dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / firmware / efi / libstub / random.c
blobb4b1d1dcb5fdc0ce690af90e65b1ddfcdf898f74
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
4 */
6 #include <linux/efi.h>
7 #include <linux/log2.h>
8 #include <asm/efi.h>
10 #include "efistub.h"
12 struct efi_rng_protocol {
13 efi_status_t (*get_info)(struct efi_rng_protocol *,
14 unsigned long *, efi_guid_t *);
15 efi_status_t (*get_rng)(struct efi_rng_protocol *,
16 efi_guid_t *, unsigned long, u8 *out);
19 efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
20 unsigned long size, u8 *out)
22 efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
23 efi_status_t status;
24 struct efi_rng_protocol *rng;
26 status = efi_call_early(locate_protocol, &rng_proto, NULL,
27 (void **)&rng);
28 if (status != EFI_SUCCESS)
29 return status;
31 return rng->get_rng(rng, NULL, size, out);
35 * Return the number of slots covered by this entry, i.e., the number of
36 * addresses it covers that are suitably aligned and supply enough room
37 * for the allocation.
39 static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
40 unsigned long size,
41 unsigned long align_shift)
43 unsigned long align = 1UL << align_shift;
44 u64 first_slot, last_slot, region_end;
46 if (md->type != EFI_CONVENTIONAL_MEMORY)
47 return 0;
49 region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
51 first_slot = round_up(md->phys_addr, align);
52 last_slot = round_down(region_end - size + 1, align);
54 if (first_slot > last_slot)
55 return 0;
57 return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
61 * The UEFI memory descriptors have a virtual address field that is only used
62 * when installing the virtual mapping using SetVirtualAddressMap(). Since it
63 * is unused here, we can reuse it to keep track of each descriptor's slot
64 * count.
66 #define MD_NUM_SLOTS(md) ((md)->virt_addr)
68 efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
69 unsigned long size,
70 unsigned long align,
71 unsigned long *addr,
72 unsigned long random_seed)
74 unsigned long map_size, desc_size, total_slots = 0, target_slot;
75 unsigned long buff_size;
76 efi_status_t status;
77 efi_memory_desc_t *memory_map;
78 int map_offset;
79 struct efi_boot_memmap map;
81 map.map = &memory_map;
82 map.map_size = &map_size;
83 map.desc_size = &desc_size;
84 map.desc_ver = NULL;
85 map.key_ptr = NULL;
86 map.buff_size = &buff_size;
88 status = efi_get_memory_map(sys_table_arg, &map);
89 if (status != EFI_SUCCESS)
90 return status;
92 if (align < EFI_ALLOC_ALIGN)
93 align = EFI_ALLOC_ALIGN;
95 /* count the suitable slots in each memory map entry */
96 for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
97 efi_memory_desc_t *md = (void *)memory_map + map_offset;
98 unsigned long slots;
100 slots = get_entry_num_slots(md, size, ilog2(align));
101 MD_NUM_SLOTS(md) = slots;
102 total_slots += slots;
105 /* find a random number between 0 and total_slots */
106 target_slot = (total_slots * (u16)random_seed) >> 16;
109 * target_slot is now a value in the range [0, total_slots), and so
110 * it corresponds with exactly one of the suitable slots we recorded
111 * when iterating over the memory map the first time around.
113 * So iterate over the memory map again, subtracting the number of
114 * slots of each entry at each iteration, until we have found the entry
115 * that covers our chosen slot. Use the residual value of target_slot
116 * to calculate the randomly chosen address, and allocate it directly
117 * using EFI_ALLOCATE_ADDRESS.
119 for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
120 efi_memory_desc_t *md = (void *)memory_map + map_offset;
121 efi_physical_addr_t target;
122 unsigned long pages;
124 if (target_slot >= MD_NUM_SLOTS(md)) {
125 target_slot -= MD_NUM_SLOTS(md);
126 continue;
129 target = round_up(md->phys_addr, align) + target_slot * align;
130 pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
132 status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
133 EFI_LOADER_DATA, pages, &target);
134 if (status == EFI_SUCCESS)
135 *addr = target;
136 break;
139 efi_call_early(free_pool, memory_map);
141 return status;
144 efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
146 efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
147 efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
148 efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
149 struct efi_rng_protocol *rng;
150 struct linux_efi_random_seed *seed;
151 efi_status_t status;
153 status = efi_call_early(locate_protocol, &rng_proto, NULL,
154 (void **)&rng);
155 if (status != EFI_SUCCESS)
156 return status;
158 status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
159 sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
160 (void **)&seed);
161 if (status != EFI_SUCCESS)
162 return status;
164 status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE,
165 seed->bits);
166 if (status == EFI_UNSUPPORTED)
168 * Use whatever algorithm we have available if the raw algorithm
169 * is not implemented.
171 status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE,
172 seed->bits);
174 if (status != EFI_SUCCESS)
175 goto err_freepool;
177 seed->size = EFI_RANDOM_SEED_SIZE;
178 status = efi_call_early(install_configuration_table, &rng_table_guid,
179 seed);
180 if (status != EFI_SUCCESS)
181 goto err_freepool;
183 return EFI_SUCCESS;
185 err_freepool:
186 efi_call_early(free_pool, seed);
187 return status;