4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <linux/uaccess.h>
57 int ide_end_rq(ide_drive_t
*drive
, struct request
*rq
, blk_status_t error
,
58 unsigned int nr_bytes
)
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
64 if ((drive
->dev_flags
& IDE_DFLAG_DMA_PIO_RETRY
) &&
65 drive
->retry_pio
<= 3) {
66 drive
->dev_flags
&= ~IDE_DFLAG_DMA_PIO_RETRY
;
70 if (!blk_update_request(rq
, error
, nr_bytes
)) {
71 if (rq
== drive
->sense_rq
) {
72 drive
->sense_rq
= NULL
;
73 drive
->sense_rq_active
= false;
76 __blk_mq_end_request(rq
, error
);
82 EXPORT_SYMBOL_GPL(ide_end_rq
);
84 void ide_complete_cmd(ide_drive_t
*drive
, struct ide_cmd
*cmd
, u8 stat
, u8 err
)
86 const struct ide_tp_ops
*tp_ops
= drive
->hwif
->tp_ops
;
87 struct ide_taskfile
*tf
= &cmd
->tf
;
88 struct request
*rq
= cmd
->rq
;
89 u8 tf_cmd
= tf
->command
;
94 if (cmd
->ftf_flags
& IDE_FTFLAG_IN_DATA
) {
97 tp_ops
->input_data(drive
, cmd
, data
, 2);
99 cmd
->tf
.data
= data
[0];
100 cmd
->hob
.data
= data
[1];
103 ide_tf_readback(drive
, cmd
);
105 if ((cmd
->tf_flags
& IDE_TFLAG_CUSTOM_HANDLER
) &&
106 tf_cmd
== ATA_CMD_IDLEIMMEDIATE
) {
107 if (tf
->lbal
!= 0xc4) {
108 printk(KERN_ERR
"%s: head unload failed!\n",
110 ide_tf_dump(drive
->name
, cmd
);
112 drive
->dev_flags
|= IDE_DFLAG_PARKED
;
115 if (rq
&& ata_taskfile_request(rq
)) {
116 struct ide_cmd
*orig_cmd
= ide_req(rq
)->special
;
118 if (cmd
->tf_flags
& IDE_TFLAG_DYN
)
120 else if (cmd
!= orig_cmd
)
121 memcpy(orig_cmd
, cmd
, sizeof(*cmd
));
125 int ide_complete_rq(ide_drive_t
*drive
, blk_status_t error
, unsigned int nr_bytes
)
127 ide_hwif_t
*hwif
= drive
->hwif
;
128 struct request
*rq
= hwif
->rq
;
132 * if failfast is set on a request, override number of sectors
133 * and complete the whole request right now
135 if (blk_noretry_request(rq
) && error
)
136 nr_bytes
= blk_rq_sectors(rq
) << 9;
138 rc
= ide_end_rq(drive
, rq
, error
, nr_bytes
);
144 EXPORT_SYMBOL(ide_complete_rq
);
146 void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
148 u8 drv_req
= ata_misc_request(rq
) && rq
->rq_disk
;
149 u8 media
= drive
->media
;
151 drive
->failed_pc
= NULL
;
153 if ((media
== ide_floppy
|| media
== ide_tape
) && drv_req
) {
154 scsi_req(rq
)->result
= 0;
156 if (media
== ide_tape
)
157 scsi_req(rq
)->result
= IDE_DRV_ERROR_GENERAL
;
158 else if (blk_rq_is_passthrough(rq
) && scsi_req(rq
)->result
== 0)
159 scsi_req(rq
)->result
= -EIO
;
162 ide_complete_rq(drive
, BLK_STS_IOERR
, blk_rq_bytes(rq
));
165 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
167 tf
->nsect
= drive
->sect
;
168 tf
->lbal
= drive
->sect
;
169 tf
->lbam
= drive
->cyl
;
170 tf
->lbah
= drive
->cyl
>> 8;
171 tf
->device
= (drive
->head
- 1) | drive
->select
;
172 tf
->command
= ATA_CMD_INIT_DEV_PARAMS
;
175 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
177 tf
->nsect
= drive
->sect
;
178 tf
->command
= ATA_CMD_RESTORE
;
181 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
183 tf
->nsect
= drive
->mult_req
;
184 tf
->command
= ATA_CMD_SET_MULTI
;
188 * do_special - issue some special commands
189 * @drive: drive the command is for
191 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
192 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
195 static ide_startstop_t
do_special(ide_drive_t
*drive
)
200 printk(KERN_DEBUG
"%s: %s: 0x%02x\n", drive
->name
, __func__
,
201 drive
->special_flags
);
203 if (drive
->media
!= ide_disk
) {
204 drive
->special_flags
= 0;
209 memset(&cmd
, 0, sizeof(cmd
));
210 cmd
.protocol
