1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include "net_driver.h"
11 #include "ef10_regs.h"
14 #include "mcdi_pcol.h"
16 #include "workarounds.h"
18 #include "ef10_sriov.h"
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
24 /* Hardware control for EF10 architecture including 'Huntington'. */
26 #define EFX_EF10_DRVGEN_EV 7
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
38 /* The filter table(s) are managed by firmware and we have write-only
39 * access. When removing filters we must identify them to the
40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
41 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
42 * be able to tell in advance whether a requested insertion will
43 * replace an existing filter. Therefore we maintain a software hash
44 * table, which should be at least as large as the hardware hash
47 * Huntington has a single 8K filter table shared between all filter
48 * types and both ports.
50 #define HUNT_FILTER_TBL_ROWS 8192
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 struct efx_ef10_dev_addr
{
58 struct efx_ef10_filter_table
{
59 /* The RX match field masks supported by this fw & hw, in order of priority */
60 enum efx_filter_match_flags rx_match_flags
[
61 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM
];
62 unsigned int rx_match_count
;
65 unsigned long spec
; /* pointer to spec plus flag bits */
66 /* BUSY flag indicates that an update is in progress. AUTO_OLD is
67 * used to mark and sweep MAC filters for the device address lists.
69 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
70 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
71 #define EFX_EF10_FILTER_FLAGS 3UL
72 u64 handle
; /* firmware handle */
74 wait_queue_head_t waitq
;
75 /* Shadow of net_device address lists, guarded by mac_lock */
76 #define EFX_EF10_FILTER_DEV_UC_MAX 32
77 #define EFX_EF10_FILTER_DEV_MC_MAX 256
78 struct efx_ef10_dev_addr dev_uc_list
[EFX_EF10_FILTER_DEV_UC_MAX
];
79 struct efx_ef10_dev_addr dev_mc_list
[EFX_EF10_FILTER_DEV_MC_MAX
];
82 /* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
88 /* An arbitrary search limit for the software hash table */
89 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
91 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
);
92 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
);
94 static int efx_ef10_get_warm_boot_count(struct efx_nic
*efx
)
98 efx_readd(efx
, ®
, ER_DZ_BIU_MC_SFT_STATUS
);
99 return EFX_DWORD_FIELD(reg
, EFX_WORD_1
) == 0xb007 ?
100 EFX_DWORD_FIELD(reg
, EFX_WORD_0
) : -EIO
;
103 static unsigned int efx_ef10_mem_map_size(struct efx_nic
*efx
)
107 bar
= efx
->type
->mem_bar
;
108 return resource_size(&efx
->pci_dev
->resource
[bar
]);
111 static bool efx_ef10_is_vf(struct efx_nic
*efx
)
113 return efx
->type
->is_vf
;
116 static int efx_ef10_get_pf_index(struct efx_nic
*efx
)
118 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
119 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
123 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
124 sizeof(outbuf
), &outlen
);
127 if (outlen
< sizeof(outbuf
))
130 nic_data
->pf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_PF
);
134 #ifdef CONFIG_SFC_SRIOV
135 static int efx_ef10_get_vf_index(struct efx_nic
*efx
)
137 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
138 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
142 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
143 sizeof(outbuf
), &outlen
);
146 if (outlen
< sizeof(outbuf
))
149 nic_data
->vf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_VF
);
154 static int efx_ef10_init_datapath_caps(struct efx_nic
*efx
)
156 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CAPABILITIES_OUT_LEN
);
157 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
161 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN
!= 0);
163 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CAPABILITIES
, NULL
, 0,
164 outbuf
, sizeof(outbuf
), &outlen
);
167 if (outlen
< sizeof(outbuf
)) {
168 netif_err(efx
, drv
, efx
->net_dev
,
169 "unable to read datapath firmware capabilities\n");
173 nic_data
->datapath_caps
=
174 MCDI_DWORD(outbuf
, GET_CAPABILITIES_OUT_FLAGS1
);
176 /* record the DPCPU firmware IDs to determine VEB vswitching support.
178 nic_data
->rx_dpcpu_fw_id
=
179 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID
);
180 nic_data
->tx_dpcpu_fw_id
=
181 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID
);
183 if (!(nic_data
->datapath_caps
&
184 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN
))) {
185 netif_err(efx
, probe
, efx
->net_dev
,
186 "current firmware does not support an RX prefix\n");
193 static int efx_ef10_get_sysclk_freq(struct efx_nic
*efx
)
195 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CLOCK_OUT_LEN
);
198 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CLOCK
, NULL
, 0,
199 outbuf
, sizeof(outbuf
), NULL
);
202 rc
= MCDI_DWORD(outbuf
, GET_CLOCK_OUT_SYS_FREQ
);
203 return rc
> 0 ? rc
: -ERANGE
;
206 static int efx_ef10_get_mac_address_pf(struct efx_nic
*efx
, u8
*mac_address
)
208 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
);
212 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN
!= 0);
214 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_MAC_ADDRESSES
, NULL
, 0,
215 outbuf
, sizeof(outbuf
), &outlen
);
218 if (outlen
< MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
)
221 ether_addr_copy(mac_address
,
222 MCDI_PTR(outbuf
, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE
));
226 static int efx_ef10_get_mac_address_vf(struct efx_nic
*efx
, u8
*mac_address
)
228 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN
);
229 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX
);
233 MCDI_SET_DWORD(inbuf
, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID
,
234 EVB_PORT_ID_ASSIGNED
);
235 rc
= efx_mcdi_rpc(efx
, MC_CMD_VPORT_GET_MAC_ADDRESSES
, inbuf
,
236 sizeof(inbuf
), outbuf
, sizeof(outbuf
), &outlen
);
240 if (outlen
< MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN
)
243 num_addrs
= MCDI_DWORD(outbuf
,
244 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT
);
246 WARN_ON(num_addrs
!= 1);
248 ether_addr_copy(mac_address
,
249 MCDI_PTR(outbuf
, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR
));
254 static ssize_t
efx_ef10_show_link_control_flag(struct device
*dev
,
255 struct device_attribute
*attr
,
258 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
260 return sprintf(buf
, "%d\n",
261 ((efx
->mcdi
->fn_flags
) &
262 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
266 static ssize_t
efx_ef10_show_primary_flag(struct device
*dev
,
267 struct device_attribute
*attr
,
270 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
272 return sprintf(buf
, "%d\n",
273 ((efx
->mcdi
->fn_flags
) &
274 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
278 static DEVICE_ATTR(link_control_flag
, 0444, efx_ef10_show_link_control_flag
,
280 static DEVICE_ATTR(primary_flag
, 0444, efx_ef10_show_primary_flag
, NULL
);
282 static int efx_ef10_probe(struct efx_nic
*efx
)
284 struct efx_ef10_nic_data
*nic_data
;
285 struct net_device
*net_dev
= efx
->net_dev
;
288 /* We can have one VI for each 8K region. However, until we
289 * use TX option descriptors we need two TX queues per channel.
291 efx
->max_channels
= min_t(unsigned int,
293 efx_ef10_mem_map_size(efx
) /
294 (EFX_VI_PAGE_SIZE
* EFX_TXQ_TYPES
));
295 efx
->max_tx_channels
= efx
->max_channels
;
296 if (WARN_ON(efx
->max_channels
== 0))
299 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
302 efx
->nic_data
= nic_data
;
304 /* we assume later that we can copy from this buffer in dwords */
305 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2
% 4);
307 rc
= efx_nic_alloc_buffer(efx
, &nic_data
->mcdi_buf
,
308 8 + MCDI_CTL_SDU_LEN_MAX_V2
, GFP_KERNEL
);
312 /* Get the MC's warm boot count. In case it's rebooting right
313 * now, be prepared to retry.
317 rc
= efx_ef10_get_warm_boot_count(efx
);
324 nic_data
->warm_boot_count
= rc
;
326 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
328 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
330 /* In case we're recovering from a crash (kexec), we want to
331 * cancel any outstanding request by the previous user of this
332 * function. We send a special message using the least
333 * significant bits of the 'high' (doorbell) register.
335 _efx_writed(efx
, cpu_to_le32(1), ER_DZ_MC_DB_HWRD
);
337 rc
= efx_mcdi_init(efx
);
341 /* Reset (most) configuration for this function */
342 rc
= efx_mcdi_reset(efx
, RESET_TYPE_ALL
);
346 /* Enable event logging */
347 rc
= efx_mcdi_log_ctrl(efx
, true, false, 0);
351 rc
= device_create_file(&efx
->pci_dev
->dev
,
352 &dev_attr_link_control_flag
);
356 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
360 rc
= efx_ef10_get_pf_index(efx
);
364 rc
= efx_ef10_init_datapath_caps(efx
);
368 efx
->rx_packet_len_offset
=
369 ES_DZ_RX_PREFIX_PKTLEN_OFST
- ES_DZ_RX_PREFIX_SIZE
;
371 rc
= efx_mcdi_port_get_number(efx
);
375 net_dev
->dev_port
= rc
;
377 rc
= efx
->type
->get_mac_address(efx
, efx
->net_dev
->perm_addr
);
381 rc
= efx_ef10_get_sysclk_freq(efx
);
384 efx
->timer_quantum_ns
= 1536000 / rc
; /* 1536 cycles */
386 /* Check whether firmware supports bug 35388 workaround.
387 * First try to enable it, then if we get EPERM, just
388 * ask if it's already enabled
390 rc
= efx_mcdi_set_workaround(efx
, MC_CMD_WORKAROUND_BUG35388
, true, NULL
);
392 nic_data
->workaround_35388
= true;
393 } else if (rc
== -EPERM
) {
394 unsigned int enabled
;
396 rc
= efx_mcdi_get_workarounds(efx
, NULL
, &enabled
);
399 nic_data
->workaround_35388
= enabled
&
400 MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
;
401 } else if (rc
!= -ENOSYS
&& rc
!= -ENOENT
) {
404 netif_dbg(efx
, probe
, efx
->net_dev
,
405 "workaround for bug 35388 is %sabled\n",
406 nic_data
->workaround_35388
? "en" : "dis");
408 rc
= efx_mcdi_mon_probe(efx
);
409 if (rc
&& rc
!= -EPERM
)
412 efx_ptp_probe(efx
, NULL
);
414 #ifdef CONFIG_SFC_SRIOV
415 if ((efx
->pci_dev
->physfn
) && (!efx
->pci_dev
->is_physfn
)) {
416 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
417 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
419 efx_pf
->type
->get_mac_address(efx_pf
, nic_data
->port_id
);
422 ether_addr_copy(nic_data
->port_id
, efx
->net_dev
->perm_addr
);
427 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
429 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
433 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
436 efx
->nic_data
= NULL
;
440 static int efx_ef10_free_vis(struct efx_nic
*efx
)
442 MCDI_DECLARE_BUF_ERR(outbuf
);
444 int rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FREE_VIS
, NULL
, 0,
445 outbuf
, sizeof(outbuf
), &outlen
);
447 /* -EALREADY means nothing to free, so ignore */
451 efx_mcdi_display_error(efx
, MC_CMD_FREE_VIS
, 0, outbuf
, outlen
,
458 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
460 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
461 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FREE_PIOBUF_IN_LEN
);
465 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN
!= 0);
467 for (i
= 0; i
< nic_data
->n_piobufs
; i
++) {
468 MCDI_SET_DWORD(inbuf
, FREE_PIOBUF_IN_PIOBUF_HANDLE
,
469 nic_data
->piobuf_handle
[i
]);
470 rc
= efx_mcdi_rpc(efx
, MC_CMD_FREE_PIOBUF
, inbuf
, sizeof(inbuf
),
475 nic_data
->n_piobufs
= 0;
478 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
480 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
481 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_PIOBUF_OUT_LEN
);
486 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN
!= 0);
488 for (i
= 0; i
< n
; i
++) {
489 rc
= efx_mcdi_rpc(efx
, MC_CMD_ALLOC_PIOBUF
, NULL
, 0,
490 outbuf
, sizeof(outbuf
), &outlen
);
493 if (outlen
< MC_CMD_ALLOC_PIOBUF_OUT_LEN
) {
497 nic_data
->piobuf_handle
[i
] =
498 MCDI_DWORD(outbuf
, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE
);
499 netif_dbg(efx
, probe
, efx
->net_dev
,
500 "allocated PIO buffer %u handle %x\n", i
,
501 nic_data
->piobuf_handle
[i
]);
504 nic_data
->n_piobufs
= i
;
506 efx_ef10_free_piobufs(efx
);
510 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
512 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
513 _MCDI_DECLARE_BUF(inbuf
,
514 max(MC_CMD_LINK_PIOBUF_IN_LEN
,
515 MC_CMD_UNLINK_PIOBUF_IN_LEN
));
516 struct efx_channel
*channel
;
517 struct efx_tx_queue
*tx_queue
;
518 unsigned int offset
, index
;
521 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN
!= 0);
522 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN
!= 0);
524 memset(inbuf
, 0, sizeof(inbuf
));
526 /* Link a buffer to each VI in the write-combining mapping */
527 for (index
= 0; index
< nic_data
->n_piobufs
; ++index
) {
528 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_PIOBUF_HANDLE
,
529 nic_data
->piobuf_handle
[index
]);
530 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_TXQ_INSTANCE
,
531 nic_data
->pio_write_vi_base
+ index
);
532 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
533 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
536 netif_err(efx
, drv
, efx
->net_dev
,
537 "failed to link VI %u to PIO buffer %u (%d)\n",
538 nic_data
->pio_write_vi_base
+ index
, index
,
542 netif_dbg(efx
, probe
, efx
->net_dev
,
543 "linked VI %u to PIO buffer %u\n",
544 nic_data
->pio_write_vi_base
+ index
, index
);
547 /* Link a buffer to each TX queue */
548 efx_for_each_channel(channel
, efx
) {
549 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
550 /* We assign the PIO buffers to queues in
551 * reverse order to allow for the following
554 offset
= ((efx
->tx_channel_offset
+ efx
->n_tx_channels
-
555 tx_queue
->channel
->channel
- 1) *
557 index
= offset
/ ER_DZ_TX_PIOBUF_SIZE
;
558 offset
= offset
% ER_DZ_TX_PIOBUF_SIZE
;
560 /* When the host page size is 4K, the first
561 * host page in the WC mapping may be within
562 * the same VI page as the last TX queue. We
563 * can only link one buffer to each VI.
565 if (tx_queue
->queue
== nic_data
->pio_write_vi_base
) {
569 MCDI_SET_DWORD(inbuf
,
570 LINK_PIOBUF_IN_PIOBUF_HANDLE
,
571 nic_data
->piobuf_handle
[index
]);
572 MCDI_SET_DWORD(inbuf
,
573 LINK_PIOBUF_IN_TXQ_INSTANCE
,
575 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
576 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
581 /* This is non-fatal; the TX path just
582 * won't use PIO for this queue
584 netif_err(efx
, drv
, efx
->net_dev
,
585 "failed to link VI %u to PIO buffer %u (%d)\n",
586 tx_queue
->queue
, index
, rc
);
587 tx_queue
->piobuf
= NULL
;
590 nic_data
->pio_write_base
+
591 index
* EFX_VI_PAGE_SIZE
+ offset
;
592 tx_queue
->piobuf_offset
= offset
;
593 netif_dbg(efx
, probe
, efx
->net_dev
,
594 "linked VI %u to PIO buffer %u offset %x addr %p\n",
595 tx_queue
->queue
, index
,
596 tx_queue
->piobuf_offset
,
606 MCDI_SET_DWORD(inbuf
, UNLINK_PIOBUF_IN_TXQ_INSTANCE
,
607 nic_data
->pio_write_vi_base
+ index
);
608 efx_mcdi_rpc(efx
, MC_CMD_UNLINK_PIOBUF
,
609 inbuf
, MC_CMD_UNLINK_PIOBUF_IN_LEN
,
615 #else /* !EFX_USE_PIO */
617 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
619 return n
== 0 ? 0 : -ENOBUFS
;
622 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
627 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
631 #endif /* EFX_USE_PIO */
633 static void efx_ef10_remove(struct efx_nic
*efx
)
635 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
638 #ifdef CONFIG_SFC_SRIOV
639 struct efx_ef10_nic_data
*nic_data_pf
;
640 struct pci_dev
*pci_dev_pf
;
641 struct efx_nic
*efx_pf
;
644 if (efx
->pci_dev
->is_virtfn
) {
645 pci_dev_pf
= efx
->pci_dev
->physfn
;
647 efx_pf
= pci_get_drvdata(pci_dev_pf
);
648 nic_data_pf
= efx_pf
->nic_data
;
649 vf
= nic_data_pf
->vf
+ nic_data
->vf_index
;
652 netif_info(efx
, drv
, efx
->net_dev
,
653 "Could not get the PF id from VF\n");
659 efx_mcdi_mon_remove(efx
);
661 efx_ef10_rx_free_indir_table(efx
);
663 if (nic_data
->wc_membase
)
664 iounmap(nic_data
->wc_membase
);
666 rc
= efx_ef10_free_vis(efx
);
669 if (!nic_data
->must_restore_piobufs
)
670 efx_ef10_free_piobufs(efx
);
672 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
673 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
676 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
680 static int efx_ef10_probe_pf(struct efx_nic
*efx
)
682 return efx_ef10_probe(efx
);
685 int efx_ef10_vadaptor_alloc(struct efx_nic
*efx
, unsigned int port_id
)
687 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_ALLOC_IN_LEN
);
689 MCDI_SET_DWORD(inbuf
, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID
, port_id
);
690 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_ALLOC
, inbuf
, sizeof(inbuf
),
694 int efx_ef10_vadaptor_free(struct efx_nic
*efx
, unsigned int port_id
)
696 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_FREE_IN_LEN
);
698 MCDI_SET_DWORD(inbuf
, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID
, port_id
);
699 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_FREE
, inbuf
, sizeof(inbuf
),
703 int efx_ef10_vport_add_mac(struct efx_nic
*efx
,
704 unsigned int port_id
, u8
*mac
)
706 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN
);
708 MCDI_SET_DWORD(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
709 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_MACADDR
), mac
);
711 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_ADD_MAC_ADDRESS
, inbuf
,
712 sizeof(inbuf
), NULL
, 0, NULL
);
715 int efx_ef10_vport_del_mac(struct efx_nic
*efx
,
716 unsigned int port_id
, u8
*mac
)
718 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN
);
720 MCDI_SET_DWORD(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
721 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_MACADDR
), mac
);
723 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_DEL_MAC_ADDRESS
, inbuf
,
724 sizeof(inbuf
), NULL
, 0, NULL
);
727 #ifdef CONFIG_SFC_SRIOV
728 static int efx_ef10_probe_vf(struct efx_nic
*efx
)
731 struct pci_dev
*pci_dev_pf
;
733 /* If the parent PF has no VF data structure, it doesn't know about this
734 * VF so fail probe. The VF needs to be re-created. This can happen
735 * if the PF driver is unloaded while the VF is assigned to a guest.
