dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / firmware / efi / libstub / efi-stub-helper.c
blobe4610e72b78fa2808f4307c119a538ac944526fa
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Helper functions used by the EFI stub on multiple
4 * architectures. This should be #included by the EFI stub
5 * implementation files.
7 * Copyright 2011 Intel Corporation; author Matt Fleming
8 */
10 #include <linux/efi.h>
11 #include <asm/efi.h>
13 #include "efistub.h"
16 * Some firmware implementations have problems reading files in one go.
17 * A read chunk size of 1MB seems to work for most platforms.
19 * Unfortunately, reading files in chunks triggers *other* bugs on some
20 * platforms, so we provide a way to disable this workaround, which can
21 * be done by passing "efi=nochunk" on the EFI boot stub command line.
23 * If you experience issues with initrd images being corrupt it's worth
24 * trying efi=nochunk, but chunking is enabled by default because there
25 * are far more machines that require the workaround than those that
26 * break with it enabled.
28 #define EFI_READ_CHUNK_SIZE (1024 * 1024)
30 static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
32 static int __section(.data) __nokaslr;
33 static int __section(.data) __quiet;
34 static int __section(.data) __novamap;
36 int __pure nokaslr(void)
38 return __nokaslr;
40 int __pure is_quiet(void)
42 return __quiet;
44 int __pure novamap(void)
46 return __novamap;
49 #define EFI_MMAP_NR_SLACK_SLOTS 8
51 struct file_info {
52 efi_file_handle_t *handle;
53 u64 size;
56 void efi_printk(efi_system_table_t *sys_table_arg, char *str)
58 char *s8;
60 for (s8 = str; *s8; s8++) {
61 efi_char16_t ch[2] = { 0 };
63 ch[0] = *s8;
64 if (*s8 == '\n') {
65 efi_char16_t nl[2] = { '\r', 0 };
66 efi_char16_printk(sys_table_arg, nl);
69 efi_char16_printk(sys_table_arg, ch);
73 static inline bool mmap_has_headroom(unsigned long buff_size,
74 unsigned long map_size,
75 unsigned long desc_size)
77 unsigned long slack = buff_size - map_size;
79 return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
82 efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
83 struct efi_boot_memmap *map)
85 efi_memory_desc_t *m = NULL;
86 efi_status_t status;
87 unsigned long key;
88 u32 desc_version;
90 *map->desc_size = sizeof(*m);
91 *map->map_size = *map->desc_size * 32;
92 *map->buff_size = *map->map_size;
93 again:
94 status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
95 *map->map_size, (void **)&m);
96 if (status != EFI_SUCCESS)
97 goto fail;
99 *map->desc_size = 0;
100 key = 0;
101 status = efi_call_early(get_memory_map, map->map_size, m,
102 &key, map->desc_size, &desc_version);
103 if (status == EFI_BUFFER_TOO_SMALL ||
104 !mmap_has_headroom(*map->buff_size, *map->map_size,
105 *map->desc_size)) {
106 efi_call_early(free_pool, m);
108 * Make sure there is some entries of headroom so that the
109 * buffer can be reused for a new map after allocations are
110 * no longer permitted. Its unlikely that the map will grow to
111 * exceed this headroom once we are ready to trigger
112 * ExitBootServices()
114 *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
115 *map->buff_size = *map->map_size;
116 goto again;
119 if (status != EFI_SUCCESS)
120 efi_call_early(free_pool, m);
122 if (map->key_ptr && status == EFI_SUCCESS)
123 *map->key_ptr = key;
124 if (map->desc_ver && status == EFI_SUCCESS)
125 *map->desc_ver = desc_version;
127 fail:
128 *map->map = m;
129 return status;
133 unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
135 efi_status_t status;
136 unsigned long map_size, buff_size;
137 unsigned long membase = EFI_ERROR;
138 struct efi_memory_map map;
139 efi_memory_desc_t *md;
140 struct efi_boot_memmap boot_map;
142 boot_map.map = (efi_memory_desc_t **)&map.map;
143 boot_map.map_size = &map_size;
144 boot_map.desc_size = &map.desc_size;
145 boot_map.desc_ver = NULL;
146 boot_map.key_ptr = NULL;
147 boot_map.buff_size = &buff_size;
149 status = efi_get_memory_map(sys_table_arg, &boot_map);
150 if (status != EFI_SUCCESS)
151 return membase;
153 map.map_end = map.map + map_size;
155 for_each_efi_memory_desc_in_map(&map, md) {
156 if (md->attribute & EFI_MEMORY_WB) {
157 if (membase > md->phys_addr)
158 membase = md->phys_addr;
162 efi_call_early(free_pool, map.map);
164 return membase;
168 * Allocate at the highest possible address that is not above 'max'.
