[PATCH] s390: fix in-user atomic futex operation.
[linux/fpc-iii.git] / drivers / hwmon / via686a.c
blob166298f1f19023dc349feda1a62f78d104132420
1 /*
2 via686a.c - Part of lm_sensors, Linux kernel modules
3 for hardware monitoring
5 Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
6 Kyösti Mälkki <kmalkki@cc.hut.fi>,
7 Mark Studebaker <mdsxyz123@yahoo.com>,
8 and Bob Dougherty <bobd@stanford.edu>
9 (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
10 <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 Supports the Via VT82C686A, VT82C686B south bridges.
29 Reports all as a 686A.
30 Warning - only supports a single device.
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/jiffies.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-isa.h>
39 #include <linux/hwmon.h>
40 #include <linux/err.h>
41 #include <linux/init.h>
42 #include <linux/mutex.h>
43 #include <asm/io.h>
46 /* If force_addr is set to anything different from 0, we forcibly enable
47 the device at the given address. */
48 static unsigned short force_addr;
49 module_param(force_addr, ushort, 0);
50 MODULE_PARM_DESC(force_addr,
51 "Initialize the base address of the sensors");
53 /* Device address
54 Note that we can't determine the ISA address until we have initialized
55 our module */
56 static unsigned short address;
59 The Via 686a southbridge has a LM78-like chip integrated on the same IC.
60 This driver is a customized copy of lm78.c
63 /* Many VIA686A constants specified below */
65 /* Length of ISA address segment */
66 #define VIA686A_EXTENT 0x80
67 #define VIA686A_BASE_REG 0x70
68 #define VIA686A_ENABLE_REG 0x74
70 /* The VIA686A registers */
71 /* ins numbered 0-4 */
72 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
73 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
74 #define VIA686A_REG_IN(nr) (0x22 + (nr))
76 /* fans numbered 1-2 */
77 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
78 #define VIA686A_REG_FAN(nr) (0x28 + (nr))
80 /* temps numbered 1-3 */
81 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
82 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
83 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
84 /* bits 7-6 */
85 #define VIA686A_REG_TEMP_LOW1 0x4b
86 /* 2 = bits 5-4, 3 = bits 7-6 */
87 #define VIA686A_REG_TEMP_LOW23 0x49
89 #define VIA686A_REG_ALARM1 0x41
90 #define VIA686A_REG_ALARM2 0x42
91 #define VIA686A_REG_FANDIV 0x47
92 #define VIA686A_REG_CONFIG 0x40
93 /* The following register sets temp interrupt mode (bits 1-0 for temp1,
94 3-2 for temp2, 5-4 for temp3). Modes are:
95 00 interrupt stays as long as value is out-of-range
96 01 interrupt is cleared once register is read (default)
97 10 comparator mode- like 00, but ignores hysteresis
98 11 same as 00 */
99 #define VIA686A_REG_TEMP_MODE 0x4b
100 /* We'll just assume that you want to set all 3 simultaneously: */
101 #define VIA686A_TEMP_MODE_MASK 0x3F
102 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
104 /* Conversions. Limit checking is only done on the TO_REG
105 variants.
107 ********* VOLTAGE CONVERSIONS (Bob Dougherty) ********
108 From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
109 voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
110 voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
111 voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
112 voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
113 voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
114 in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
115 That is:
116 volts = (25*regVal+133)*factor
117 regVal = (volts/factor-133)/25
118 (These conversions were contributed by Jonathan Teh Soon Yew
119 <j.teh@iname.com>) */
120 static inline u8 IN_TO_REG(long val, int inNum)
122 /* To avoid floating point, we multiply constants by 10 (100 for +12V).
123 Rounding is done (120500 is actually 133000 - 12500).
124 Remember that val is expressed in 0.001V/bit, which is why we divide
125 by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
126 for the constants. */
127 if (inNum <= 1)
128 return (u8)
129 SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255);
130 else if (inNum == 2)
131 return (u8)
132 SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255);
133 else if (inNum == 3)
134 return (u8)
135 SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255);
136 else
137 return (u8)
138 SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255);
141 static inline long IN_FROM_REG(u8 val, int inNum)
143 /* To avoid floating point, we multiply constants by 10 (100 for +12V).
