
528 const struct lpss_device_links *link)
530 struct device *dev2;
532 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
533 if (!dev2)
534 return;
536 if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
537 device_link_add(dev2, dev1, link->flags);
539 put_device(dev2);
542 static void acpi_lpss_link_supplier(struct device *dev1,
543 const struct lpss_device_links *link)
545 struct device *dev2;
547 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
548 if (!dev2)
549 return;
551 if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
552 device_link_add(dev1, dev2, link->flags);
554 put_device(dev2);
557 static void acpi_lpss_create_device_links(struct acpi_device *adev,
558 struct platform_device *pdev)
560 int i;
562 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
563 const struct lpss_device_links *link = &lpss_device_links[i];
565 if (acpi_lpss_is_supplier(adev, link))
566 acpi_lpss_link_consumer(&pdev->dev, link);
568 if (acpi_lpss_is_consumer(adev, link))
569 acpi_lpss_link_supplier(&pdev->dev, link);
573 static int acpi_lpss_create_device(struct acpi_device *adev,
574 const struct acpi_device_id *id)
576 const struct lpss_device_desc *dev_desc;
577 struct lpss_private_data *pdata;
578 struct resource_entry *rentry;
579 struct list_head resource_list;
580 struct platform_device *pdev;
581 int ret;
583 dev_desc = (const struct lpss_device_desc *)id->driver_data;
584 if (!dev_desc) {
585 pdev = acpi_create_platform_device(adev, NULL);
586 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
588 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
589 if (!pdata)
590 return -ENOMEM;
592 INIT_LIST_HEAD(&resource_list);
593 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
594 if (ret < 0)
595 goto err_out;
597 list_for_each_entry(rentry, &resource_list, node)
598 if (resource_type(rentry->res) == IORESOURCE_MEM) {
599 if (dev_desc->prv_size_override)
600 pdata->mmio_size = dev_desc->prv_size_override;
601 else
602 pdata->mmio_size = resource_size(rentry->res);
603 pdata->mmio_base = ioremap(rentry->res->start,
604 pdata->mmio_size);
605 break;
608 acpi_dev_free_resource_list(&resource_list);
610 if (!pdata->mmio_base) {
611 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
612 adev->pnp.type.platform_id = 0;
613 /* Skip the device, but continue the namespace scan. */
614 ret = 0;
615 goto err_out;
618 pdata->adev = adev;
619 pdata->dev_desc = dev_desc;
621 if (dev_desc->setup)
622 dev_desc->setup(pdata);
624 if (dev_desc->flags & LPSS_CLK) {
625 ret = register_device_clock(adev, pdata);
626 if (ret) {
627 /* Skip the device, but continue the namespace scan. */
628 ret = 0;
629 goto err_out;
634 * This works around a known issue in ACPI tables where LPSS devices
635 * have _PS0 and _PS3 without _PSC (and no power resources), so
636 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
638 ret = acpi_device_fix_up_power(adev);
639 if (ret) {
640 /* Skip the device, but continue the namespace scan. */
641 ret = 0;
642 goto err_out;
645 adev->driver_data = pdata;
646 pdev = acpi_create_platform_device(adev, dev_desc->properties);
647 if (!IS_ERR_OR_NULL(pdev)) {
648 acpi_lpss_create_device_links(adev, pdev);
649 return 1;
652 ret = PTR_ERR(pdev);
653 adev->driver_data = NULL;
655 err_out:
656 kfree(pdata);
657 return ret;
660 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
662 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
665 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
666 unsigned int reg)
668 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
671 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
673 struct acpi_device *adev;
674 struct lpss_private_data *pdata;
675 unsigned long flags;
676 int ret;
678 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
679 if (WARN_ON(ret))
680 return ret;
682 spin_lock_irqsave(&dev->power.lock, flags);
683 if (pm_runtime_suspended(dev)) {
684 ret = -EAGAIN;
685 goto out;
687 pdata = acpi_driver_data(adev);
688 if (WARN_ON(!pdata || !pdata->mmio_base)) {
689 ret = -ENODEV;
690 goto out;
692 *val = __lpss_reg_read(pdata, reg);
694 out:
695 spin_unlock_irqrestore(&dev->power.lock, flags);
696 return ret;
699 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
700 char *buf)
702 u32 ltr_value = 0;
703 unsigned int reg;
704 int ret;
706 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
707 ret = lpss_reg_read(dev, reg, &ltr_value);
708 if (ret)
709 return ret;
711 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
714 static ssize_t lpss_ltr_mode_show(struct device *dev,
715 struct device_attribute *attr, char *buf)
717 u32 ltr_mode = 0;
718 char *outstr;
719 int ret;
721 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
722 if (ret)
723 return ret;
725 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
726 return sprintf(buf, "%s\n", outstr);