737 pci_dev_pf
= efx
->pci_dev
->physfn
;
739 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
740 struct efx_ef10_nic_data
*nic_data_pf
= efx_pf
->nic_data
;
742 if (!nic_data_pf
->vf
) {
743 netif_info(efx
, drv
, efx
->net_dev
,
744 "The VF cannot link to its parent PF; "
745 "please destroy and re-create the VF\n");
750 rc
= efx_ef10_probe(efx
);
754 rc
= efx_ef10_get_vf_index(efx
);
758 if (efx
->pci_dev
->is_virtfn
) {
759 if (efx
->pci_dev
->physfn
) {
760 struct efx_nic
*efx_pf
=
761 pci_get_drvdata(efx
->pci_dev
->physfn
);
762 struct efx_ef10_nic_data
*nic_data_p
= efx_pf
->nic_data
;
763 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
765 nic_data_p
->vf
[nic_data
->vf_index
].efx
= efx
;
766 nic_data_p
->vf
[nic_data
->vf_index
].pci_dev
=
769 netif_info(efx
, drv
, efx
->net_dev
,
770 "Could not get the PF id from VF\n");
776 efx_ef10_remove(efx
);
780 static int efx_ef10_probe_vf(struct efx_nic
*efx
__attribute__ ((unused
)))
786 static int efx_ef10_alloc_vis(struct efx_nic
*efx
,
787 unsigned int min_vis
, unsigned int max_vis
)
789 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ALLOC_VIS_IN_LEN
);
790 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_VIS_OUT_LEN
);
791 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
795 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MIN_VI_COUNT
, min_vis
);
796 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MAX_VI_COUNT
, max_vis
);
797 rc
= efx_mcdi_rpc(efx
, MC_CMD_ALLOC_VIS
, inbuf
, sizeof(inbuf
),
798 outbuf
, sizeof(outbuf
), &outlen
);
802 if (outlen
< MC_CMD_ALLOC_VIS_OUT_LEN
)
805 netif_dbg(efx
, drv
, efx
->net_dev
, "base VI is A0x%03x\n",
806 MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
));
808 nic_data
->vi_base
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
);
809 nic_data
->n_allocated_vis
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_COUNT
);
813 /* Note that the failure path of this function does not free
814 * resources, as this will be done by efx_ef10_remove().
816 static int efx_ef10_dimension_resources(struct efx_nic
*efx
)
818 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
819 unsigned int uc_mem_map_size
, wc_mem_map_size
;
820 unsigned int min_vis
= max(EFX_TXQ_TYPES
,
821 efx_separate_tx_channels
? 2 : 1);
822 unsigned int channel_vis
, pio_write_vi_base
, max_vis
;
823 void __iomem
*membase
;
826 channel_vis
= max(efx
->n_channels
, efx
->n_tx_channels
* EFX_TXQ_TYPES
);
829 /* Try to allocate PIO buffers if wanted and if the full
830 * number of PIO buffers would be sufficient to allocate one
831 * copy-buffer per TX channel. Failure is non-fatal, as there
832 * are only a small number of PIO buffers shared between all
833 * functions of the controller.
835 if (efx_piobuf_size
!= 0 &&
836 ER_DZ_TX_PIOBUF_SIZE
/ efx_piobuf_size
* EF10_TX_PIOBUF_COUNT
>=
837 efx
->n_tx_channels
) {
838 unsigned int n_piobufs
=
839 DIV_ROUND_UP(efx
->n_tx_channels
,
840 ER_DZ_TX_PIOBUF_SIZE
/ efx_piobuf_size
);
842 rc
= efx_ef10_alloc_piobufs(efx
, n_piobufs
);
844 netif_err(efx
, probe
, efx
->net_dev
,
845 "failed to allocate PIO buffers (%d)\n", rc
);
847 netif_dbg(efx
, probe
, efx
->net_dev
,
848 "allocated %u PIO buffers\n", n_piobufs
);
851 nic_data
->n_piobufs
= 0;
854 /* PIO buffers should be mapped with write-combining enabled,
855 * and we want to make single UC and WC mappings rather than
856 * several of each (in fact that's the only option if host
857 * page size is >4K). So we may allocate some extra VIs just
858 * for writing PIO buffers through.
860 * The UC mapping contains (channel_vis - 1) complete VIs and the
861 * first half of the next VI. Then the WC mapping begins with
862 * the second half of this last VI.
864 uc_mem_map_size
= PAGE_ALIGN((channel_vis
- 1) * EFX_VI_PAGE_SIZE
+
866 if (nic_data
->n_piobufs
) {
867 /* pio_write_vi_base rounds down to give the number of complete
868 * VIs inside the UC mapping.
870 pio_write_vi_base
= uc_mem_map_size
/ EFX_VI_PAGE_SIZE
;
871 wc_mem_map_size
= (PAGE_ALIGN((pio_write_vi_base
+
872 nic_data
->n_piobufs
) *
875 max_vis
= pio_write_vi_base
+ nic_data
->n_piobufs
;
877 pio_write_vi_base
= 0;
879 max_vis
= channel_vis
;
882 /* In case the last attached driver failed to free VIs, do it now */
883 rc
= efx_ef10_free_vis(efx
);
887 rc
= efx_ef10_alloc_vis(efx
, min_vis
, max_vis
);
891 if (nic_data
->n_allocated_vis
< channel_vis
) {
892 netif_info(efx
, drv
, efx
->net_dev
,
893 "Could not allocate enough VIs to satisfy RSS"
894 " requirements. Performance may not be optimal.\n");
895 /* We didn't get the VIs to populate our channels.
896 * We could keep what we got but then we'd have more
897 * interrupts than we need.
898 * Instead calculate new max_channels and restart
900 efx
->max_channels
= nic_data
->n_allocated_vis
;
901 efx
->max_tx_channels
=
902 nic_data
->n_allocated_vis
/ EFX_TXQ_TYPES
;
904 efx_ef10_free_vis(efx
);
908 /* If we didn't get enough VIs to map all the PIO buffers, free the
911 if (nic_data
->n_piobufs
&&
912 nic_data
->n_allocated_vis
<
913 pio_write_vi_base
+ nic_data
->n_piobufs
) {
914 netif_dbg(efx
, probe
, efx
->net_dev
,
915 "%u VIs are not sufficient to map %u PIO buffers\n",
916 nic_data
->n_allocated_vis
, nic_data
->n_piobufs
);
917 efx_ef10_free_piobufs(efx
);
920 /* Shrink the original UC mapping of the memory BAR */
921 membase
= ioremap_nocache(efx
->membase_phys
, uc_mem_map_size
);
923 netif_err(efx
, probe
, efx
->net_dev
,
924 "could not shrink memory BAR to %x\n",
928 iounmap(efx
->membase
);
929 efx
->membase
= membase
;
931 /* Set up the WC mapping if needed */
932 if (wc_mem_map_size
) {
933 nic_data
->wc_membase
= ioremap_wc(efx
->membase_phys
+
936 if (!nic_data
->wc_membase
) {
937 netif_err(efx
, probe
, efx
->net_dev
,
938 "could not allocate WC mapping of size %x\n",
942 nic_data
->pio_write_vi_base
= pio_write_vi_base
;
943 nic_data
->pio_write_base
=
944 nic_data
->wc_membase
+
945 (pio_write_vi_base
* EFX_VI_PAGE_SIZE
+ ER_DZ_TX_PIOBUF
-
948 rc
= efx_ef10_link_piobufs(efx
);
950 efx_ef10_free_piobufs(efx
);
953 netif_dbg(efx
, probe
, efx
->net_dev
,
954 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
955 &efx
->membase_phys
, efx
->membase
, uc_mem_map_size
,
956 nic_data
->wc_membase
, wc_mem_map_size
);
961 static int efx_ef10_init_nic(struct efx_nic
*efx
)
963 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
966 if (nic_data
->must_check_datapath_caps
) {
967 rc
= efx_ef10_init_datapath_caps(efx
);
970 nic_data
->must_check_datapath_caps
= false;
973 if (nic_data
->must_realloc_vis
) {
974 /* We cannot let the number of VIs change now */
975 rc
= efx_ef10_alloc_vis(efx
, nic_data
->n_allocated_vis
,
976 nic_data
->n_allocated_vis
);
979 nic_data
->must_realloc_vis
= false;
982 if (nic_data
->must_restore_piobufs
&& nic_data
->n_piobufs
) {
983 rc
= efx_ef10_alloc_piobufs(efx
, nic_data
->n_piobufs
);
985 rc
= efx_ef10_link_piobufs(efx
);
987 efx_ef10_free_piobufs(efx
);
990 /* Log an error on failure, but this is non-fatal */
992 netif_err(efx
, drv
, efx
->net_dev
,
993 "failed to restore PIO buffers (%d)\n", rc
);
994 nic_data
->must_restore_piobufs
= false;
997 /* don't fail init if RSS setup doesn't work */
998 efx
->type
->rx_push_rss_config(efx
, false, efx
->rx_indir_table
);
1003 static void efx_ef10_reset_mc_allocations(struct efx_nic
*efx
)
1005 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1006 #ifdef CONFIG_SFC_SRIOV
1010 /* All our allocations have been reset */
1011 nic_data
->must_realloc_vis
= true;
1012 nic_data
->must_restore_filters
= true;
1013 nic_data
->must_restore_piobufs
= true;
1014 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
1016 /* Driver-created vswitches and vports must be re-created */
1017 nic_data
->must_probe_vswitching
= true;
1018 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
1019 #ifdef CONFIG_SFC_SRIOV
1021 for (i
= 0; i
< efx
->vf_count
; i
++)
1022 nic_data
->vf
[i
].vport_id
= 0;
1026 static enum reset_type
efx_ef10_map_reset_reason(enum reset_type reason
)
1028 if (reason
== RESET_TYPE_MC_FAILURE
)
1029 return RESET_TYPE_DATAPATH
;
1031 return efx_mcdi_map_reset_reason(reason
);
1034 static int efx_ef10_map_reset_flags(u32
*flags
)
1037 EF10_RESET_PORT
= ((ETH_RESET_MAC
| ETH_RESET_PHY
) <<
1038 ETH_RESET_SHARED_SHIFT
),
1039 EF10_RESET_MC
= ((ETH_RESET_DMA
| ETH_RESET_FILTER
|
1040 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
|
1041 ETH_RESET_PHY
| ETH_RESET_MGMT
) <<
1042 ETH_RESET_SHARED_SHIFT
)
1045 /* We assume for now that our PCI function is permitted to
1049 if ((*flags
& EF10_RESET_MC
) == EF10_RESET_MC
) {
1050 *flags
&= ~EF10_RESET_MC
;
1051 return RESET_TYPE_WORLD
;
1054 if ((*flags
& EF10_RESET_PORT
) == EF10_RESET_PORT
) {
1055 *flags
&= ~EF10_RESET_PORT
;
1056 return RESET_TYPE_ALL
;
1059 /* no invisible reset implemented */
1064 static int efx_ef10_reset(struct efx_nic
*efx
, enum reset_type reset_type
)
1066 int rc
= efx_mcdi_reset(efx
, reset_type
);
1068 /* Unprivileged functions return -EPERM, but need to return success
1069 * here so that the datapath is brought back up.
1071 if (reset_type
== RESET_TYPE_WORLD
&& rc
== -EPERM
)
1074 /* If it was a port reset, trigger reallocation of MC resources.
1075 * Note that on an MC reset nothing needs to be done now because we'll
1076 * detect the MC reset later and handle it then.
1077 * For an FLR, we never get an MC reset event, but the MC has reset all
1078 * resources assigned to us, so we have to trigger reallocation now.
1080 if ((reset_type
== RESET_TYPE_ALL
||
1081 reset_type
== RESET_TYPE_MCDI_TIMEOUT
) && !rc
)
1082 efx_ef10_reset_mc_allocations(efx
);
1086 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1087 [EF10_STAT_ ## ext_name] = \
1088 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1089 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1090 [EF10_STAT_ ## int_name] = \
1091 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1092 #define EF10_OTHER_STAT(ext_name) \
1093 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1094 #define GENERIC_SW_STAT(ext_name) \
1095 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1097 static const struct efx_hw_stat_desc efx_ef10_stat_desc
[EF10_STAT_COUNT
] = {
1098 EF10_DMA_STAT(port_tx_bytes
, TX_BYTES
),
1099 EF10_DMA_STAT(port_tx_packets
, TX_PKTS
),
1100 EF10_DMA_STAT(port_tx_pause
, TX_PAUSE_PKTS
),
1101 EF10_DMA_STAT(port_tx_control
, TX_CONTROL_PKTS
),
1102 EF10_DMA_STAT(port_tx_unicast
, TX_UNICAST_PKTS
),
1103 EF10_DMA_STAT(port_tx_multicast
, TX_MULTICAST_PKTS
),
1104 EF10_DMA_STAT(port_tx_broadcast
, TX_BROADCAST_PKTS
),
1105 EF10_DMA_STAT(port_tx_lt64
, TX_LT64_PKTS
),
1106 EF10_DMA_STAT(port_tx_64
, TX_64_PKTS
),
1107 EF10_DMA_STAT(port_tx_65_to_127
, TX_65_TO_127_PKTS
),
1108 EF10_DMA_STAT(port_tx_128_to_255
, TX_128_TO_255_PKTS
),
1109 EF10_DMA_STAT(port_tx_256_to_511
, TX_256_TO_511_PKTS
),
1110 EF10_DMA_STAT(port_tx_512_to_1023
, TX_512_TO_1023_PKTS
),
1111 EF10_DMA_STAT(port_tx_1024_to_15xx
, TX_1024_TO_15XX_PKTS
),
1112 EF10_DMA_STAT(port_tx_15xx_to_jumbo
, TX_15XX_TO_JUMBO_PKTS
),
1113 EF10_DMA_STAT(port_rx_bytes
, RX_BYTES
),
1114 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes
, RX_BAD_BYTES
),
1115 EF10_OTHER_STAT(port_rx_good_bytes
),
1116 EF10_OTHER_STAT(port_rx_bad_bytes
),
1117 EF10_DMA_STAT(port_rx_packets
, RX_PKTS
),
1118 EF10_DMA_STAT(port_rx_good
, RX_GOOD_PKTS
),
1119 EF10_DMA_STAT(port_rx_bad
, RX_BAD_FCS_PKTS
),
1120 EF10_DMA_STAT(port_rx_pause
, RX_PAUSE_PKTS
),
1121 EF10_DMA_STAT(port_rx_control
, RX_CONTROL_PKTS
),
1122 EF10_DMA_STAT(port_rx_unicast
, RX_UNICAST_PKTS
),
1123 EF10_DMA_STAT(port_rx_multicast
, RX_MULTICAST_PKTS
),
1124 EF10_DMA_STAT(port_rx_broadcast
, RX_BROADCAST_PKTS
),
1125 EF10_DMA_STAT(port_rx_lt64
, RX_UNDERSIZE_PKTS
),
1126 EF10_DMA_STAT(port_rx_64
, RX_64_PKTS
),
1127 EF10_DMA_STAT(port_rx_65_to_127
, RX_65_TO_127_PKTS
),
1128 EF10_DMA_STAT(port_rx_128_to_255
, RX_128_TO_255_PKTS
),
1129 EF10_DMA_STAT(port_rx_256_to_511
, RX_256_TO_511_PKTS
),
1130 EF10_DMA_STAT(port_rx_512_to_1023
, RX_512_TO_1023_PKTS
),
1131 EF10_DMA_STAT(port_rx_1024_to_15xx
, RX_1024_TO_15XX_PKTS
),
1132 EF10_DMA_STAT(port_rx_15xx_to_jumbo
, RX_15XX_TO_JUMBO_PKTS
),
1133 EF10_DMA_STAT(port_rx_gtjumbo
, RX_GTJUMBO_PKTS
),
1134 EF10_DMA_STAT(port_rx_bad_gtjumbo
, RX_JABBER_PKTS
),
1135 EF10_DMA_STAT(port_rx_overflow
, RX_OVERFLOW_PKTS
),
1136 EF10_DMA_STAT(port_rx_align_error
, RX_ALIGN_ERROR_PKTS
),
1137 EF10_DMA_STAT(port_rx_length_error
, RX_LENGTH_ERROR_PKTS
),
1138 EF10_DMA_STAT(port_rx_nodesc_drops
, RX_NODESC_DROPS
),
1139 GENERIC_SW_STAT(rx_nodesc_trunc
),
1140 GENERIC_SW_STAT(rx_noskb_drops
),
1141 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow
, PM_TRUNC_BB_OVERFLOW
),
1142 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow
, PM_DISCARD_BB_OVERFLOW
),
1143 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full
, PM_TRUNC_VFIFO_FULL
),
1144 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full
, PM_DISCARD_VFIFO_FULL
),
1145 EF10_DMA_STAT(port_rx_pm_trunc_qbb
, PM_TRUNC_QBB
),
1146 EF10_DMA_STAT(port_rx_pm_discard_qbb
, PM_DISCARD_QBB
),
1147 EF10_DMA_STAT(port_rx_pm_discard_mapping
, PM_DISCARD_MAPPING
),
1148 EF10_DMA_STAT(port_rx_dp_q_disabled_packets
, RXDP_Q_DISABLED_PKTS
),
1149 EF10_DMA_STAT(port_rx_dp_di_dropped_packets
, RXDP_DI_DROPPED_PKTS
),
1150 EF10_DMA_STAT(port_rx_dp_streaming_packets
, RXDP_STREAMING_PKTS
),
1151 EF10_DMA_STAT(port_rx_dp_hlb_fetch
, RXDP_HLB_FETCH_CONDITIONS
),
1152 EF10_DMA_STAT(port_rx_dp_hlb_wait
, RXDP_HLB_WAIT_CONDITIONS
),
1153 EF10_DMA_STAT(rx_unicast
, VADAPTER_RX_UNICAST_PACKETS
),
1154 EF10_DMA_STAT(rx_unicast_bytes
, VADAPTER_RX_UNICAST_BYTES
),
1155 EF10_DMA_STAT(rx_multicast
, VADAPTER_RX_MULTICAST_PACKETS
),
1156 EF10_DMA_STAT(rx_multicast_bytes
, VADAPTER_RX_MULTICAST_BYTES
),
1157 EF10_DMA_STAT(rx_broadcast
, VADAPTER_RX_BROADCAST_PACKETS
),
1158 EF10_DMA_STAT(rx_broadcast_bytes
, VADAPTER_RX_BROADCAST_BYTES
),
1159 EF10_DMA_STAT(rx_bad
, VADAPTER_RX_BAD_PACKETS
),
1160 EF10_DMA_STAT(rx_bad_bytes
, VADAPTER_RX_BAD_BYTES
),
1161 EF10_DMA_STAT(rx_overflow
, VADAPTER_RX_OVERFLOW
),
1162 EF10_DMA_STAT(tx_unicast
, VADAPTER_TX_UNICAST_PACKETS
),
1163 EF10_DMA_STAT(tx_unicast_bytes
, VADAPTER_TX_UNICAST_BYTES
),
1164 EF10_DMA_STAT(tx_multicast
, VADAPTER_TX_MULTICAST_PACKETS
),
1165 EF10_DMA_STAT(tx_multicast_bytes
, VADAPTER_TX_MULTICAST_BYTES
),
1166 EF10_DMA_STAT(tx_broadcast
, VADAPTER_TX_BROADCAST_PACKETS
),
1167 EF10_DMA_STAT(tx_broadcast_bytes
, VADAPTER_TX_BROADCAST_BYTES
),
1168 EF10_DMA_STAT(tx_bad
, VADAPTER_TX_BAD_PACKETS
),
1169 EF10_DMA_STAT(tx_bad_bytes
, VADAPTER_TX_BAD_BYTES
),
1170 EF10_DMA_STAT(tx_overflow
, VADAPTER_TX_OVERFLOW
),
1173 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1174 (1ULL << EF10_STAT_port_tx_packets) | \
1175 (1ULL << EF10_STAT_port_tx_pause) | \
1176 (1ULL << EF10_STAT_port_tx_unicast) | \
1177 (1ULL << EF10_STAT_port_tx_multicast) | \
1178 (1ULL << EF10_STAT_port_tx_broadcast) | \
1179 (1ULL << EF10_STAT_port_rx_bytes) | \
1181 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1182 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1183 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1184 (1ULL << EF10_STAT_port_rx_packets) | \
1185 (1ULL << EF10_STAT_port_rx_good) | \
1186 (1ULL << EF10_STAT_port_rx_bad) | \
1187 (1ULL << EF10_STAT_port_rx_pause) | \
1188 (1ULL << EF10_STAT_port_rx_control) | \
1189 (1ULL << EF10_STAT_port_rx_unicast) | \
1190 (1ULL << EF10_STAT_port_rx_multicast) | \
1191 (1ULL << EF10_STAT_port_rx_broadcast) | \
1192 (1ULL << EF10_STAT_port_rx_lt64) | \
1193 (1ULL << EF10_STAT_port_rx_64) | \
1194 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1195 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1196 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1197 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1198 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1199 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1200 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1201 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1202 (1ULL << EF10_STAT_port_rx_overflow) | \
1203 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1204 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1205 (1ULL << GENERIC_STAT_rx_noskb_drops))
1207 /* These statistics are only provided by the 10G MAC. For a 10G/40G
1208 * switchable port we do not expose these because they might not
1209 * include all the packets they should.
