perf trace: Switch to using a struct for the aumented_raw_syscalls syscalls map values
[linux/fpc-iii.git] / mm / migrate.c
blobf7e4bfdc13b780137d08fa522b070e7192056f24
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
56 #include "internal.h"
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
71 lru_add_drain_all();
73 return 0;
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
79 lru_add_drain();
81 return 0;
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
135 return 0;
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
169 struct page *page;
170 struct page *page2;
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
231 #endif
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
253 } else
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
265 } else
266 #endif
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 return true;
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 spinlock_t *ptl)
313 pte_t pte;
314 swp_entry_t entry;
315 struct page *page;
317 spin_lock(ptl);
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
326 page = migration_entry_to_page(entry);
329 * Once page cache replacement of page migration started, page_count
330 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 * against a page without get_page().
332 * So, we use get_page_unless_zero(), here. Even failed, page fault
333 * will occur again.
335 if (!get_page_unless_zero(page))
336 goto out;
337 pte_unmap_unlock(ptep, ptl);
338 wait_on_page_locked(page);
339 put_page(page);
340 return;
341 out:
342 pte_unmap_unlock(ptep, ptl);
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
363 spinlock_t *ptl;
364 struct page *page;
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
373 wait_on_page_locked(page);
374 put_page(page);
375 return;
376 unlock:
377 spin_unlock(ptl);
379 #endif
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 enum migrate_mode mode)
386 struct buffer_head *bh = head;
388 /* Simple case, sync compaction */
389 if (mode != MIGRATE_ASYNC) {
390 do {
391 get_bh(bh);
392 lock_buffer(bh);
393 bh = bh->b_this_page;
395 } while (bh != head);
397 return true;
400 /* async case, we cannot block on lock_buffer so use trylock_buffer */
401 do {
402 get_bh(bh);
403 if (!trylock_buffer(bh)) {
405 * We failed to lock the buffer and cannot stall in
406 * async migration. Release the taken locks
408 struct buffer_head *failed_bh = bh;
409 put_bh(failed_bh);
410 bh = head;
411 while (bh != failed_bh) {
412 unlock_buffer(bh);
413 put_bh(bh);
414 bh = bh->b_this_page;
416 return false;
419 bh = bh->b_this_page;
420 } while (bh != head);
421 return true;
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 enum migrate_mode mode)
427 return true;
429 #endif /* CONFIG_BLOCK */
432 * Replace the page in the mapping.
434 * The number of remaining references must be:
435 * 1 for anonymous pages without a mapping
436 * 2 for pages with a mapping
437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
439 int migrate_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page,
441 struct buffer_head *head, enum migrate_mode mode,
442 int extra_count)
444 XA_STATE(xas, &mapping->i_pages, page_index(page));
445 struct zone *oldzone, *newzone;
446 int dirty;
447 int expected_count = 1 + extra_count;
450 * Device public or private pages have an extra refcount as they are
451 * ZONE_DEVICE pages.
453 expected_count += is_device_private_page(page);
454 expected_count += is_device_public_page(page);
456 if (!mapping) {
457 /* Anonymous page without mapping */
458 if (page_count(page) != expected_count)
459 return -EAGAIN;
461 /* No turning back from here */
462 newpage->index = page->index;
463 newpage->mapping = page->mapping;
464 if (PageSwapBacked(page))
465 __SetPageSwapBacked(newpage);
467 return MIGRATEPAGE_SUCCESS;
470 oldzone = page_zone(page);
471 newzone = page_zone(newpage);
473 xas_lock_irq(&xas);
475 expected_count += hpage_nr_pages(page) + page_has_private(page);
476 if (page_count(page) != expected_count || xas_load(&xas) != page) {
477 xas_unlock_irq(&xas);
478 return -EAGAIN;
481 if (!page_ref_freeze(page, expected_count)) {
482 xas_unlock_irq(&xas);
483 return -EAGAIN;
487 * In the async migration case of moving a page with buffers, lock the
488 * buffers using trylock before the mapping is moved. If the mapping
489 * was moved, we later failed to lock the buffers and could not move
490 * the mapping back due to an elevated page count, we would have to
491 * block waiting on other references to be dropped.
493 if (mode == MIGRATE_ASYNC && head &&
494 !buffer_migrate_lock_buffers(head, mode)) {
495 page_ref_unfreeze(page, expected_count);
496 xas_unlock_irq(&xas);
497 return -EAGAIN;
501 * Now we know that no one else is looking at the page:
502 * no turning back from here.
504 newpage->index = page->index;
505 newpage->mapping = page->mapping;
506 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
507 if (PageSwapBacked(page)) {
508 __SetPageSwapBacked(newpage);
509 if (PageSwapCache(page)) {
510 SetPageSwapCache(newpage);
511 set_page_private(newpage, page_private(page));
513 } else {
514 VM_BUG_ON_PAGE(PageSwapCache(page), page);
517 /* Move dirty while page refs frozen and newpage not yet exposed */
518 dirty = PageDirty(page);
519 if (dirty) {
520 ClearPageDirty(page);
521 SetPageDirty(newpage);
524 xas_store(&xas, newpage);
525 if (PageTransHuge(page)) {
526 int i;
528 for (i = 1; i < HPAGE_PMD_NR; i++) {
529 xas_next(&xas);
530 xas_store(&xas, newpage + i);
535 * Drop cache reference from old page by unfreezing
536 * to one less reference.
537 * We know this isn't the last reference.
539 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
541 xas_unlock(&xas);
542 /* Leave irq disabled to prevent preemption while updating stats */
545 * If moved to a different zone then also account
546 * the page for that zone. Other VM counters will be
547 * taken care of when we establish references to the
548 * new page and drop references to the old page.
550 * Note that anonymous pages are accounted for
551 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
552 * are mapped to swap space.
554 if (newzone != oldzone) {
555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
556 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
557 if (PageSwapBacked(page) && !PageSwapCache(page)) {
558 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
559 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
561 if (dirty && mapping_cap_account_dirty(mapping)) {
562 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
563 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
564 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
565 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
568 local_irq_enable();
570 return MIGRATEPAGE_SUCCESS;
572 EXPORT_SYMBOL(migrate_page_move_mapping);
575 * The expected number of remaining references is the same as that
576 * of migrate_page_move_mapping().
578 int migrate_huge_page_move_mapping(struct address_space *mapping,
579 struct page *newpage, struct page *page)
581 XA_STATE(xas, &mapping->i_pages, page_index(page));
582 int expected_count;
584 xas_lock_irq(&xas);
585 expected_count = 2 + page_has_private(page);
586 if (page_count(page) != expected_count || xas_load(&xas) != page) {
587 xas_unlock_irq(&xas);
588 return -EAGAIN;
591 if (!page_ref_freeze(page, expected_count)) {
592 xas_unlock_irq(&xas);
593 return -EAGAIN;
596 newpage->index = page->index;
597 newpage->mapping = page->mapping;
599 get_page(newpage);
601 xas_store(&xas, newpage);
603 page_ref_unfreeze(page, expected_count - 1);
605 xas_unlock_irq(&xas);
607 return MIGRATEPAGE_SUCCESS;
611 * Gigantic pages are so large that we do not guarantee that page++ pointer
612 * arithmetic will work across the entire page. We need something more
613 * specialized.
615 static void __copy_gigantic_page(struct page *dst, struct page *src,
616 int nr_pages)
618 int i;
619 struct page *dst_base = dst;
620 struct page *src_base = src;
622 for (i = 0; i < nr_pages; ) {
623 cond_resched();
624 copy_highpage(dst, src);
626 i++;
627 dst = mem_map_next(dst, dst_base, i);
628 src = mem_map_next(src, src_base, i);
632 static void copy_huge_page(struct page *dst, struct page *src)
634 int i;
635 int nr_pages;
637 if (PageHuge(src)) {
638 /* hugetlbfs page */
639 struct hstate *h = page_hstate(src);
640 nr_pages = pages_per_huge_page(h);
642 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
643 __copy_gigantic_page(dst, src, nr_pages);
644 return;
646 } else {
647 /* thp page */
648 BUG_ON(!PageTransHuge(src));
649 nr_pages = hpage_nr_pages(src);
652 for (i = 0; i < nr_pages; i++) {
653 cond_resched();
654 copy_highpage(dst + i, src + i);
659 * Copy the page to its new location
661 void migrate_page_states(struct page *newpage, struct page *page)
663 int cpupid;
665 if (PageError(page))
666 SetPageError(newpage);
667 if (PageReferenced(page))
668 SetPageReferenced(newpage);
669 if (PageUptodate(page))
670 SetPageUptodate(newpage);
671 if (TestClearPageActive(page)) {
672 VM_BUG_ON_PAGE(PageUnevictable(page), page);
673 SetPageActive(newpage);
674 } else if (TestClearPageUnevictable(page))
675 SetPageUnevictable(newpage);
676 if (PageWorkingset(page))
677 SetPageWorkingset(newpage);
678 if (PageChecked(page))
679 SetPageChecked(newpage);
680 if (PageMappedToDisk(page))
681 SetPageMappedToDisk(newpage);
683 /* Move dirty on pages not done by migrate_page_move_mapping() */
684 if (PageDirty(page))
685 SetPageDirty(newpage);
687 if (page_is_young(page))
688 set_page_young(newpage);
689 if (page_is_idle(page))
690 set_page_idle(newpage);
693 * Copy NUMA information to the new page, to prevent over-eager
694 * future migrations of this same page.