144 We also multiply them by 1000 because we want 0.001V/bit for the
145 output value. Rounding is done. */
146 if (inNum <= 1)
147 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
148 else if (inNum == 2)
149 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
150 else if (inNum == 3)
151 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
152 else
153 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
156 /********* FAN RPM CONVERSIONS ********/
157 /* Higher register values = slower fans (the fan's strobe gates a counter).
158 But this chip saturates back at 0, not at 255 like all the other chips.
159 So, 0 means 0 RPM */
160 static inline u8 FAN_TO_REG(long rpm, int div)
162 if (rpm == 0)
163 return 0;
164 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
165 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
168 #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
170 /******** TEMP CONVERSIONS (Bob Dougherty) *********/
171 /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
172 if(temp<169)
173 return double(temp)*0.427-32.08;
174 else if(temp>=169 && temp<=202)
175 return double(temp)*0.582-58.16;
176 else
177 return double(temp)*0.924-127.33;
179 A fifth-order polynomial fits the unofficial data (provided by Alex van
180 Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
181 numbers on my machine (ie. they agree with what my BIOS tells me).
182 Here's the fifth-order fit to the 8-bit data:
183 temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
184 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
186 (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
187 finding my typos in this formula!)
189 Alas, none of the elegant function-fit solutions will work because we
190 aren't allowed to use floating point in the kernel and doing it with
191 integers doesn't provide enough precision. So we'll do boring old
192 look-up table stuff. The unofficial data (see below) have effectively
193 7-bit resolution (they are rounded to the nearest degree). I'm assuming
194 that the transfer function of the device is monotonic and smooth, so a
195 smooth function fit to the data will allow us to get better precision.
196 I used the 5th-order poly fit described above and solved for
197 VIA register values 0-255. I *10 before rounding, so we get tenth-degree
198 precision. (I could have done all 1024 values for our 10-bit readings,
199 but the function is very linear in the useful range (0-80 deg C), so
200 we'll just use linear interpolation for 10-bit readings.) So, tempLUT
201 is the temp at via register values 0-255: */
202 static const s16 tempLUT[] =
203 { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
204 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
205 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
206 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
207 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
208 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
209 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
210 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
211 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
212 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
213 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
214 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
215 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
216 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
217 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
218 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
219 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
220 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
221 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
222 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
223 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
224 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
227 /* the original LUT values from Alex van Kaam <darkside@chello.nl>
228 (for via register values 12-240):
229 {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
230 -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
231 -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
232 -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
233 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
234 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
235 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
236 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
237 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
238 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
241 Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
242 an extra term for a good fit to these inverse data!) and then
243 solving for each temp value from -50 to 110 (the useable range for
244 this chip). Here's the fit:
245 viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
246 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
247 Note that n=161: */
248 static const u8 viaLUT[] =
249 { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
250 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
251 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
252 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
253 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
254 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
255 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
256 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
257 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
258 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
259 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
260 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
261 239, 240
264 /* Converting temps to (8-bit) hyst and over registers
265 No interpolation here.
266 The +50 is because the temps start at -50 */
267 static inline u8 TEMP_TO_REG(long val)
269 return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 :
270 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
273 /* for 8-bit temperature hyst and over registers */
274 #define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100)
276 /* for 10-bit temperature readings */
277 static inline long TEMP_FROM_REG10(u16 val)
279 u16 eightBits = val >> 2;
280 u16 twoBits = val & 3;
282 /* no interpolation for these */
283 if (twoBits == 0 || eightBits == 255)
284 return TEMP_FROM_REG(eightBits);
286 /* do some linear interpolation */
287 return (tempLUT[eightBits] * (4 - twoBits) +
288 tempLUT[eightBits + 1] * twoBits) * 25;
291 #define DIV_FROM_REG(val) (1 << (val))
292 #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
294 /* For the VIA686A, we need to keep some data in memory.