170 efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
171 unsigned long size, unsigned long align,
172 unsigned long *addr, unsigned long max)
174 unsigned long map_size, desc_size, buff_size;
175 efi_memory_desc_t *map;
176 efi_status_t status;
177 unsigned long nr_pages;
178 u64 max_addr = 0;
179 int i;
180 struct efi_boot_memmap boot_map;
182 boot_map.map = &map;
183 boot_map.map_size = &map_size;
184 boot_map.desc_size = &desc_size;
185 boot_map.desc_ver = NULL;
186 boot_map.key_ptr = NULL;
187 boot_map.buff_size = &buff_size;
189 status = efi_get_memory_map(sys_table_arg, &boot_map);
190 if (status != EFI_SUCCESS)
191 goto fail;
194 * Enforce minimum alignment that EFI or Linux requires when
195 * requesting a specific address. We are doing page-based (or
196 * larger) allocations, and both the address and size must meet
197 * alignment constraints.
199 if (align < EFI_ALLOC_ALIGN)
200 align = EFI_ALLOC_ALIGN;
202 size = round_up(size, EFI_ALLOC_ALIGN);
203 nr_pages = size / EFI_PAGE_SIZE;
204 again:
205 for (i = 0; i < map_size / desc_size; i++) {
206 efi_memory_desc_t *desc;
207 unsigned long m = (unsigned long)map;
208 u64 start, end;
210 desc = efi_early_memdesc_ptr(m, desc_size, i);
211 if (desc->type != EFI_CONVENTIONAL_MEMORY)
212 continue;
214 if (desc->num_pages < nr_pages)
215 continue;
217 start = desc->phys_addr;
218 end = start + desc->num_pages * EFI_PAGE_SIZE;
220 if (end > max)
221 end = max;
223 if ((start + size) > end)
224 continue;
226 if (round_down(end - size, align) < start)
227 continue;
229 start = round_down(end - size, align);
232 * Don't allocate at 0x0. It will confuse code that
233 * checks pointers against NULL.
235 if (start == 0x0)
236 continue;
238 if (start > max_addr)
239 max_addr = start;
242 if (!max_addr)
243 status = EFI_NOT_FOUND;
244 else {
245 status = efi_call_early(allocate_pages,
246 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
247 nr_pages, &max_addr);
248 if (status != EFI_SUCCESS) {
249 max = max_addr;
250 max_addr = 0;
251 goto again;
254 *addr = max_addr;
257 efi_call_early(free_pool, map);
258 fail:
259 return status;
263 * Allocate at the lowest possible address.
265 efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
266 unsigned long size, unsigned long align,
267 unsigned long *addr)
269 unsigned long map_size, desc_size, buff_size;
270 efi_memory_desc_t *map;
271 efi_status_t status;
272 unsigned long nr_pages;
273 int i;
274 struct efi_boot_memmap boot_map;
276 boot_map.map = &map;
277 boot_map.map_size = &map_size;
278 boot_map.desc_size = &desc_size;
279 boot_map.desc_ver = NULL;
280 boot_map.key_ptr = NULL;
281 boot_map.buff_size = &buff_size;
283 status = efi_get_memory_map(sys_table_arg, &boot_map);
284 if (status != EFI_SUCCESS)
285 goto fail;
288 * Enforce minimum alignment that EFI or Linux requires when
289 * requesting a specific address. We are doing page-based (or
290 * larger) allocations, and both the address and size must meet
291 * alignment constraints.