696 cpupid = page_cpupid_xchg_last(page, -1);
697 page_cpupid_xchg_last(newpage, cpupid);
699 ksm_migrate_page(newpage, page);
701 * Please do not reorder this without considering how mm/ksm.c's
702 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
704 if (PageSwapCache(page))
705 ClearPageSwapCache(page);
706 ClearPagePrivate(page);
707 set_page_private(page, 0);
710 * If any waiters have accumulated on the new page then
711 * wake them up.
713 if (PageWriteback(newpage))
714 end_page_writeback(newpage);
716 copy_page_owner(page, newpage);
718 mem_cgroup_migrate(page, newpage);
720 EXPORT_SYMBOL(migrate_page_states);
722 void migrate_page_copy(struct page *newpage, struct page *page)
724 if (PageHuge(page) || PageTransHuge(page))
725 copy_huge_page(newpage, page);
726 else
727 copy_highpage(newpage, page);
729 migrate_page_states(newpage, page);
731 EXPORT_SYMBOL(migrate_page_copy);
733 /************************************************************
734 * Migration functions
735 ***********************************************************/
738 * Common logic to directly migrate a single LRU page suitable for
739 * pages that do not use PagePrivate/PagePrivate2.
741 * Pages are locked upon entry and exit.
743 int migrate_page(struct address_space *mapping,
744 struct page *newpage, struct page *page,
745 enum migrate_mode mode)
747 int rc;
749 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
751 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
753 if (rc != MIGRATEPAGE_SUCCESS)
754 return rc;
756 if (mode != MIGRATE_SYNC_NO_COPY)
757 migrate_page_copy(newpage, page);
758 else
759 migrate_page_states(newpage, page);
760 return MIGRATEPAGE_SUCCESS;
762 EXPORT_SYMBOL(migrate_page);
764 #ifdef CONFIG_BLOCK
766 * Migration function for pages with buffers. This function can only be used
767 * if the underlying filesystem guarantees that no other references to "page"
768 * exist.
770 int buffer_migrate_page(struct address_space *mapping,
771 struct page *newpage, struct page *page, enum migrate_mode mode)
773 struct buffer_head *bh, *head;
774 int rc;
776 if (!page_has_buffers(page))
777 return migrate_page(mapping, newpage, page, mode);
779 head = page_buffers(page);
781 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
783 if (rc != MIGRATEPAGE_SUCCESS)
784 return rc;
787 * In the async case, migrate_page_move_mapping locked the buffers
788 * with an IRQ-safe spinlock held. In the sync case, the buffers
789 * need to be locked now
791 if (mode != MIGRATE_ASYNC)
792 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
794 ClearPagePrivate(page);
795 set_page_private(newpage, page_private(page));
796 set_page_private(page, 0);
797 put_page(page);
798 get_page(newpage);
800 bh = head;
801 do {
802 set_bh_page(bh, newpage, bh_offset(bh));
803 bh = bh->b_this_page;
805 } while (bh != head);
807 SetPagePrivate(newpage);
809 if (mode != MIGRATE_SYNC_NO_COPY)
810 migrate_page_copy(newpage, page);
811 else
812 migrate_page_states(newpage, page);
814 bh = head;
815 do {
816 unlock_buffer(bh);
817 put_bh(bh);
818 bh = bh->b_this_page;
820 } while (bh != head);
822 return MIGRATEPAGE_SUCCESS;
824 EXPORT_SYMBOL(buffer_migrate_page);
825 #endif
828 * Writeback a page to clean the dirty state
830 static int writeout(struct address_space *mapping, struct page *page)
832 struct writeback_control wbc = {
833 .sync_mode = WB_SYNC_NONE,
834 .nr_to_write = 1,
835 .range_start = 0,
836 .range_end = LLONG_MAX,
837 .for_reclaim = 1
839 int rc;
841 if (!mapping->a_ops->writepage)
842 /* No write method for the address space */
843 return -EINVAL;
845 if (!clear_page_dirty_for_io(page))
846 /* Someone else already triggered a write */
847 return -EAGAIN;
850 * A dirty page may imply that the underlying filesystem has
851 * the page on some queue. So the page must be clean for
852 * migration. Writeout may mean we loose the lock and the
853 * page state is no longer what we checked for earlier.
854 * At this point we know that the migration attempt cannot
855 * be successful.
857 remove_migration_ptes(page, page, false);
859 rc = mapping->a_ops->writepage(page, &wbc);
861 if (rc != AOP_WRITEPAGE_ACTIVATE)
862 /* unlocked. Relock */
863 lock_page(page);
865 return (rc < 0) ? -EIO : -EAGAIN;
869 * Default handling if a filesystem does not provide a migration function.
871 static int fallback_migrate_page(struct address_space *mapping,
872 struct page *newpage, struct page *page, enum migrate_mode mode)
874 if (PageDirty(page)) {
875 /* Only writeback pages in full synchronous migration */
876 switch (mode) {
877 case MIGRATE_SYNC:
878 case MIGRATE_SYNC_NO_COPY:
879 break;
880 default:
881 return -EBUSY;
883 return writeout(mapping, page);
887 * Buffers may be managed in a filesystem specific way.
888 * We must have no buffers or drop them.
890 if (page_has_private(page) &&
891 !try_to_release_page(page, GFP_KERNEL))
892 return -EAGAIN;
894 return migrate_page(mapping, newpage, page, mode);
898 * Move a page to a newly allocated page
899 * The page is locked and all ptes have been successfully removed.
901 * The new page will have replaced the old page if this function
902 * is successful.
904 * Return value:
905 * < 0 - error code
906 * MIGRATEPAGE_SUCCESS - success
908 static int move_to_new_page(struct page *newpage, struct page *page,
909 enum migrate_mode mode)
911 struct address_space *mapping;
912 int rc = -EAGAIN;
913 bool is_lru = !__PageMovable(page);
915 VM_BUG_ON_PAGE(!PageLocked(page), page);
916 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
918 mapping = page_mapping(page);
920 if (likely(is_lru)) {
921 if (!mapping)
922 rc = migrate_page(mapping, newpage, page, mode);
923 else if (mapping->a_ops->migratepage)
925 * Most pages have a mapping and most filesystems
926 * provide a migratepage callback. Anonymous pages
927 * are part of swap space which also has its own
928 * migratepage callback. This is the most common path
929 * for page migration.
931 rc = mapping->a_ops->migratepage(mapping, newpage,
932 page, mode);
933 else
934 rc = fallback_migrate_page(mapping, newpage,
935 page, mode);
936 } else {
938 * In case of non-lru page, it could be released after
939 * isolation step. In that case, we shouldn't try migration.
941 VM_BUG_ON_PAGE(!PageIsolated(page), page);
942 if (!PageMovable(page)) {
943 rc = MIGRATEPAGE_SUCCESS;
944 __ClearPageIsolated(page);
945 goto out;
948 rc = mapping->a_ops->migratepage(mapping, newpage,
949 page, mode);
950 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
951 !PageIsolated(page));
955 * When successful, old pagecache page->mapping must be cleared before
956 * page is freed; but stats require that PageAnon be left as PageAnon.
958 if (rc == MIGRATEPAGE_SUCCESS) {
959 if (__PageMovable(page)) {
960 VM_BUG_ON_PAGE(!PageIsolated(page), page);
963 * We clear PG_movable under page_lock so any compactor
964 * cannot try to migrate this page.
966 __ClearPageIsolated(page);
970 * Anonymous and movable page->mapping will be cleard by
971 * free_pages_prepare so don't reset it here for keeping
972 * the type to work PageAnon, for example.
974 if (!PageMappingFlags(page))
975 page->mapping = NULL;
977 out:
978 return rc;
981 static int __unmap_and_move(struct page *page, struct page *newpage,
982 int force, enum migrate_mode mode)
984 int rc = -EAGAIN;
985 int page_was_mapped = 0;
986 struct anon_vma *anon_vma = NULL;
987 bool is_lru = !__PageMovable(page);
989 if (!trylock_page(page)) {
990 if (!force || mode == MIGRATE_ASYNC)
991 goto out;
994 * It's not safe for direct compaction to call lock_page.
995 * For example, during page readahead pages are added locked
996 * to the LRU. Later, when the IO completes the pages are
997 * marked uptodate and unlocked. However, the queueing
998 * could be merging multiple pages for one bio (e.g.
999 * mpage_readpages). If an allocation happens for the
1000 * second or third page, the process can end up locking
1001 * the same page twice and deadlocking. Rather than
1002 * trying to be clever about what pages can be locked,
1003 * avoid the use of lock_page for direct compaction
1004 * altogether.