= ATA_PROT_NODATA
;
212 if (drive
->special_flags
& IDE_SFLAG_SET_GEOMETRY
) {
213 drive
->special_flags
&= ~IDE_SFLAG_SET_GEOMETRY
;
214 ide_tf_set_specify_cmd(drive
, &cmd
.tf
);
215 } else if (drive
->special_flags
& IDE_SFLAG_RECALIBRATE
) {
216 drive
->special_flags
&= ~IDE_SFLAG_RECALIBRATE
;
217 ide_tf_set_restore_cmd(drive
, &cmd
.tf
);
218 } else if (drive
->special_flags
& IDE_SFLAG_SET_MULTMODE
) {
219 drive
->special_flags
&= ~IDE_SFLAG_SET_MULTMODE
;
220 ide_tf_set_setmult_cmd(drive
, &cmd
.tf
);
224 cmd
.valid
.out
.tf
= IDE_VALID_OUT_TF
| IDE_VALID_DEVICE
;
225 cmd
.valid
.in
.tf
= IDE_VALID_IN_TF
| IDE_VALID_DEVICE
;
226 cmd
.tf_flags
= IDE_TFLAG_CUSTOM_HANDLER
;
228 do_rw_taskfile(drive
, &cmd
);
233 void ide_map_sg(ide_drive_t
*drive
, struct ide_cmd
*cmd
)
235 ide_hwif_t
*hwif
= drive
->hwif
;
236 struct scatterlist
*sg
= hwif
->sg_table
;
237 struct request
*rq
= cmd
->rq
;
239 cmd
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
241 EXPORT_SYMBOL_GPL(ide_map_sg
);
243 void ide_init_sg_cmd(struct ide_cmd
*cmd
, unsigned int nr_bytes
)
245 cmd
->nbytes
= cmd
->nleft
= nr_bytes
;
249 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
252 * execute_drive_command - issue special drive command
253 * @drive: the drive to issue the command on
254 * @rq: the request structure holding the command
256 * execute_drive_cmd() issues a special drive command, usually
257 * initiated by ioctl() from the external hdparm program. The
258 * command can be a drive command, drive task or taskfile
259 * operation. Weirdly you can call it with NULL to wait for
260 * all commands to finish. Don't do this as that is due to change
263 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
266 struct ide_cmd
*cmd
= ide_req(rq
)->special
;
269 if (cmd
->protocol
== ATA_PROT_PIO
) {
270 ide_init_sg_cmd(cmd
, blk_rq_sectors(rq
) << 9);
271 ide_map_sg(drive
, cmd
);
274 return do_rw_taskfile(drive
, cmd
);
278 * NULL is actually a valid way of waiting for
279 * all current requests to be flushed from the queue.
282 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
284 scsi_req(rq
)->result
= 0;
285 ide_complete_rq(drive
, BLK_STS_OK
, blk_rq_bytes(rq
));
290 static ide_startstop_t
ide_special_rq(ide_drive_t
*drive
, struct request
*rq
)
292 u8 cmd
= scsi_req(rq
)->cmd
[0];
296 case REQ_UNPARK_HEADS
:
297 return ide_do_park_unpark(drive
, rq
);
298 case REQ_DEVSET_EXEC
:
299 return ide_do_devset(drive
, rq
);
300 case REQ_DRIVE_RESET
:
301 return ide_do_reset(drive
);
308 * start_request - start of I/O and command issuing for IDE
310 * start_request() initiates handling of a new I/O request. It
311 * accepts commands and I/O (read/write) requests.
313 * FIXME: this function needs a rename
316 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
318 ide_startstop_t startstop
;
321 printk("%s: start_request: current=0x%08lx\n",
322 drive
->hwif
->name
, (unsigned long) rq
);
325 /* bail early if we've exceeded max_failures */
326 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
327 rq
->rq_flags
|= RQF_FAILED
;
331 if (drive
->prep_rq
&& !drive
->prep_rq(drive
, rq
))
334 if (ata_pm_request(rq
))
335 ide_check_pm_state(drive
, rq
);
337 drive
->hwif
->tp_ops
->dev_select(drive
);
338 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
,
339 ATA_BUSY
| ATA_DRQ
, WAIT_READY
)) {
340 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
344 if (drive
->special_flags
== 0) {
345 struct ide_driver
*drv
;
348 * We reset the drive so we need to issue a SETFEATURES.