293 if (align < EFI_ALLOC_ALIGN)
294 align = EFI_ALLOC_ALIGN;
296 size = round_up(size, EFI_ALLOC_ALIGN);
297 nr_pages = size / EFI_PAGE_SIZE;
298 for (i = 0; i < map_size / desc_size; i++) {
299 efi_memory_desc_t *desc;
300 unsigned long m = (unsigned long)map;
301 u64 start, end;
303 desc = efi_early_memdesc_ptr(m, desc_size, i);
305 if (desc->type != EFI_CONVENTIONAL_MEMORY)
306 continue;
308 if (desc->num_pages < nr_pages)
309 continue;
311 start = desc->phys_addr;
312 end = start + desc->num_pages * EFI_PAGE_SIZE;
315 * Don't allocate at 0x0. It will confuse code that
316 * checks pointers against NULL. Skip the first 8
317 * bytes so we start at a nice even number.
319 if (start == 0x0)
320 start += 8;
322 start = round_up(start, align);
323 if ((start + size) > end)
324 continue;
326 status = efi_call_early(allocate_pages,
327 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
328 nr_pages, &start);
329 if (status == EFI_SUCCESS) {
330 *addr = start;
331 break;
335 if (i == map_size / desc_size)
336 status = EFI_NOT_FOUND;
338 efi_call_early(free_pool, map);
339 fail:
340 return status;
343 void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
344 unsigned long addr)
346 unsigned long nr_pages;
348 if (!size)
349 return;
351 nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
352 efi_call_early(free_pages, addr, nr_pages);
355 static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
356 efi_char16_t *filename_16, void **handle,
357 u64 *file_sz)
359 efi_file_handle_t *h, *fh = __fh;
360 efi_file_info_t *info;
361 efi_status_t status;
362 efi_guid_t info_guid = EFI_FILE_INFO_ID;
363 unsigned long info_sz;
365 status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16,
366 EFI_FILE_MODE_READ, (u64)0);
367 if (status != EFI_SUCCESS) {
368 efi_printk(sys_table_arg, "Failed to open file: ");
369 efi_char16_printk(sys_table_arg, filename_16);
370 efi_printk(sys_table_arg, "\n");
371 return status;
374 *handle = h;
376 info_sz = 0;
377 status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
378 &info_sz, NULL);
379 if (status != EFI_BUFFER_TOO_SMALL) {
380 efi_printk(sys_table_arg, "Failed to get file info size\n");
381 return status;
384 grow:
385 status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
386 info_sz, (void **)&info);
387 if (status != EFI_SUCCESS) {
388 efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
389 return status;
392 status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
393 &info_sz, info);
394 if (status == EFI_BUFFER_TOO_SMALL) {
395 efi_call_early(free_pool, info);
396 goto grow;
399 *file_sz = info->file_size;
400 efi_call_early(free_pool, info);
402 if (status != EFI_SUCCESS)
403 efi_printk(sys_table_arg, "Failed to get initrd info\n");
405 return status;
408 static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr)
410 return efi_call_proto(efi_file_handle, read, handle, size, addr);
413 static efi_status_t efi_file_close(void *handle)
415 return efi_call_proto(efi_file_handle, close, handle);
418 static efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
419 efi_loaded_image_t *image,
420 efi_file_handle_t **__fh)
422 efi_file_io_interface_t *io;
423 efi_file_handle_t *fh;
424 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
425 efi_status_t status;
426 void *handle = (void *)(unsigned long)efi_table_attr(efi_loaded_image,
427 device_handle,
428 image);
430 status = efi_call_early(handle_protocol, handle,
431 &fs_proto, (void **)&io);
432 if (status != EFI_SUCCESS) {
433 efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
434 return status;
437 status = efi_call_proto(efi_file_io_interface, open_volume, io, &fh);
438 if (status != EFI_SUCCESS)
439 efi_printk(sys_table_arg, "Failed to open volume\n");
440 else
441 *__fh = fh;
443 return status;
447 * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
448 * option, e.g. efi=nochunk.
450 * It should be noted that efi= is parsed in two very different
451 * environments, first in the early boot environment of the EFI boot
452 * stub, and subsequently during the kernel boot.
