1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
86 struct address_space
*mapping
;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page
)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page
)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page
)))
121 if (!PageMovable(page
) || PageIsolated(page
))
122 goto out_no_isolated
;
124 mapping
= page_mapping(page
);
125 VM_BUG_ON_PAGE(!mapping
, page
);
127 if (!mapping
->a_ops
->isolate_page(page
, mode
))
128 goto out_no_isolated
;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page
));
132 __SetPageIsolated(page
);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page
*page
)
148 struct address_space
*mapping
;
150 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
151 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
152 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
154 mapping
= page_mapping(page
);
155 mapping
->a_ops
->putback_page(page
);
156 __ClearPageIsolated(page
);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head
*l
)
172 list_for_each_entry_safe(page
, page2
, l
, lru
) {
173 if (unlikely(PageHuge(page
))) {
174 putback_active_hugepage(page
);
177 list_del(&page
->lru
);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page
))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
186 if (PageMovable(page
))
187 putback_movable_page(page
);
189 __ClearPageIsolated(page
);
193 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
194 page_is_file_cache(page
), -hpage_nr_pages(page
));
195 putback_lru_page(page
);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
204 unsigned long addr
, void *old
)
206 struct page_vma_mapped_walk pvmw
= {
210 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
216 VM_BUG_ON_PAGE(PageTail(page
), page
);
217 while (page_vma_mapped_walk(&pvmw
)) {
221 new = page
- pvmw
.page
->index
+
222 linear_page_index(vma
, pvmw
.address
);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
228 remove_migration_pmd(&pvmw
, new);
234 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
235 if (pte_swp_soft_dirty(*pvmw
.pte
))
236 pte
= pte_mksoft_dirty(pte
);
239 * Recheck VMA as permissions can change since migration started
241 entry
= pte_to_swp_entry(*pvmw
.pte
);
242 if (is_write_migration_entry(entry
))
243 pte
= maybe_mkwrite(pte
, vma
);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry
= make_device_private_entry(new, pte_write(pte
));
248 pte
= swp_entry_to_pte(entry
);
249 } else if (is_device_public_page(new)) {
250 pte
= pte_mkdevmap(pte
);
251 flush_dcache_page(new);
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte
= pte_mkhuge(pte
);
259 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
260 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
262 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
264 page_dup_rmap(new, true);
268 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
271 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
273 page_add_file_rmap(new, false);
275 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
278 if (PageTransHuge(page
) && PageMlocked(page
))
279 clear_page_mlock(page
);
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
292 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
294 struct rmap_walk_control rwc
= {
295 .rmap_one
= remove_migration_pte
,
300 rmap_walk_locked(new, &rwc
);
302 rmap_walk(new, &rwc
);
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
310 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
319 if (!is_swap_pte(pte
))
322 entry
= pte_to_swp_entry(pte
);
323 if (!is_migration_entry(entry
))
326 page
= migration_entry_to_page(entry
);
329 * Once page cache replacement of page migration started, page_count
330 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 * against a page without get_page().
332 * So, we use get_page_unless_zero(), here. Even failed, page fault
335 if (!get_page_unless_zero(page
))
337 pte_unmap_unlock(ptep
, ptl
);
338 wait_on_page_locked(page
);
342 pte_unmap_unlock(ptep
, ptl
);
345 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
346 unsigned long address
)
348 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
349 pte_t
*ptep
= pte_offset_map(pmd
, address
);
350 __migration_entry_wait(mm
, ptep
, ptl
);
353 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
354 struct mm_struct
*mm
, pte_t
*pte
)
356 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
357 __migration_entry_wait(mm
, pte
, ptl
);
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
366 ptl
= pmd_lock(mm
, pmd
);
367 if (!is_pmd_migration_entry(*pmd
))
369 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
370 if (!get_page_unless_zero(page
))
373 wait_on_page_locked(page
);
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
384 enum migrate_mode mode
)
386 struct buffer_head
*bh
= head
;
388 /* Simple case, sync compaction */
389 if (mode
!= MIGRATE_ASYNC
) {
393 bh
= bh
->b_this_page
;
395 } while (bh
!= head
);
400 /* async case, we cannot block on lock_buffer so use trylock_buffer */
403 if (!trylock_buffer(bh
)) {
405 * We failed to lock the buffer and cannot stall in
406 * async migration. Release the taken locks
408 struct buffer_head
*failed_bh
= bh
;
411 while (bh
!= failed_bh
) {
414 bh
= bh
->b_this_page
;
419 bh
= bh
->b_this_page
;
420 } while (bh
!= head
);
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
425 enum migrate_mode mode
)
429 #endif /* CONFIG_BLOCK */
432 * Replace the page in the mapping.