349 * Do it _after_ do_special() restored device parameters.
351 if (drive
->current_speed
== 0xff)
352 ide_config_drive_speed(drive
, drive
->desired_speed
);
354 if (ata_taskfile_request(rq
))
355 return execute_drive_cmd(drive
, rq
);
356 else if (ata_pm_request(rq
)) {
357 struct ide_pm_state
*pm
= ide_req(rq
)->special
;
359 printk("%s: start_power_step(step: %d)\n",
360 drive
->name
, pm
->pm_step
);
362 startstop
= ide_start_power_step(drive
, rq
);
363 if (startstop
== ide_stopped
&&
364 pm
->pm_step
== IDE_PM_COMPLETED
)
365 ide_complete_pm_rq(drive
, rq
);
367 } else if (!rq
->rq_disk
&& ata_misc_request(rq
))
369 * TODO: Once all ULDs have been modified to
370 * check for specific op codes rather than
371 * blindly accepting any special request, the
372 * check for ->rq_disk above may be replaced
373 * by a more suitable mechanism or even
376 return ide_special_rq(drive
, rq
);
378 drv
= *(struct ide_driver
**)rq
->rq_disk
->private_data
;
380 return drv
->do_request(drive
, rq
, blk_rq_pos(rq
));
382 return do_special(drive
);
384 ide_kill_rq(drive
, rq
);
389 * ide_stall_queue - pause an IDE device
390 * @drive: drive to stall
391 * @timeout: time to stall for (jiffies)
393 * ide_stall_queue() can be used by a drive to give excess bandwidth back
394 * to the port by sleeping for timeout jiffies.
397 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
399 if (timeout
> WAIT_WORSTCASE
)
400 timeout
= WAIT_WORSTCASE
;
401 drive
->sleep
= timeout
+ jiffies
;
402 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
404 EXPORT_SYMBOL(ide_stall_queue
);
406 static inline int ide_lock_port(ide_hwif_t
*hwif
)
416 static inline void ide_unlock_port(ide_hwif_t
*hwif
)
421 static inline int ide_lock_host(struct ide_host
*host
, ide_hwif_t
*hwif
)
425 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
426 rc
= test_and_set_bit_lock(IDE_HOST_BUSY
, &host
->host_busy
);
429 host
->get_lock(ide_intr
, hwif
);
435 static inline void ide_unlock_host(struct ide_host
*host
)
437 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
438 if (host
->release_lock
)
439 host
->release_lock();
440 clear_bit_unlock(IDE_HOST_BUSY
, &host
->host_busy
);
444 void ide_requeue_and_plug(ide_drive_t
*drive
, struct request
*rq
)
446 struct request_queue
*q
= drive
->queue
;
448 /* Use 3ms as that was the old plug delay */
450 blk_mq_requeue_request(rq
, false);
451 blk_mq_delay_kick_requeue_list(q
, 3);
453 blk_mq_delay_run_hw_queue(q
->queue_hw_ctx
[0], 3);
456 blk_status_t
ide_issue_rq(ide_drive_t
*drive
, struct request
*rq
,
459 ide_hwif_t
*hwif
= drive
->hwif
;
460 struct ide_host
*host
= hwif
->host
;
461 ide_startstop_t startstop
;
463 if (!blk_rq_is_passthrough(rq
) && !(rq
->rq_flags
& RQF_DONTPREP
)) {
464 rq
->rq_flags
|= RQF_DONTPREP
;
465 ide_req(rq
)->special
= NULL
;
468 /* HLD do_request() callback might sleep, make sure it's okay */
471 if (ide_lock_host(host
, hwif
))
472 return BLK_STS_DEV_RESOURCE
;
474 spin_lock_irq(&hwif
->lock
);
476 if (!ide_lock_port(hwif
)) {
477 ide_hwif_t
*prev_port
;
479 WARN_ON_ONCE(hwif
->rq
);
481 prev_port
= hwif
->host
->cur_port
;
482 if (drive
->dev_flags
& IDE_DFLAG_SLEEPING
&&
483 time_after(drive
->sleep
, jiffies
)) {
484 ide_unlock_port(hwif
);
488 if ((hwif
->host
->host_flags
& IDE_HFLAG_SERIALIZE
) &&
490 ide_drive_t
*cur_dev
=
491 prev_port
? prev_port
->cur_dev
: NULL
;
494 * set nIEN for previous port, drives in the
495 * quirk list may not like intr setups/cleanups
498 (cur_dev
->dev_flags
& IDE_DFLAG_NIEN_QUIRK
) == 0)
499 prev_port
->tp_ops
->write_devctl(prev_port
,
503 hwif
->host
->cur_port
= hwif
;
505 hwif
->cur_dev
= drive
;
506 drive
->dev_flags
&= ~(IDE_DFLAG_SLEEPING
| IDE_DFLAG_PARKED
);
509 * Sanity: don't accept a request that isn't a PM request
510 * if we are currently power managed. This is very important as
511 * blk_stop_queue() doesn't prevent the blk_fetch_request()
512 * above to return us whatever is in the queue. Since we call
513 * ide_do_request() ourselves, we end up taking requests while
514 * the queue is blocked...