1006 if (current->flags & PF_MEMALLOC)
1007 goto out;
1009 lock_page(page);
1012 if (PageWriteback(page)) {
1014 * Only in the case of a full synchronous migration is it
1015 * necessary to wait for PageWriteback. In the async case,
1016 * the retry loop is too short and in the sync-light case,
1017 * the overhead of stalling is too much
1019 switch (mode) {
1020 case MIGRATE_SYNC:
1021 case MIGRATE_SYNC_NO_COPY:
1022 break;
1023 default:
1024 rc = -EBUSY;
1025 goto out_unlock;
1027 if (!force)
1028 goto out_unlock;
1029 wait_on_page_writeback(page);
1033 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1034 * we cannot notice that anon_vma is freed while we migrates a page.
1035 * This get_anon_vma() delays freeing anon_vma pointer until the end
1036 * of migration. File cache pages are no problem because of page_lock()
1037 * File Caches may use write_page() or lock_page() in migration, then,
1038 * just care Anon page here.
1040 * Only page_get_anon_vma() understands the subtleties of
1041 * getting a hold on an anon_vma from outside one of its mms.
1042 * But if we cannot get anon_vma, then we won't need it anyway,
1043 * because that implies that the anon page is no longer mapped
1044 * (and cannot be remapped so long as we hold the page lock).
1046 if (PageAnon(page) && !PageKsm(page))
1047 anon_vma = page_get_anon_vma(page);
1050 * Block others from accessing the new page when we get around to
1051 * establishing additional references. We are usually the only one
1052 * holding a reference to newpage at this point. We used to have a BUG
1053 * here if trylock_page(newpage) fails, but would like to allow for
1054 * cases where there might be a race with the previous use of newpage.
1055 * This is much like races on refcount of oldpage: just don't BUG().
1057 if (unlikely(!trylock_page(newpage)))
1058 goto out_unlock;
1060 if (unlikely(!is_lru)) {
1061 rc = move_to_new_page(newpage, page, mode);
1062 goto out_unlock_both;
1066 * Corner case handling:
1067 * 1. When a new swap-cache page is read into, it is added to the LRU
1068 * and treated as swapcache but it has no rmap yet.
1069 * Calling try_to_unmap() against a page->mapping==NULL page will
1070 * trigger a BUG. So handle it here.
1071 * 2. An orphaned page (see truncate_complete_page) might have
1072 * fs-private metadata. The page can be picked up due to memory
1073 * offlining. Everywhere else except page reclaim, the page is
1074 * invisible to the vm, so the page can not be migrated. So try to
1075 * free the metadata, so the page can be freed.
1077 if (!page->mapping) {
1078 VM_BUG_ON_PAGE(PageAnon(page), page);
1079 if (page_has_private(page)) {
1080 try_to_free_buffers(page);
1081 goto out_unlock_both;
1083 } else if (page_mapped(page)) {
1084 /* Establish migration ptes */
1085 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086 page);
1087 try_to_unmap(page,
1088 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1089 page_was_mapped = 1;
1092 if (!page_mapped(page))
1093 rc = move_to_new_page(newpage, page, mode);
1095 if (page_was_mapped)
1096 remove_migration_ptes(page,
1097 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1099 out_unlock_both:
1100 unlock_page(newpage);
1101 out_unlock:
1102 /* Drop an anon_vma reference if we took one */
1103 if (anon_vma)
1104 put_anon_vma(anon_vma);
1105 unlock_page(page);
1106 out:
1108 * If migration is successful, decrease refcount of the newpage
1109 * which will not free the page because new page owner increased
1110 * refcounter. As well, if it is LRU page, add the page to LRU
1111 * list in here.
1113 if (rc == MIGRATEPAGE_SUCCESS) {
1114 if (unlikely(__PageMovable(newpage)))
1115 put_page(newpage);
1116 else
1117 putback_lru_page(newpage);
1120 return rc;
1124 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1125 * around it.
1127 #if defined(CONFIG_ARM) && \
1128 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1129 #define ICE_noinline noinline
1130 #else
1131 #define ICE_noinline
1132 #endif
1135 * Obtain the lock on page, remove all ptes and migrate the page
1136 * to the newly allocated page in newpage.
1138 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1139 free_page_t put_new_page,
1140 unsigned long private, struct page *page,
1141 int force, enum migrate_mode mode,
1142 enum migrate_reason reason)
1144 int rc = MIGRATEPAGE_SUCCESS;
1145 struct page *newpage;
1147 if (!thp_migration_supported() && PageTransHuge(page))
1148 return -ENOMEM;
1150 newpage = get_new_page(page, private);
1151 if (!newpage)
1152 return -ENOMEM;
1154 if (page_count(page) == 1) {
1155 /* page was freed from under us. So we are done. */
1156 ClearPageActive(page);
1157 ClearPageUnevictable(page);
1158 if (unlikely(__PageMovable(page))) {
1159 lock_page(page);
1160 if (!PageMovable(page))
1161 __ClearPageIsolated(page);
1162 unlock_page(page);
1164 if (put_new_page)
1165 put_new_page(newpage, private);
1166 else
1167 put_page(newpage);
1168 goto out;
1171 rc = __unmap_and_move(page, newpage, force, mode);
1172 if (rc == MIGRATEPAGE_SUCCESS)
1173 set_page_owner_migrate_reason(newpage, reason);
1175 out:
1176 if (rc != -EAGAIN) {
1178 * A page that has been migrated has all references
1179 * removed and will be freed. A page that has not been
1180 * migrated will have kepts its references and be
1181 * restored.
1183 list_del(&page->lru);
1186 * Compaction can migrate also non-LRU pages which are
1187 * not accounted to NR_ISOLATED_*. They can be recognized
1188 * as __PageMovable
1190 if (likely(!__PageMovable(page)))
1191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1192 page_is_file_cache(page), -hpage_nr_pages(page));
1196 * If migration is successful, releases reference grabbed during
1197 * isolation. Otherwise, restore the page to right list unless
1198 * we want to retry.
1200 if (rc == MIGRATEPAGE_SUCCESS) {
1201 put_page(page);
1202 if (reason == MR_MEMORY_FAILURE) {
1204 * Set PG_HWPoison on just freed page
1205 * intentionally. Although it's rather weird,
1206 * it's how HWPoison flag works at the moment.
1208 if (set_hwpoison_free_buddy_page(page))
1209 num_poisoned_pages_inc();
1211 } else {
1212 if (rc != -EAGAIN) {
1213 if (likely(!__PageMovable(page))) {
1214 putback_lru_page(page);
1215 goto put_new;
1218 lock_page(page);
1219 if (PageMovable(page))
1220 putback_movable_page(page);
1221 else
1222 __ClearPageIsolated(page);
1223 unlock_page(page);
1224 put_page(page);
1226 put_new:
1227 if (put_new_page)
1228 put_new_page(newpage, private);
1229 else
1230 put_page(newpage);
1233 return rc;
1237 * Counterpart of unmap_and_move_page() for hugepage migration.
1239 * This function doesn't wait the completion of hugepage I/O
1240 * because there is no race between I/O and migration for hugepage.
1241 * Note that currently hugepage I/O occurs only in direct I/O
1242 * where no lock is held and PG_writeback is irrelevant,
1243 * and writeback status of all subpages are counted in the reference
1244 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1245 * under direct I/O, the reference of the head page is 512 and a bit more.)
1246 * This means that when we try to migrate hugepage whose subpages are
1247 * doing direct I/O, some references remain after try_to_unmap() and
1248 * hugepage migration fails without data corruption.
1250 * There is also no race when direct I/O is issued on the page under migration,
1251 * because then pte is replaced with migration swap entry and direct I/O code
1252 * will wait in the page fault for migration to complete.
1254 static int unmap_and_move_huge_page(new_page_t get_new_page,
1255 free_page_t put_new_page, unsigned long private,
1256 struct page *hpage, int force,
1257 enum migrate_mode mode, int reason)
1259 int rc = -EAGAIN;
1260 int page_was_mapped = 0;
1261 struct page *new_hpage;
1262 struct anon_vma *anon_vma = NULL;
1265 * Movability of hugepages depends on architectures and hugepage size.
1266 * This check is necessary because some callers of hugepage migration
1267 * like soft offline and memory hotremove don't walk through page
1268 * tables or check whether the hugepage is pmd-based or not before
1269 * kicking migration.