295 The structure is dynamically allocated, at the same time when a new
296 via686a client is allocated. */
297 struct via686a_data {
298 struct i2c_client client;
299 struct class_device *class_dev;
300 struct mutex update_lock;
301 char valid; /* !=0 if following fields are valid */
302 unsigned long last_updated; /* In jiffies */
304 u8 in[5]; /* Register value */
305 u8 in_max[5]; /* Register value */
306 u8 in_min[5]; /* Register value */
307 u8 fan[2]; /* Register value */
308 u8 fan_min[2]; /* Register value */
309 u16 temp[3]; /* Register value 10 bit */
310 u8 temp_over[3]; /* Register value */
311 u8 temp_hyst[3]; /* Register value */
312 u8 fan_div[2]; /* Register encoding, shifted right */
313 u16 alarms; /* Register encoding, combined */
316 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
318 static int via686a_detect(struct i2c_adapter *adapter);
319 static int via686a_detach_client(struct i2c_client *client);
321 static inline int via686a_read_value(struct i2c_client *client, u8 reg)
323 return (inb_p(client->addr + reg));
326 static inline void via686a_write_value(struct i2c_client *client, u8 reg,
327 u8 value)
329 outb_p(value, client->addr + reg);
332 static struct via686a_data *via686a_update_device(struct device *dev);
333 static void via686a_init_client(struct i2c_client *client);
335 /* following are the sysfs callback functions */
337 /* 7 voltage sensors */
338 static ssize_t show_in(struct device *dev, char *buf, int nr) {
339 struct via686a_data *data = via686a_update_device(dev);
340 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
343 static ssize_t show_in_min(struct device *dev, char *buf, int nr) {
344 struct via686a_data *data = via686a_update_device(dev);
345 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
348 static ssize_t show_in_max(struct device *dev, char *buf, int nr) {
349 struct via686a_data *data = via686a_update_device(dev);
350 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
353 static ssize_t set_in_min(struct device *dev, const char *buf,
354 size_t count, int nr) {
355 struct i2c_client *client = to_i2c_client(dev);
356 struct via686a_data *data = i2c_get_clientdata(client);
357 unsigned long val = simple_strtoul(buf, NULL, 10);
359 mutex_lock(&data->update_lock);
360 data->in_min[nr] = IN_TO_REG(val, nr);
361 via686a_write_value(client, VIA686A_REG_IN_MIN(nr),
362 data->in_min[nr]);
363 mutex_unlock(&data->update_lock);
364 return count;
366 static ssize_t set_in_max(struct device *dev, const char *buf,
367 size_t count, int nr) {
368 struct i2c_client *client = to_i2c_client(dev);
369 struct via686a_data *data = i2c_get_clientdata(client);
370 unsigned long val = simple_strtoul(buf, NULL, 10);
372 mutex_lock(&data->update_lock);
373 data->in_max[nr] = IN_TO_REG(val, nr);
374 via686a_write_value(client, VIA686A_REG_IN_MAX(nr),
375 data->in_max[nr]);
376 mutex_unlock(&data->update_lock);
377 return count;
379 #define show_in_offset(offset) \
380 static ssize_t \
381 show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \
383 return show_in(dev, buf, offset); \
385 static ssize_t \
386 show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
388 return show_in_min(dev, buf, offset); \
390 static ssize_t \
391 show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
393 return show_in_max(dev, buf, offset); \
395 static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \
396 const char *buf, size_t count) \
398 return set_in_min(dev, buf, count, offset); \
400 static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \
401 const char *buf, size_t count) \
403 return set_in_max(dev, buf, count, offset); \
405 static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL);\
406 static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