516 * We let requests forced at head of queue with ide-preempt
517 * though. I hope that doesn't happen too much, hopefully not
518 * unless the subdriver triggers such a thing in its own PM
521 if ((drive
->dev_flags
& IDE_DFLAG_BLOCKED
) &&
522 ata_pm_request(rq
) == 0 &&
523 (rq
->rq_flags
& RQF_PREEMPT
) == 0) {
524 /* there should be no pending command at this point */
525 ide_unlock_port(hwif
);
529 scsi_req(rq
)->resid_len
= blk_rq_bytes(rq
);
532 spin_unlock_irq(&hwif
->lock
);
533 startstop
= start_request(drive
, rq
);
534 spin_lock_irq(&hwif
->lock
);
536 if (startstop
== ide_stopped
) {
541 ide_unlock_port(hwif
);
547 list_add(&rq
->queuelist
, &drive
->rq_list
);
548 spin_unlock_irq(&hwif
->lock
);
549 ide_unlock_host(host
);
551 ide_requeue_and_plug(drive
, rq
);
556 spin_unlock_irq(&hwif
->lock
);
558 ide_unlock_host(host
);
563 * Issue a new request to a device.
565 blk_status_t
ide_queue_rq(struct blk_mq_hw_ctx
*hctx
,
566 const struct blk_mq_queue_data
*bd
)
568 ide_drive_t
*drive
= hctx
->queue
->queuedata
;
569 ide_hwif_t
*hwif
= drive
->hwif
;
571 spin_lock_irq(&hwif
->lock
);
572 if (drive
->sense_rq_active
) {
573 spin_unlock_irq(&hwif
->lock
);
574 return BLK_STS_DEV_RESOURCE
;
576 spin_unlock_irq(&hwif
->lock
);
578 blk_mq_start_request(bd
->rq
);
579 return ide_issue_rq(drive
, bd
->rq
, false);
582 static int drive_is_ready(ide_drive_t
*drive
)
584 ide_hwif_t
*hwif
= drive
->hwif
;
587 if (drive
->waiting_for_dma
)
588 return hwif
->dma_ops
->dma_test_irq(drive
);
590 if (hwif
->io_ports
.ctl_addr
&&
591 (hwif
->host_flags
& IDE_HFLAG_BROKEN_ALTSTATUS
) == 0)
592 stat
= hwif
->tp_ops
->read_altstatus(hwif
);
594 /* Note: this may clear a pending IRQ!! */
595 stat
= hwif
->tp_ops
->read_status(hwif
);
598 /* drive busy: definitely not interrupting */
601 /* drive ready: *might* be interrupting */
606 * ide_timer_expiry - handle lack of an IDE interrupt
607 * @data: timer callback magic (hwif)
609 * An IDE command has timed out before the expected drive return
610 * occurred. At this point we attempt to clean up the current
611 * mess. If the current handler includes an expiry handler then
612 * we invoke the expiry handler, and providing it is happy the
613 * work is done. If that fails we apply generic recovery rules
614 * invoking the handler and checking the drive DMA status. We
615 * have an excessively incestuous relationship with the DMA
616 * logic that wants cleaning up.
619 void ide_timer_expiry (struct timer_list
*t
)
621 ide_hwif_t
*hwif
= from_timer(hwif
, t
, timer
);
622 ide_drive_t
*uninitialized_var(drive
);
623 ide_handler_t
*handler
;
627 struct request
*uninitialized_var(rq_in_flight
);
629 spin_lock_irqsave(&hwif
->lock
, flags
);
631 handler
= hwif
->handler
;
633 if (handler
== NULL
|| hwif
->req_gen
!= hwif
->req_gen_timer
) {
635 * Either a marginal timeout occurred
636 * (got the interrupt just as timer expired),
637 * or we were "sleeping" to give other devices a chance.