1271 if (!hugepage_migration_supported(page_hstate(hpage))) {
1272 putback_active_hugepage(hpage);
1273 return -ENOSYS;
1276 new_hpage = get_new_page(hpage, private);
1277 if (!new_hpage)
1278 return -ENOMEM;
1280 if (!trylock_page(hpage)) {
1281 if (!force)
1282 goto out;
1283 switch (mode) {
1284 case MIGRATE_SYNC:
1285 case MIGRATE_SYNC_NO_COPY:
1286 break;
1287 default:
1288 goto out;
1290 lock_page(hpage);
1293 if (PageAnon(hpage))
1294 anon_vma = page_get_anon_vma(hpage);
1296 if (unlikely(!trylock_page(new_hpage)))
1297 goto put_anon;
1299 if (page_mapped(hpage)) {
1300 try_to_unmap(hpage,
1301 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1302 page_was_mapped = 1;
1305 if (!page_mapped(hpage))
1306 rc = move_to_new_page(new_hpage, hpage, mode);
1308 if (page_was_mapped)
1309 remove_migration_ptes(hpage,
1310 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1312 unlock_page(new_hpage);
1314 put_anon:
1315 if (anon_vma)
1316 put_anon_vma(anon_vma);
1318 if (rc == MIGRATEPAGE_SUCCESS) {
1319 move_hugetlb_state(hpage, new_hpage, reason);
1320 put_new_page = NULL;
1323 unlock_page(hpage);
1324 out:
1325 if (rc != -EAGAIN)
1326 putback_active_hugepage(hpage);
1329 * If migration was not successful and there's a freeing callback, use
1330 * it. Otherwise, put_page() will drop the reference grabbed during
1331 * isolation.
1333 if (put_new_page)
1334 put_new_page(new_hpage, private);
1335 else
1336 putback_active_hugepage(new_hpage);
1338 return rc;
1342 * migrate_pages - migrate the pages specified in a list, to the free pages
1343 * supplied as the target for the page migration
1345 * @from: The list of pages to be migrated.
1346 * @get_new_page: The function used to allocate free pages to be used
1347 * as the target of the page migration.
1348 * @put_new_page: The function used to free target pages if migration
1349 * fails, or NULL if no special handling is necessary.
1350 * @private: Private data to be passed on to get_new_page()
1351 * @mode: The migration mode that specifies the constraints for
1352 * page migration, if any.
1353 * @reason: The reason for page migration.
1355 * The function returns after 10 attempts or if no pages are movable any more
1356 * because the list has become empty or no retryable pages exist any more.
1357 * The caller should call putback_movable_pages() to return pages to the LRU
1358 * or free list only if ret != 0.
1360 * Returns the number of pages that were not migrated, or an error code.
1362 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1363 free_page_t put_new_page, unsigned long private,
1364 enum migrate_mode mode, int reason)
1366 int retry = 1;
1367 int nr_failed = 0;
1368 int nr_succeeded = 0;
1369 int pass = 0;
1370 struct page *page;
1371 struct page *page2;
1372 int swapwrite = current->flags & PF_SWAPWRITE;
1373 int rc;
1375 if (!swapwrite)
1376 current->flags |= PF_SWAPWRITE;
1378 for(pass = 0; pass < 10 && retry; pass++) {
1379 retry = 0;
1381 list_for_each_entry_safe(page, page2, from, lru) {
1382 retry:
1383 cond_resched();
1385 if (PageHuge(page))
1386 rc = unmap_and_move_huge_page(get_new_page,
1387 put_new_page, private, page,
1388 pass > 2, mode, reason);
1389 else
1390 rc = unmap_and_move(get_new_page, put_new_page,
1391 private, page, pass > 2, mode,
1392 reason);
1394 switch(rc) {
1395 case -ENOMEM:
1397 * THP migration might be unsupported or the
1398 * allocation could've failed so we should
1399 * retry on the same page with the THP split
1400 * to base pages.
1402 * Head page is retried immediately and tail
1403 * pages are added to the tail of the list so
1404 * we encounter them after the rest of the list
1405 * is processed.
1407 if (PageTransHuge(page) && !PageHuge(page)) {
1408 lock_page(page);
1409 rc = split_huge_page_to_list(page, from);
1410 unlock_page(page);
1411 if (!rc) {
1412 list_safe_reset_next(page, page2, lru);
1413 goto retry;
1416 nr_failed++;
1417 goto out;
1418 case -EAGAIN:
1419 retry++;
1420 break;
1421 case MIGRATEPAGE_SUCCESS:
1422 nr_succeeded++;
1423 break;
1424 default:
1426 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1427 * unlike -EAGAIN case, the failed page is
1428 * removed from migration page list and not
1429 * retried in the next outer loop.
1431 nr_failed++;
1432 break;
1436 nr_failed += retry;
1437 rc = nr_failed;
1438 out:
1439 if (nr_succeeded)
1440 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1441 if (nr_failed)
1442 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1443 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1445 if (!swapwrite)
1446 current->flags &= ~PF_SWAPWRITE;
1448 return rc;
1451 #ifdef CONFIG_NUMA
1453 static int store_status(int __user *status, int start, int value, int nr)
1455 while (nr-- > 0) {
1456 if (put_user(value, status + start))
1457 return -EFAULT;
1458 start++;
1461 return 0;
1464 static int do_move_pages_to_node(struct mm_struct *mm,
1465 struct list_head *pagelist, int node)
1467 int err;
1469 if (list_empty(pagelist))
1470 return 0;
1472 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1473 MIGRATE_SYNC, MR_SYSCALL);
1474 if (err)
1475 putback_movable_pages(pagelist);
1476 return err;
1480 * Resolves the given address to a struct page, isolates it from the LRU and
1481 * puts it to the given pagelist.
1482 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1483 * queued or the page doesn't need to be migrated because it is already on
1484 * the target node
1486 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1487 int node, struct list_head *pagelist, bool migrate_all)
1489 struct vm_area_struct *vma;
1490 struct page *page;
1491 unsigned int follflags;
1492 int err;
1494 down_read(&mm->mmap_sem);
1495 err = -EFAULT;
1496 vma = find_vma(mm, addr);
1497 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1498 goto out;
1500 /* FOLL_DUMP to ignore special (like zero) pages */
1501 follflags = FOLL_GET | FOLL_DUMP;
1502 page = follow_page(vma, addr, follflags);
1504 err = PTR_ERR(page);
1505 if (IS_ERR(page))
1506 goto out;
1508 err = -ENOENT;
1509 if (!page)
1510 goto out;
1512 err = 0;
1513 if (page_to_nid(page) == node)
1514 goto out_putpage;
1516 err = -EACCES;
1517 if (page_mapcount(page) > 1 && !migrate_all)
1518 goto out_putpage;
1520 if (PageHuge(page)) {
1521 if (PageHead(page)) {
1522 isolate_huge_page(page, pagelist);
1523 err = 0;
1525 } else {
1526 struct page *head;
1528 head = compound_head(page);
1529 err = isolate_lru_page(head);
1530 if (err)
1531 goto out_putpage;
1533 err = 0;
1534 list_add_tail(&head->lru, pagelist);
1535 mod_node_page_state(page_pgdat(head),
1536 NR_ISOLATED_ANON + page_is_file_cache(head),
1537 hpage_nr_pages(head));
1539 out_putpage:
1541 * Either remove the duplicate refcount from
1542 * isolate_lru_page() or drop the page ref if it was
1543 * not isolated.
1545 put_page(page);
1546 out:
1547 up_read(&mm->mmap_sem);
1548 return err;
1552 * Migrate an array of page address onto an array of nodes and fill
1553 * the corresponding array of status.
1555 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1556 unsigned long nr_pages,
1557 const void __user * __user *pages,
1558 const int __user *nodes,
1559 int __user *status, int flags)
1561 int current_node = NUMA_NO_NODE;
1562 LIST_HEAD(pagelist);
1563 int start, i;
1564 int err = 0, err1;
1566 migrate_prep();
1568 for (i = start = 0; i < nr_pages; i++) {
1569 const void __user *p;
1570 unsigned long addr;
1571 int node;
1573 err = -EFAULT;
1574 if (get_user(p, pages + i))
1575 goto out_flush;
1576 if (get_user(node, nodes + i))
1577 goto out_flush;
1578 addr = (unsigned long)p;
1580 err = -ENODEV;
1581 if (node < 0 || node >= MAX_NUMNODES)
1582 goto out_flush;
1583 if (!node_state(node, N_MEMORY))
1584 goto out_flush;
1586 err = -EACCES;
1587 if (!node_isset(node, task_nodes))
1588 goto out_flush;
1590 if (current_node == NUMA_NO_NODE) {
1591 current_node = node;
1592 start = i;
1593 } else if (node != current_node) {
1594 err = do_move_pages_to_node(mm, &pagelist, current_node);
1595 if (err)
1596 goto out;
1597 err = store_status(status, start, current_node, i - start);
1598 if (err)
1599 goto out;
1600 start = i;
1601 current_node = node;
1605 * Errors in the page lookup or isolation are not fatal and we simply
1606 * report them via status
1608 err = add_page_for_migration(mm, addr, current_node,
1609 &pagelist, flags & MPOL_MF_MOVE_ALL);
1610 if (!err)
1611 continue;
1613 err = store_status(status, i, err, 1);
1614 if (err)
1615 goto out_flush;
1617 err = do_move_pages_to_node(mm, &pagelist, current_node);
1618 if (err)
1619 goto out;
1620 if (i > start) {
1621 err = store_status(status, start, current_node, i - start);
1622 if (err)
1623 goto out;
1625 current_node = NUMA_NO_NODE;
1627 out_flush:
1628 if (list_empty(&pagelist))
1629 return err;
1631 /* Make sure we do not overwrite the existing error */
1632 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1633 if (!err1)
1634 err1 = store_status(status, start, current_node, i - start);
1635 if (!err)
1636 err = err1;
1637 out:
1638 return err;
1642 * Determine the nodes of an array of pages and store it in an array of status.
