dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / block / brd.c
blobc18586fccb6f2b25c3d0ef535144deeabf640006
1 /*
2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #include <linux/backing-dev.h>
25 #include <linux/uaccess.h>
27 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
28 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
32 * the pages containing the block device's contents. A brd page's ->index is
33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34 * with, the kernel's pagecache or buffer cache (which sit above our block
35 * device).
37 struct brd_device {
38 int brd_number;
40 struct request_queue *brd_queue;
41 struct gendisk *brd_disk;
42 struct list_head brd_list;
45 * Backing store of pages and lock to protect it. This is the contents
46 * of the block device.
48 spinlock_t brd_lock;
49 struct radix_tree_root brd_pages;
53 * Look up and return a brd's page for a given sector.
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
57 pgoff_t idx;
58 struct page *page;
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
71 rcu_read_lock();
72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 page = radix_tree_lookup(&brd->brd_pages, idx);
74 rcu_read_unlock();
76 BUG_ON(page && page->index != idx);
78 return page;
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
84 * return it.
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
88 pgoff_t idx;
89 struct page *page;
90 gfp_t gfp_flags;
92 page = brd_lookup_page(brd, sector);
93 if (page)
94 return page;
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
100 * Cannot support DAX and highmem, because our ->direct_access
101 * routine for DAX must return memory that is always addressable.
102 * If DAX was reworked to use pfns and kmap throughout, this
103 * restriction might be able to be lifted.
105 gfp_flags = GFP_NOIO | __GFP_ZERO;
106 page = alloc_page(gfp_flags);
107 if (!page)
108 return NULL;
110 if (radix_tree_preload(GFP_NOIO)) {
111 __free_page(page);
112 return NULL;
115 spin_lock(&brd->brd_lock);
116 idx = sector >> PAGE_SECTORS_SHIFT;
117 page->index = idx;
118 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
119 __free_page(page);
120 page = radix_tree_lookup(&brd->brd_pages, idx);
121 BUG_ON(!page);
122 BUG_ON(page->index != idx);
124 spin_unlock(&brd->brd_lock);
126 radix_tree_preload_end();
128 return page;
132 * Free all backing store pages and radix tree. This must only be called when
133 * there are no other users of the device.
135 #define FREE_BATCH 16
136 static void brd_free_pages(struct brd_device *brd)
138 unsigned long pos = 0;
139 struct page *pages[FREE_BATCH];
140 int nr_pages;
142 do {
143 int i;
145 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
146 (void **)pages, pos, FREE_BATCH);
148 for (i = 0; i < nr_pages; i++) {
149 void *ret;
151 BUG_ON(pages[i]->index < pos);
152 pos = pages[i]->index;
153 ret = radix_tree_delete(&brd->brd_pages, pos);
154 BUG_ON(!ret || ret != pages[i]);
155 __free_page(pages[i]);
158 pos++;
161 * This assumes radix_tree_gang_lookup always returns as
162 * many pages as possible. If the radix-tree code changes,
163 * so will this have to.
165 } while (nr_pages == FREE_BATCH);
169 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
171 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
173 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
174 size_t copy;
176 copy = min_t(size_t, n, PAGE_SIZE - offset);
177 if (!brd_insert_page(brd, sector))
178 return -ENOSPC;
179 if (copy < n) {
180 sector += copy >> SECTOR_SHIFT;
181 if (!brd_insert_page(brd, sector))
182 return -ENOSPC;
184 return 0;
188 * Copy n bytes from src to the brd starting at sector. Does not sleep.