407 show_in##offset##_min, set_in##offset##_min); \
408 static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
409 show_in##offset##_max, set_in##offset##_max);
411 show_in_offset(0);
412 show_in_offset(1);
413 show_in_offset(2);
414 show_in_offset(3);
415 show_in_offset(4);
417 /* 3 temperatures */
418 static ssize_t show_temp(struct device *dev, char *buf, int nr) {
419 struct via686a_data *data = via686a_update_device(dev);
420 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
422 static ssize_t show_temp_over(struct device *dev, char *buf, int nr) {
423 struct via686a_data *data = via686a_update_device(dev);
424 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
426 static ssize_t show_temp_hyst(struct device *dev, char *buf, int nr) {
427 struct via686a_data *data = via686a_update_device(dev);
428 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
430 static ssize_t set_temp_over(struct device *dev, const char *buf,
431 size_t count, int nr) {
432 struct i2c_client *client = to_i2c_client(dev);
433 struct via686a_data *data = i2c_get_clientdata(client);
434 int val = simple_strtol(buf, NULL, 10);
436 mutex_lock(&data->update_lock);
437 data->temp_over[nr] = TEMP_TO_REG(val);
438 via686a_write_value(client, VIA686A_REG_TEMP_OVER[nr],
439 data->temp_over[nr]);
440 mutex_unlock(&data->update_lock);
441 return count;
443 static ssize_t set_temp_hyst(struct device *dev, const char *buf,
444 size_t count, int nr) {
445 struct i2c_client *client = to_i2c_client(dev);
446 struct via686a_data *data = i2c_get_clientdata(client);
447 int val = simple_strtol(buf, NULL, 10);
449 mutex_lock(&data->update_lock);
450 data->temp_hyst[nr] = TEMP_TO_REG(val);
451 via686a_write_value(client, VIA686A_REG_TEMP_HYST[nr],
452 data->temp_hyst[nr]);
453 mutex_unlock(&data->update_lock);
454 return count;
456 #define show_temp_offset(offset) \
457 static ssize_t show_temp_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
459 return show_temp(dev, buf, offset - 1); \
461 static ssize_t \
462 show_temp_##offset##_over (struct device *dev, struct device_attribute *attr, char *buf) \
464 return show_temp_over(dev, buf, offset - 1); \
466 static ssize_t \
467 show_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, char *buf) \
469 return show_temp_hyst(dev, buf, offset - 1); \
471 static ssize_t set_temp_##offset##_over (struct device *dev, struct device_attribute *attr, \
472 const char *buf, size_t count) \
474 return set_temp_over(dev, buf, count, offset - 1); \
476 static ssize_t set_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, \
477 const char *buf, size_t count) \
479 return set_temp_hyst(dev, buf, count, offset - 1); \
481 static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset, NULL);\
482 static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
483 show_temp_##offset##_over, set_temp_##offset##_over); \
484 static DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
485 show_temp_##offset##_hyst, set_temp_##offset##_hyst);
487 show_temp_offset(1);
488 show_temp_offset(2);
489 show_temp_offset(3);
491 /* 2 Fans */
492 static ssize_t show_fan(struct device *dev, char *buf, int nr) {
493 struct via686a_data *data = via686a_update_device(dev);
494 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
495 DIV_FROM_REG(data->fan_div[nr])) );
497 static ssize_t show_fan_min(struct device *dev, char *buf, int nr) {
498 struct via686a_data *data = via686a_update_device(dev);
499 return sprintf(buf, "%d\n",
500 FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) );
502 static ssize_t show_fan_div(struct device *dev, char *buf, int nr) {
503 struct via686a_data *data = via686a_update_device(dev);
504 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) );
506 static ssize_t set_fan_min(struct device *dev, const char *buf,