638 * Either way, we don't really want to complain about anything.
641 ide_expiry_t
*expiry
= hwif
->expiry
;
642 ide_startstop_t startstop
= ide_stopped
;
644 drive
= hwif
->cur_dev
;
647 wait
= expiry(drive
);
648 if (wait
> 0) { /* continue */
650 hwif
->timer
.expires
= jiffies
+ wait
;
651 hwif
->req_gen_timer
= hwif
->req_gen
;
652 add_timer(&hwif
->timer
);
653 spin_unlock_irqrestore(&hwif
->lock
, flags
);
657 hwif
->handler
= NULL
;
660 * We need to simulate a real interrupt when invoking
661 * the handler() function, which means we need to
662 * globally mask the specific IRQ:
664 spin_unlock(&hwif
->lock
);
665 /* disable_irq_nosync ?? */
666 disable_irq(hwif
->irq
);
669 startstop
= handler(drive
);
670 } else if (drive_is_ready(drive
)) {
671 if (drive
->waiting_for_dma
)
672 hwif
->dma_ops
->dma_lost_irq(drive
);
673 if (hwif
->port_ops
&& hwif
->port_ops
->clear_irq
)
674 hwif
->port_ops
->clear_irq(drive
);
676 printk(KERN_WARNING
"%s: lost interrupt\n",
678 startstop
= handler(drive
);
680 if (drive
->waiting_for_dma
)
681 startstop
= ide_dma_timeout_retry(drive
, wait
);
683 startstop
= ide_error(drive
, "irq timeout",
684 hwif
->tp_ops
->read_status(hwif
));
686 /* Disable interrupts again, `handler' might have enabled it */
687 spin_lock_irq(&hwif
->lock
);
688 enable_irq(hwif
->irq
);
689 if (startstop
== ide_stopped
&& hwif
->polling
== 0) {
690 rq_in_flight
= hwif
->rq
;
692 ide_unlock_port(hwif
);
696 spin_unlock_irqrestore(&hwif
->lock
, flags
);
699 ide_unlock_host(hwif
->host
);
700 ide_requeue_and_plug(drive
, rq_in_flight
);
705 * unexpected_intr - handle an unexpected IDE interrupt
706 * @irq: interrupt line
707 * @hwif: port being processed
709 * There's nothing really useful we can do with an unexpected interrupt,
710 * other than reading the status register (to clear it), and logging it.
711 * There should be no way that an irq can happen before we're ready for it,
712 * so we needn't worry much about losing an "important" interrupt here.
714 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
715 * the drive enters "idle", "standby", or "sleep" mode, so if the status
716 * looks "good", we just ignore the interrupt completely.
718 * This routine assumes __cli() is in effect when called.
720 * If an unexpected interrupt happens on irq15 while we are handling irq14
721 * and if the two interfaces are "serialized" (CMD640), then it looks like
722 * we could screw up by interfering with a new request being set up for
725 * In reality, this is a non-issue. The new command is not sent unless
726 * the drive is ready to accept one, in which case we know the drive is
727 * not trying to interrupt us. And ide_set_handler() is always invoked
728 * before completing the issuance of any new drive command, so we will not
729 * be accidentally invoked as a result of any valid command completion
733 static void unexpected_intr(int irq
, ide_hwif_t
*hwif
)
735 u8 stat
= hwif
->tp_ops
->read_status(hwif
);
737 if (!OK_STAT(stat
, ATA_DRDY
, BAD_STAT
)) {
738 /* Try to not flood the console with msgs */
739 static unsigned long last_msgtime
, count
;
742 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
743 last_msgtime
= jiffies
;
744 printk(KERN_ERR
"%s: unexpected interrupt, "
745 "status=0x%02x, count=%ld\n",
746 hwif
->name
, stat
, count
);
752 * ide_intr - default IDE interrupt handler
753 * @irq: interrupt number
755 * @regs: unused weirdness from the kernel irq layer
757 * This is the default IRQ handler for the IDE layer. You should
758 * not need to override it. If you do be aware it is subtle in
761 * hwif is the interface in the group currently performing
762 * a command. hwif->cur_dev is the drive and hwif->handler is
763 * the IRQ handler to call. As we issue a command the handlers
764 * step through multiple states, reassigning the handler to the
765 * next step in the process. Unlike a smart SCSI controller IDE
766 * expects the main processor to sequence the various transfer
767 * stages. We also manage a poll timer to catch up with most
768 * timeout situations. There are still a few where the handlers
769 * don't ever decide to give up.