1644 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1645 const void __user **pages, int *status)
1647 unsigned long i;
1649 down_read(&mm->mmap_sem);
1651 for (i = 0; i < nr_pages; i++) {
1652 unsigned long addr = (unsigned long)(*pages);
1653 struct vm_area_struct *vma;
1654 struct page *page;
1655 int err = -EFAULT;
1657 vma = find_vma(mm, addr);
1658 if (!vma || addr < vma->vm_start)
1659 goto set_status;
1661 /* FOLL_DUMP to ignore special (like zero) pages */
1662 page = follow_page(vma, addr, FOLL_DUMP);
1664 err = PTR_ERR(page);
1665 if (IS_ERR(page))
1666 goto set_status;
1668 err = page ? page_to_nid(page) : -ENOENT;
1669 set_status:
1670 *status = err;
1672 pages++;
1673 status++;
1676 up_read(&mm->mmap_sem);
1680 * Determine the nodes of a user array of pages and store it in
1681 * a user array of status.
1683 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1684 const void __user * __user *pages,
1685 int __user *status)
1687 #define DO_PAGES_STAT_CHUNK_NR 16
1688 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1689 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1691 while (nr_pages) {
1692 unsigned long chunk_nr;
1694 chunk_nr = nr_pages;
1695 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1696 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1698 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1699 break;
1701 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1703 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1704 break;
1706 pages += chunk_nr;
1707 status += chunk_nr;
1708 nr_pages -= chunk_nr;
1710 return nr_pages ? -EFAULT : 0;
1714 * Move a list of pages in the address space of the currently executing
1715 * process.
1717 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1718 const void __user * __user *pages,
1719 const int __user *nodes,
1720 int __user *status, int flags)
1722 struct task_struct *task;
1723 struct mm_struct *mm;
1724 int err;
1725 nodemask_t task_nodes;
1727 /* Check flags */
1728 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1729 return -EINVAL;
1731 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1732 return -EPERM;
1734 /* Find the mm_struct */
1735 rcu_read_lock();
1736 task = pid ? find_task_by_vpid(pid) : current;
1737 if (!task) {
1738 rcu_read_unlock();
1739 return -ESRCH;
1741 get_task_struct(task);
1744 * Check if this process has the right to modify the specified
1745 * process. Use the regular "ptrace_may_access()" checks.
1747 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1748 rcu_read_unlock();
1749 err = -EPERM;
1750 goto out;
1752 rcu_read_unlock();
1754 err = security_task_movememory(task);
1755 if (err)
1756 goto out;
1758 task_nodes = cpuset_mems_allowed(task);
1759 mm = get_task_mm(task);
1760 put_task_struct(task);
1762 if (!mm)
1763 return -EINVAL;
1765 if (nodes)
1766 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1767 nodes, status, flags);
1768 else
1769 err = do_pages_stat(mm, nr_pages, pages, status);
1771 mmput(mm);
1772 return err;
1774 out:
1775 put_task_struct(task);
1776 return err;
1779 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1780 const void __user * __user *, pages,
1781 const int __user *, nodes,
1782 int __user *, status, int, flags)
1784 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1787 #ifdef CONFIG_COMPAT
1788 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1789 compat_uptr_t __user *, pages32,
1790 const int __user *, nodes,
1791 int __user *, status,
1792 int, flags)
1794 const void __user * __user *pages;
1795 int i;
1797 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1798 for (i = 0; i < nr_pages; i++) {
1799 compat_uptr_t p;
1801 if (get_user(p, pages32 + i) ||
1802 put_user(compat_ptr(p), pages + i))
1803 return -EFAULT;
1805 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1807 #endif /* CONFIG_COMPAT */
1809 #ifdef CONFIG_NUMA_BALANCING
1811 * Returns true if this is a safe migration target node for misplaced NUMA
1812 * pages. Currently it only checks the watermarks which crude
1814 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1815 unsigned long nr_migrate_pages)
1817 int z;
1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 struct zone *zone = pgdat->node_zones + z;
1822 if (!populated_zone(zone))
1823 continue;
1825 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1826 if (!zone_watermark_ok(zone, 0,
1827 high_wmark_pages(zone) +
1828 nr_migrate_pages,
1829 0, 0))
1830 continue;
1831 return true;
1833 return false;
1836 static struct page *alloc_misplaced_dst_page(struct page *page,
1837 unsigned long data)
1839 int nid = (int) data;
1840 struct page *newpage;
1842 newpage = __alloc_pages_node(nid,
1843 (GFP_HIGHUSER_MOVABLE |
1844 __GFP_THISNODE | __GFP_NOMEMALLOC |
1845 __GFP_NORETRY | __GFP_NOWARN) &
1846 ~__GFP_RECLAIM, 0);
1848 return newpage;
1851 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1853 int page_lru;
1855 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1857 /* Avoid migrating to a node that is nearly full */
1858 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1859 return 0;
1861 if (isolate_lru_page(page))
1862 return 0;
1865 * migrate_misplaced_transhuge_page() skips page migration's usual
1866 * check on page_count(), so we must do it here, now that the page
1867 * has been isolated: a GUP pin, or any other pin, prevents migration.
1868 * The expected page count is 3: 1 for page's mapcount and 1 for the
1869 * caller's pin and 1 for the reference taken by isolate_lru_page().
1871 if (PageTransHuge(page) && page_count(page) != 3) {
1872 putback_lru_page(page);
1873 return 0;
1876 page_lru = page_is_file_cache(page);
1877 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1878 hpage_nr_pages(page));
1881 * Isolating the page has taken another reference, so the
1882 * caller's reference can be safely dropped without the page
1883 * disappearing underneath us during migration.
1885 put_page(page);
1886 return 1;
1889 bool pmd_trans_migrating(pmd_t pmd)
1891 struct page *page = pmd_page(pmd);
1892 return PageLocked(page);
1896 * Attempt to migrate a misplaced page to the specified destination
1897 * node. Caller is expected to have an elevated reference count on
1898 * the page that will be dropped by this function before returning.
1900 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1901 int node)
1903 pg_data_t *pgdat = NODE_DATA(node);
1904 int isolated;
1905 int nr_remaining;
1906 LIST_HEAD(migratepages);
1909 * Don't migrate file pages that are mapped in multiple processes
1910 * with execute permissions as they are probably shared libraries.
1912 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1913 (vma->vm_flags & VM_EXEC))
1914 goto out;
1917 * Also do not migrate dirty pages as not all filesystems can move
1918 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1920 if (page_is_file_cache(page) && PageDirty(page))
1921 goto out;
1923 isolated = numamigrate_isolate_page(pgdat, page);
1924 if (!isolated)
1925 goto out;
1927 list_add(&page->lru, &migratepages);
1928 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1929 NULL, node, MIGRATE_ASYNC,
1930 MR_NUMA_MISPLACED);
1931 if (nr_remaining) {
1932 if (!list_empty(&migratepages)) {
1933 list_del(&page->lru);
1934 dec_node_page_state(page, NR_ISOLATED_ANON +
1935 page_is_file_cache(page));
1936 putback_lru_page(page);
1938 isolated = 0;
1939 } else
1940 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1941 BUG_ON(!list_empty(&migratepages));
1942 return isolated;
1944 out:
1945 put_page(page);
1946 return 0;
1948 #endif /* CONFIG_NUMA_BALANCING */
1950 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1952 * Migrates a THP to a given target node. page must be locked and is unlocked
1953 * before returning.
1955 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1956 struct vm_area_struct *vma,
1957 pmd_t *pmd, pmd_t entry,
1958 unsigned long address,
1959 struct page *page, int node)
1961 spinlock_t *ptl;
1962 pg_data_t *pgdat = NODE_DATA(node);
1963 int isolated = 0;
1964 struct page *new_page = NULL;
1965 int page_lru = page_is_file_cache(page);
1966 unsigned long start = address & HPAGE_PMD_MASK;
1968 new_page = alloc_pages_node(node,
1969 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1970 HPAGE_PMD_ORDER);
1971 if (!new_page)
1972 goto out_fail;
1973 prep_transhuge_page(new_page);
1975 isolated = numamigrate_isolate_page(pgdat, page);
1976 if (!isolated) {
1977 put_page(new_page);
1978 goto out_fail;
1981 /* Prepare a page as a migration target */
1982 __SetPageLocked(new_page);
1983 if (PageSwapBacked(page))
1984 __SetPageSwapBacked(new_page);
1986 /* anon mapping, we can simply copy page->mapping to the new page: */
1987 new_page->mapping = page->mapping;
1988 new_page->index = page->index;
1989 /* flush the cache before copying using the kernel virtual address */
1990 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
1991 migrate_page_copy(new_page, page);
1992 WARN_ON(PageLRU(new_page));
1994 /* Recheck the target PMD */
1995 ptl = pmd_lock(mm, pmd);
1996 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1997 spin_unlock(ptl);
1999 /* Reverse changes made by migrate_page_copy() */
2000 if (TestClearPageActive(new_page))
2001 SetPageActive(page);
2002 if (TestClearPageUnevictable(new_page))
2003 SetPageUnevictable(page);
2005 unlock_page(new_page);
2006 put_page(new_page); /* Free it */
2008 /* Retake the callers reference and putback on LRU */
2009 get_page(page);
2010 putback_lru_page(page);
2011 mod_node_page_state(page_pgdat(page),
2012 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2014 goto out_unlock;
2017 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2018 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2021 * Overwrite the old entry under pagetable lock and establish
2022 * the new PTE. Any parallel GUP will either observe the old
2023 * page blocking on the page lock, block on the page table
2024 * lock or observe the new page. The SetPageUptodate on the
2025 * new page and page_add_new_anon_rmap guarantee the copy is
2026 * visible before the pagetable update.