729 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
730 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
731 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
733 static struct attribute *lpss_attrs[] = {
734 &dev_attr_auto_ltr.attr,
735 &dev_attr_sw_ltr.attr,
736 &dev_attr_ltr_mode.attr,
737 NULL,
740 static const struct attribute_group lpss_attr_group = {
741 .attrs = lpss_attrs,
742 .name = "lpss_ltr",
745 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
747 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
748 u32 ltr_mode, ltr_val;
750 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
751 if (val < 0) {
752 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
753 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
754 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
756 return;
758 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
759 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
760 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
761 val = LPSS_LTR_MAX_VAL;
762 } else if (val > LPSS_LTR_MAX_VAL) {
763 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
764 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
765 } else {
766 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
768 ltr_val |= val;
769 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
770 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
771 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
772 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
776 #ifdef CONFIG_PM
778 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
779 * @dev: LPSS device
780 * @pdata: pointer to the private data of the LPSS device
782 * Most LPSS devices have private registers which may loose their context when
783 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
784 * prv_reg_ctx array.
786 static void acpi_lpss_save_ctx(struct device *dev,
787 struct lpss_private_data *pdata)
789 unsigned int i;
791 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
792 unsigned long offset = i * sizeof(u32);
794 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
795 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
796 pdata->prv_reg_ctx[i], offset);
801 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
802 * @dev: LPSS device
803 * @pdata: pointer to the private data of the LPSS device
805 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
807 static void acpi_lpss_restore_ctx(struct device *dev,
808 struct lpss_private_data *pdata)
810 unsigned int i;
812 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
813 unsigned long offset = i * sizeof(u32);
815 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
816 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
817 pdata->prv_reg_ctx[i], offset);
821 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
824 * The following delay is needed or the subsequent write operations may
825 * fail. The LPSS devices are actually PCI devices and the PCI spec
826 * expects 10ms delay before the device can be accessed after D3 to D0
827 * transition. However some platforms like BSW does not need this delay.
829 unsigned int delay = 10; /* default 10ms delay */
831 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
832 delay = 0;
834 msleep(delay);
837 static int acpi_lpss_activate(struct device *dev)
839 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
840 int ret;
842 ret = acpi_dev_resume(dev);
843 if (ret)
844 return ret;
846 acpi_lpss_d3_to_d0_delay(pdata);
849 * This is called only on ->probe() stage where a device is either in
850 * known state defined by BIOS or most likely powered off. Due to this
851 * we have to deassert reset line to be sure that ->probe() will
852 * recognize the device.
854 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
855 lpss_deassert_reset(pdata);
857 return 0;
860 static void acpi_lpss_dismiss(struct device *dev)
862 acpi_dev_suspend(dev, false);
865 /* IOSF SB for LPSS island */
866 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
867 #define LPSS_IOSF_UNIT_LPIO1 0xAB
868 #define LPSS_IOSF_UNIT_LPIO2 0xAC
870 #define LPSS_IOSF_PMCSR 0x84
871 #define LPSS_PMCSR_D0 0
872 #define LPSS_PMCSR_D3hot 3
873 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
875 #define LPSS_IOSF_GPIODEF0 0x154
876 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
877 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
878 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
879 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
881 static DEFINE_MUTEX(lpss_iosf_mutex);
882 static bool lpss_iosf_d3_entered = true;
884 static void lpss_iosf_enter_d3_state(void)
886 u32 value1 = 0;
887 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
888 u32 value2 = LPSS_PMCSR_D3hot;
889 u32 mask2 = LPSS_PMCSR_Dx_MASK;
891 * PMC provides an information about actual status of the LPSS devices.