1211 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1212 (1ULL << EF10_STAT_port_tx_lt64) | \
1213 (1ULL << EF10_STAT_port_tx_64) | \
1214 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1215 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1216 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1217 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1218 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1219 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1221 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1222 * switchable port we do expose these because the errors will otherwise
1225 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1226 (1ULL << EF10_STAT_port_rx_length_error))
1228 /* These statistics are only provided if the firmware supports the
1229 * capability PM_AND_RXDP_COUNTERS.
1231 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1232 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1233 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1234 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1235 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1236 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1237 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1238 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1239 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1240 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1241 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1242 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1243 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1245 static u64
efx_ef10_raw_stat_mask(struct efx_nic
*efx
)
1247 u64 raw_mask
= HUNT_COMMON_STAT_MASK
;
1248 u32 port_caps
= efx_mcdi_phy_get_caps(efx
);
1249 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1251 if (!(efx
->mcdi
->fn_flags
&
1252 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
1255 if (port_caps
& (1 << MC_CMD_PHY_CAP_40000FDX_LBN
))
1256 raw_mask
|= HUNT_40G_EXTRA_STAT_MASK
;
1258 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1260 if (nic_data
->datapath_caps
&
1261 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN
))
1262 raw_mask
|= HUNT_PM_AND_RXDP_STAT_MASK
;
1267 static void efx_ef10_get_stat_mask(struct efx_nic
*efx
, unsigned long *mask
)
1269 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1272 raw_mask
[0] = efx_ef10_raw_stat_mask(efx
);
1274 /* Only show vadaptor stats when EVB capability is present */
1275 if (nic_data
->datapath_caps
&
1276 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
)) {
1277 raw_mask
[0] |= ~((1ULL << EF10_STAT_rx_unicast
) - 1);
1278 raw_mask
[1] = (1ULL << (EF10_STAT_COUNT
- 63)) - 1;
1283 #if BITS_PER_LONG == 64
1284 mask
[0] = raw_mask
[0];
1285 mask
[1] = raw_mask
[1];
1287 mask
[0] = raw_mask
[0] & 0xffffffff;
1288 mask
[1] = raw_mask
[0] >> 32;
1289 mask
[2] = raw_mask
[1] & 0xffffffff;
1290 mask
[3] = raw_mask
[1] >> 32;
1294 static size_t efx_ef10_describe_stats(struct efx_nic
*efx
, u8
*names
)
1296 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1298 efx_ef10_get_stat_mask(efx
, mask
);
1299 return efx_nic_describe_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
,
1303 static size_t efx_ef10_update_stats_common(struct efx_nic
*efx
, u64
*full_stats
,
1304 struct rtnl_link_stats64
*core_stats
)
1306 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1307 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1308 u64
*stats
= nic_data
->stats
;
1309 size_t stats_count
= 0, index
;
1311 efx_ef10_get_stat_mask(efx
, mask
);
1314 for_each_set_bit(index
, mask
, EF10_STAT_COUNT
) {
1315 if (efx_ef10_stat_desc
[index
].name
) {
1316 *full_stats
++ = stats
[index
];
1325 if (nic_data
->datapath_caps
&
1326 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
) {
1327 /* Use vadaptor stats. */
1328 core_stats
->rx_packets
= stats
[EF10_STAT_rx_unicast
] +
1329 stats
[EF10_STAT_rx_multicast
] +
1330 stats
[EF10_STAT_rx_broadcast
];
1331 core_stats
->tx_packets
= stats
[EF10_STAT_tx_unicast
] +
1332 stats
[EF10_STAT_tx_multicast
] +
1333 stats
[EF10_STAT_tx_broadcast
];
1334 core_stats
->rx_bytes
= stats
[EF10_STAT_rx_unicast_bytes
] +
1335 stats
[EF10_STAT_rx_multicast_bytes
] +
1336 stats
[EF10_STAT_rx_broadcast_bytes
];
1337 core_stats
->tx_bytes
= stats
[EF10_STAT_tx_unicast_bytes
] +
1338 stats
[EF10_STAT_tx_multicast_bytes
] +
1339 stats
[EF10_STAT_tx_broadcast_bytes
];
1340 core_stats
->rx_dropped
= stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1341 stats
[GENERIC_STAT_rx_noskb_drops
];
1342 core_stats
->multicast
= stats
[EF10_STAT_rx_multicast
];
1343 core_stats
->rx_crc_errors
= stats
[EF10_STAT_rx_bad
];
1344 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_rx_overflow
];
1345 core_stats
->rx_errors
= core_stats
->rx_crc_errors
;
1346 core_stats
->tx_errors
= stats
[EF10_STAT_tx_bad
];
1348 /* Use port stats. */
1349 core_stats
->rx_packets
= stats
[EF10_STAT_port_rx_packets
];
1350 core_stats
->tx_packets
= stats
[EF10_STAT_port_tx_packets
];
1351 core_stats
->rx_bytes
= stats
[EF10_STAT_port_rx_bytes
];
1352 core_stats
->tx_bytes
= stats
[EF10_STAT_port_tx_bytes
];
1353 core_stats
->rx_dropped
= stats
[EF10_STAT_port_rx_nodesc_drops
] +
1354 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1355 stats
[GENERIC_STAT_rx_noskb_drops
];
1356 core_stats
->multicast
= stats
[EF10_STAT_port_rx_multicast
];
1357 core_stats
->rx_length_errors
=
1358 stats
[EF10_STAT_port_rx_gtjumbo
] +
1359 stats
[EF10_STAT_port_rx_length_error
];
1360 core_stats
->rx_crc_errors
= stats
[EF10_STAT_port_rx_bad
];
1361 core_stats
->rx_frame_errors
=
1362 stats
[EF10_STAT_port_rx_align_error
];
1363 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_port_rx_overflow
];
1364 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
1365 core_stats
->rx_crc_errors
+
1366 core_stats
->rx_frame_errors
);
1372 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic
*efx
)
1374 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1375 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1376 __le64 generation_start
, generation_end
;
1377 u64
*stats
= nic_data
->stats
;
1380 efx_ef10_get_stat_mask(efx
, mask
);
1382 dma_stats
= efx
->stats_buffer
.addr
;
1383 nic_data
= efx
->nic_data
;
1385 generation_end
= dma_stats
[MC_CMD_MAC_GENERATION_END
];
1386 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
)
1389 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1390 stats
, efx
->stats_buffer
.addr
, false);
1392 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1393 if (generation_end
!= generation_start
)
1396 /* Update derived statistics */
1397 efx_nic_fix_nodesc_drop_stat(efx
,
1398 &stats
[EF10_STAT_port_rx_nodesc_drops
]);
1399 stats
[EF10_STAT_port_rx_good_bytes
] =
1400 stats
[EF10_STAT_port_rx_bytes
] -
1401 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
];
1402 efx_update_diff_stat(&stats
[EF10_STAT_port_rx_bad_bytes
],
1403 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
]);
1404 efx_update_sw_stats(efx
, stats
);
1409 static size_t efx_ef10_update_stats_pf(struct efx_nic
*efx
, u64
*full_stats
,
1410 struct rtnl_link_stats64
*core_stats
)
1414 /* If we're unlucky enough to read statistics during the DMA, wait
1415 * up to 10ms for it to finish (typically takes <500us)
1417 for (retry
= 0; retry
< 100; ++retry
) {
1418 if (efx_ef10_try_update_nic_stats_pf(efx
) == 0)
1423 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1426 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic
*efx
)
1428 MCDI_DECLARE_BUF(inbuf
, MC_CMD_MAC_STATS_IN_LEN
);
1429 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1430 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1431 __le64 generation_start
, generation_end
;
1432 u64
*stats
= nic_data
->stats
;
1433 u32 dma_len
= MC_CMD_MAC_NSTATS
* sizeof(u64
);
1434 struct efx_buffer stats_buf
;
1438 spin_unlock_bh(&efx
->stats_lock
);
1440 if (in_interrupt()) {
1441 /* If in atomic context, cannot update stats. Just update the
1442 * software stats and return so the caller can continue.
1444 spin_lock_bh(&efx
->stats_lock
);
1445 efx_update_sw_stats(efx
, stats
);
1449 efx_ef10_get_stat_mask(efx
, mask
);
1451 rc
= efx_nic_alloc_buffer(efx
, &stats_buf
, dma_len
, GFP_ATOMIC
);
1453 spin_lock_bh(&efx
->stats_lock
);
1457 dma_stats
= stats_buf
.addr
;
1458 dma_stats
[MC_CMD_MAC_GENERATION_END
] = EFX_MC_STATS_GENERATION_INVALID
;
1460 MCDI_SET_QWORD(inbuf
, MAC_STATS_IN_DMA_ADDR
, stats_buf
.dma_addr
);
1461 MCDI_POPULATE_DWORD_1(inbuf
, MAC_STATS_IN_CMD
,
1462 MAC_STATS_IN_DMA
, 1);
1463 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_DMA_LEN
, dma_len
);
1464 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
1466 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_MAC_STATS
, inbuf
, sizeof(inbuf
),
1468 spin_lock_bh(&efx
->stats_lock
);
1470 /* Expect ENOENT if DMA queues have not been set up */
1471 if (rc
!= -ENOENT
|| atomic_read(&efx
->active_queues
))
1472 efx_mcdi_display_error(efx
, MC_CMD_MAC_STATS
,
1473 sizeof(inbuf
), NULL
, 0, rc
);
1477 generation_end
= dma_stats
[MC_CMD_MAC_GENERATION_END
];
1478 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
) {
1483 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1484 stats
, stats_buf
.addr
, false);
1486 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1487 if (generation_end
!= generation_start
) {
1492 efx_update_sw_stats(efx
, stats
);
1494 efx_nic_free_buffer(efx
, &stats_buf
);
1498 static size_t efx_ef10_update_stats_vf(struct efx_nic
*efx
, u64
*full_stats
,
1499 struct rtnl_link_stats64
*core_stats
)
1501 if (efx_ef10_try_update_nic_stats_vf(efx
))
1504 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1507 static void efx_ef10_push_irq_moderation(struct efx_channel
*channel
)
1509 struct efx_nic
*efx
= channel
->efx
;
1510 unsigned int mode
, value
;
1511 efx_dword_t timer_cmd
;
1513 if (channel
->irq_moderation
) {
1515 value
= channel
->irq_moderation
- 1;
1521 if (EFX_EF10_WORKAROUND_35388(efx
)) {
1522 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DD_EVQ_IND_TIMER_FLAGS
,
1523 EFE_DD_EVQ_IND_TIMER_FLAGS
,
1524 ERF_DD_EVQ_IND_TIMER_MODE
, mode
,
1525 ERF_DD_EVQ_IND_TIMER_VAL
, value
);
1526 efx_writed_page(efx
, &timer_cmd
, ER_DD_EVQ_INDIRECT
,
1529 EFX_POPULATE_DWORD_2(timer_cmd
, ERF_DZ_TC_TIMER_MODE
, mode
,
1530 ERF_DZ_TC_TIMER_VAL
, value
);
1531 efx_writed_page(efx
, &timer_cmd
, ER_DZ_EVQ_TMR
,
1536 static void efx_ef10_get_wol_vf(struct efx_nic
*efx
,
1537 struct ethtool_wolinfo
*wol
) {}
1539 static int efx_ef10_set_wol_vf(struct efx_nic
*efx
, u32 type
)
1544 static void efx_ef10_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1548 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1551 static int efx_ef10_set_wol(struct efx_nic
*efx
, u32 type
)
1558 static void efx_ef10_mcdi_request(struct efx_nic
*efx
,
1559 const efx_dword_t
*hdr
, size_t hdr_len
,
1560 const efx_dword_t
*sdu
, size_t sdu_len
)
1562 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1563 u8
*pdu
= nic_data
->mcdi_buf
.addr
;
1565 memcpy(pdu
, hdr
, hdr_len
);
1566 memcpy(pdu
+ hdr_len
, sdu
, sdu_len
);
1569 /* The hardware provides 'low' and 'high' (doorbell) registers
1570 * for passing the 64-bit address of an MCDI request to
1571 * firmware. However the dwords are swapped by firmware. The
1572 * least significant bits of the doorbell are then 0 for all
1573 * MCDI requests due to alignment.
1575 _efx_writed(efx
, cpu_to_le32((u64
)nic_data
->mcdi_buf
.dma_addr
>> 32),
1577 _efx_writed(efx
, cpu_to_le32((u32
)nic_data
->mcdi_buf
.dma_addr
),
1581 static bool efx_ef10_mcdi_poll_response(struct efx_nic
*efx
)
1583 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1584 const efx_dword_t hdr
= *(const efx_dword_t
*)nic_data
->mcdi_buf
.addr
;
1587 return EFX_DWORD_FIELD(hdr
, MCDI_HEADER_RESPONSE
);
1591 efx_ef10_mcdi_read_response(struct efx_nic
*efx
, efx_dword_t
*outbuf
,
1592 size_t offset
, size_t outlen
)
1594 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1595 const u8
*pdu
= nic_data
->mcdi_buf
.addr
;
1597 memcpy(outbuf
, pdu
+ offset
, outlen
);
1600 static void efx_ef10_mcdi_reboot_detected(struct efx_nic
*efx
)
1602 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1604 /* All our allocations have been reset */
1605 efx_ef10_reset_mc_allocations(efx
);
1607 /* The datapath firmware might have been changed */
1608 nic_data
->must_check_datapath_caps
= true;
1610 /* MAC statistics have been cleared on the NIC; clear the local
1611 * statistic that we update with efx_update_diff_stat().
1613 nic_data
->stats
[EF10_STAT_port_rx_bad_bytes
] = 0;
1616 static int efx_ef10_mcdi_poll_reboot(struct efx_nic
*efx
)
1618 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1621 rc
= efx_ef10_get_warm_boot_count(efx
);
1623 /* The firmware is presumably in the process of
1624 * rebooting. However, we are supposed to report each
1625 * reboot just once, so we must only do that once we
1626 * can read and store the updated warm boot count.
1631 if (rc
== nic_data
->warm_boot_count
)
1634 nic_data
->warm_boot_count
= rc
;
1635 efx_ef10_mcdi_reboot_detected(efx
);
1640 /* Handle an MSI interrupt
1642 * Handle an MSI hardware interrupt. This routine schedules event
1643 * queue processing. No interrupt acknowledgement cycle is necessary.
1644 * Also, we never need to check that the interrupt is for us, since
1645 * MSI interrupts cannot be shared.
1647 static irqreturn_t
efx_ef10_msi_interrupt(int irq
, void *dev_id
)
1649 struct efx_msi_context
*context
= dev_id
;
1650 struct efx_nic
*efx
= context
->efx
;
1652 netif_vdbg(efx
, intr
, efx
->net_dev
,
1653 "IRQ %d on CPU %d\n", irq
, raw_smp_processor_id());
1655 if (likely(ACCESS_ONCE(efx
->irq_soft_enabled
))) {
1656 /* Note test interrupts */
1657 if (context
->index
== efx
->irq_level
)
1658 efx
->last_irq_cpu
= raw_smp_processor_id();
1660 /* Schedule processing of the channel */
1661 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
1667 static irqreturn_t
efx_ef10_legacy_interrupt(int irq
, void *dev_id
)
1669 struct efx_nic
*efx
= dev_id
;
1670 bool soft_enabled
= ACCESS_ONCE(efx
->irq_soft_enabled
);
1671 struct efx_channel
*channel
;
1675 /* Read the ISR which also ACKs the interrupts */
1676 efx_readd(efx
, ®
, ER_DZ_BIU_INT_ISR
);
1677 queues
= EFX_DWORD_FIELD(reg
, ERF_DZ_ISR_REG
);
1682 if (likely(soft_enabled
)) {
1683 /* Note test interrupts */
1684 if (queues
& (1U << efx
->irq_level
))
1685 efx
->last_irq_cpu
= raw_smp_processor_id();
1687 efx_for_each_channel(channel
, efx
) {
1689 efx_schedule_channel_irq(channel
);
1694 netif_vdbg(efx
, intr
, efx
->net_dev
,
1695 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1696 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1701 static void efx_ef10_irq_test_generate(struct efx_nic
*efx
)
1703 MCDI_DECLARE_BUF(inbuf
, MC_CMD_TRIGGER_INTERRUPT_IN_LEN
);
1705 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN
!= 0);
1707 MCDI_SET_DWORD(inbuf
, TRIGGER_INTERRUPT_IN_INTR_LEVEL
, efx
->irq_level
);
1708 (void) efx_mcdi_rpc(efx
, MC_CMD_TRIGGER_INTERRUPT
,
1709 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
1712 static int efx_ef10_tx_probe(struct efx_tx_queue
*tx_queue
)
1714 return efx_nic_alloc_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
,
1715 (tx_queue
->ptr_mask
+ 1) *
1716 sizeof(efx_qword_t
),
1720 /* This writes to the TX_DESC_WPTR and also pushes data */
1721 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue
*tx_queue
,
1722 const efx_qword_t
*txd
)
1724 unsigned int write_ptr
;
1727 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1728 EFX_POPULATE_OWORD_1(reg
, ERF_DZ_TX_DESC_WPTR
, write_ptr
);
1729 reg
.qword
[0] = *txd
;
1730 efx_writeo_page(tx_queue
->efx
, ®
,
1731 ER_DZ_TX_DESC_UPD
, tx_queue
->queue
);
1734 static void efx_ef10_tx_init(struct efx_tx_queue
*tx_queue
)
1736 MCDI_DECLARE_BUF(inbuf
, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
1738 bool csum_offload
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
1739 size_t entries
= tx_queue
->txd
.buf
.len
/ EFX_BUF_SIZE
;
1740 struct efx_channel
*channel
= tx_queue
->channel
;
1741 struct efx_nic
*efx
= tx_queue
->efx
;
1742 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1744 dma_addr_t dma_addr
;
1748 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN
!= 0);
1750 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_SIZE
, tx_queue
->ptr_mask
+ 1);
1751 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_TARGET_EVQ
, channel
->channel
);
1752 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_LABEL
, tx_queue
->queue
);
1753 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_INSTANCE
, tx_queue
->queue
);
1754 MCDI_POPULATE_DWORD_2(inbuf
, INIT_TXQ_IN_FLAGS
,
1755 INIT_TXQ_IN_FLAG_IP_CSUM_DIS
, !csum_offload
,
1756 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS
, !csum_offload
);
1757 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_OWNER_ID
, 0);
1758 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_PORT_ID
, nic_data
->vport_id
);
1760 dma_addr
= tx_queue
->txd
.buf
.dma_addr
;
1762 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing TXQ %d. %zu entries (%llx)\n",
1763 tx_queue
->queue
, entries
, (u64
)dma_addr
);
1765 for (i
= 0; i
< entries
; ++i
) {
1766 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_TXQ_IN_DMA_ADDR
, i
, dma_addr
);
1767 dma_addr
+= EFX_BUF_SIZE
;
1770 inlen
= MC_CMD_INIT_TXQ_IN_LEN(entries
);
1772 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_TXQ
, inbuf
, inlen
,
1777 /* A previous user of this TX queue might have set us up the
1778 * bomb by writing a descriptor to the TX push collector but
1779 * not the doorbell. (Each collector belongs to a port, not a
1780 * queue or function, so cannot easily be reset.) We must
1781 * attempt to push a no-op descriptor in its place.