454 efi_status_t efi_parse_options(char const *cmdline)
456 char *str;
458 str = strstr(cmdline, "nokaslr");
459 if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
460 __nokaslr = 1;
462 str = strstr(cmdline, "quiet");
463 if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
464 __quiet = 1;
467 * If no EFI parameters were specified on the cmdline we've got
468 * nothing to do.
470 str = strstr(cmdline, "efi=");
471 if (!str)
472 return EFI_SUCCESS;
474 /* Skip ahead to first argument */
475 str += strlen("efi=");
478 * Remember, because efi= is also used by the kernel we need to
479 * skip over arguments we don't understand.
481 while (*str && *str != ' ') {
482 if (!strncmp(str, "nochunk", 7)) {
483 str += strlen("nochunk");
484 __chunk_size = -1UL;
487 if (!strncmp(str, "novamap", 7)) {
488 str += strlen("novamap");
489 __novamap = 1;
492 /* Group words together, delimited by "," */
493 while (*str && *str != ' ' && *str != ',')
494 str++;
496 if (*str == ',')
497 str++;
500 return EFI_SUCCESS;
504 * Check the cmdline for a LILO-style file= arguments.
506 * We only support loading a file from the same filesystem as
507 * the kernel image.
509 efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
510 efi_loaded_image_t *image,
511 char *cmd_line, char *option_string,
512 unsigned long max_addr,
513 unsigned long *load_addr,
514 unsigned long *load_size)
516 struct file_info *files;
517 unsigned long file_addr;
518 u64 file_size_total;
519 efi_file_handle_t *fh = NULL;
520 efi_status_t status;
521 int nr_files;
522 char *str;
523 int i, j, k;
525 file_addr = 0;
526 file_size_total = 0;
528 str = cmd_line;
530 j = 0; /* See close_handles */
532 if (!load_addr || !load_size)
533 return EFI_INVALID_PARAMETER;
535 *load_addr = 0;
536 *load_size = 0;
538 if (!str || !*str)
539 return EFI_SUCCESS;
541 for (nr_files = 0; *str; nr_files++) {
542 str = strstr(str, option_string);
543 if (!str)
544 break;
546 str += strlen(option_string);
548 /* Skip any leading slashes */
549 while (*str == '/' || *str == '\\')
550 str++;
552 while (*str && *str != ' ' && *str != '\n')
553 str++;
556 if (!nr_files)
557 return EFI_SUCCESS;
559 status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
560 nr_files * sizeof(*files), (void **)&files);
561 if (status != EFI_SUCCESS) {
562 pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
563 goto fail;
566 str = cmd_line;
567 for (i = 0; i < nr_files; i++) {
568 struct file_info *file;
569 efi_char16_t filename_16[256];
570 efi_char16_t *p;
572 str = strstr(str, option_string);
573 if (!str)
574 break;
576 str += strlen(option_string);
578 file = &files[i];
579 p = filename_16;
581 /* Skip any leading slashes */
582 while (*str == '/' || *str == '\\')
583 str++;
585 while (*str && *str != ' ' && *str != '\n') {
586 if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
587 break;
589 if (*str == '/') {
590 *p++ = '\\';
591 str++;
592 } else {
593 *p++ = *str++;
597 *p = '\0';
599 /* Only open the volume once. */
600 if (!i) {
601 status = efi_open_volume(sys_table_arg, image, &fh);
602 if (status != EFI_SUCCESS)
603 goto free_files;
606 status = efi_file_size(sys_table_arg, fh, filename_16,
607 (void **)&file->handle, &file->size);
608 if (status != EFI_SUCCESS)
609 goto close_handles;
611 file_size_total += file->size;
614 if (file_size_total) {
615 unsigned long addr;
618 * Multiple files need to be at consecutive addresses in memory,
619 * so allocate enough memory for all the files. This is used
620 * for loading multiple files.