771 * The handler eventually returns ide_stopped to indicate the
772 * request completed. At this point we issue the next request
773 * on the port and the process begins again.
776 irqreturn_t
ide_intr (int irq
, void *dev_id
)
778 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_id
;
779 struct ide_host
*host
= hwif
->host
;
780 ide_drive_t
*uninitialized_var(drive
);
781 ide_handler_t
*handler
;
783 ide_startstop_t startstop
;
784 irqreturn_t irq_ret
= IRQ_NONE
;
786 struct request
*uninitialized_var(rq_in_flight
);
788 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
789 if (hwif
!= host
->cur_port
)
793 spin_lock_irqsave(&hwif
->lock
, flags
);
795 if (hwif
->port_ops
&& hwif
->port_ops
->test_irq
&&
796 hwif
->port_ops
->test_irq(hwif
) == 0)
799 handler
= hwif
->handler
;
801 if (handler
== NULL
|| hwif
->polling
) {
803 * Not expecting an interrupt from this drive.
804 * That means this could be:
805 * (1) an interrupt from another PCI device
806 * sharing the same PCI INT# as us.
807 * or (2) a drive just entered sleep or standby mode,
808 * and is interrupting to let us know.
809 * or (3) a spurious interrupt of unknown origin.
811 * For PCI, we cannot tell the difference,
812 * so in that case we just ignore it and hope it goes away.
814 if ((host
->irq_flags
& IRQF_SHARED
) == 0) {
816 * Probably not a shared PCI interrupt,
817 * so we can safely try to do something about it:
819 unexpected_intr(irq
, hwif
);
822 * Whack the status register, just in case
823 * we have a leftover pending IRQ.
825 (void)hwif
->tp_ops
->read_status(hwif
);
830 drive
= hwif
->cur_dev
;
832 if (!drive_is_ready(drive
))
834 * This happens regularly when we share a PCI IRQ with
835 * another device. Unfortunately, it can also happen
836 * with some buggy drives that trigger the IRQ before
837 * their status register is up to date. Hopefully we have
838 * enough advance overhead that the latter isn't a problem.
842 hwif
->handler
= NULL
;
845 del_timer(&hwif
->timer
);
846 spin_unlock(&hwif
->lock
);
848 if (hwif
->port_ops
&& hwif
->port_ops
->clear_irq
)
849 hwif
->port_ops
->clear_irq(drive
);
851 if (drive
->dev_flags
& IDE_DFLAG_UNMASK
)
852 local_irq_enable_in_hardirq();
854 /* service this interrupt, may set handler for next interrupt */
855 startstop
= handler(drive
);
857 spin_lock_irq(&hwif
->lock
);
859 * Note that handler() may have set things up for another
860 * interrupt to occur soon, but it cannot happen until
861 * we exit from this routine, because it will be the
862 * same irq as is currently being serviced here, and Linux
863 * won't allow another of the same (on any CPU) until we return.
865 if (startstop
== ide_stopped
&& hwif
->polling
== 0) {
866 BUG_ON(hwif
->handler
);
867 rq_in_flight
= hwif
->rq
;
869 ide_unlock_port(hwif
);
872 irq_ret
= IRQ_HANDLED
;
874 spin_unlock_irqrestore(&hwif
->lock
, flags
);
877 ide_unlock_host(hwif
->host
);
878 ide_requeue_and_plug(drive
, rq_in_flight
);
883 EXPORT_SYMBOL_GPL(ide_intr
);
885 void ide_pad_transfer(ide_drive_t
*drive
, int write
, int len
)
887 ide_hwif_t
*hwif
= drive
->hwif
;
892 hwif
->tp_ops
->output_data(drive
, NULL
, buf
, min(4, len
));
894 hwif
->tp_ops
->input_data(drive
, NULL
, buf
, min(4, len
));
898 EXPORT_SYMBOL_GPL(ide_pad_transfer
);
900 void ide_insert_request_head(ide_drive_t
*drive
, struct request
*rq
)
902 drive
->sense_rq_active
= true;
903 list_add_tail(&rq
->queuelist
, &drive
->rq_list
);
904 kblockd_schedule_work(&drive
->rq_work
);
906 EXPORT_SYMBOL_GPL(ide_insert_request_head
);