1783 tx_queue
->buffer
[0].flags
= EFX_TX_BUF_OPTION
;
1784 tx_queue
->insert_count
= 1;
1785 txd
= efx_tx_desc(tx_queue
, 0);
1786 EFX_POPULATE_QWORD_4(*txd
,
1787 ESF_DZ_TX_DESC_IS_OPT
, true,
1788 ESF_DZ_TX_OPTION_TYPE
,
1789 ESE_DZ_TX_OPTION_DESC_CRC_CSUM
,
1790 ESF_DZ_TX_OPTION_UDP_TCP_CSUM
, csum_offload
,
1791 ESF_DZ_TX_OPTION_IP_CSUM
, csum_offload
);
1792 tx_queue
->write_count
= 1;
1794 if (nic_data
->datapath_caps
&
1795 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
)) {
1796 tx_queue
->tso_version
= 1;
1800 efx_ef10_push_tx_desc(tx_queue
, txd
);
1805 netdev_WARN(efx
->net_dev
, "failed to initialise TXQ %d\n",
1809 static void efx_ef10_tx_fini(struct efx_tx_queue
*tx_queue
)
1811 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_TXQ_IN_LEN
);
1812 MCDI_DECLARE_BUF_ERR(outbuf
);
1813 struct efx_nic
*efx
= tx_queue
->efx
;
1817 MCDI_SET_DWORD(inbuf
, FINI_TXQ_IN_INSTANCE
,
1820 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_TXQ
, inbuf
, sizeof(inbuf
),
1821 outbuf
, sizeof(outbuf
), &outlen
);
1823 if (rc
&& rc
!= -EALREADY
)
1829 efx_mcdi_display_error(efx
, MC_CMD_FINI_TXQ
, MC_CMD_FINI_TXQ_IN_LEN
,
1830 outbuf
, outlen
, rc
);
1833 static void efx_ef10_tx_remove(struct efx_tx_queue
*tx_queue
)
1835 efx_nic_free_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
);
1838 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1839 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
1841 unsigned int write_ptr
;
1844 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1845 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_TX_DESC_WPTR_DWORD
, write_ptr
);
1846 efx_writed_page(tx_queue
->efx
, ®
,
1847 ER_DZ_TX_DESC_UPD_DWORD
, tx_queue
->queue
);
1850 static void efx_ef10_tx_write(struct efx_tx_queue
*tx_queue
)
1852 unsigned int old_write_count
= tx_queue
->write_count
;
1853 struct efx_tx_buffer
*buffer
;
1854 unsigned int write_ptr
;
1857 tx_queue
->xmit_more_available
= false;
1858 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
1862 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1863 buffer
= &tx_queue
->buffer
[write_ptr
];
1864 txd
= efx_tx_desc(tx_queue
, write_ptr
);
1865 ++tx_queue
->write_count
;
1867 /* Create TX descriptor ring entry */
1868 if (buffer
->flags
& EFX_TX_BUF_OPTION
) {
1869 *txd
= buffer
->option
;
1871 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
1872 EFX_POPULATE_QWORD_3(
1875 buffer
->flags
& EFX_TX_BUF_CONT
,
1876 ESF_DZ_TX_KER_BYTE_CNT
, buffer
->len
,
1877 ESF_DZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
1879 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
1881 wmb(); /* Ensure descriptors are written before they are fetched */
1883 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
1884 txd
= efx_tx_desc(tx_queue
,
1885 old_write_count
& tx_queue
->ptr_mask
);
1886 efx_ef10_push_tx_desc(tx_queue
, txd
);
1889 efx_ef10_notify_tx_desc(tx_queue
);
1893 static int efx_ef10_alloc_rss_context(struct efx_nic
*efx
, u32
*context
,
1894 bool exclusive
, unsigned *context_size
)
1896 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN
);
1897 MCDI_DECLARE_BUF(outbuf
, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
);
1898 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1901 u32 alloc_type
= exclusive
?
1902 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE
:
1903 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED
;
1904 unsigned rss_spread
= exclusive
?
1906 min(rounddown_pow_of_two(efx
->rss_spread
),
1907 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE
);
1909 if (!exclusive
&& rss_spread
== 1) {
1910 *context
= EFX_EF10_RSS_CONTEXT_INVALID
;
1916 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID
,
1917 nic_data
->vport_id
);
1918 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_TYPE
, alloc_type
);
1919 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES
, rss_spread
);
1921 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_ALLOC
, inbuf
, sizeof(inbuf
),
1922 outbuf
, sizeof(outbuf
), &outlen
);
1926 if (outlen
< MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
)
1929 *context
= MCDI_DWORD(outbuf
, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID
);
1932 *context_size
= rss_spread
;
1937 static void efx_ef10_free_rss_context(struct efx_nic
*efx
, u32 context
)
1939 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_FREE_IN_LEN
);
1942 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID
,
1945 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_FREE
, inbuf
, sizeof(inbuf
),
1950 static int efx_ef10_populate_rss_table(struct efx_nic
*efx
, u32 context
,
1951 const u32
*rx_indir_table
)
1953 MCDI_DECLARE_BUF(tablebuf
, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN
);
1954 MCDI_DECLARE_BUF(keybuf
, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN
);
1957 MCDI_SET_DWORD(tablebuf
, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID
,
1959 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1960 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN
);
1962 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); ++i
)
1964 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE
)[i
] =
1965 (u8
) rx_indir_table
[i
];
1967 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_TABLE
, tablebuf
,
1968 sizeof(tablebuf
), NULL
, 0, NULL
);
1972 MCDI_SET_DWORD(keybuf
, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID
,
1974 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_hash_key
) !=
1975 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN
);
1976 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_hash_key
); ++i
)
1977 MCDI_PTR(keybuf
, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY
)[i
] =
1978 efx
->rx_hash_key
[i
];
1980 return efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_KEY
, keybuf
,
1981 sizeof(keybuf
), NULL
, 0, NULL
);
1984 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
)
1986 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1988 if (nic_data
->rx_rss_context
!= EFX_EF10_RSS_CONTEXT_INVALID
)
1989 efx_ef10_free_rss_context(efx
, nic_data
->rx_rss_context
);
1990 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
1993 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic
*efx
,
1994 unsigned *context_size
)
1996 u32 new_rx_rss_context
;
1997 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1998 int rc
= efx_ef10_alloc_rss_context(efx
, &new_rx_rss_context
,
1999 false, context_size
);
2004 nic_data
->rx_rss_context
= new_rx_rss_context
;
2005 nic_data
->rx_rss_context_exclusive
= false;
2006 efx_set_default_rx_indir_table(efx
);
2010 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic
*efx
,
2011 const u32
*rx_indir_table
)
2013 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2015 u32 new_rx_rss_context
;
2017 if (nic_data
->rx_rss_context
== EFX_EF10_RSS_CONTEXT_INVALID
||
2018 !nic_data
->rx_rss_context_exclusive
) {
2019 rc
= efx_ef10_alloc_rss_context(efx
, &new_rx_rss_context
,
2021 if (rc
== -EOPNOTSUPP
)
2026 new_rx_rss_context
= nic_data
->rx_rss_context
;
2029 rc
= efx_ef10_populate_rss_table(efx
, new_rx_rss_context
,
2034 if (nic_data
->rx_rss_context
!= new_rx_rss_context
)
2035 efx_ef10_rx_free_indir_table(efx
);
2036 nic_data
->rx_rss_context
= new_rx_rss_context
;
2037 nic_data
->rx_rss_context_exclusive
= true;
2038 if (rx_indir_table
!= efx
->rx_indir_table
)
2039 memcpy(efx
->rx_indir_table
, rx_indir_table
,
2040 sizeof(efx
->rx_indir_table
));
2044 if (new_rx_rss_context
!= nic_data
->rx_rss_context
)
2045 efx_ef10_free_rss_context(efx
, new_rx_rss_context
);
2047 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2051 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
2052 const u32
*rx_indir_table
)
2056 if (efx
->rss_spread
== 1)
2059 rc
= efx_ef10_rx_push_exclusive_rss_config(efx
, rx_indir_table
);
2061 if (rc
== -ENOBUFS
&& !user
) {
2062 unsigned context_size
;
2063 bool mismatch
= false;
2066 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
) && !mismatch
;
2068 mismatch
= rx_indir_table
[i
] !=
2069 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
2071 rc
= efx_ef10_rx_push_shared_rss_config(efx
, &context_size
);
2073 if (context_size
!= efx
->rss_spread
)
2074 netif_warn(efx
, probe
, efx
->net_dev
,
2075 "Could not allocate an exclusive RSS"
2076 " context; allocated a shared one of"
2078 " Wanted %u, got %u.\n",
2079 efx
->rss_spread
, context_size
);
2081 netif_warn(efx
, probe
, efx
->net_dev
,
2082 "Could not allocate an exclusive RSS"
2083 " context; allocated a shared one but"
2084 " could not apply custom"
2087 netif_info(efx
, probe
, efx
->net_dev
,
2088 "Could not allocate an exclusive RSS"
2089 " context; allocated a shared one.\n");
2095 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
2096 const u32
*rx_indir_table
2097 __attribute__ ((unused
)))
2099 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2103 if (nic_data
->rx_rss_context
!= EFX_EF10_RSS_CONTEXT_INVALID
)
2105 return efx_ef10_rx_push_shared_rss_config(efx
, NULL
);
2108 static int efx_ef10_rx_probe(struct efx_rx_queue
*rx_queue
)
2110 return efx_nic_alloc_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
,
2111 (rx_queue
->ptr_mask
+ 1) *
2112 sizeof(efx_qword_t
),
2116 static void efx_ef10_rx_init(struct efx_rx_queue
*rx_queue
)
2118 MCDI_DECLARE_BUF(inbuf
,
2119 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
2121 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
2122 size_t entries
= rx_queue
->rxd
.buf
.len
/ EFX_BUF_SIZE
;
2123 struct efx_nic
*efx
= rx_queue
->efx
;
2124 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2126 dma_addr_t dma_addr
;
2129 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN
!= 0);
2131 rx_queue
->scatter_n
= 0;
2132 rx_queue
->scatter_len
= 0;
2134 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_SIZE
, rx_queue
->ptr_mask
+ 1);
2135 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_TARGET_EVQ
, channel
->channel
);
2136 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_LABEL
, efx_rx_queue_index(rx_queue
));
2137 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_INSTANCE
,
2138 efx_rx_queue_index(rx_queue
));
2139 MCDI_POPULATE_DWORD_2(inbuf
, INIT_RXQ_IN_FLAGS
,
2140 INIT_RXQ_IN_FLAG_PREFIX
, 1,
2141 INIT_RXQ_IN_FLAG_TIMESTAMP
, 1);
2142 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_OWNER_ID
, 0);
2143 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_PORT_ID
, nic_data
->vport_id
);
2145 dma_addr
= rx_queue
->rxd
.buf
.dma_addr
;
2147 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing RXQ %d. %zu entries (%llx)\n",
2148 efx_rx_queue_index(rx_queue
), entries
, (u64
)dma_addr
);
2150 for (i
= 0; i
< entries
; ++i
) {
2151 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_RXQ_IN_DMA_ADDR
, i
, dma_addr
);
2152 dma_addr
+= EFX_BUF_SIZE
;
2155 inlen
= MC_CMD_INIT_RXQ_IN_LEN(entries
);
2157 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_RXQ
, inbuf
, inlen
,
2160 netdev_WARN(efx
->net_dev
, "failed to initialise RXQ %d\n",
2161 efx_rx_queue_index(rx_queue
));
2164 static void efx_ef10_rx_fini(struct efx_rx_queue
*rx_queue
)
2166 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_RXQ_IN_LEN
);
2167 MCDI_DECLARE_BUF_ERR(outbuf
);
2168 struct efx_nic
*efx
= rx_queue
->efx
;
2172 MCDI_SET_DWORD(inbuf
, FINI_RXQ_IN_INSTANCE
,
2173 efx_rx_queue_index(rx_queue
));
2175 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_RXQ
, inbuf
, sizeof(inbuf
),
2176 outbuf
, sizeof(outbuf
), &outlen
);
2178 if (rc
&& rc
!= -EALREADY
)
2184 efx_mcdi_display_error(efx
, MC_CMD_FINI_RXQ
, MC_CMD_FINI_RXQ_IN_LEN
,
2185 outbuf
, outlen
, rc
);
2188 static void efx_ef10_rx_remove(struct efx_rx_queue
*rx_queue
)
2190 efx_nic_free_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
);
2193 /* This creates an entry in the RX descriptor queue */
2195 efx_ef10_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
2197 struct efx_rx_buffer
*rx_buf
;
2200 rxd
= efx_rx_desc(rx_queue
, index
);
2201 rx_buf
= efx_rx_buffer(rx_queue
, index
);
2202 EFX_POPULATE_QWORD_2(*rxd
,
2203 ESF_DZ_RX_KER_BYTE_CNT
, rx_buf
->len
,
2204 ESF_DZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
2207 static void efx_ef10_rx_write(struct efx_rx_queue
*rx_queue
)
2209 struct efx_nic
*efx
= rx_queue
->efx
;
2210 unsigned int write_count
;
2213 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2214 write_count
= rx_queue
->added_count
& ~7;
2215 if (rx_queue
->notified_count
== write_count
)
2219 efx_ef10_build_rx_desc(
2221 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
2222 while (++rx_queue
->notified_count
!= write_count
);
2225 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_RX_DESC_WPTR
,
2226 write_count
& rx_queue
->ptr_mask
);
2227 efx_writed_page(efx
, ®
, ER_DZ_RX_DESC_UPD
,
2228 efx_rx_queue_index(rx_queue
));
2231 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete
;
2233 static void efx_ef10_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
2235 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
2236 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
2239 EFX_POPULATE_QWORD_2(event
,
2240 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
2241 ESF_DZ_EV_DATA
, EFX_EF10_REFILL
);
2243 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
2245 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2246 * already swapped the data to little-endian order.
2248 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
2249 sizeof(efx_qword_t
));
2251 efx_mcdi_rpc_async(channel
->efx
, MC_CMD_DRIVER_EVENT
,
2252 inbuf
, sizeof(inbuf
), 0,
2253 efx_ef10_rx_defer_refill_complete
, 0);
2257 efx_ef10_rx_defer_refill_complete(struct efx_nic
*efx
, unsigned long cookie
,
2258 int rc
, efx_dword_t
*outbuf
,
2259 size_t outlen_actual
)
2264 static int efx_ef10_ev_probe(struct efx_channel
*channel
)
2266 return efx_nic_alloc_buffer(channel
->efx
, &channel
->eventq
.buf
,
2267 (channel
->eventq_mask
+ 1) *
2268 sizeof(efx_qword_t
),
2272 static void efx_ef10_ev_fini(struct efx_channel
*channel
)
2274 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_EVQ_IN_LEN
);
2275 MCDI_DECLARE_BUF_ERR(outbuf
);
2276 struct efx_nic
*efx
= channel
->efx
;
2280 MCDI_SET_DWORD(inbuf
, FINI_EVQ_IN_INSTANCE
, channel
->channel
);
2282 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_EVQ
, inbuf
, sizeof(inbuf
),
2283 outbuf
, sizeof(outbuf
), &outlen
);
2285 if (rc
&& rc
!= -EALREADY
)
2291 efx_mcdi_display_error(efx
, MC_CMD_FINI_EVQ
, MC_CMD_FINI_EVQ_IN_LEN
,
2292 outbuf
, outlen
, rc
);
2295 static int efx_ef10_ev_init(struct efx_channel
*channel
)
2297 MCDI_DECLARE_BUF(inbuf
,
2298 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE
* 8 /
2300 MCDI_DECLARE_BUF(outbuf
, MC_CMD_INIT_EVQ_OUT_LEN
);
2301 size_t entries
= channel
->eventq
.buf
.len
/ EFX_BUF_SIZE
;
2302 struct efx_nic
*efx
= channel
->efx
;
2303 struct efx_ef10_nic_data
*nic_data
;
2304 bool supports_rx_merge
;
2305 size_t inlen
, outlen
;
2306 unsigned int enabled
, implemented
;
2307 dma_addr_t dma_addr
;
2311 nic_data
= efx
->nic_data
;
2313 !!(nic_data
->datapath_caps
&
2314 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
);
2316 /* Fill event queue with all ones (i.e. empty events) */
2317 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
2319 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_SIZE
, channel
->eventq_mask
+ 1);
2320 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_INSTANCE
, channel
->channel
);
2321 /* INIT_EVQ expects index in vector table, not absolute */
2322 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_IRQ_NUM
, channel
->channel
);
2323 MCDI_POPULATE_DWORD_4(inbuf
, INIT_EVQ_IN_FLAGS
,
2324 INIT_EVQ_IN_FLAG_INTERRUPTING
, 1,
2325 INIT_EVQ_IN_FLAG_RX_MERGE
, 1,
2326 INIT_EVQ_IN_FLAG_TX_MERGE
, 1,
2327 INIT_EVQ_IN_FLAG_CUT_THRU
, !supports_rx_merge
);
2328 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_MODE
,
2329 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS
);
2330 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_LOAD
, 0);
2331 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_RELOAD
, 0);
2332 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_MODE
,
2333 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS
);
2334 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_THRSHLD
, 0);
2336 dma_addr
= channel
->eventq
.buf
.dma_addr
;
2337 for (i
= 0; i
< entries
; ++i
) {
2338 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_EVQ_IN_DMA_ADDR
, i
, dma_addr
);
2339 dma_addr
+= EFX_BUF_SIZE
;
2342 inlen
= MC_CMD_INIT_EVQ_IN_LEN(entries
);
2344 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_EVQ
, inbuf
, inlen
,
2345 outbuf
, sizeof(outbuf
), &outlen
);
2346 /* IRQ return is ignored */
2347 if (channel
->channel
|| rc
)
2350 /* Successfully created event queue on channel 0 */
2351 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
2352 if (rc
== -ENOSYS
) {
2353 /* GET_WORKAROUNDS was implemented before the bug26807
2354 * workaround, thus the latter must be unavailable in this fw
2356 nic_data
->workaround_26807
= false;
2361 nic_data
->workaround_26807
=
2362 !!(enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
);
2364 if (implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
&&
2365 !nic_data
->workaround_26807
) {
2368 rc
= efx_mcdi_set_workaround(efx
,
2369 MC_CMD_WORKAROUND_BUG26807
,
2374 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN
) {
2375 netif_info(efx
, drv
, efx
->net_dev
,
2376 "other functions on NIC have been reset\n");
2378 /* With MCFW v4.6.x and earlier, the
2379 * boot count will have incremented,
2380 * so re-read the warm_boot_count
2381 * value now to ensure this function
2382 * doesn't think it has changed next
2385 rc
= efx_ef10_get_warm_boot_count(efx
);
2387 nic_data
->warm_boot_count
= rc
;
2391 nic_data
->workaround_26807
= true;
2392 } else if (rc
== -EPERM
) {
2402 efx_ef10_ev_fini(channel
);
2406 static void efx_ef10_ev_remove(struct efx_channel
*channel
)
2408 efx_nic_free_buffer(channel
->efx
, &channel
->eventq
.buf
);
2411 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue
*rx_queue
,
2412 unsigned int rx_queue_label
)
2414 struct efx_nic
*efx
= rx_queue
->efx
;
2416 netif_info(efx
, hw
, efx
->net_dev
,
2417 "rx event arrived on queue %d labeled as queue %u\n",
2418 efx_rx_queue_index(rx_queue
), rx_queue_label
);
2420 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2424 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue
*rx_queue
,
2425 unsigned int actual
, unsigned int expected
)
2427 unsigned int dropped
= (actual
- expected
) & rx_queue
->ptr_mask
;
2428 struct efx_nic
*efx
= rx_queue
->efx
;
2430 netif_info(efx
, hw
, efx
->net_dev
,
2431 "dropped %d events (index=%d expected=%d)\n",
2432 dropped
, actual
, expected
);
2434 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
2437 /* partially received RX was aborted. clean up. */
2438 static void efx_ef10_handle_rx_abort(struct efx_rx_queue
*rx_queue
)
2440 unsigned int rx_desc_ptr
;
2442 netif_dbg(rx_queue
->efx
, hw
, rx_queue
->efx
->net_dev
,
2443 "scattered RX aborted (dropping %u buffers)\n",
2444 rx_queue
->scatter_n
);
2446 rx_desc_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
2448 efx_rx_packet(rx_queue
, rx_desc_ptr
, rx_queue
->scatter_n
,
2449 0, EFX_RX_PKT_DISCARD
);
2451 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2452 rx_queue
->scatter_n
= 0;
2453 rx_queue
->scatter_len
= 0;
2454 ++efx_rx_queue_channel(rx_queue
)->n_rx_nodesc_trunc
;
2457 static int efx_ef10_handle_rx_event(struct efx_channel
*channel
,
2458 const efx_qword_t
*event
)
2460 unsigned int rx_bytes
, next_ptr_lbits
, rx_queue_label
, rx_l4_class
;
2461 unsigned int n_descs
, n_packets
, i
;
2462 struct efx_nic
*efx
= channel
->efx
;
2463 struct efx_rx_queue
*rx_queue
;
2467 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
2470 /* Basic packet information */
2471 rx_bytes
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_BYTES
);
2472 next_ptr_lbits
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DSC_PTR_LBITS
);
2473 rx_queue_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_QLABEL
);
2474 rx_l4_class
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_L4_CLASS
);
2475 rx_cont
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_CONT
);
2477 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DROP_EVENT
))
2478 netdev_WARN(efx
->net_dev
, "saw RX_DROP_EVENT: event="
2480 EFX_QWORD_VAL(*event
));
2482 rx_queue
= efx_channel_get_rx_queue(channel
);
2484 if (unlikely(rx_queue_label
!= efx_rx_queue_index(rx_queue
)))
2485 efx_ef10_handle_rx_wrong_queue(rx_queue
, rx_queue_label
);
2487 n_descs
= ((next_ptr_lbits
- rx_queue
->removed_count
) &
2488 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2490 if (n_descs
!= rx_queue
->scatter_n
+ 1) {
2491 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2493 /* detect rx abort */
2494 if (unlikely(n_descs
== rx_queue
->scatter_n
)) {
2495 if (rx_queue
->scatter_n
== 0 || rx_bytes
!= 0)
2496 netdev_WARN(efx
->net_dev
,
2497 "invalid RX abort: scatter_n=%u event="
2499 rx_queue
->scatter_n
,
2500 EFX_QWORD_VAL(*event
));
2501 efx_ef10_handle_rx_abort(rx_queue
);
2505 /* Check that RX completion merging is valid, i.e.