190 static void copy_to_brd(struct brd_device *brd, const void *src,
191 sector_t sector, size_t n)
193 struct page *page;
194 void *dst;
195 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
196 size_t copy;
198 copy = min_t(size_t, n, PAGE_SIZE - offset);
199 page = brd_lookup_page(brd, sector);
200 BUG_ON(!page);
202 dst = kmap_atomic(page);
203 memcpy(dst + offset, src, copy);
204 kunmap_atomic(dst);
206 if (copy < n) {
207 src += copy;
208 sector += copy >> SECTOR_SHIFT;
209 copy = n - copy;
210 page = brd_lookup_page(brd, sector);
211 BUG_ON(!page);
213 dst = kmap_atomic(page);
214 memcpy(dst, src, copy);
215 kunmap_atomic(dst);
220 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
222 static void copy_from_brd(void *dst, struct brd_device *brd,
223 sector_t sector, size_t n)
225 struct page *page;
226 void *src;
227 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
228 size_t copy;
230 copy = min_t(size_t, n, PAGE_SIZE - offset);
231 page = brd_lookup_page(brd, sector);
232 if (page) {
233 src = kmap_atomic(page);
234 memcpy(dst, src + offset, copy);
235 kunmap_atomic(src);
236 } else
237 memset(dst, 0, copy);
239 if (copy < n) {
240 dst += copy;
241 sector += copy >> SECTOR_SHIFT;
242 copy = n - copy;
243 page = brd_lookup_page(brd, sector);
244 if (page) {
245 src = kmap_atomic(page);
246 memcpy(dst, src, copy);
247 kunmap_atomic(src);
248 } else
249 memset(dst, 0, copy);
254 * Process a single bvec of a bio.
256 static int brd_do_bvec(struct brd_device *brd, struct page *page,
257 unsigned int len, unsigned int off, unsigned int op,
258 sector_t sector)
260 void *mem;
261 int err = 0;
263 if (op_is_write(op)) {
264 err = copy_to_brd_setup(brd, sector, len);
265 if (err)
266 goto out;
269 mem = kmap_atomic(page);
270 if (!op_is_write(op)) {
271 copy_from_brd(mem + off, brd, sector, len);
272 flush_dcache_page(page);
273 } else {
274 flush_dcache_page(page);
275 copy_to_brd(brd, mem + off, sector, len);
277 kunmap_atomic(mem);
279 out:
280 return err;
283 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
285 struct brd_device *brd = bio->bi_disk->private_data;
286 struct bio_vec bvec;
287 sector_t sector;
288 struct bvec_iter iter;
290 sector = bio->bi_iter.bi_sector;
291 if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
292 goto io_error;
294 bio_for_each_segment(bvec, bio, iter) {
295 unsigned int len = bvec.bv_len;
296 int err;
298 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
299 bio_op(bio), sector);
300 if (err)
301 goto io_error;
302 sector += len >> SECTOR_SHIFT;
305 bio_endio(bio);
306 return BLK_QC_T_NONE;
307 io_error:
308 bio_io_error(bio);
309 return BLK_QC_T_NONE;
312 static int brd_rw_page(struct block_device *bdev, sector_t sector,
313 struct page *page, unsigned int op)
315 struct brd_device *brd = bdev->bd_disk->private_data;
316 int err;
318 if (PageTransHuge(page))
319 return -ENOTSUPP;
320 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
321 page_endio(page, op_is_write(op), err);
322 return err;
325 static const struct block_device_operations brd_fops = {
326 .owner = THIS_MODULE,
327 .rw_page = brd_rw_page,
331 * And now the modules code and kernel interface.
333 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
334 module_param(rd_nr, int, 0444);
335 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
338 module_param(rd_size, ulong, 0444);
339 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341 static int max_part = 1;
342 module_param(max_part, int, 0444);
343 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345 MODULE_LICENSE("GPL");
346 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
347 MODULE_ALIAS("rd");
349 #ifndef MODULE
350 /* Legacy boot options - nonmodular */
351 static int __init ramdisk_size(char *str)
353 rd_size = simple_strtol(str, NULL, 0);
354 return 1;
356 __setup("ramdisk_size=", ramdisk_size);
357 #endif
360 * The device scheme is derived from loop.c. Keep them in synch where possible
361 * (should share code eventually).