507 size_t count, int nr) {
508 struct i2c_client *client = to_i2c_client(dev);
509 struct via686a_data *data = i2c_get_clientdata(client);
510 int val = simple_strtol(buf, NULL, 10);
512 mutex_lock(&data->update_lock);
513 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
514 via686a_write_value(client, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
515 mutex_unlock(&data->update_lock);
516 return count;
518 static ssize_t set_fan_div(struct device *dev, const char *buf,
519 size_t count, int nr) {
520 struct i2c_client *client = to_i2c_client(dev);
521 struct via686a_data *data = i2c_get_clientdata(client);
522 int val = simple_strtol(buf, NULL, 10);
523 int old;
525 mutex_lock(&data->update_lock);
526 old = via686a_read_value(client, VIA686A_REG_FANDIV);
527 data->fan_div[nr] = DIV_TO_REG(val);
528 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
529 via686a_write_value(client, VIA686A_REG_FANDIV, old);
530 mutex_unlock(&data->update_lock);
531 return count;
534 #define show_fan_offset(offset) \
535 static ssize_t show_fan_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
537 return show_fan(dev, buf, offset - 1); \
539 static ssize_t show_fan_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
541 return show_fan_min(dev, buf, offset - 1); \
543 static ssize_t show_fan_##offset##_div (struct device *dev, struct device_attribute *attr, char *buf) \
545 return show_fan_div(dev, buf, offset - 1); \
547 static ssize_t set_fan_##offset##_min (struct device *dev, struct device_attribute *attr, \
548 const char *buf, size_t count) \
550 return set_fan_min(dev, buf, count, offset - 1); \
552 static ssize_t set_fan_##offset##_div (struct device *dev, struct device_attribute *attr, \
553 const char *buf, size_t count) \
555 return set_fan_div(dev, buf, count, offset - 1); \
557 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset, NULL);\
558 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
559 show_fan_##offset##_min, set_fan_##offset##_min); \
560 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
561 show_fan_##offset##_div, set_fan_##offset##_div);
563 show_fan_offset(1);
564 show_fan_offset(2);
566 /* Alarms */
567 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) {
568 struct via686a_data *data = via686a_update_device(dev);
569 return sprintf(buf, "%u\n", data->alarms);
571 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
573 /* The driver. I choose to use type i2c_driver, as at is identical to both
574 smbus_driver and isa_driver, and clients could be of either kind */
575 static struct i2c_driver via686a_driver = {
576 .driver = {
577 .name = "via686a",
579 .attach_adapter = via686a_detect,
580 .detach_client = via686a_detach_client,
584 /* This is called when the module is loaded */
585 static int via686a_detect(struct i2c_adapter *adapter)
587 struct i2c_client *new_client;
588 struct via686a_data *data;
589 int err = 0;
590 const char client_name[] = "via686a";
591 u16 val;
593 /* 8231 requires multiple of 256, we enforce that on 686 as well */
594 if (force_addr) {
595 address = force_addr & 0xFF00;
596 dev_warn(&adapter->dev, "forcing ISA address 0x%04X\n",
597 address);
598 if (PCIBIOS_SUCCESSFUL !=
599 pci_write_config_word(s_bridge, VIA686A_BASE_REG, address))
600 return -ENODEV;
602 if (PCIBIOS_SUCCESSFUL !=
603 pci_read_config_word(s_bridge, VIA686A_ENABLE_REG, &val))
604 return -ENODEV;
605 if (!(val & 0x0001)) {
606 if (force_addr) {
607 dev_info(&adapter->dev, "enabling sensors\n");
608 if (PCIBIOS_SUCCESSFUL !=
609 pci_write_config_word(s_bridge, VIA686A_ENABLE_REG,
610 val | 0x0001))
611 return -ENODEV;
612 } else {
613 dev_warn(&adapter->dev, "sensors disabled - enable "
614 "with force_addr=0x%x\n", address);
615 return -ENODEV;
619 /* Reserve the ISA region */