2028 page_add_anon_rmap(new_page, vma, start, true);
2030 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2031 * has already been flushed globally. So no TLB can be currently
2032 * caching this non present pmd mapping. There's no need to clear the
2033 * pmd before doing set_pmd_at(), nor to flush the TLB after
2034 * set_pmd_at(). Clearing the pmd here would introduce a race
2035 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2036 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2037 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2038 * pmd.
2040 set_pmd_at(mm, start, pmd, entry);
2041 update_mmu_cache_pmd(vma, address, &entry);
2043 page_ref_unfreeze(page, 2);
2044 mlock_migrate_page(new_page, page);
2045 page_remove_rmap(page, true);
2046 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2048 spin_unlock(ptl);
2050 /* Take an "isolate" reference and put new page on the LRU. */
2051 get_page(new_page);
2052 putback_lru_page(new_page);
2054 unlock_page(new_page);
2055 unlock_page(page);
2056 put_page(page); /* Drop the rmap reference */
2057 put_page(page); /* Drop the LRU isolation reference */
2059 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2060 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2062 mod_node_page_state(page_pgdat(page),
2063 NR_ISOLATED_ANON + page_lru,
2064 -HPAGE_PMD_NR);
2065 return isolated;
2067 out_fail:
2068 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2069 ptl = pmd_lock(mm, pmd);
2070 if (pmd_same(*pmd, entry)) {
2071 entry = pmd_modify(entry, vma->vm_page_prot);
2072 set_pmd_at(mm, start, pmd, entry);
2073 update_mmu_cache_pmd(vma, address, &entry);
2075 spin_unlock(ptl);
2077 out_unlock:
2078 unlock_page(page);
2079 put_page(page);
2080 return 0;
2082 #endif /* CONFIG_NUMA_BALANCING */
2084 #endif /* CONFIG_NUMA */
2086 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2087 struct migrate_vma {
2088 struct vm_area_struct *vma;
2089 unsigned long *dst;
2090 unsigned long *src;
2091 unsigned long cpages;
2092 unsigned long npages;
2093 unsigned long start;
2094 unsigned long end;
2097 static int migrate_vma_collect_hole(unsigned long start,
2098 unsigned long end,
2099 struct mm_walk *walk)
2101 struct migrate_vma *migrate = walk->private;
2102 unsigned long addr;
2104 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2105 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2106 migrate->dst[migrate->npages] = 0;
2107 migrate->npages++;
2108 migrate->cpages++;
2111 return 0;
2114 static int migrate_vma_collect_skip(unsigned long start,
2115 unsigned long end,
2116 struct mm_walk *walk)
2118 struct migrate_vma *migrate = walk->private;
2119 unsigned long addr;
2121 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2122 migrate->dst[migrate->npages] = 0;
2123 migrate->src[migrate->npages++] = 0;
2126 return 0;
2129 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2130 unsigned long start,
2131 unsigned long end,
2132 struct mm_walk *walk)
2134 struct migrate_vma *migrate = walk->private;
2135 struct vm_area_struct *vma = walk->vma;
2136 struct mm_struct *mm = vma->vm_mm;
2137 unsigned long addr = start, unmapped = 0;
2138 spinlock_t *ptl;
2139 pte_t *ptep;
2141 again:
2142 if (pmd_none(*pmdp))
2143 return migrate_vma_collect_hole(start, end, walk);
2145 if (pmd_trans_huge(*pmdp)) {
2146 struct page *page;
2148 ptl = pmd_lock(mm, pmdp);
2149 if (unlikely(!pmd_trans_huge(*pmdp))) {
2150 spin_unlock(ptl);
2151 goto again;
2154 page = pmd_page(*pmdp);
2155 if (is_huge_zero_page(page)) {
2156 spin_unlock(ptl);
2157 split_huge_pmd(vma, pmdp, addr);
2158 if (pmd_trans_unstable(pmdp))
2159 return migrate_vma_collect_skip(start, end,
2160 walk);
2161 } else {
2162 int ret;
2164 get_page(page);
2165 spin_unlock(ptl);
2166 if (unlikely(!trylock_page(page)))
2167 return migrate_vma_collect_skip(start, end,
2168 walk);
2169 ret = split_huge_page(page);
2170 unlock_page(page);
2171 put_page(page);
2172 if (ret)
2173 return migrate_vma_collect_skip(start, end,
2174 walk);
2175 if (pmd_none(*pmdp))
2176 return migrate_vma_collect_hole(start, end,
2177 walk);
2181 if (unlikely(pmd_bad(*pmdp)))
2182 return migrate_vma_collect_skip(start, end, walk);
2184 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2185 arch_enter_lazy_mmu_mode();
2187 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2188 unsigned long mpfn, pfn;
2189 struct page *page;
2190 swp_entry_t entry;
2191 pte_t pte;
2193 pte = *ptep;
2194 pfn = pte_pfn(pte);
2196 if (pte_none(pte)) {
2197 mpfn = MIGRATE_PFN_MIGRATE;
2198 migrate->cpages++;
2199 pfn = 0;
2200 goto next;
2203 if (!pte_present(pte)) {
2204 mpfn = pfn = 0;
2207 * Only care about unaddressable device page special
2208 * page table entry. Other special swap entries are not
2209 * migratable, and we ignore regular swapped page.
2211 entry = pte_to_swp_entry(pte);
2212 if (!is_device_private_entry(entry))
2213 goto next;
2215 page = device_private_entry_to_page(entry);
2216 mpfn = migrate_pfn(page_to_pfn(page))|
2217 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2218 if (is_write_device_private_entry(entry))
2219 mpfn |= MIGRATE_PFN_WRITE;
2220 } else {
2221 if (is_zero_pfn(pfn)) {
2222 mpfn = MIGRATE_PFN_MIGRATE;
2223 migrate->cpages++;
2224 pfn = 0;
2225 goto next;
2227 page = _vm_normal_page(migrate->vma, addr, pte, true);
2228 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2229 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2232 /* FIXME support THP */
2233 if (!page || !page->mapping || PageTransCompound(page)) {
2234 mpfn = pfn = 0;
2235 goto next;
2237 pfn = page_to_pfn(page);
2240 * By getting a reference on the page we pin it and that blocks
2241 * any kind of migration. Side effect is that it "freezes" the
2242 * pte.
2244 * We drop this reference after isolating the page from the lru
2245 * for non device page (device page are not on the lru and thus
2246 * can't be dropped from it).
2248 get_page(page);
2249 migrate->cpages++;
2252 * Optimize for the common case where page is only mapped once
2253 * in one process. If we can lock the page, then we can safely
2254 * set up a special migration page table entry now.
2256 if (trylock_page(page)) {
2257 pte_t swp_pte;
2259 mpfn |= MIGRATE_PFN_LOCKED;
2260 ptep_get_and_clear(mm, addr, ptep);
2262 /* Setup special migration page table entry */
2263 entry = make_migration_entry(page, mpfn &
2264 MIGRATE_PFN_WRITE);
2265 swp_pte = swp_entry_to_pte(entry);
2266 if (pte_soft_dirty(pte))
2267 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2268 set_pte_at(mm, addr, ptep, swp_pte);
2271 * This is like regular unmap: we remove the rmap and
2272 * drop page refcount. Page won't be freed, as we took
2273 * a reference just above.
2275 page_remove_rmap(page, false);
2276 put_page(page);
2278 if (pte_present(pte))
2279 unmapped++;
2282 next:
2283 migrate->dst[migrate->npages] = 0;
2284 migrate->src[migrate->npages++] = mpfn;
2286 arch_leave_lazy_mmu_mode();
2287 pte_unmap_unlock(ptep - 1, ptl);
2289 /* Only flush the TLB if we actually modified any entries */
2290 if (unmapped)
2291 flush_tlb_range(walk->vma, start, end);
2293 return 0;
2297 * migrate_vma_collect() - collect pages over a range of virtual addresses
2298 * @migrate: migrate struct containing all migration information
2300 * This will walk the CPU page table. For each virtual address backed by a
2301 * valid page, it updates the src array and takes a reference on the page, in
2302 * order to pin the page until we lock it and unmap it.