622 status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
623 &file_addr, max_addr);
624 if (status != EFI_SUCCESS) {
625 pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
626 goto close_handles;
629 /* We've run out of free low memory. */
630 if (file_addr > max_addr) {
631 pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
632 status = EFI_INVALID_PARAMETER;
633 goto free_file_total;
636 addr = file_addr;
637 for (j = 0; j < nr_files; j++) {
638 unsigned long size;
640 size = files[j].size;
641 while (size) {
642 unsigned long chunksize;
644 if (IS_ENABLED(CONFIG_X86) && size > __chunk_size)
645 chunksize = __chunk_size;
646 else
647 chunksize = size;
649 status = efi_file_read(files[j].handle,
650 &chunksize,
651 (void *)addr);
652 if (status != EFI_SUCCESS) {
653 pr_efi_err(sys_table_arg, "Failed to read file\n");
654 goto free_file_total;
656 addr += chunksize;
657 size -= chunksize;
660 efi_file_close(files[j].handle);
665 efi_call_early(free_pool, files);
667 *load_addr = file_addr;
668 *load_size = file_size_total;
670 return status;
672 free_file_total:
673 efi_free(sys_table_arg, file_size_total, file_addr);
675 close_handles:
676 for (k = j; k < i; k++)
677 efi_file_close(files[k].handle);
678 free_files:
679 efi_call_early(free_pool, files);
680 fail:
681 *load_addr = 0;
682 *load_size = 0;
684 return status;
687 * Relocate a kernel image, either compressed or uncompressed.
688 * In the ARM64 case, all kernel images are currently
689 * uncompressed, and as such when we relocate it we need to
690 * allocate additional space for the BSS segment. Any low
691 * memory that this function should avoid needs to be
692 * unavailable in the EFI memory map, as if the preferred
693 * address is not available the lowest available address will
694 * be used.
696 efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
697 unsigned long *image_addr,
698 unsigned long image_size,
699 unsigned long alloc_size,
700 unsigned long preferred_addr,
701 unsigned long alignment)
703 unsigned long cur_image_addr;
704 unsigned long new_addr = 0;
705 efi_status_t status;
706 unsigned long nr_pages;
707 efi_physical_addr_t efi_addr = preferred_addr;
709 if (!image_addr || !image_size || !alloc_size)
710 return EFI_INVALID_PARAMETER;
711 if (alloc_size < image_size)
712 return EFI_INVALID_PARAMETER;
714 cur_image_addr = *image_addr;
717 * The EFI firmware loader could have placed the kernel image
718 * anywhere in memory, but the kernel has restrictions on the
719 * max physical address it can run at. Some architectures
720 * also have a prefered address, so first try to relocate
721 * to the preferred address. If that fails, allocate as low
722 * as possible while respecting the required alignment.
724 nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
725 status = efi_call_early(allocate_pages,
726 EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
727 nr_pages, &efi_addr);
728 new_addr = efi_addr;
730 * If preferred address allocation failed allocate as low as
731 * possible.
733 if (status != EFI_SUCCESS) {
734 status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
735 &new_addr);
737 if (status != EFI_SUCCESS) {
738 pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
739 return status;
743 * We know source/dest won't overlap since both memory ranges
744 * have been allocated by UEFI, so we can safely use memcpy.
746 memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
748 /* Return the new address of the relocated image. */
749 *image_addr = new_addr;
751 return status;
755 * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
756 * This overestimates for surrogates, but that is okay.
758 static int efi_utf8_bytes(u16 c)
760 return 1 + (c >= 0x80) + (c >= 0x800);
764 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
766 static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
768 unsigned int c;
770 while (n--) {
771 c = *src++;
772 if (n && c >= 0xd800 && c <= 0xdbff &&
773 *src >= 0xdc00 && *src <= 0xdfff) {
774 c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
775 src++;
776 n--;
778 if (c >= 0xd800 && c <= 0xdfff)
779 c = 0xfffd; /* Unmatched surrogate */
780 if (c < 0x80) {
781 *dst++ = c;
782 continue;
784 if (c < 0x800) {
785 *dst++ = 0xc0 + (c >> 6);
786 goto t1;
788 if (c < 0x10000) {
789 *dst++ = 0xe0 + (c >> 12);
790 goto t2;
792 *dst++ = 0xf0 + (c >> 18);
793 *dst++ = 0x80 + ((c >> 12) & 0x3f);
795 *dst++ = 0x80 + ((c >> 6) & 0x3f);
797 *dst++ = 0x80 + (c & 0x3f);
800 return dst;
803 #ifndef MAX_CMDLINE_ADDRESS
804 #define MAX_CMDLINE_ADDRESS ULONG_MAX
805 #endif
808 * Convert the unicode UEFI command line to ASCII to pass to kernel.