363 static LIST_HEAD(brd_devices);
364 static DEFINE_MUTEX(brd_devices_mutex);
366 static struct brd_device *brd_alloc(int i)
368 struct brd_device *brd;
369 struct gendisk *disk;
371 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
372 if (!brd)
373 goto out;
374 brd->brd_number = i;
375 spin_lock_init(&brd->brd_lock);
376 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
378 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
379 if (!brd->brd_queue)
380 goto out_free_dev;
382 blk_queue_make_request(brd->brd_queue, brd_make_request);
383 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
385 /* This is so fdisk will align partitions on 4k, because of
386 * direct_access API needing 4k alignment, returning a PFN
387 * (This is only a problem on very small devices <= 4M,
388 * otherwise fdisk will align on 1M. Regardless this call
389 * is harmless)
391 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
392 disk = brd->brd_disk = alloc_disk(max_part);
393 if (!disk)
394 goto out_free_queue;
395 disk->major = RAMDISK_MAJOR;
396 disk->first_minor = i * max_part;
397 disk->fops = &brd_fops;
398 disk->private_data = brd;
399 disk->flags = GENHD_FL_EXT_DEVT;
400 sprintf(disk->disk_name, "ram%d", i);
401 set_capacity(disk, rd_size * 2);
402 brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
404 /* Tell the block layer that this is not a rotational device */
405 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
406 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
408 return brd;
410 out_free_queue:
411 blk_cleanup_queue(brd->brd_queue);
412 out_free_dev:
413 kfree(brd);
414 out:
415 return NULL;
418 static void brd_free(struct brd_device *brd)
420 put_disk(brd->brd_disk);
421 blk_cleanup_queue(brd->brd_queue);
422 brd_free_pages(brd);
423 kfree(brd);
426 static struct brd_device *brd_init_one(int i, bool *new)
428 struct brd_device *brd;
430 *new = false;
431 list_for_each_entry(brd, &brd_devices, brd_list) {
432 if (brd->brd_number == i)
433 goto out;
436 brd = brd_alloc(i);
437 if (brd) {
438 brd->brd_disk->queue = brd->brd_queue;
439 add_disk(brd->brd_disk);
440 list_add_tail(&brd->brd_list, &brd_devices);
442 *new = true;
443 out:
444 return brd;
447 static void brd_del_one(struct brd_device *brd)
449 list_del(&brd->brd_list);
450 del_gendisk(brd->brd_disk);
451 brd_free(brd);
454 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
456 struct brd_device *brd;
457 struct kobject *kobj;
458 bool new;
460 mutex_lock(&brd_devices_mutex);
461 brd = brd_init_one(MINOR(dev) / max_part, &new);
462 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
463 mutex_unlock(&brd_devices_mutex);
465 if (new)
466 *part = 0;
468 return kobj;
471 static int __init brd_init(void)
473 struct brd_device *brd, *next;
474 int i;
477 * brd module now has a feature to instantiate underlying device
478 * structure on-demand, provided that there is an access dev node.
480 * (1) if rd_nr is specified, create that many upfront. else
481 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
482 * (2) User can further extend brd devices by create dev node themselves
483 * and have kernel automatically instantiate actual device
484 * on-demand. Example:
485 * mknod /path/devnod_name b 1 X # 1 is the rd major
486 * fdisk -l /path/devnod_name
487 * If (X / max_part) was not already created it will be created
488 * dynamically.
491 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
492 return -EIO;
494 if (unlikely(!max_part))
495 max_part = 1;
497 for (i = 0; i < rd_nr; i++) {
498 brd = brd_alloc(i);
499 if (!brd)
500 goto out_free;
501 list_add_tail(&brd->brd_list, &brd_devices);
504 /* point of no return */
506 list_for_each_entry(brd, &brd_devices, brd_list) {
508 * associate with queue just before adding disk for
509 * avoiding to mess up failure path
511 brd->brd_disk->queue = brd->brd_queue;
512 add_disk(brd->brd_disk);
515 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
516 THIS_MODULE, brd_probe, NULL, NULL);
518 pr_info("brd: module loaded\n");
519 return 0;
521 out_free:
522 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
523 list_del(&brd->brd_list);
524 brd_free(brd);
526 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
528 pr_info("brd: module NOT loaded !!!\n");
529 return -ENOMEM;
532 static void __exit brd_exit(void)
534 struct brd_device *brd, *next;
536 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
537 brd_del_one(brd);
539 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
540 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
542 pr_info("brd: module unloaded\n");
545 module_init(brd_init);
546 module_exit(brd_exit);