2304 static void migrate_vma_collect(struct migrate_vma *migrate)
2306 struct mm_walk mm_walk;
2308 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2309 mm_walk.pte_entry = NULL;
2310 mm_walk.pte_hole = migrate_vma_collect_hole;
2311 mm_walk.hugetlb_entry = NULL;
2312 mm_walk.test_walk = NULL;
2313 mm_walk.vma = migrate->vma;
2314 mm_walk.mm = migrate->vma->vm_mm;
2315 mm_walk.private = migrate;
2317 mmu_notifier_invalidate_range_start(mm_walk.mm,
2318 migrate->start,
2319 migrate->end);
2320 walk_page_range(migrate->start, migrate->end, &mm_walk);
2321 mmu_notifier_invalidate_range_end(mm_walk.mm,
2322 migrate->start,
2323 migrate->end);
2325 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2329 * migrate_vma_check_page() - check if page is pinned or not
2330 * @page: struct page to check
2332 * Pinned pages cannot be migrated. This is the same test as in
2333 * migrate_page_move_mapping(), except that here we allow migration of a
2334 * ZONE_DEVICE page.
2336 static bool migrate_vma_check_page(struct page *page)
2339 * One extra ref because caller holds an extra reference, either from
2340 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2341 * a device page.
2343 int extra = 1;
2346 * FIXME support THP (transparent huge page), it is bit more complex to
2347 * check them than regular pages, because they can be mapped with a pmd
2348 * or with a pte (split pte mapping).
2350 if (PageCompound(page))
2351 return false;
2353 /* Page from ZONE_DEVICE have one extra reference */
2354 if (is_zone_device_page(page)) {
2356 * Private page can never be pin as they have no valid pte and
2357 * GUP will fail for those. Yet if there is a pending migration
2358 * a thread might try to wait on the pte migration entry and
2359 * will bump the page reference count. Sadly there is no way to
2360 * differentiate a regular pin from migration wait. Hence to
2361 * avoid 2 racing thread trying to migrate back to CPU to enter
2362 * infinite loop (one stoping migration because the other is
2363 * waiting on pte migration entry). We always return true here.
2365 * FIXME proper solution is to rework migration_entry_wait() so
2366 * it does not need to take a reference on page.
2368 if (is_device_private_page(page))
2369 return true;
2372 * Only allow device public page to be migrated and account for
2373 * the extra reference count imply by ZONE_DEVICE pages.
2375 if (!is_device_public_page(page))
2376 return false;
2377 extra++;
2380 /* For file back page */
2381 if (page_mapping(page))
2382 extra += 1 + page_has_private(page);
2384 if ((page_count(page) - extra) > page_mapcount(page))
2385 return false;
2387 return true;
2391 * migrate_vma_prepare() - lock pages and isolate them from the lru
2392 * @migrate: migrate struct containing all migration information
2394 * This locks pages that have been collected by migrate_vma_collect(). Once each
2395 * page is locked it is isolated from the lru (for non-device pages). Finally,
2396 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2397 * migrated by concurrent kernel threads.
2399 static void migrate_vma_prepare(struct migrate_vma *migrate)
2401 const unsigned long npages = migrate->npages;
2402 const unsigned long start = migrate->start;
2403 unsigned long addr, i, restore = 0;
2404 bool allow_drain = true;
2406 lru_add_drain();
2408 for (i = 0; (i < npages) && migrate->cpages; i++) {
2409 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2410 bool remap = true;
2412 if (!page)
2413 continue;
2415 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2417 * Because we are migrating several pages there can be
2418 * a deadlock between 2 concurrent migration where each
2419 * are waiting on each other page lock.
2421 * Make migrate_vma() a best effort thing and backoff
2422 * for any page we can not lock right away.
2424 if (!trylock_page(page)) {
2425 migrate->src[i] = 0;
2426 migrate->cpages--;
2427 put_page(page);
2428 continue;
2430 remap = false;
2431 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2434 /* ZONE_DEVICE pages are not on LRU */
2435 if (!is_zone_device_page(page)) {
2436 if (!PageLRU(page) && allow_drain) {
2437 /* Drain CPU's pagevec */
2438 lru_add_drain_all();
2439 allow_drain = false;
2442 if (isolate_lru_page(page)) {
2443 if (remap) {
2444 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2445 migrate->cpages--;
2446 restore++;
2447 } else {
2448 migrate->src[i] = 0;
2449 unlock_page(page);
2450 migrate->cpages--;
2451 put_page(page);
2453 continue;
2456 /* Drop the reference we took in collect */
2457 put_page(page);
2460 if (!migrate_vma_check_page(page)) {
2461 if (remap) {
2462 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2463 migrate->cpages--;
2464 restore++;
2466 if (!is_zone_device_page(page)) {
2467 get_page(page);
2468 putback_lru_page(page);
2470 } else {
2471 migrate->src[i] = 0;
2472 unlock_page(page);
2473 migrate->cpages--;
2475 if (!is_zone_device_page(page))
2476 putback_lru_page(page);
2477 else
2478 put_page(page);
2483 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2484 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2486 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2487 continue;
2489 remove_migration_pte(page, migrate->vma, addr, page);
2491 migrate->src[i] = 0;
2492 unlock_page(page);
2493 put_page(page);
2494 restore--;
2499 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2500 * @migrate: migrate struct containing all migration information
2502 * Replace page mapping (CPU page table pte) with a special migration pte entry
2503 * and check again if it has been pinned. Pinned pages are restored because we
2504 * cannot migrate them.
2506 * This is the last step before we call the device driver callback to allocate
2507 * destination memory and copy contents of original page over to new page.
2509 static void migrate_vma_unmap(struct migrate_vma *migrate)
2511 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2512 const unsigned long npages = migrate->npages;
2513 const unsigned long start = migrate->start;
2514 unsigned long addr, i, restore = 0;
2516 for (i = 0; i < npages; i++) {
2517 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2519 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2520 continue;
2522 if (page_mapped(page)) {
2523 try_to_unmap(page, flags);
2524 if (page_mapped(page))
2525 goto restore;
2528 if (migrate_vma_check_page(page))
2529 continue;
2531 restore:
2532 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2533 migrate->cpages--;
2534 restore++;
2537 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2538 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2540 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2541 continue;
2543 remove_migration_ptes(page, page, false);
2545 migrate->src[i] = 0;
2546 unlock_page(page);
2547 restore--;
2549 if (is_zone_device_page(page))
2550 put_page(page);
2551 else
2552 putback_lru_page(page);
2556 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2557 unsigned long addr,
2558 struct page *page,
2559 unsigned long *src,
2560 unsigned long *dst)
2562 struct vm_area_struct *vma = migrate->vma;
2563 struct mm_struct *mm = vma->vm_mm;
2564 struct mem_cgroup *memcg;
2565 bool flush = false;
2566 spinlock_t *ptl;
2567 pte_t entry;
2568 pgd_t *pgdp;
2569 p4d_t *p4dp;
2570 pud_t *pudp;
2571 pmd_t *pmdp;
2572 pte_t *ptep;
2574 /* Only allow populating anonymous memory */
2575 if (!vma_is_anonymous(vma))
2576 goto abort;
2578 pgdp = pgd_offset(mm, addr);
2579 p4dp = p4d_alloc(mm, pgdp, addr);
2580 if (!p4dp)
2581 goto abort;
2582 pudp = pud_alloc(mm, p4dp, addr);
2583 if (!pudp)
2584 goto abort;
2585 pmdp = pmd_alloc(mm, pudp, addr);
2586 if (!pmdp)
2587 goto abort;
2589 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2590 goto abort;
2593 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2594 * pte_offset_map() on pmds where a huge pmd might be created
2595 * from a different thread.
2597 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2598 * parallel threads are excluded by other means.
2600 * Here we only have down_read(mmap_sem).
2602 if (pte_alloc(mm, pmdp, addr))
2603 goto abort;
2605 /* See the comment in pte_alloc_one_map() */
2606 if (unlikely(pmd_trans_unstable(pmdp)))
2607 goto abort;
2609 if (unlikely(anon_vma_prepare(vma)))
2610 goto abort;
2611 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2612 goto abort;
2615 * The memory barrier inside __SetPageUptodate makes sure that
2616 * preceding stores to the page contents become visible before
2617 * the set_pte_at() write.
2619 __SetPageUptodate(page);
2621 if (is_zone_device_page(page)) {
2622 if (is_device_private_page(page)) {
2623 swp_entry_t swp_entry;
2625 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2626 entry = swp_entry_to_pte(swp_entry);
2627 } else if (is_device_public_page(page)) {
2628 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2629 if (vma->vm_flags & VM_WRITE)
2630 entry = pte_mkwrite(pte_mkdirty(entry));
2631 entry = pte_mkdevmap(entry);
2633 } else {
2634 entry = mk_pte(page, vma->vm_page_prot);
2635 if (vma->vm_flags & VM_WRITE)
2636 entry = pte_mkwrite(pte_mkdirty(entry));
2639 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2641 if (pte_present(*ptep)) {
2642 unsigned long pfn = pte_pfn(*ptep);
2644 if (!is_zero_pfn(pfn)) {
2645 pte_unmap_unlock(ptep, ptl);
2646 mem_cgroup_cancel_charge(page, memcg, false);
2647 goto abort;
2649 flush = true;
2650 } else if (!pte_none(*ptep)) {
2651 pte_unmap_unlock(ptep, ptl);
2652 mem_cgroup_cancel_charge(page, memcg, false);
2653 goto abort;
2657 * Check for usefaultfd but do not deliver the fault. Instead,
2658 * just back off.