2506 * the current firmware supports it and this is a
2507 * non-scattered packet.
2509 if (!(nic_data
->datapath_caps
&
2510 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
)) ||
2511 rx_queue
->scatter_n
!= 0 || rx_cont
) {
2512 efx_ef10_handle_rx_bad_lbits(
2513 rx_queue
, next_ptr_lbits
,
2514 (rx_queue
->removed_count
+
2515 rx_queue
->scatter_n
+ 1) &
2516 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
2520 /* Merged completion for multiple non-scattered packets */
2521 rx_queue
->scatter_n
= 1;
2522 rx_queue
->scatter_len
= 0;
2523 n_packets
= n_descs
;
2524 ++channel
->n_rx_merge_events
;
2525 channel
->n_rx_merge_packets
+= n_packets
;
2526 flags
|= EFX_RX_PKT_PREFIX_LEN
;
2528 ++rx_queue
->scatter_n
;
2529 rx_queue
->scatter_len
+= rx_bytes
;
2535 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_RX_ECRC_ERR
)))
2536 flags
|= EFX_RX_PKT_DISCARD
;
2538 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_RX_IPCKSUM_ERR
))) {
2539 channel
->n_rx_ip_hdr_chksum_err
+= n_packets
;
2540 } else if (unlikely(EFX_QWORD_FIELD(*event
,
2541 ESF_DZ_RX_TCPUDP_CKSUM_ERR
))) {
2542 channel
->n_rx_tcp_udp_chksum_err
+= n_packets
;
2543 } else if (rx_l4_class
== ESE_DZ_L4_CLASS_TCP
||
2544 rx_l4_class
== ESE_DZ_L4_CLASS_UDP
) {
2545 flags
|= EFX_RX_PKT_CSUMMED
;
2548 if (rx_l4_class
== ESE_DZ_L4_CLASS_TCP
)
2549 flags
|= EFX_RX_PKT_TCP
;
2551 channel
->irq_mod_score
+= 2 * n_packets
;
2553 /* Handle received packet(s) */
2554 for (i
= 0; i
< n_packets
; i
++) {
2555 efx_rx_packet(rx_queue
,
2556 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
2557 rx_queue
->scatter_n
, rx_queue
->scatter_len
,
2559 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
2562 rx_queue
->scatter_n
= 0;
2563 rx_queue
->scatter_len
= 0;
2569 efx_ef10_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
2571 struct efx_nic
*efx
= channel
->efx
;
2572 struct efx_tx_queue
*tx_queue
;
2573 unsigned int tx_ev_desc_ptr
;
2574 unsigned int tx_ev_q_label
;
2577 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
2580 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DROP_EVENT
)))
2583 /* Transmit completion */
2584 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DESCR_INDX
);
2585 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_QLABEL
);
2586 tx_queue
= efx_channel_get_tx_queue(channel
,
2587 tx_ev_q_label
% EFX_TXQ_TYPES
);
2588 tx_descs
= ((tx_ev_desc_ptr
+ 1 - tx_queue
->read_count
) &
2589 tx_queue
->ptr_mask
);
2590 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
& tx_queue
->ptr_mask
);
2596 efx_ef10_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
2598 struct efx_nic
*efx
= channel
->efx
;
2601 subcode
= EFX_QWORD_FIELD(*event
, ESF_DZ_DRV_SUB_CODE
);
2604 case ESE_DZ_DRV_TIMER_EV
:
2605 case ESE_DZ_DRV_WAKE_UP_EV
:
2607 case ESE_DZ_DRV_START_UP_EV
:
2608 /* event queue init complete. ok. */
2611 netif_err(efx
, hw
, efx
->net_dev
,
2612 "channel %d unknown driver event type %d"
2613 " (data " EFX_QWORD_FMT
")\n",
2614 channel
->channel
, subcode
,
2615 EFX_QWORD_VAL(*event
));
2620 static void efx_ef10_handle_driver_generated_event(struct efx_channel
*channel
,
2623 struct efx_nic
*efx
= channel
->efx
;
2626 subcode
= EFX_QWORD_FIELD(*event
, EFX_DWORD_0
);
2630 channel
->event_test_cpu
= raw_smp_processor_id();
2632 case EFX_EF10_REFILL
:
2633 /* The queue must be empty, so we won't receive any rx
2634 * events, so efx_process_channel() won't refill the
2635 * queue. Refill it here
2637 efx_fast_push_rx_descriptors(&channel
->rx_queue
, true);
2640 netif_err(efx
, hw
, efx
->net_dev
,
2641 "channel %d unknown driver event type %u"
2642 " (data " EFX_QWORD_FMT
")\n",
2643 channel
->channel
, (unsigned) subcode
,
2644 EFX_QWORD_VAL(*event
));
2648 static int efx_ef10_ev_process(struct efx_channel
*channel
, int quota
)
2650 struct efx_nic
*efx
= channel
->efx
;
2651 efx_qword_t event
, *p_event
;
2652 unsigned int read_ptr
;
2660 read_ptr
= channel
->eventq_read_ptr
;
2663 p_event
= efx_event(channel
, read_ptr
);
2666 if (!efx_event_present(&event
))
2669 EFX_SET_QWORD(*p_event
);
2673 ev_code
= EFX_QWORD_FIELD(event
, ESF_DZ_EV_CODE
);
2675 netif_vdbg(efx
, drv
, efx
->net_dev
,
2676 "processing event on %d " EFX_QWORD_FMT
"\n",
2677 channel
->channel
, EFX_QWORD_VAL(event
));
2680 case ESE_DZ_EV_CODE_MCDI_EV
:
2681 efx_mcdi_process_event(channel
, &event
);
2683 case ESE_DZ_EV_CODE_RX_EV
:
2684 spent
+= efx_ef10_handle_rx_event(channel
, &event
);
2685 if (spent
>= quota
) {
2686 /* XXX can we split a merged event to
2687 * avoid going over-quota?
2693 case ESE_DZ_EV_CODE_TX_EV
:
2694 tx_descs
+= efx_ef10_handle_tx_event(channel
, &event
);
2695 if (tx_descs
> efx
->txq_entries
) {
2698 } else if (++spent
== quota
) {
2702 case ESE_DZ_EV_CODE_DRIVER_EV
:
2703 efx_ef10_handle_driver_event(channel
, &event
);
2704 if (++spent
== quota
)
2707 case EFX_EF10_DRVGEN_EV
:
2708 efx_ef10_handle_driver_generated_event(channel
, &event
);
2711 netif_err(efx
, hw
, efx
->net_dev
,
2712 "channel %d unknown event type %d"
2713 " (data " EFX_QWORD_FMT
")\n",
2714 channel
->channel
, ev_code
,
2715 EFX_QWORD_VAL(event
));
2720 channel
->eventq_read_ptr
= read_ptr
;
2724 static void efx_ef10_ev_read_ack(struct efx_channel
*channel
)
2726 struct efx_nic
*efx
= channel
->efx
;
2729 if (EFX_EF10_WORKAROUND_35388(efx
)) {
2730 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE
<
2731 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH
));
2732 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE
>
2733 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH
));
2735 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
2736 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH
,
2737 ERF_DD_EVQ_IND_RPTR
,
2738 (channel
->eventq_read_ptr
&
2739 channel
->eventq_mask
) >>
2740 ERF_DD_EVQ_IND_RPTR_WIDTH
);
2741 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
2743 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
2744 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW
,
2745 ERF_DD_EVQ_IND_RPTR
,
2746 channel
->eventq_read_ptr
&
2747 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH
) - 1));
2748 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
2751 EFX_POPULATE_DWORD_1(rptr
, ERF_DZ_EVQ_RPTR
,
2752 channel
->eventq_read_ptr
&
2753 channel
->eventq_mask
);
2754 efx_writed_page(efx
, &rptr
, ER_DZ_EVQ_RPTR
, channel
->channel
);
2758 static void efx_ef10_ev_test_generate(struct efx_channel
*channel
)
2760 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
2761 struct efx_nic
*efx
= channel
->efx
;
2765 EFX_POPULATE_QWORD_2(event
,
2766 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
2767 ESF_DZ_EV_DATA
, EFX_EF10_TEST
);
2769 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
2771 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2772 * already swapped the data to little-endian order.
2774 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
2775 sizeof(efx_qword_t
));
2777 rc
= efx_mcdi_rpc(efx
, MC_CMD_DRIVER_EVENT
, inbuf
, sizeof(inbuf
),
2786 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2789 void efx_ef10_handle_drain_event(struct efx_nic
*efx
)
2791 if (atomic_dec_and_test(&efx
->active_queues
))
2792 wake_up(&efx
->flush_wq
);
2794 WARN_ON(atomic_read(&efx
->active_queues
) < 0);
2797 static int efx_ef10_fini_dmaq(struct efx_nic
*efx
)
2799 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2800 struct efx_channel
*channel
;
2801 struct efx_tx_queue
*tx_queue
;
2802 struct efx_rx_queue
*rx_queue
;
2805 /* If the MC has just rebooted, the TX/RX queues will have already been
2806 * torn down, but efx->active_queues needs to be set to zero.
2808 if (nic_data
->must_realloc_vis
) {
2809 atomic_set(&efx
->active_queues
, 0);
2813 /* Do not attempt to write to the NIC during EEH recovery */
2814 if (efx
->state
!= STATE_RECOVERY
) {
2815 efx_for_each_channel(channel
, efx
) {
2816 efx_for_each_channel_rx_queue(rx_queue
, channel
)
2817 efx_ef10_rx_fini(rx_queue
);
2818 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2819 efx_ef10_tx_fini(tx_queue
);
2822 wait_event_timeout(efx
->flush_wq
,
2823 atomic_read(&efx
->active_queues
) == 0,
2824 msecs_to_jiffies(EFX_MAX_FLUSH_TIME
));
2825 pending
= atomic_read(&efx
->active_queues
);
2827 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues\n",
2836 static void efx_ef10_prepare_flr(struct efx_nic
*efx
)
2838 atomic_set(&efx
->active_queues
, 0);
2841 static bool efx_ef10_filter_equal(const struct efx_filter_spec
*left
,
2842 const struct efx_filter_spec
*right
)
2844 if ((left
->match_flags
^ right
->match_flags
) |
2845 ((left
->flags
^ right
->flags
) &
2846 (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_TX
)))
2849 return memcmp(&left
->outer_vid
, &right
->outer_vid
,
2850 sizeof(struct efx_filter_spec
) -
2851 offsetof(struct efx_filter_spec
, outer_vid
)) == 0;
2854 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec
*spec
)
2856 BUILD_BUG_ON(offsetof(struct efx_filter_spec
, outer_vid
) & 3);
2857 return jhash2((const u32
*)&spec
->outer_vid
,
2858 (sizeof(struct efx_filter_spec
) -
2859 offsetof(struct efx_filter_spec
, outer_vid
)) / 4,
2861 /* XXX should we randomise the initval? */
2864 /* Decide whether a filter should be exclusive or else should allow
2865 * delivery to additional recipients. Currently we decide that
2866 * filters for specific local unicast MAC and IP addresses are
2869 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec
*spec
)
2871 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC
&&
2872 !is_multicast_ether_addr(spec
->loc_mac
))
2875 if ((spec
->match_flags
&
2876 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) ==
2877 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) {
2878 if (spec
->ether_type
== htons(ETH_P_IP
) &&
2879 !ipv4_is_multicast(spec
->loc_host
[0]))
2881 if (spec
->ether_type
== htons(ETH_P_IPV6
) &&
2882 ((const u8
*)spec
->loc_host
)[0] != 0xff)
2889 static struct efx_filter_spec
*
2890 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table
*table
,
2891 unsigned int filter_idx
)
2893 return (struct efx_filter_spec
*)(table
->entry
[filter_idx
].spec
&
2894 ~EFX_EF10_FILTER_FLAGS
);
2898 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table
*table
,
2899 unsigned int filter_idx
)
2901 return table
->entry
[filter_idx
].spec
& EFX_EF10_FILTER_FLAGS
;
2905 efx_ef10_filter_set_entry(struct efx_ef10_filter_table
*table
,
2906 unsigned int filter_idx
,
2907 const struct efx_filter_spec
*spec
,
2910 table
->entry
[filter_idx
].spec
= (unsigned long)spec
| flags
;
2913 static void efx_ef10_filter_push_prep(struct efx_nic
*efx
,
2914 const struct efx_filter_spec
*spec
,
2915 efx_dword_t
*inbuf
, u64 handle
,
2918 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2920 memset(inbuf
, 0, MC_CMD_FILTER_OP_IN_LEN
);
2923 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2924 MC_CMD_FILTER_OP_IN_OP_REPLACE
);
2925 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
, handle
);
2927 u32 match_fields
= 0;
2929 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2930 efx_ef10_filter_is_exclusive(spec
) ?
2931 MC_CMD_FILTER_OP_IN_OP_INSERT
:
2932 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE
);
2934 /* Convert match flags and values. Unlike almost
2935 * everything else in MCDI, these fields are in
2936 * network byte order.
2938 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC_IG
)
2940 is_multicast_ether_addr(spec
->loc_mac
) ?
2941 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN
:
2942 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN
;
2943 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2944 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2946 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2947 mcdi_field ## _LBN; \
2949 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2950 sizeof(spec->gen_field)); \
2951 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2952 &spec->gen_field, sizeof(spec->gen_field)); \
2954 COPY_FIELD(REM_HOST
, rem_host
, SRC_IP
);
2955 COPY_FIELD(LOC_HOST
, loc_host
, DST_IP
);
2956 COPY_FIELD(REM_MAC
, rem_mac
, SRC_MAC
);
2957 COPY_FIELD(REM_PORT
, rem_port
, SRC_PORT
);
2958 COPY_FIELD(LOC_MAC
, loc_mac
, DST_MAC
);
2959 COPY_FIELD(LOC_PORT
, loc_port
, DST_PORT
);
2960 COPY_FIELD(ETHER_TYPE
, ether_type
, ETHER_TYPE
);
2961 COPY_FIELD(INNER_VID
, inner_vid
, INNER_VLAN
);
2962 COPY_FIELD(OUTER_VID
, outer_vid
, OUTER_VLAN
);
2963 COPY_FIELD(IP_PROTO
, ip_proto
, IP_PROTO
);
2965 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_MATCH_FIELDS
,
2969 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_PORT_ID
, nic_data
->vport_id
);
2970 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_DEST
,
2971 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
2972 MC_CMD_FILTER_OP_IN_RX_DEST_DROP
:
2973 MC_CMD_FILTER_OP_IN_RX_DEST_HOST
);
2974 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_TX_DOMAIN
, 0);
2975 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_TX_DEST
,
2976 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT
);
2977 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_QUEUE
,
2978 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
2980 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_MODE
,
2981 (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) ?
2982 MC_CMD_FILTER_OP_IN_RX_MODE_RSS
:
2983 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE
);
2984 if (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
)
2985 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_CONTEXT
,
2986 spec
->rss_context
!=
2987 EFX_FILTER_RSS_CONTEXT_DEFAULT
?
2988 spec
->rss_context
: nic_data
->rx_rss_context
);
2991 static int efx_ef10_filter_push(struct efx_nic
*efx
,
2992 const struct efx_filter_spec
*spec
,
2993 u64
*handle
, bool replacing
)
2995 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
2996 MCDI_DECLARE_BUF(outbuf
, MC_CMD_FILTER_OP_OUT_LEN
);
2999 efx_ef10_filter_push_prep(efx
, spec
, inbuf
, *handle
, replacing
);
3000 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
3001 outbuf
, sizeof(outbuf
), NULL
);
3003 *handle
= MCDI_QWORD(outbuf
, FILTER_OP_OUT_HANDLE
);
3005 rc
= -EBUSY
; /* to match efx_farch_filter_insert() */
3009 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table
*table
,
3010 enum efx_filter_match_flags match_flags
)
3012 unsigned int match_pri
;
3015 match_pri
< table
->rx_match_count
;
3017 if (table
->rx_match_flags
[match_pri
] == match_flags
)
3020 return -EPROTONOSUPPORT
;
3023 static s32
efx_ef10_filter_insert(struct efx_nic
*efx
,
3024 struct efx_filter_spec
*spec
,
3027 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3028 DECLARE_BITMAP(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
3029 struct efx_filter_spec
*saved_spec
;
3030 unsigned int match_pri
, hash
;
3031 unsigned int priv_flags
;
3032 bool replacing
= false;
3038 /* For now, only support RX filters */
3039 if ((spec
->flags
& (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_TX
)) !=
3043 rc
= efx_ef10_filter_rx_match_pri(table
, spec
->match_flags
);
3048 hash
= efx_ef10_filter_hash(spec
);
3049 is_mc_recip
= efx_filter_is_mc_recipient(spec
);
3051 bitmap_zero(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
3053 /* Find any existing filters with the same match tuple or
3054 * else a free slot to insert at. If any of them are busy,
3055 * we have to wait and retry.