809 * Size of memory allocated return in *cmd_line_len.
810 * Returns NULL on error.
812 char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
813 efi_loaded_image_t *image,
814 int *cmd_line_len)
816 const u16 *s2;
817 u8 *s1 = NULL;
818 unsigned long cmdline_addr = 0;
819 int load_options_chars = image->load_options_size / 2; /* UTF-16 */
820 const u16 *options = image->load_options;
821 int options_bytes = 0; /* UTF-8 bytes */
822 int options_chars = 0; /* UTF-16 chars */
823 efi_status_t status;
824 u16 zero = 0;
826 if (options) {
827 s2 = options;
828 while (*s2 && *s2 != '\n'
829 && options_chars < load_options_chars) {
830 options_bytes += efi_utf8_bytes(*s2++);
831 options_chars++;
835 if (!options_chars) {
836 /* No command line options, so return empty string*/
837 options = &zero;
840 options_bytes++; /* NUL termination */
842 status = efi_high_alloc(sys_table_arg, options_bytes, 0,
843 &cmdline_addr, MAX_CMDLINE_ADDRESS);
844 if (status != EFI_SUCCESS)
845 return NULL;
847 s1 = (u8 *)cmdline_addr;
848 s2 = (const u16 *)options;
850 s1 = efi_utf16_to_utf8(s1, s2, options_chars);
851 *s1 = '\0';
853 *cmd_line_len = options_bytes;
854 return (char *)cmdline_addr;
858 * Handle calling ExitBootServices according to the requirements set out by the
859 * spec. Obtains the current memory map, and returns that info after calling
860 * ExitBootServices. The client must specify a function to perform any
861 * processing of the memory map data prior to ExitBootServices. A client
862 * specific structure may be passed to the function via priv. The client
863 * function may be called multiple times.
865 efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg,
866 void *handle,
867 struct efi_boot_memmap *map,
868 void *priv,
869 efi_exit_boot_map_processing priv_func)
871 efi_status_t status;
873 status = efi_get_memory_map(sys_table_arg, map);
875 if (status != EFI_SUCCESS)
876 goto fail;
878 status = priv_func(sys_table_arg, map, priv);
879 if (status != EFI_SUCCESS)
880 goto free_map;
882 status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
884 if (status == EFI_INVALID_PARAMETER) {
886 * The memory map changed between efi_get_memory_map() and
887 * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4:
888 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
889 * updated map, and try again. The spec implies one retry
890 * should be sufficent, which is confirmed against the EDK2
891 * implementation. Per the spec, we can only invoke
892 * get_memory_map() and exit_boot_services() - we cannot alloc
893 * so efi_get_memory_map() cannot be used, and we must reuse
894 * the buffer. For all practical purposes, the headroom in the
895 * buffer should account for any changes in the map so the call
896 * to get_memory_map() is expected to succeed here.
898 *map->map_size = *map->buff_size;
899 status = efi_call_early(get_memory_map,
900 map->map_size,
901 *map->map,
902 map->key_ptr,
903 map->desc_size,
904 map->desc_ver);
906 /* exit_boot_services() was called, thus cannot free */
907 if (status != EFI_SUCCESS)
908 goto fail;
910 status = priv_func(sys_table_arg, map, priv);
911 /* exit_boot_services() was called, thus cannot free */
912 if (status != EFI_SUCCESS)
913 goto fail;
915 status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
918 /* exit_boot_services() was called, thus cannot free */
919 if (status != EFI_SUCCESS)
920 goto fail;
922 return EFI_SUCCESS;
924 free_map:
925 efi_call_early(free_pool, *map->map);
926 fail:
927 return status;