620 if (!request_region(address, VIA686A_EXTENT,
621 via686a_driver.driver.name)) {
622 dev_err(&adapter->dev, "region 0x%x already in use!\n",
623 address);
624 return -ENODEV;
627 if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) {
628 err = -ENOMEM;
629 goto exit_release;
632 new_client = &data->client;
633 i2c_set_clientdata(new_client, data);
634 new_client->addr = address;
635 new_client->adapter = adapter;
636 new_client->driver = &via686a_driver;
637 new_client->flags = 0;
639 /* Fill in the remaining client fields and put into the global list */
640 strlcpy(new_client->name, client_name, I2C_NAME_SIZE);
642 data->valid = 0;
643 mutex_init(&data->update_lock);
644 /* Tell the I2C layer a new client has arrived */
645 if ((err = i2c_attach_client(new_client)))
646 goto exit_free;
648 /* Initialize the VIA686A chip */
649 via686a_init_client(new_client);
651 /* Register sysfs hooks */
652 data->class_dev = hwmon_device_register(&new_client->dev);
653 if (IS_ERR(data->class_dev)) {
654 err = PTR_ERR(data->class_dev);
655 goto exit_detach;
658 device_create_file(&new_client->dev, &dev_attr_in0_input);
659 device_create_file(&new_client->dev, &dev_attr_in1_input);
660 device_create_file(&new_client->dev, &dev_attr_in2_input);
661 device_create_file(&new_client->dev, &dev_attr_in3_input);
662 device_create_file(&new_client->dev, &dev_attr_in4_input);
663 device_create_file(&new_client->dev, &dev_attr_in0_min);
664 device_create_file(&new_client->dev, &dev_attr_in1_min);
665 device_create_file(&new_client->dev, &dev_attr_in2_min);
666 device_create_file(&new_client->dev, &dev_attr_in3_min);
667 device_create_file(&new_client->dev, &dev_attr_in4_min);
668 device_create_file(&new_client->dev, &dev_attr_in0_max);
669 device_create_file(&new_client->dev, &dev_attr_in1_max);
670 device_create_file(&new_client->dev, &dev_attr_in2_max);
671 device_create_file(&new_client->dev, &dev_attr_in3_max);
672 device_create_file(&new_client->dev, &dev_attr_in4_max);
673 device_create_file(&new_client->dev, &dev_attr_temp1_input);
674 device_create_file(&new_client->dev, &dev_attr_temp2_input);
675 device_create_file(&new_client->dev, &dev_attr_temp3_input);
676 device_create_file(&new_client->dev, &dev_attr_temp1_max);
677 device_create_file(&new_client->dev, &dev_attr_temp2_max);
678 device_create_file(&new_client->dev, &dev_attr_temp3_max);
679 device_create_file(&new_client->dev, &dev_attr_temp1_max_hyst);
680 device_create_file(&new_client->dev, &dev_attr_temp2_max_hyst);
681 device_create_file(&new_client->dev, &dev_attr_temp3_max_hyst);
682 device_create_file(&new_client->dev, &dev_attr_fan1_input);
683 device_create_file(&new_client->dev, &dev_attr_fan2_input);
684 device_create_file(&new_client->dev, &dev_attr_fan1_min);
685 device_create_file(&new_client->dev, &dev_attr_fan2_min);
686 device_create_file(&new_client->dev, &dev_attr_fan1_div);
687 device_create_file(&new_client->dev, &dev_attr_fan2_div);
688 device_create_file(&new_client->dev, &dev_attr_alarms);
690 return 0;
692 exit_detach:
693 i2c_detach_client(new_client);
694 exit_free:
695 kfree(data);
696 exit_release:
697 release_region(address, VIA686A_EXTENT);
698 return err;
701 static int via686a_detach_client(struct i2c_client *client)
703 struct via686a_data *data = i2c_get_clientdata(client);
704 int err;
706 hwmon_device_unregister(data->class_dev);
708 if ((err = i2c_detach_client(client)))
709 return err;
711 release_region(client->addr, VIA686A_EXTENT);
712 kfree(data);
714 return 0;
717 static void via686a_init_client(struct i2c_client *client)
719 u8 reg;
721 /* Start monitoring */
722 reg = via686a_read_value(client, VIA686A_REG_CONFIG);
723 via686a_write_value(client, VIA686A_REG_CONFIG, (reg|0x01)&0x7F);
725 /* Configure temp interrupt mode for continuous-interrupt operation */