3058 unsigned int depth
= 1;
3061 spin_lock_bh(&efx
->filter_lock
);
3064 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3065 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
3070 } else if (efx_ef10_filter_equal(spec
, saved_spec
)) {
3071 if (table
->entry
[i
].spec
&
3072 EFX_EF10_FILTER_FLAG_BUSY
)
3074 if (spec
->priority
< saved_spec
->priority
&&
3075 spec
->priority
!= EFX_FILTER_PRI_AUTO
) {
3080 /* This is the only one */
3081 if (spec
->priority
==
3082 saved_spec
->priority
&&
3089 } else if (spec
->priority
>
3090 saved_spec
->priority
||
3092 saved_spec
->priority
&&
3097 __set_bit(depth
, mc_rem_map
);
3101 /* Once we reach the maximum search depth, use
3102 * the first suitable slot or return -EBUSY if
3105 if (depth
== EFX_EF10_FILTER_SEARCH_LIMIT
) {
3106 if (ins_index
< 0) {
3116 prepare_to_wait(&table
->waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
3117 spin_unlock_bh(&efx
->filter_lock
);
3122 /* Create a software table entry if necessary, and mark it
3123 * busy. We might yet fail to insert, but any attempt to
3124 * insert a conflicting filter while we're waiting for the
3125 * firmware must find the busy entry.
3127 saved_spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
3129 if (spec
->priority
== EFX_FILTER_PRI_AUTO
&&
3130 saved_spec
->priority
>= EFX_FILTER_PRI_AUTO
) {
3131 /* Just make sure it won't be removed */
3132 if (saved_spec
->priority
> EFX_FILTER_PRI_AUTO
)
3133 saved_spec
->flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
3134 table
->entry
[ins_index
].spec
&=
3135 ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
3140 priv_flags
= efx_ef10_filter_entry_flags(table
, ins_index
);
3142 saved_spec
= kmalloc(sizeof(*spec
), GFP_ATOMIC
);
3147 *saved_spec
= *spec
;
3150 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
,
3151 priv_flags
| EFX_EF10_FILTER_FLAG_BUSY
);
3153 /* Mark lower-priority multicast recipients busy prior to removal */
3155 unsigned int depth
, i
;
3157 for (depth
= 0; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
3158 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3159 if (test_bit(depth
, mc_rem_map
))
3160 table
->entry
[i
].spec
|=
3161 EFX_EF10_FILTER_FLAG_BUSY
;
3165 spin_unlock_bh(&efx
->filter_lock
);
3167 rc
= efx_ef10_filter_push(efx
, spec
, &table
->entry
[ins_index
].handle
,
3170 /* Finalise the software table entry */
3171 spin_lock_bh(&efx
->filter_lock
);
3174 /* Update the fields that may differ */
3175 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
)
3176 saved_spec
->flags
|=
3177 EFX_FILTER_FLAG_RX_OVER_AUTO
;
3178 saved_spec
->priority
= spec
->priority
;
3179 saved_spec
->flags
&= EFX_FILTER_FLAG_RX_OVER_AUTO
;
3180 saved_spec
->flags
|= spec
->flags
;
3181 saved_spec
->rss_context
= spec
->rss_context
;
3182 saved_spec
->dmaq_id
= spec
->dmaq_id
;
3184 } else if (!replacing
) {
3188 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
, priv_flags
);
3190 /* Remove and finalise entries for lower-priority multicast
3194 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3195 unsigned int depth
, i
;
3197 memset(inbuf
, 0, sizeof(inbuf
));
3199 for (depth
= 0; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
3200 if (!test_bit(depth
, mc_rem_map
))
3203 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3204 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
3205 priv_flags
= efx_ef10_filter_entry_flags(table
, i
);
3208 spin_unlock_bh(&efx
->filter_lock
);
3209 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3210 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
3211 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3212 table
->entry
[i
].handle
);
3213 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
,
3214 inbuf
, sizeof(inbuf
),
3216 spin_lock_bh(&efx
->filter_lock
);
3224 priv_flags
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
3226 efx_ef10_filter_set_entry(table
, i
, saved_spec
,
3231 /* If successful, return the inserted filter ID */
3233 rc
= match_pri
* HUNT_FILTER_TBL_ROWS
+ ins_index
;
3235 wake_up_all(&table
->waitq
);
3237 spin_unlock_bh(&efx
->filter_lock
);
3238 finish_wait(&table
->waitq
, &wait
);
3242 static void efx_ef10_filter_update_rx_scatter(struct efx_nic
*efx
)
3244 /* no need to do anything here on EF10 */
3248 * If !by_index, remove by ID
3249 * If by_index, remove by index
3250 * Filter ID may come from userland and must be range-checked.
3252 static int efx_ef10_filter_remove_internal(struct efx_nic
*efx
,
3253 unsigned int priority_mask
,
3254 u32 filter_id
, bool by_index
)
3256 unsigned int filter_idx
= filter_id
% HUNT_FILTER_TBL_ROWS
;
3257 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3258 MCDI_DECLARE_BUF(inbuf
,
3259 MC_CMD_FILTER_OP_IN_HANDLE_OFST
+
3260 MC_CMD_FILTER_OP_IN_HANDLE_LEN
);
3261 struct efx_filter_spec
*spec
;
3265 /* Find the software table entry and mark it busy. Don't
3266 * remove it yet; any attempt to update while we're waiting
3267 * for the firmware must find the busy entry.
3270 spin_lock_bh(&efx
->filter_lock
);
3271 if (!(table
->entry
[filter_idx
].spec
&
3272 EFX_EF10_FILTER_FLAG_BUSY
))
3274 prepare_to_wait(&table
->waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
3275 spin_unlock_bh(&efx
->filter_lock
);
3279 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3282 efx_ef10_filter_rx_match_pri(table
, spec
->match_flags
) !=
3283 filter_id
/ HUNT_FILTER_TBL_ROWS
)) {
3288 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
&&
3289 priority_mask
== (1U << EFX_FILTER_PRI_AUTO
)) {
3290 /* Just remove flags */
3291 spec
->flags
&= ~EFX_FILTER_FLAG_RX_OVER_AUTO
;
3292 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
3297 if (!(priority_mask
& (1U << spec
->priority
))) {
3302 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
3303 spin_unlock_bh(&efx
->filter_lock
);
3305 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
3306 /* Reset to an automatic filter */
3308 struct efx_filter_spec new_spec
= *spec
;
3310 new_spec
.priority
= EFX_FILTER_PRI_AUTO
;
3311 new_spec
.flags
= (EFX_FILTER_FLAG_RX
|
3312 EFX_FILTER_FLAG_RX_RSS
);
3313 new_spec
.dmaq_id
= 0;
3314 new_spec
.rss_context
= EFX_FILTER_RSS_CONTEXT_DEFAULT
;
3315 rc
= efx_ef10_filter_push(efx
, &new_spec
,
3316 &table
->entry
[filter_idx
].handle
,
3319 spin_lock_bh(&efx
->filter_lock
);
3323 /* Really remove the filter */
3325 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3326 efx_ef10_filter_is_exclusive(spec
) ?
3327 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
3328 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
3329 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3330 table
->entry
[filter_idx
].handle
);
3331 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
,
3332 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3334 spin_lock_bh(&efx
->filter_lock
);
3337 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
3341 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
3342 wake_up_all(&table
->waitq
);
3344 spin_unlock_bh(&efx
->filter_lock
);
3345 finish_wait(&table
->waitq
, &wait
);
3349 static int efx_ef10_filter_remove_safe(struct efx_nic
*efx
,
3350 enum efx_filter_priority priority
,
3353 return efx_ef10_filter_remove_internal(efx
, 1U << priority
,
3357 static u32
efx_ef10_filter_get_unsafe_id(struct efx_nic
*efx
, u32 filter_id
)
3359 return filter_id
% HUNT_FILTER_TBL_ROWS
;
3362 static int efx_ef10_filter_remove_unsafe(struct efx_nic
*efx
,
3363 enum efx_filter_priority priority
,
3366 return efx_ef10_filter_remove_internal(efx
, 1U << priority
,
3370 static int efx_ef10_filter_get_safe(struct efx_nic
*efx
,
3371 enum efx_filter_priority priority
,
3372 u32 filter_id
, struct efx_filter_spec
*spec
)
3374 unsigned int filter_idx
= filter_id
% HUNT_FILTER_TBL_ROWS
;
3375 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3376 const struct efx_filter_spec
*saved_spec
;
3379 spin_lock_bh(&efx
->filter_lock
);
3380 saved_spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3381 if (saved_spec
&& saved_spec
->priority
== priority
&&
3382 efx_ef10_filter_rx_match_pri(table
, saved_spec
->match_flags
) ==
3383 filter_id
/ HUNT_FILTER_TBL_ROWS
) {
3384 *spec
= *saved_spec
;
3389 spin_unlock_bh(&efx
->filter_lock
);
3393 static int efx_ef10_filter_clear_rx(struct efx_nic
*efx
,
3394 enum efx_filter_priority priority
)
3396 unsigned int priority_mask
;
3400 priority_mask
= (((1U << (priority
+ 1)) - 1) &
3401 ~(1U << EFX_FILTER_PRI_AUTO
));
3403 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
3404 rc
= efx_ef10_filter_remove_internal(efx
, priority_mask
,
3406 if (rc
&& rc
!= -ENOENT
)
3413 static u32
efx_ef10_filter_count_rx_used(struct efx_nic
*efx
,
3414 enum efx_filter_priority priority
)
3416 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3417 unsigned int filter_idx
;
3420 spin_lock_bh(&efx
->filter_lock
);
3421 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3422 if (table
->entry
[filter_idx
].spec
&&
3423 efx_ef10_filter_entry_spec(table
, filter_idx
)->priority
==
3427 spin_unlock_bh(&efx
->filter_lock
);
3431 static u32
efx_ef10_filter_get_rx_id_limit(struct efx_nic
*efx
)
3433 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3435 return table
->rx_match_count
* HUNT_FILTER_TBL_ROWS
;
3438 static s32
efx_ef10_filter_get_rx_ids(struct efx_nic
*efx
,
3439 enum efx_filter_priority priority
,
3442 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3443 struct efx_filter_spec
*spec
;
3444 unsigned int filter_idx
;
3447 spin_lock_bh(&efx
->filter_lock
);
3448 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3449 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3450 if (spec
&& spec
->priority
== priority
) {
3451 if (count
== size
) {
3455 buf
[count
++] = (efx_ef10_filter_rx_match_pri(
3456 table
, spec
->match_flags
) *
3457 HUNT_FILTER_TBL_ROWS
+
3461 spin_unlock_bh(&efx
->filter_lock
);
3465 #ifdef CONFIG_RFS_ACCEL
3467 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete
;
3469 static s32
efx_ef10_filter_rfs_insert(struct efx_nic
*efx
,
3470 struct efx_filter_spec
*spec
)
3472 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3473 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3474 struct efx_filter_spec
*saved_spec
;
3475 unsigned int hash
, i
, depth
= 1;
3476 bool replacing
= false;
3481 /* Must be an RX filter without RSS and not for a multicast
3482 * destination address (RFS only works for connected sockets).
3483 * These restrictions allow us to pass only a tiny amount of
3484 * data through to the completion function.
3486 EFX_WARN_ON_PARANOID(spec
->flags
!=
3487 (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_RX_SCATTER
));
3488 EFX_WARN_ON_PARANOID(spec
->priority
!= EFX_FILTER_PRI_HINT
);
3489 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec
));
3491 hash
= efx_ef10_filter_hash(spec
);
3493 spin_lock_bh(&efx
->filter_lock
);
3495 /* Find any existing filter with the same match tuple or else
3496 * a free slot to insert at. If an existing filter is busy,
3497 * we have to give up.
3500 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
3501 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
3506 } else if (efx_ef10_filter_equal(spec
, saved_spec
)) {
3507 if (table
->entry
[i
].spec
& EFX_EF10_FILTER_FLAG_BUSY
) {
3511 if (spec
->priority
< saved_spec
->priority
) {
3519 /* Once we reach the maximum search depth, use the
3520 * first suitable slot or return -EBUSY if there was
3523 if (depth
== EFX_EF10_FILTER_SEARCH_LIMIT
) {
3524 if (ins_index
< 0) {
3534 /* Create a software table entry if necessary, and mark it
3535 * busy. We might yet fail to insert, but any attempt to
3536 * insert a conflicting filter while we're waiting for the
3537 * firmware must find the busy entry.
3539 saved_spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
3543 saved_spec
= kmalloc(sizeof(*spec
), GFP_ATOMIC
);
3548 *saved_spec
= *spec
;
3550 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
,
3551 EFX_EF10_FILTER_FLAG_BUSY
);
3553 spin_unlock_bh(&efx
->filter_lock
);
3555 /* Pack up the variables needed on completion */
3556 cookie
= replacing
<< 31 | ins_index
<< 16 | spec
->dmaq_id
;
3558 efx_ef10_filter_push_prep(efx
, spec
, inbuf
,
3559 table
->entry
[ins_index
].handle
, replacing
);
3560 efx_mcdi_rpc_async(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
3561 MC_CMD_FILTER_OP_OUT_LEN
,
3562 efx_ef10_filter_rfs_insert_complete
, cookie
);
3567 spin_unlock_bh(&efx
->filter_lock
);
3572 efx_ef10_filter_rfs_insert_complete(struct efx_nic
*efx
, unsigned long cookie
,
3573 int rc
, efx_dword_t
*outbuf
,
3574 size_t outlen_actual
)
3576 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3577 unsigned int ins_index
, dmaq_id
;
3578 struct efx_filter_spec
*spec
;
3581 /* Unpack the cookie */
3582 replacing
= cookie
>> 31;
3583 ins_index
= (cookie
>> 16) & (HUNT_FILTER_TBL_ROWS
- 1);
3584 dmaq_id
= cookie
& 0xffff;
3586 spin_lock_bh(&efx
->filter_lock
);
3587 spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
3589 table
->entry
[ins_index
].handle
=
3590 MCDI_QWORD(outbuf
, FILTER_OP_OUT_HANDLE
);
3592 spec
->dmaq_id
= dmaq_id
;
3593 } else if (!replacing
) {
3597 efx_ef10_filter_set_entry(table
, ins_index
, spec
, 0);
3598 spin_unlock_bh(&efx
->filter_lock
);
3600 wake_up_all(&table
->waitq
);
3604 efx_ef10_filter_rfs_expire_complete(struct efx_nic
*efx
,
3605 unsigned long filter_idx
,
3606 int rc
, efx_dword_t
*outbuf
,
3607 size_t outlen_actual
);
3609 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
3610 unsigned int filter_idx
)
3612 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3613 struct efx_filter_spec
*spec
=
3614 efx_ef10_filter_entry_spec(table
, filter_idx
);
3615 MCDI_DECLARE_BUF(inbuf
,
3616 MC_CMD_FILTER_OP_IN_HANDLE_OFST
+
3617 MC_CMD_FILTER_OP_IN_HANDLE_LEN
);
3620 (table
->entry
[filter_idx
].spec
& EFX_EF10_FILTER_FLAG_BUSY
) ||
3621 spec
->priority
!= EFX_FILTER_PRI_HINT
||
3622 !rps_may_expire_flow(efx
->net_dev
, spec
->dmaq_id
,
3623 flow_id
, filter_idx
))
3626 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3627 MC_CMD_FILTER_OP_IN_OP_REMOVE
);
3628 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3629 table
->entry
[filter_idx
].handle
);
3630 if (efx_mcdi_rpc_async(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
), 0,
3631 efx_ef10_filter_rfs_expire_complete
, filter_idx
))
3634 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
3639 efx_ef10_filter_rfs_expire_complete(struct efx_nic
*efx
,
3640 unsigned long filter_idx
,
3641 int rc
, efx_dword_t
*outbuf
,
3642 size_t outlen_actual
)
3644 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3645 struct efx_filter_spec
*spec
=
3646 efx_ef10_filter_entry_spec(table
, filter_idx
);
3648 spin_lock_bh(&efx
->filter_lock
);
3651 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
3653 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
3654 wake_up_all(&table
->waitq
);
3655 spin_unlock_bh(&efx
->filter_lock
);
3658 #endif /* CONFIG_RFS_ACCEL */
3660 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags
)
3662 int match_flags
= 0;
3664 #define MAP_FLAG(gen_flag, mcdi_field) { \
3665 u32 old_mcdi_flags = mcdi_flags; \
3666 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3667 mcdi_field ## _LBN); \
3668 if (mcdi_flags != old_mcdi_flags) \
3669 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
3671 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_UCAST_DST
);
3672 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_MCAST_DST
);
3673 MAP_FLAG(REM_HOST
, SRC_IP
);
3674 MAP_FLAG(LOC_HOST
, DST_IP
);
3675 MAP_FLAG(REM_MAC
, SRC_MAC
);
3676 MAP_FLAG(REM_PORT
, SRC_PORT
);
3677 MAP_FLAG(LOC_MAC
, DST_MAC
);
3678 MAP_FLAG(LOC_PORT
, DST_PORT
);
3679 MAP_FLAG(ETHER_TYPE
, ETHER_TYPE
);
3680 MAP_FLAG(INNER_VID
, INNER_VLAN
);
3681 MAP_FLAG(OUTER_VID
, OUTER_VLAN
);
3682 MAP_FLAG(IP_PROTO
, IP_PROTO
);
3685 /* Did we map them all? */
3692 static int efx_ef10_filter_table_probe(struct efx_nic
*efx
)
3694 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN
);
3695 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX
);
3696 unsigned int pd_match_pri
, pd_match_count
;
3697 struct efx_ef10_filter_table
*table
;
3701 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3705 /* Find out which RX filter types are supported, and their priorities */
3706 MCDI_SET_DWORD(inbuf
, GET_PARSER_DISP_INFO_IN_OP
,
3707 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES
);
3708 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_PARSER_DISP_INFO
,
3709 inbuf
, sizeof(inbuf
), outbuf
, sizeof(outbuf
),
3713 pd_match_count
= MCDI_VAR_ARRAY_LEN(
3714 outlen
, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
);
3715 table
->rx_match_count
= 0;
3717 for (pd_match_pri
= 0; pd_match_pri
< pd_match_count
; pd_match_pri
++) {
3721 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
,
3723 rc
= efx_ef10_filter_match_flags_from_mcdi(mcdi_flags
);
3725 netif_dbg(efx
, probe
, efx
->net_dev
,
3726 "%s: fw flags %#x pri %u not supported in driver\n",
3727 __func__
, mcdi_flags
, pd_match_pri
);
3729 netif_dbg(efx
, probe
, efx
->net_dev
,
3730 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3731 __func__
, mcdi_flags
, pd_match_pri
,
3732 rc
, table
->rx_match_count
);
3733 table
->rx_match_flags
[table
->rx_match_count
++] = rc
;
3737 table
->entry
= vzalloc(HUNT_FILTER_TBL_ROWS
* sizeof(*table
->entry
));
3738 if (!table
->entry
) {
3743 table
->ucdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3744 table
->bcast_id
= EFX_EF10_FILTER_ID_INVALID
;
3745 table
->mcdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3747 efx
->filter_state
= table
;
3748 init_waitqueue_head(&table
->waitq
);
3756 /* Caller must hold efx->filter_sem for read if race against
3757 * efx_ef10_filter_table_remove() is possible
3759 static void efx_ef10_filter_table_restore(struct efx_nic
*efx
)
3761 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3762 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3763 struct efx_filter_spec
*spec
;
3764 unsigned int filter_idx
;
3765 bool failed
= false;
3768 WARN_ON(!rwsem_is_locked(&efx
->filter_sem
));
3770 if (!nic_data
->must_restore_filters
)
3776 spin_lock_bh(&efx
->filter_lock
);
3778 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3779 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3783 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
3784 spin_unlock_bh(&efx
->filter_lock
);
3786 rc
= efx_ef10_filter_push(efx
, spec
,
3787 &table
->entry
[filter_idx
].handle
,
3792 spin_lock_bh(&efx
->filter_lock
);
3795 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
3797 table
->entry
[filter_idx
].spec
&=
3798 ~EFX_EF10_FILTER_FLAG_BUSY
;
3802 spin_unlock_bh(&efx
->filter_lock
);
3805 netif_err(efx
, hw
, efx
->net_dev
,
3806 "unable to restore all filters\n");
3808 nic_data
->must_restore_filters
= false;
3811 /* Caller must hold efx->filter_sem for write */
3812 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
)
3814 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3815 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3816 struct efx_filter_spec
*spec
;
3817 unsigned int filter_idx
;
3820 efx
->filter_state
= NULL
;
3824 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3825 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3829 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3830 efx_ef10_filter_is_exclusive(spec
) ?