2660 if (userfaultfd_missing(vma)) {
2661 pte_unmap_unlock(ptep, ptl);
2662 mem_cgroup_cancel_charge(page, memcg, false);
2663 goto abort;
2666 inc_mm_counter(mm, MM_ANONPAGES);
2667 page_add_new_anon_rmap(page, vma, addr, false);
2668 mem_cgroup_commit_charge(page, memcg, false, false);
2669 if (!is_zone_device_page(page))
2670 lru_cache_add_active_or_unevictable(page, vma);
2671 get_page(page);
2673 if (flush) {
2674 flush_cache_page(vma, addr, pte_pfn(*ptep));
2675 ptep_clear_flush_notify(vma, addr, ptep);
2676 set_pte_at_notify(mm, addr, ptep, entry);
2677 update_mmu_cache(vma, addr, ptep);
2678 } else {
2679 /* No need to invalidate - it was non-present before */
2680 set_pte_at(mm, addr, ptep, entry);
2681 update_mmu_cache(vma, addr, ptep);
2684 pte_unmap_unlock(ptep, ptl);
2685 *src = MIGRATE_PFN_MIGRATE;
2686 return;
2688 abort:
2689 *src &= ~MIGRATE_PFN_MIGRATE;
2693 * migrate_vma_pages() - migrate meta-data from src page to dst page
2694 * @migrate: migrate struct containing all migration information
2696 * This migrates struct page meta-data from source struct page to destination
2697 * struct page. This effectively finishes the migration from source page to the
2698 * destination page.
2700 static void migrate_vma_pages(struct migrate_vma *migrate)
2702 const unsigned long npages = migrate->npages;
2703 const unsigned long start = migrate->start;
2704 struct vm_area_struct *vma = migrate->vma;
2705 struct mm_struct *mm = vma->vm_mm;
2706 unsigned long addr, i, mmu_start;
2707 bool notified = false;
2709 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2710 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2711 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2712 struct address_space *mapping;
2713 int r;
2715 if (!newpage) {
2716 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2717 continue;
2720 if (!page) {
2721 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2722 continue;
2724 if (!notified) {
2725 mmu_start = addr;
2726 notified = true;
2727 mmu_notifier_invalidate_range_start(mm,
2728 mmu_start,
2729 migrate->end);
2731 migrate_vma_insert_page(migrate, addr, newpage,
2732 &migrate->src[i],
2733 &migrate->dst[i]);
2734 continue;
2737 mapping = page_mapping(page);
2739 if (is_zone_device_page(newpage)) {
2740 if (is_device_private_page(newpage)) {
2742 * For now only support private anonymous when
2743 * migrating to un-addressable device memory.
2745 if (mapping) {
2746 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2747 continue;
2749 } else if (!is_device_public_page(newpage)) {
2751 * Other types of ZONE_DEVICE page are not
2752 * supported.
2754 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2755 continue;
2759 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2760 if (r != MIGRATEPAGE_SUCCESS)
2761 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2765 * No need to double call mmu_notifier->invalidate_range() callback as
2766 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2767 * did already call it.
2769 if (notified)
2770 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2771 migrate->end);
2775 * migrate_vma_finalize() - restore CPU page table entry
2776 * @migrate: migrate struct containing all migration information
2778 * This replaces the special migration pte entry with either a mapping to the
2779 * new page if migration was successful for that page, or to the original page
2780 * otherwise.
2782 * This also unlocks the pages and puts them back on the lru, or drops the extra
2783 * refcount, for device pages.
2785 static void migrate_vma_finalize(struct migrate_vma *migrate)
2787 const unsigned long npages = migrate->npages;
2788 unsigned long i;
2790 for (i = 0; i < npages; i++) {
2791 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2792 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2794 if (!page) {
2795 if (newpage) {
2796 unlock_page(newpage);
2797 put_page(newpage);
2799 continue;
2802 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2803 if (newpage) {
2804 unlock_page(newpage);
2805 put_page(newpage);
2807 newpage = page;
2810 remove_migration_ptes(page, newpage, false);
2811 unlock_page(page);
2812 migrate->cpages--;
2814 if (is_zone_device_page(page))
2815 put_page(page);
2816 else
2817 putback_lru_page(page);
2819 if (newpage != page) {
2820 unlock_page(newpage);
2821 if (is_zone_device_page(newpage))
2822 put_page(newpage);
2823 else
2824 putback_lru_page(newpage);
2830 * migrate_vma() - migrate a range of memory inside vma
2832 * @ops: migration callback for allocating destination memory and copying
2833 * @vma: virtual memory area containing the range to be migrated
2834 * @start: start address of the range to migrate (inclusive)
2835 * @end: end address of the range to migrate (exclusive)
2836 * @src: array of hmm_pfn_t containing source pfns
2837 * @dst: array of hmm_pfn_t containing destination pfns
2838 * @private: pointer passed back to each of the callback
2839 * Returns: 0 on success, error code otherwise
2841 * This function tries to migrate a range of memory virtual address range, using
2842 * callbacks to allocate and copy memory from source to destination. First it
2843 * collects all the pages backing each virtual address in the range, saving this
2844 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2845 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2846 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2847 * in the corresponding src array entry. It then restores any pages that are
2848 * pinned, by remapping and unlocking those pages.
2850 * At this point it calls the alloc_and_copy() callback. For documentation on
2851 * what is expected from that callback, see struct migrate_vma_ops comments in
2852 * include/linux/migrate.h
2854 * After the alloc_and_copy() callback, this function goes over each entry in
2855 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2856 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2857 * then the function tries to migrate struct page information from the source
2858 * struct page to the destination struct page. If it fails to migrate the struct
2859 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2860 * array.
2862 * At this point all successfully migrated pages have an entry in the src
2863 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2864 * array entry with MIGRATE_PFN_VALID flag set.
2866 * It then calls the finalize_and_map() callback. See comments for "struct
2867 * migrate_vma_ops", in include/linux/migrate.h for details about
2868 * finalize_and_map() behavior.
2870 * After the finalize_and_map() callback, for successfully migrated pages, this
2871 * function updates the CPU page table to point to new pages, otherwise it
2872 * restores the CPU page table to point to the original source pages.
2874 * Function returns 0 after the above steps, even if no pages were migrated
2875 * (The function only returns an error if any of the arguments are invalid.)
2877 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2878 * unsigned long entries.
2880 int migrate_vma(const struct migrate_vma_ops *ops,
2881 struct vm_area_struct *vma,
2882 unsigned long start,
2883 unsigned long end,
2884 unsigned long *src,
2885 unsigned long *dst,
2886 void *private)
2888 struct migrate_vma migrate;
2890 /* Sanity check the arguments */
2891 start &= PAGE_MASK;
2892 end &= PAGE_MASK;
2893 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2894 vma_is_dax(vma))
2895 return -EINVAL;
2896 if (start < vma->vm_start || start >= vma->vm_end)
2897 return -EINVAL;
2898 if (end <= vma->vm_start || end > vma->vm_end)
2899 return -EINVAL;
2900 if (!ops || !src || !dst || start >= end)
2901 return -EINVAL;
2903 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2904 migrate.src = src;
2905 migrate.dst = dst;
2906 migrate.start = start;
2907 migrate.npages = 0;
2908 migrate.cpages = 0;
2909 migrate.end = end;
2910 migrate.vma = vma;
2912 /* Collect, and try to unmap source pages */
2913 migrate_vma_collect(&migrate);
2914 if (!migrate.cpages)
2915 return 0;
2917 /* Lock and isolate page */
2918 migrate_vma_prepare(&migrate);
2919 if (!migrate.cpages)
2920 return 0;
2922 /* Unmap pages */
2923 migrate_vma_unmap(&migrate);
2924 if (!migrate.cpages)
2925 return 0;
2928 * At this point pages are locked and unmapped, and thus they have
2929 * stable content and can safely be copied to destination memory that
2930 * is allocated by the callback.
2932 * Note that migration can fail in migrate_vma_struct_page() for each
2933 * individual page.
2935 ops->alloc_and_copy(vma, src, dst, start, end, private);
2937 /* This does the real migration of struct page */
2938 migrate_vma_pages(&migrate);
2940 ops->finalize_and_map(vma, src, dst, start, end, private);
2942 /* Unlock and remap pages */
2943 migrate_vma_finalize(&migrate);
2945 return 0;
2947 EXPORT_SYMBOL(migrate_vma);
2948 #endif /* defined(MIGRATE_VMA_HELPER) */