892 * Here we read the values related to LPSS power island, i.e. LPSS
893 * devices, excluding both LPSS DMA controllers, along with SCC domain.
895 u32 func_dis, d3_sts_0, pmc_status, pmc_mask = 0xfe000ffe;
896 int ret;
898 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
899 if (ret)
900 return;
902 mutex_lock(&lpss_iosf_mutex);
904 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
905 if (ret)
906 goto exit;
909 * Get the status of entire LPSS power island per device basis.
910 * Shutdown both LPSS DMA controllers if and only if all other devices
911 * are already in D3hot.
913 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_mask;
914 if (pmc_status)
915 goto exit;
917 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
918 LPSS_IOSF_PMCSR, value2, mask2);
920 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
921 LPSS_IOSF_PMCSR, value2, mask2);
923 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
924 LPSS_IOSF_GPIODEF0, value1, mask1);
926 lpss_iosf_d3_entered = true;
928 exit:
929 mutex_unlock(&lpss_iosf_mutex);
932 static void lpss_iosf_exit_d3_state(void)
934 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
935 LPSS_GPIODEF0_DMA_LLP;
936 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
937 u32 value2 = LPSS_PMCSR_D0;
938 u32 mask2 = LPSS_PMCSR_Dx_MASK;
940 mutex_lock(&lpss_iosf_mutex);
942 if (!lpss_iosf_d3_entered)
943 goto exit;
945 lpss_iosf_d3_entered = false;
947 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
948 LPSS_IOSF_GPIODEF0, value1, mask1);
950 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
951 LPSS_IOSF_PMCSR, value2, mask2);
953 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
954 LPSS_IOSF_PMCSR, value2, mask2);
956 exit:
957 mutex_unlock(&lpss_iosf_mutex);
960 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
962 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
963 int ret;
965 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
966 acpi_lpss_save_ctx(dev, pdata);
968 ret = acpi_dev_suspend(dev, wakeup);
971 * This call must be last in the sequence, otherwise PMC will return
972 * wrong status for devices being about to be powered off. See
973 * lpss_iosf_enter_d3_state() for further information.
975 if (acpi_target_system_state() == ACPI_STATE_S0 &&
976 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
977 lpss_iosf_enter_d3_state();
979 return ret;
982 static int acpi_lpss_resume(struct device *dev)
984 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
985 int ret;
988 * This call is kept first to be in symmetry with
989 * acpi_lpss_runtime_suspend() one.
991 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
992 lpss_iosf_exit_d3_state();
994 ret = acpi_dev_resume(dev);
995 if (ret)
996 return ret;
998 acpi_lpss_d3_to_d0_delay(pdata);
1000 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1001 acpi_lpss_restore_ctx(dev, pdata);
1003 return 0;
1006 #ifdef CONFIG_PM_SLEEP
1007 static int acpi_lpss_suspend_late(struct device *dev)
1009 int ret;
1011 if (dev_pm_smart_suspend_and_suspended(dev))
1012 return 0;
1014 ret = pm_generic_suspend_late(dev);
1015 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1018 static int acpi_lpss_resume_early(struct device *dev)
1020 int ret = acpi_lpss_resume(dev);
1022 return ret ? ret : pm_generic_resume_early(dev);
1024 #endif /* CONFIG_PM_SLEEP */
1026 static int acpi_lpss_runtime_suspend(struct device *dev)
1028 int ret = pm_generic_runtime_suspend(dev);
1030 return ret ? ret : acpi_lpss_suspend(dev, true);
1033 static int acpi_lpss_runtime_resume(struct device *dev)
1035 int ret = acpi_lpss_resume(dev);
1037 return ret ? ret : pm_generic_runtime_resume(dev);
1039 #endif /* CONFIG_PM */
1041 static struct dev_pm_domain acpi_lpss_pm_domain = {