3831 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
3832 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
3833 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3834 table
->entry
[filter_idx
].handle
);
3835 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
3838 netdev_WARN(efx
->net_dev
,
3839 "filter_idx=%#x handle=%#llx\n",
3841 table
->entry
[filter_idx
].handle
);
3845 vfree(table
->entry
);
3849 #define EFX_EF10_FILTER_DO_MARK_OLD(id) \
3850 if (id != EFX_EF10_FILTER_ID_INVALID) { \
3851 filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
3852 WARN_ON(!table->entry[filter_idx].spec); \
3853 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD; \
3855 static void efx_ef10_filter_mark_old(struct efx_nic
*efx
)
3857 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3858 unsigned int filter_idx
, i
;
3863 /* Mark old filters that may need to be removed */
3864 spin_lock_bh(&efx
->filter_lock
);
3865 for (i
= 0; i
< table
->dev_uc_count
; i
++)
3866 EFX_EF10_FILTER_DO_MARK_OLD(table
->dev_uc_list
[i
].id
);
3867 for (i
= 0; i
< table
->dev_mc_count
; i
++)
3868 EFX_EF10_FILTER_DO_MARK_OLD(table
->dev_mc_list
[i
].id
);
3869 EFX_EF10_FILTER_DO_MARK_OLD(table
->ucdef_id
);
3870 EFX_EF10_FILTER_DO_MARK_OLD(table
->bcast_id
);
3871 EFX_EF10_FILTER_DO_MARK_OLD(table
->mcdef_id
);
3872 spin_unlock_bh(&efx
->filter_lock
);
3874 #undef EFX_EF10_FILTER_DO_MARK_OLD
3876 static void efx_ef10_filter_uc_addr_list(struct efx_nic
*efx
, bool *promisc
)
3878 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3879 struct net_device
*net_dev
= efx
->net_dev
;
3880 struct netdev_hw_addr
*uc
;
3884 table
->ucdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3885 addr_count
= netdev_uc_count(net_dev
);
3886 if (net_dev
->flags
& IFF_PROMISC
)
3888 table
->dev_uc_count
= 1 + addr_count
;
3889 ether_addr_copy(table
->dev_uc_list
[0].addr
, net_dev
->dev_addr
);
3891 netdev_for_each_uc_addr(uc
, net_dev
) {
3892 if (i
>= EFX_EF10_FILTER_DEV_UC_MAX
) {
3896 ether_addr_copy(table
->dev_uc_list
[i
].addr
, uc
->addr
);
3897 table
->dev_uc_list
[i
].id
= EFX_EF10_FILTER_ID_INVALID
;
3902 static void efx_ef10_filter_mc_addr_list(struct efx_nic
*efx
, bool *promisc
)
3904 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3905 struct net_device
*net_dev
= efx
->net_dev
;
3906 struct netdev_hw_addr
*mc
;
3907 unsigned int i
, addr_count
;
3909 table
->mcdef_id
= EFX_EF10_FILTER_ID_INVALID
;
3910 table
->bcast_id
= EFX_EF10_FILTER_ID_INVALID
;
3911 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
))
3914 addr_count
= netdev_mc_count(net_dev
);
3916 netdev_for_each_mc_addr(mc
, net_dev
) {
3917 if (i
>= EFX_EF10_FILTER_DEV_MC_MAX
) {
3921 ether_addr_copy(table
->dev_mc_list
[i
].addr
, mc
->addr
);
3922 table
->dev_mc_list
[i
].id
= EFX_EF10_FILTER_ID_INVALID
;
3926 table
->dev_mc_count
= i
;
3929 static int efx_ef10_filter_insert_addr_list(struct efx_nic
*efx
,
3930 bool multicast
, bool rollback
)
3932 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3933 struct efx_ef10_dev_addr
*addr_list
;
3934 struct efx_filter_spec spec
;
3941 addr_list
= table
->dev_mc_list
;
3942 addr_count
= table
->dev_mc_count
;
3944 addr_list
= table
->dev_uc_list
;
3945 addr_count
= table
->dev_uc_count
;
3948 /* Insert/renew filters */
3949 for (i
= 0; i
< addr_count
; i
++) {
3950 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
3951 EFX_FILTER_FLAG_RX_RSS
,
3953 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
,
3955 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3958 netif_info(efx
, drv
, efx
->net_dev
,
3959 "efx_ef10_filter_insert failed rc=%d\n",
3961 /* Fall back to promiscuous */
3962 for (j
= 0; j
< i
; j
++) {
3963 if (addr_list
[j
].id
== EFX_EF10_FILTER_ID_INVALID
)
3965 efx_ef10_filter_remove_unsafe(
3966 efx
, EFX_FILTER_PRI_AUTO
,
3968 addr_list
[j
].id
= EFX_EF10_FILTER_ID_INVALID
;
3972 /* mark as not inserted, and carry on */
3973 rc
= EFX_EF10_FILTER_ID_INVALID
;
3976 addr_list
[i
].id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
3979 if (multicast
&& rollback
) {
3980 /* Also need an Ethernet broadcast filter */
3981 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
3982 EFX_FILTER_FLAG_RX_RSS
,
3984 eth_broadcast_addr(baddr
);
3985 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
, baddr
);
3986 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3988 netif_warn(efx
, drv
, efx
->net_dev
,
3989 "Broadcast filter insert failed rc=%d\n", rc
);
3990 /* Fall back to promiscuous */
3991 for (j
= 0; j
< i
; j
++) {
3992 if (addr_list
[j
].id
== EFX_EF10_FILTER_ID_INVALID
)
3994 efx_ef10_filter_remove_unsafe(
3995 efx
, EFX_FILTER_PRI_AUTO
,
3997 addr_list
[j
].id
= EFX_EF10_FILTER_ID_INVALID
;
4001 table
->bcast_id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
4008 static int efx_ef10_filter_insert_def(struct efx_nic
*efx
, bool multicast
,
4011 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4012 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4013 struct efx_filter_spec spec
;
4017 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
4018 EFX_FILTER_FLAG_RX_RSS
,
4022 efx_filter_set_mc_def(&spec
);
4024 efx_filter_set_uc_def(&spec
);
4026 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
4028 netif_warn(efx
, drv
, efx
->net_dev
,
4029 "%scast mismatch filter insert failed rc=%d\n",
4030 multicast
? "Multi" : "Uni", rc
);
4031 } else if (multicast
) {
4032 table
->mcdef_id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
4033 if (!nic_data
->workaround_26807
) {
4034 /* Also need an Ethernet broadcast filter */
4035 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
4036 EFX_FILTER_FLAG_RX_RSS
,
4038 eth_broadcast_addr(baddr
);
4039 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
,
4041 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
4043 netif_warn(efx
, drv
, efx
->net_dev
,
4044 "Broadcast filter insert failed rc=%d\n",
4047 /* Roll back the mc_def filter */
4048 efx_ef10_filter_remove_unsafe(
4049 efx
, EFX_FILTER_PRI_AUTO
,
4051 table
->mcdef_id
= EFX_EF10_FILTER_ID_INVALID
;
4055 table
->bcast_id
= efx_ef10_filter_get_unsafe_id(efx
, rc
);
4060 table
->ucdef_id
= rc
;
4066 /* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD
4067 * flag or removes these filters, we don't need to hold the filter_lock while
4068 * scanning for these filters.
4070 static void efx_ef10_filter_remove_old(struct efx_nic
*efx
)
4072 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4073 bool remove_failed
= false;
4076 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
4077 if (ACCESS_ONCE(table
->entry
[i
].spec
) &
4078 EFX_EF10_FILTER_FLAG_AUTO_OLD
) {
4079 if (efx_ef10_filter_remove_internal(
4080 efx
, 1U << EFX_FILTER_PRI_AUTO
,
4082 remove_failed
= true;
4085 WARN_ON(remove_failed
);
4088 static int efx_ef10_vport_set_mac_address(struct efx_nic
*efx
)
4090 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4091 u8 mac_old
[ETH_ALEN
];
4094 /* Only reconfigure a PF-created vport */
4095 if (is_zero_ether_addr(nic_data
->vport_mac
))
4098 efx_device_detach_sync(efx
);
4099 efx_net_stop(efx
->net_dev
);
4100 down_write(&efx
->filter_sem
);
4101 efx_ef10_filter_table_remove(efx
);
4102 up_write(&efx
->filter_sem
);
4104 rc
= efx_ef10_vadaptor_free(efx
, nic_data
->vport_id
);
4106 goto restore_filters
;
4108 ether_addr_copy(mac_old
, nic_data
->vport_mac
);
4109 rc
= efx_ef10_vport_del_mac(efx
, nic_data
->vport_id
,
4110 nic_data
->vport_mac
);
4112 goto restore_vadaptor
;
4114 rc
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
,
4115 efx
->net_dev
->dev_addr
);
4117 ether_addr_copy(nic_data
->vport_mac
, efx
->net_dev
->dev_addr
);
4119 rc2
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
, mac_old
);
4121 /* Failed to add original MAC, so clear vport_mac */
4122 eth_zero_addr(nic_data
->vport_mac
);
4128 rc2
= efx_ef10_vadaptor_alloc(efx
, nic_data
->vport_id
);
4132 down_write(&efx
->filter_sem
);
4133 rc2
= efx_ef10_filter_table_probe(efx
);
4134 up_write(&efx
->filter_sem
);
4138 rc2
= efx_net_open(efx
->net_dev
);
4142 netif_device_attach(efx
->net_dev
);
4147 netif_err(efx
, drv
, efx
->net_dev
,
4148 "Failed to restore when changing MAC address - scheduling reset\n");
4149 efx_schedule_reset(efx
, RESET_TYPE_DATAPATH
);
4151 return rc
? rc
: rc2
;
4154 /* Caller must hold efx->filter_sem for read if race against
4155 * efx_ef10_filter_table_remove() is possible
4157 static void efx_ef10_filter_sync_rx_mode(struct efx_nic
*efx
)
4159 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4160 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4161 struct net_device
*net_dev
= efx
->net_dev
;
4162 bool uc_promisc
= false, mc_promisc
= false;
4164 if (!efx_dev_registered(efx
))
4170 efx_ef10_filter_mark_old(efx
);
4172 /* Copy/convert the address lists; add the primary station
4173 * address and broadcast address
4175 netif_addr_lock_bh(net_dev
);
4176 efx_ef10_filter_uc_addr_list(efx
, &uc_promisc
);
4177 efx_ef10_filter_mc_addr_list(efx
, &mc_promisc
);
4178 netif_addr_unlock_bh(net_dev
);
4180 /* Insert/renew unicast filters */
4182 efx_ef10_filter_insert_def(efx
, false, false);
4183 efx_ef10_filter_insert_addr_list(efx
, false, false);
4185 /* If any of the filters failed to insert, fall back to
4186 * promiscuous mode - add in the uc_def filter. But keep
4187 * our individual unicast filters.
4189 if (efx_ef10_filter_insert_addr_list(efx
, false, false))
4190 efx_ef10_filter_insert_def(efx
, false, false);
4193 /* Insert/renew multicast filters */
4194 /* If changing promiscuous state with cascaded multicast filters, remove
4195 * old filters first, so that packets are dropped rather than duplicated
4197 if (nic_data
->workaround_26807
&& efx
->mc_promisc
!= mc_promisc
)
4198 efx_ef10_filter_remove_old(efx
);
4200 if (nic_data
->workaround_26807
) {
4201 /* If we failed to insert promiscuous filters, rollback
4202 * and fall back to individual multicast filters
4204 if (efx_ef10_filter_insert_def(efx
, true, true)) {
4205 /* Changing promisc state, so remove old filters */
4206 efx_ef10_filter_remove_old(efx
);
4207 efx_ef10_filter_insert_addr_list(efx
, true, false);
4210 /* If we failed to insert promiscuous filters, don't
4211 * rollback. Regardless, also insert the mc_list
4213 efx_ef10_filter_insert_def(efx
, true, false);
4214 efx_ef10_filter_insert_addr_list(efx
, true, false);
4217 /* If any filters failed to insert, rollback and fall back to
4218 * promiscuous mode - mc_def filter and maybe broadcast. If
4219 * that fails, roll back again and insert as many of our
4220 * individual multicast filters as we can.
4222 if (efx_ef10_filter_insert_addr_list(efx
, true, true)) {
4223 /* Changing promisc state, so remove old filters */
4224 if (nic_data
->workaround_26807
)
4225 efx_ef10_filter_remove_old(efx
);
4226 if (efx_ef10_filter_insert_def(efx
, true, true))
4227 efx_ef10_filter_insert_addr_list(efx
, true, false);
4231 efx_ef10_filter_remove_old(efx
);
4232 efx
->mc_promisc
= mc_promisc
;
4235 static int efx_ef10_set_mac_address(struct efx_nic
*efx
)
4237 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_SET_MAC_IN_LEN
);
4238 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4239 bool was_enabled
= efx
->port_enabled
;
4242 efx_device_detach_sync(efx
);
4243 efx_net_stop(efx
->net_dev
);
4244 down_write(&efx
->filter_sem
);
4245 efx_ef10_filter_table_remove(efx
);
4247 ether_addr_copy(MCDI_PTR(inbuf
, VADAPTOR_SET_MAC_IN_MACADDR
),
4248 efx
->net_dev
->dev_addr
);
4249 MCDI_SET_DWORD(inbuf
, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID
,
4250 nic_data
->vport_id
);
4251 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_VADAPTOR_SET_MAC
, inbuf
,
4252 sizeof(inbuf
), NULL
, 0, NULL
);
4254 efx_ef10_filter_table_probe(efx
);
4255 up_write(&efx
->filter_sem
);
4257 efx_net_open(efx
->net_dev
);
4258 netif_device_attach(efx
->net_dev
);
4260 #ifdef CONFIG_SFC_SRIOV
4261 if (efx
->pci_dev
->is_virtfn
&& efx
->pci_dev
->physfn
) {
4262 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
4265 struct efx_nic
*efx_pf
;
4267 /* Switch to PF and change MAC address on vport */
4268 efx_pf
= pci_get_drvdata(pci_dev_pf
);
4270 rc
= efx_ef10_sriov_set_vf_mac(efx_pf
,
4272 efx
->net_dev
->dev_addr
);
4274 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
4275 struct efx_ef10_nic_data
*nic_data
= efx_pf
->nic_data
;
4278 /* MAC address successfully changed by VF (with MAC
4279 * spoofing) so update the parent PF if possible.
4281 for (i
= 0; i
< efx_pf
->vf_count
; ++i
) {
4282 struct ef10_vf
*vf
= nic_data
->vf
+ i
;
4284 if (vf
->efx
== efx
) {
4285 ether_addr_copy(vf
->mac
,
4286 efx
->net_dev
->dev_addr
);
4294 netif_err(efx
, drv
, efx
->net_dev
,
4295 "Cannot change MAC address; use sfboot to enable"
4296 " mac-spoofing on this interface\n");
4297 } else if (rc
== -ENOSYS
&& !efx_ef10_is_vf(efx
)) {
4298 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4299 * fall-back to the method of changing the MAC address on the
4300 * vport. This only applies to PFs because such versions of
4301 * MCFW do not support VFs.
4303 rc
= efx_ef10_vport_set_mac_address(efx
);
4305 efx_mcdi_display_error(efx
, MC_CMD_VADAPTOR_SET_MAC
,
4306 sizeof(inbuf
), NULL
, 0, rc
);
4312 static int efx_ef10_mac_reconfigure(struct efx_nic
*efx
)
4314 efx_ef10_filter_sync_rx_mode(efx
);
4316 return efx_mcdi_set_mac(efx
);
4319 static int efx_ef10_mac_reconfigure_vf(struct efx_nic
*efx
)
4321 efx_ef10_filter_sync_rx_mode(efx
);
4326 static int efx_ef10_start_bist(struct efx_nic
*efx
, u32 bist_type
)
4328 MCDI_DECLARE_BUF(inbuf
, MC_CMD_START_BIST_IN_LEN
);
4330 MCDI_SET_DWORD(inbuf
, START_BIST_IN_TYPE
, bist_type
);
4331 return efx_mcdi_rpc(efx
, MC_CMD_START_BIST
, inbuf
, sizeof(inbuf
),
4335 /* MC BISTs follow a different poll mechanism to phy BISTs.
4336 * The BIST is done in the poll handler on the MC, and the MCDI command
4337 * will block until the BIST is done.