726 via686a_write_value(client, VIA686A_REG_TEMP_MODE,
727 via686a_read_value(client, VIA686A_REG_TEMP_MODE) &
728 !(VIA686A_TEMP_MODE_MASK | VIA686A_TEMP_MODE_CONTINUOUS));
731 static struct via686a_data *via686a_update_device(struct device *dev)
733 struct i2c_client *client = to_i2c_client(dev);
734 struct via686a_data *data = i2c_get_clientdata(client);
735 int i;
737 mutex_lock(&data->update_lock);
739 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
740 || !data->valid) {
741 for (i = 0; i <= 4; i++) {
742 data->in[i] =
743 via686a_read_value(client, VIA686A_REG_IN(i));
744 data->in_min[i] = via686a_read_value(client,
745 VIA686A_REG_IN_MIN
746 (i));
747 data->in_max[i] =
748 via686a_read_value(client, VIA686A_REG_IN_MAX(i));
750 for (i = 1; i <= 2; i++) {
751 data->fan[i - 1] =
752 via686a_read_value(client, VIA686A_REG_FAN(i));
753 data->fan_min[i - 1] = via686a_read_value(client,
754 VIA686A_REG_FAN_MIN(i));
756 for (i = 0; i <= 2; i++) {
757 data->temp[i] = via686a_read_value(client,
758 VIA686A_REG_TEMP[i]) << 2;
759 data->temp_over[i] =
760 via686a_read_value(client,
761 VIA686A_REG_TEMP_OVER[i]);
762 data->temp_hyst[i] =
763 via686a_read_value(client,
764 VIA686A_REG_TEMP_HYST[i]);
766 /* add in lower 2 bits
767 temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
768 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
769 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
771 data->temp[0] |= (via686a_read_value(client,
772 VIA686A_REG_TEMP_LOW1)
773 & 0xc0) >> 6;
774 data->temp[1] |=
775 (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
776 0x30) >> 4;
777 data->temp[2] |=
778 (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
779 0xc0) >> 6;
781 i = via686a_read_value(client, VIA686A_REG_FANDIV);
782 data->fan_div[0] = (i >> 4) & 0x03;
783 data->fan_div[1] = i >> 6;
784 data->alarms =
785 via686a_read_value(client,
786 VIA686A_REG_ALARM1) |
787 (via686a_read_value(client, VIA686A_REG_ALARM2) << 8);
788 data->last_updated = jiffies;
789 data->valid = 1;
792 mutex_unlock(&data->update_lock);
794 return data;
797 static struct pci_device_id via686a_pci_ids[] = {
798 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
799 { 0, }
802 MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
804 static int __devinit via686a_pci_probe(struct pci_dev *dev,
805 const struct pci_device_id *id)
807 u16 val;
809 if (PCIBIOS_SUCCESSFUL !=
810 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
811 return -ENODEV;
813 address = val & ~(VIA686A_EXTENT - 1);
814 if (address == 0 && force_addr == 0) {
815 dev_err(&dev->dev, "base address not set - upgrade BIOS "
816 "or use force_addr=0xaddr\n");
817 return -ENODEV;
820 s_bridge = pci_dev_get(dev);
821 if (i2c_isa_add_driver(&via686a_driver)) {
822 pci_dev_put(s_bridge);
823 s_bridge = NULL;
826 /* Always return failure here. This is to allow other drivers to bind
827 * to this pci device. We don't really want to have control over the
828 * pci device, we only wanted to read as few register values from it.
830 return -ENODEV;
833 static struct pci_driver via686a_pci_driver = {
834 .name = "via686a",
835 .id_table = via686a_pci_ids,
836 .probe = via686a_pci_probe,
839 static int __init sm_via686a_init(void)
841 return pci_register_driver(&via686a_pci_driver);
844 static void __exit sm_via686a_exit(void)
846 pci_unregister_driver(&via686a_pci_driver);
847 if (s_bridge != NULL) {
848 i2c_isa_del_driver(&via686a_driver);
849 pci_dev_put(s_bridge);
850 s_bridge = NULL;
854 MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
855 "Mark Studebaker <mdsxyz123@yahoo.com> "
856 "and Bob Dougherty <bobd@stanford.edu>");
857 MODULE_DESCRIPTION("VIA 686A Sensor device");
858 MODULE_LICENSE("GPL");
860 module_init(sm_via686a_init);
861 module_exit(sm_via686a_exit);