1042 #ifdef CONFIG_PM
1043 .activate = acpi_lpss_activate,
1044 .dismiss = acpi_lpss_dismiss,
1045 #endif
1046 .ops = {
1047 #ifdef CONFIG_PM
1048 #ifdef CONFIG_PM_SLEEP
1049 .prepare = acpi_subsys_prepare,
1050 .complete = acpi_subsys_complete,
1051 .suspend = acpi_subsys_suspend,
1052 .suspend_late = acpi_lpss_suspend_late,
1053 .suspend_noirq = acpi_subsys_suspend_noirq,
1054 .resume_noirq = acpi_subsys_resume_noirq,
1055 .resume_early = acpi_lpss_resume_early,
1056 .freeze = acpi_subsys_freeze,
1057 .freeze_late = acpi_subsys_freeze_late,
1058 .freeze_noirq = acpi_subsys_freeze_noirq,
1059 .thaw_noirq = acpi_subsys_thaw_noirq,
1060 .poweroff = acpi_subsys_suspend,
1061 .poweroff_late = acpi_lpss_suspend_late,
1062 .poweroff_noirq = acpi_subsys_suspend_noirq,
1063 .restore_noirq = acpi_subsys_resume_noirq,
1064 .restore_early = acpi_lpss_resume_early,
1065 #endif
1066 .runtime_suspend = acpi_lpss_runtime_suspend,
1067 .runtime_resume = acpi_lpss_runtime_resume,
1068 #endif
1072 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1073 unsigned long action, void *data)
1075 struct platform_device *pdev = to_platform_device(data);
1076 struct lpss_private_data *pdata;
1077 struct acpi_device *adev;
1078 const struct acpi_device_id *id;
1080 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1081 if (!id || !id->driver_data)
1082 return 0;
1084 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1085 return 0;
1087 pdata = acpi_driver_data(adev);
1088 if (!pdata)
1089 return 0;
1091 if (pdata->mmio_base &&
1092 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1093 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1094 return 0;
1097 switch (action) {
1098 case BUS_NOTIFY_BIND_DRIVER:
1099 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1100 break;
1101 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1102 case BUS_NOTIFY_UNBOUND_DRIVER:
1103 dev_pm_domain_set(&pdev->dev, NULL);
1104 break;
1105 case BUS_NOTIFY_ADD_DEVICE:
1106 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1107 if (pdata->dev_desc->flags & LPSS_LTR)
1108 return sysfs_create_group(&pdev->dev.kobj,
1109 &lpss_attr_group);
1110 break;
1111 case BUS_NOTIFY_DEL_DEVICE:
1112 if (pdata->dev_desc->flags & LPSS_LTR)
1113 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1114 dev_pm_domain_set(&pdev->dev, NULL);
1115 break;
1116 default:
1117 break;
1120 return 0;
1123 static struct notifier_block acpi_lpss_nb = {
1124 .notifier_call = acpi_lpss_platform_notify,
1127 static void acpi_lpss_bind(struct device *dev)
1129 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1131 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1132 return;
1134 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1135 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1136 else
1137 dev_err(dev, "MMIO size insufficient to access LTR\n");
1140 static void acpi_lpss_unbind(struct device *dev)
1142 dev->power.set_latency_tolerance = NULL;
1145 static struct acpi_scan_handler lpss_handler = {
1146 .ids = acpi_lpss_device_ids,
1147 .attach = acpi_lpss_create_device,
1148 .bind = acpi_lpss_bind,
1149 .unbind = acpi_lpss_unbind,
1152 void __init acpi_lpss_init(void)
1154 const struct x86_cpu_id *id;
1155 int ret;
1157 ret = lpt_clk_init();
1158 if (ret)
1159 return;
1161 id = x86_match_cpu(lpss_cpu_ids);
1162 if (id)
1163 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1165 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1166 acpi_scan_add_handler(&lpss_handler);
1169 #else
1171 static struct acpi_scan_handler lpss_handler = {
1172 .ids = acpi_lpss_device_ids,
1175 void __init acpi_lpss_init(void)
1177 acpi_scan_add_handler(&lpss_handler);
1180 #endif /* CONFIG_X86_INTEL_LPSS */