4339 static int efx_ef10_poll_bist(struct efx_nic
*efx
)
4342 MCDI_DECLARE_BUF(outbuf
, MC_CMD_POLL_BIST_OUT_LEN
);
4346 rc
= efx_mcdi_rpc(efx
, MC_CMD_POLL_BIST
, NULL
, 0,
4347 outbuf
, sizeof(outbuf
), &outlen
);
4351 if (outlen
< MC_CMD_POLL_BIST_OUT_LEN
)
4354 result
= MCDI_DWORD(outbuf
, POLL_BIST_OUT_RESULT
);
4356 case MC_CMD_POLL_BIST_PASSED
:
4357 netif_dbg(efx
, hw
, efx
->net_dev
, "BIST passed.\n");
4359 case MC_CMD_POLL_BIST_TIMEOUT
:
4360 netif_err(efx
, hw
, efx
->net_dev
, "BIST timed out\n");
4362 case MC_CMD_POLL_BIST_FAILED
:
4363 netif_err(efx
, hw
, efx
->net_dev
, "BIST failed.\n");
4366 netif_err(efx
, hw
, efx
->net_dev
,
4367 "BIST returned unknown result %u", result
);
4372 static int efx_ef10_run_bist(struct efx_nic
*efx
, u32 bist_type
)
4376 netif_dbg(efx
, drv
, efx
->net_dev
, "starting BIST type %u\n", bist_type
);
4378 rc
= efx_ef10_start_bist(efx
, bist_type
);
4382 return efx_ef10_poll_bist(efx
);
4386 efx_ef10_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
4390 efx_reset_down(efx
, RESET_TYPE_WORLD
);
4392 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENABLE_OFFLINE_BIST
,
4393 NULL
, 0, NULL
, 0, NULL
);
4397 tests
->memory
= efx_ef10_run_bist(efx
, MC_CMD_MC_MEM_BIST
) ? -1 : 1;
4398 tests
->registers
= efx_ef10_run_bist(efx
, MC_CMD_REG_BIST
) ? -1 : 1;
4400 rc
= efx_mcdi_reset(efx
, RESET_TYPE_WORLD
);
4405 rc2
= efx_reset_up(efx
, RESET_TYPE_WORLD
, rc
== 0);
4406 return rc
? rc
: rc2
;
4409 #ifdef CONFIG_SFC_MTD
4411 struct efx_ef10_nvram_type_info
{
4412 u16 type
, type_mask
;
4417 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types
[] = {
4418 { NVRAM_PARTITION_TYPE_MC_FIRMWARE
, 0, 0, "sfc_mcfw" },
4419 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP
, 0, 0, "sfc_mcfw_backup" },
4420 { NVRAM_PARTITION_TYPE_EXPANSION_ROM
, 0, 0, "sfc_exp_rom" },
4421 { NVRAM_PARTITION_TYPE_STATIC_CONFIG
, 0, 0, "sfc_static_cfg" },
4422 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG
, 0, 0, "sfc_dynamic_cfg" },
4423 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0
, 0, 0, "sfc_exp_rom_cfg" },
4424 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1
, 0, 1, "sfc_exp_rom_cfg" },
4425 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2
, 0, 2, "sfc_exp_rom_cfg" },
4426 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3
, 0, 3, "sfc_exp_rom_cfg" },
4427 { NVRAM_PARTITION_TYPE_LICENSE
, 0, 0, "sfc_license" },
4428 { NVRAM_PARTITION_TYPE_PHY_MIN
, 0xff, 0, "sfc_phy_fw" },
4431 static int efx_ef10_mtd_probe_partition(struct efx_nic
*efx
,
4432 struct efx_mcdi_mtd_partition
*part
,
4435 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_METADATA_IN_LEN
);
4436 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_METADATA_OUT_LENMAX
);
4437 const struct efx_ef10_nvram_type_info
*info
;
4438 size_t size
, erase_size
, outlen
;
4442 for (info
= efx_ef10_nvram_types
; ; info
++) {
4444 efx_ef10_nvram_types
+ ARRAY_SIZE(efx_ef10_nvram_types
))
4446 if ((type
& ~info
->type_mask
) == info
->type
)
4449 if (info
->port
!= efx_port_num(efx
))
4452 rc
= efx_mcdi_nvram_info(efx
, type
, &size
, &erase_size
, &protected);
4456 return -ENODEV
; /* hide it */
4458 part
->nvram_type
= type
;
4460 MCDI_SET_DWORD(inbuf
, NVRAM_METADATA_IN_TYPE
, type
);
4461 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_METADATA
, inbuf
, sizeof(inbuf
),
4462 outbuf
, sizeof(outbuf
), &outlen
);
4465 if (outlen
< MC_CMD_NVRAM_METADATA_OUT_LENMIN
)
4467 if (MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_FLAGS
) &
4468 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN
))
4469 part
->fw_subtype
= MCDI_DWORD(outbuf
,
4470 NVRAM_METADATA_OUT_SUBTYPE
);
4472 part
->common
.dev_type_name
= "EF10 NVRAM manager";
4473 part
->common
.type_name
= info
->name
;
4475 part
->common
.mtd
.type
= MTD_NORFLASH
;
4476 part
->common
.mtd
.flags
= MTD_CAP_NORFLASH
;
4477 part
->common
.mtd
.size
= size
;
4478 part
->common
.mtd
.erasesize
= erase_size
;
4483 static int efx_ef10_mtd_probe(struct efx_nic
*efx
)
4485 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX
);
4486 struct efx_mcdi_mtd_partition
*parts
;
4487 size_t outlen
, n_parts_total
, i
, n_parts
;
4493 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN
!= 0);
4494 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_PARTITIONS
, NULL
, 0,
4495 outbuf
, sizeof(outbuf
), &outlen
);
4498 if (outlen
< MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN
)
4501 n_parts_total
= MCDI_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS
);
4503 MCDI_VAR_ARRAY_LEN(outlen
, NVRAM_PARTITIONS_OUT_TYPE_ID
))
4506 parts
= kcalloc(n_parts_total
, sizeof(*parts
), GFP_KERNEL
);
4511 for (i
= 0; i
< n_parts_total
; i
++) {
4512 type
= MCDI_ARRAY_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_TYPE_ID
,
4514 rc
= efx_ef10_mtd_probe_partition(efx
, &parts
[n_parts
], type
);
4517 else if (rc
!= -ENODEV
)
4521 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
4528 #endif /* CONFIG_SFC_MTD */
4530 static void efx_ef10_ptp_write_host_time(struct efx_nic
*efx
, u32 host_time
)
4532 _efx_writed(efx
, cpu_to_le32(host_time
), ER_DZ_MC_DB_LWRD
);
4535 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic
*efx
,
4538 static int efx_ef10_rx_enable_timestamping(struct efx_channel
*channel
,
4541 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN
);
4544 if (channel
->sync_events_state
== SYNC_EVENTS_REQUESTED
||
4545 channel
->sync_events_state
== SYNC_EVENTS_VALID
||
4546 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_DISABLED
))
4548 channel
->sync_events_state
= SYNC_EVENTS_REQUESTED
;
4550 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE
);
4551 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
4552 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE
,
4555 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
4556 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
4559 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
4560 SYNC_EVENTS_DISABLED
;
4565 static int efx_ef10_rx_disable_timestamping(struct efx_channel
*channel
,
4568 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN
);
4571 if (channel
->sync_events_state
== SYNC_EVENTS_DISABLED
||
4572 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
))
4574 if (channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
) {
4575 channel
->sync_events_state
= SYNC_EVENTS_DISABLED
;
4578 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
4579 SYNC_EVENTS_DISABLED
;
4581 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE
);
4582 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
4583 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL
,
4584 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE
);
4585 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE
,
4588 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
4589 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
4594 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic
*efx
, bool en
,
4597 int (*set
)(struct efx_channel
*channel
, bool temp
);
4598 struct efx_channel
*channel
;
4601 efx_ef10_rx_enable_timestamping
:
4602 efx_ef10_rx_disable_timestamping
;
4604 efx_for_each_channel(channel
, efx
) {
4605 int rc
= set(channel
, temp
);
4606 if (en
&& rc
!= 0) {
4607 efx_ef10_ptp_set_ts_sync_events(efx
, false, temp
);
4615 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic
*efx
,
4616 struct hwtstamp_config
*init
)
4621 static int efx_ef10_ptp_set_ts_config(struct efx_nic
*efx
,
4622 struct hwtstamp_config
*init
)
4626 switch (init
->rx_filter
) {
4627 case HWTSTAMP_FILTER_NONE
:
4628 efx_ef10_ptp_set_ts_sync_events(efx
, false, false);
4629 /* if TX timestamping is still requested then leave PTP on */
4630 return efx_ptp_change_mode(efx
,
4631 init
->tx_type
!= HWTSTAMP_TX_OFF
, 0);
4632 case HWTSTAMP_FILTER_ALL
:
4633 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
4634 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
4635 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
4636 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
4637 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
4638 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
4639 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
4640 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
4641 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
4642 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
4643 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
4644 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
4645 init
->rx_filter
= HWTSTAMP_FILTER_ALL
;
4646 rc
= efx_ptp_change_mode(efx
, true, 0);
4648 rc
= efx_ef10_ptp_set_ts_sync_events(efx
, true, false);
4650 efx_ptp_change_mode(efx
, false, 0);
4657 const struct efx_nic_type efx_hunt_a0_vf_nic_type
= {
4659 .mem_bar
= EFX_MEM_VF_BAR
,
4660 .mem_map_size
= efx_ef10_mem_map_size
,
4661 .probe
= efx_ef10_probe_vf
,
4662 .remove
= efx_ef10_remove
,
4663 .dimension_resources
= efx_ef10_dimension_resources
,
4664 .init
= efx_ef10_init_nic
,
4665 .fini
= efx_port_dummy_op_void
,
4666 .map_reset_reason
= efx_ef10_map_reset_reason
,
4667 .map_reset_flags
= efx_ef10_map_reset_flags
,
4668 .reset
= efx_ef10_reset
,
4669 .probe_port
= efx_mcdi_port_probe
,
4670 .remove_port
= efx_mcdi_port_remove
,
4671 .fini_dmaq
= efx_ef10_fini_dmaq
,
4672 .prepare_flr
= efx_ef10_prepare_flr
,
4673 .finish_flr
= efx_port_dummy_op_void
,
4674 .describe_stats
= efx_ef10_describe_stats
,
4675 .update_stats
= efx_ef10_update_stats_vf
,
4676 .start_stats
= efx_port_dummy_op_void
,
4677 .pull_stats
= efx_port_dummy_op_void
,
4678 .stop_stats
= efx_port_dummy_op_void
,
4679 .set_id_led
= efx_mcdi_set_id_led
,
4680 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4681 .reconfigure_mac
= efx_ef10_mac_reconfigure_vf
,
4682 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4683 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4684 .get_wol
= efx_ef10_get_wol_vf
,
4685 .set_wol
= efx_ef10_set_wol_vf
,
4686 .resume_wol
= efx_port_dummy_op_void
,
4687 .mcdi_request
= efx_ef10_mcdi_request
,
4688 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4689 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4690 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4691 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4692 .irq_enable_master
= efx_port_dummy_op_void
,
4693 .irq_test_generate
= efx_ef10_irq_test_generate
,
4694 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4695 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4696 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4697 .tx_probe
= efx_ef10_tx_probe
,
4698 .tx_init
= efx_ef10_tx_init
,
4699 .tx_remove
= efx_ef10_tx_remove
,
4700 .tx_write
= efx_ef10_tx_write
,
4701 .rx_push_rss_config
= efx_ef10_vf_rx_push_rss_config
,
4702 .rx_probe
= efx_ef10_rx_probe
,
4703 .rx_init
= efx_ef10_rx_init
,
4704 .rx_remove
= efx_ef10_rx_remove
,
4705 .rx_write
= efx_ef10_rx_write
,
4706 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4707 .ev_probe
= efx_ef10_ev_probe
,
4708 .ev_init
= efx_ef10_ev_init
,
4709 .ev_fini
= efx_ef10_ev_fini
,
4710 .ev_remove
= efx_ef10_ev_remove
,
4711 .ev_process
= efx_ef10_ev_process
,
4712 .ev_read_ack
= efx_ef10_ev_read_ack
,
4713 .ev_test_generate
= efx_ef10_ev_test_generate
,
4714 .filter_table_probe
= efx_ef10_filter_table_probe
,
4715 .filter_table_restore
= efx_ef10_filter_table_restore
,
4716 .filter_table_remove
= efx_ef10_filter_table_remove
,
4717 .filter_update_rx_scatter
= efx_ef10_filter_update_rx_scatter
,
4718 .filter_insert
= efx_ef10_filter_insert
,
4719 .filter_remove_safe
= efx_ef10_filter_remove_safe
,
4720 .filter_get_safe
= efx_ef10_filter_get_safe
,
4721 .filter_clear_rx
= efx_ef10_filter_clear_rx
,
4722 .filter_count_rx_used
= efx_ef10_filter_count_rx_used
,
4723 .filter_get_rx_id_limit
= efx_ef10_filter_get_rx_id_limit
,
4724 .filter_get_rx_ids
= efx_ef10_filter_get_rx_ids
,
4725 #ifdef CONFIG_RFS_ACCEL
4726 .filter_rfs_insert
= efx_ef10_filter_rfs_insert
,
4727 .filter_rfs_expire_one
= efx_ef10_filter_rfs_expire_one
,
4729 #ifdef CONFIG_SFC_MTD
4730 .mtd_probe
= efx_port_dummy_op_int
,
4732 .ptp_write_host_time
= efx_ef10_ptp_write_host_time_vf
,
4733 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config_vf
,
4734 #ifdef CONFIG_SFC_SRIOV
4735 .vswitching_probe
= efx_ef10_vswitching_probe_vf
,
4736 .vswitching_restore
= efx_ef10_vswitching_restore_vf
,
4737 .vswitching_remove
= efx_ef10_vswitching_remove_vf
,
4738 .sriov_get_phys_port_id
= efx_ef10_sriov_get_phys_port_id
,
4740 .get_mac_address
= efx_ef10_get_mac_address_vf
,
4741 .set_mac_address
= efx_ef10_set_mac_address
,
4743 .revision
= EFX_REV_HUNT_A0
,
4744 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4745 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4746 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4747 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4748 .can_rx_scatter
= true,
4749 .always_rx_scatter
= true,
4750 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
4751 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4752 .offload_features
= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
4753 NETIF_F_RXHASH
| NETIF_F_NTUPLE
),
4755 .max_rx_ip_filters
= HUNT_FILTER_TBL_ROWS
,
4756 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4757 1 << HWTSTAMP_FILTER_ALL
,
4760 const struct efx_nic_type efx_hunt_a0_nic_type
= {
4762 .mem_bar
= EFX_MEM_BAR
,
4763 .mem_map_size
= efx_ef10_mem_map_size
,
4764 .probe
= efx_ef10_probe_pf
,
4765 .remove
= efx_ef10_remove
,
4766 .dimension_resources
= efx_ef10_dimension_resources
,
4767 .init
= efx_ef10_init_nic
,
4768 .fini
= efx_port_dummy_op_void
,
4769 .map_reset_reason
= efx_ef10_map_reset_reason
,
4770 .map_reset_flags
= efx_ef10_map_reset_flags
,
4771 .reset
= efx_ef10_reset
,
4772 .probe_port
= efx_mcdi_port_probe
,
4773 .remove_port
= efx_mcdi_port_remove
,
4774 .fini_dmaq
= efx_ef10_fini_dmaq
,
4775 .prepare_flr
= efx_ef10_prepare_flr
,
4776 .finish_flr
= efx_port_dummy_op_void
,
4777 .describe_stats
= efx_ef10_describe_stats
,
4778 .update_stats
= efx_ef10_update_stats_pf
,
4779 .start_stats
= efx_mcdi_mac_start_stats
,
4780 .pull_stats
= efx_mcdi_mac_pull_stats
,
4781 .stop_stats
= efx_mcdi_mac_stop_stats
,
4782 .set_id_led
= efx_mcdi_set_id_led
,
4783 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
4784 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
4785 .check_mac_fault
= efx_mcdi_mac_check_fault
,
4786 .reconfigure_port
= efx_mcdi_port_reconfigure
,
4787 .get_wol
= efx_ef10_get_wol
,
4788 .set_wol
= efx_ef10_set_wol
,
4789 .resume_wol
= efx_port_dummy_op_void
,
4790 .test_chip
= efx_ef10_test_chip
,
4791 .test_nvram
= efx_mcdi_nvram_test_all
,
4792 .mcdi_request
= efx_ef10_mcdi_request
,
4793 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
4794 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
4795 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
4796 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
4797 .irq_enable_master
= efx_port_dummy_op_void
,
4798 .irq_test_generate
= efx_ef10_irq_test_generate
,
4799 .irq_disable_non_ev
= efx_port_dummy_op_void
,
4800 .irq_handle_msi
= efx_ef10_msi_interrupt
,
4801 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
4802 .tx_probe
= efx_ef10_tx_probe
,
4803 .tx_init
= efx_ef10_tx_init
,
4804 .tx_remove
= efx_ef10_tx_remove
,
4805 .tx_write
= efx_ef10_tx_write
,
4806 .rx_push_rss_config
= efx_ef10_pf_rx_push_rss_config
,
4807 .rx_probe
= efx_ef10_rx_probe
,
4808 .rx_init
= efx_ef10_rx_init
,
4809 .rx_remove
= efx_ef10_rx_remove
,
4810 .rx_write
= efx_ef10_rx_write
,
4811 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
4812 .ev_probe
= efx_ef10_ev_probe
,
4813 .ev_init
= efx_ef10_ev_init
,
4814 .ev_fini
= efx_ef10_ev_fini
,
4815 .ev_remove
= efx_ef10_ev_remove
,
4816 .ev_process
= efx_ef10_ev_process
,
4817 .ev_read_ack
= efx_ef10_ev_read_ack
,
4818 .ev_test_generate
= efx_ef10_ev_test_generate
,
4819 .filter_table_probe
= efx_ef10_filter_table_probe
,
4820 .filter_table_restore
= efx_ef10_filter_table_restore
,
4821 .filter_table_remove
= efx_ef10_filter_table_remove
,
4822 .filter_update_rx_scatter
= efx_ef10_filter_update_rx_scatter
,
4823 .filter_insert
= efx_ef10_filter_insert
,
4824 .filter_remove_safe
= efx_ef10_filter_remove_safe
,
4825 .filter_get_safe
= efx_ef10_filter_get_safe
,
4826 .filter_clear_rx
= efx_ef10_filter_clear_rx
,
4827 .filter_count_rx_used
= efx_ef10_filter_count_rx_used
,
4828 .filter_get_rx_id_limit
= efx_ef10_filter_get_rx_id_limit
,
4829 .filter_get_rx_ids
= efx_ef10_filter_get_rx_ids
,
4830 #ifdef CONFIG_RFS_ACCEL
4831 .filter_rfs_insert
= efx_ef10_filter_rfs_insert
,
4832 .filter_rfs_expire_one
= efx_ef10_filter_rfs_expire_one
,
4834 #ifdef CONFIG_SFC_MTD
4835 .mtd_probe
= efx_ef10_mtd_probe
,
4836 .mtd_rename
= efx_mcdi_mtd_rename
,
4837 .mtd_read
= efx_mcdi_mtd_read
,
4838 .mtd_erase
= efx_mcdi_mtd_erase
,
4839 .mtd_write
= efx_mcdi_mtd_write
,
4840 .mtd_sync
= efx_mcdi_mtd_sync
,
4842 .ptp_write_host_time
= efx_ef10_ptp_write_host_time
,
4843 .ptp_set_ts_sync_events
= efx_ef10_ptp_set_ts_sync_events
,
4844 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config
,
4845 #ifdef CONFIG_SFC_SRIOV
4846 .sriov_configure
= efx_ef10_sriov_configure
,
4847 .sriov_init
= efx_ef10_sriov_init
,
4848 .sriov_fini
= efx_ef10_sriov_fini
,
4849 .sriov_wanted
= efx_ef10_sriov_wanted
,
4850 .sriov_reset
= efx_ef10_sriov_reset
,
4851 .sriov_flr
= efx_ef10_sriov_flr
,
4852 .sriov_set_vf_mac
= efx_ef10_sriov_set_vf_mac
,
4853 .sriov_set_vf_vlan
= efx_ef10_sriov_set_vf_vlan
,
4854 .sriov_set_vf_spoofchk
= efx_ef10_sriov_set_vf_spoofchk
,
4855 .sriov_get_vf_config
= efx_ef10_sriov_get_vf_config
,
4856 .sriov_set_vf_link_state
= efx_ef10_sriov_set_vf_link_state
,
4857 .vswitching_probe
= efx_ef10_vswitching_probe_pf
,
4858 .vswitching_restore
= efx_ef10_vswitching_restore_pf
,
4859 .vswitching_remove
= efx_ef10_vswitching_remove_pf
,
4861 .get_mac_address
= efx_ef10_get_mac_address_pf
,
4862 .set_mac_address
= efx_ef10_set_mac_address
,
4864 .revision
= EFX_REV_HUNT_A0
,
4865 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
4866 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
4867 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
4868 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
4869 .can_rx_scatter
= true,
4870 .always_rx_scatter
= true,
4871 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
4872 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
4873 .offload_features
= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
4874 NETIF_F_RXHASH
| NETIF_F_NTUPLE
),
4876 .max_rx_ip_filters
= HUNT_FILTER_TBL_ROWS
,
4877 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
4878 1 << HWTSTAMP_FILTER_ALL
,