434 * The number of remaining references must be:
435 * 1 for anonymous pages without a mapping
436 * 2 for pages with a mapping
437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
439 int migrate_page_move_mapping(struct address_space
*mapping
,
440 struct page
*newpage
, struct page
*page
,
441 struct buffer_head
*head
, enum migrate_mode mode
,
444 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
445 struct zone
*oldzone
, *newzone
;
447 int expected_count
= 1 + extra_count
;
450 * Device public or private pages have an extra refcount as they are
453 expected_count
+= is_device_private_page(page
);
454 expected_count
+= is_device_public_page(page
);
457 /* Anonymous page without mapping */
458 if (page_count(page
) != expected_count
)
461 /* No turning back from here */
462 newpage
->index
= page
->index
;
463 newpage
->mapping
= page
->mapping
;
464 if (PageSwapBacked(page
))
465 __SetPageSwapBacked(newpage
);
467 return MIGRATEPAGE_SUCCESS
;
470 oldzone
= page_zone(page
);
471 newzone
= page_zone(newpage
);
475 expected_count
+= hpage_nr_pages(page
) + page_has_private(page
);
476 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
477 xas_unlock_irq(&xas
);
481 if (!page_ref_freeze(page
, expected_count
)) {
482 xas_unlock_irq(&xas
);
487 * In the async migration case of moving a page with buffers, lock the
488 * buffers using trylock before the mapping is moved. If the mapping
489 * was moved, we later failed to lock the buffers and could not move
490 * the mapping back due to an elevated page count, we would have to
491 * block waiting on other references to be dropped.
493 if (mode
== MIGRATE_ASYNC
&& head
&&
494 !buffer_migrate_lock_buffers(head
, mode
)) {
495 page_ref_unfreeze(page
, expected_count
);
496 xas_unlock_irq(&xas
);
501 * Now we know that no one else is looking at the page:
502 * no turning back from here.
504 newpage
->index
= page
->index
;
505 newpage
->mapping
= page
->mapping
;
506 page_ref_add(newpage
, hpage_nr_pages(page
)); /* add cache reference */
507 if (PageSwapBacked(page
)) {
508 __SetPageSwapBacked(newpage
);
509 if (PageSwapCache(page
)) {
510 SetPageSwapCache(newpage
);
511 set_page_private(newpage
, page_private(page
));
514 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
517 /* Move dirty while page refs frozen and newpage not yet exposed */
518 dirty
= PageDirty(page
);
520 ClearPageDirty(page
);
521 SetPageDirty(newpage
);
524 xas_store(&xas
, newpage
);
525 if (PageTransHuge(page
)) {
528 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
530 xas_store(&xas
, newpage
+ i
);
535 * Drop cache reference from old page by unfreezing
536 * to one less reference.
537 * We know this isn't the last reference.
539 page_ref_unfreeze(page
, expected_count
- hpage_nr_pages(page
));
542 /* Leave irq disabled to prevent preemption while updating stats */
545 * If moved to a different zone then also account
546 * the page for that zone. Other VM counters will be
547 * taken care of when we establish references to the
548 * new page and drop references to the old page.
550 * Note that anonymous pages are accounted for
551 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
552 * are mapped to swap space.
554 if (newzone
!= oldzone
) {
555 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
556 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
557 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
558 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
559 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
561 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
562 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
563 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
564 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
565 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
570 return MIGRATEPAGE_SUCCESS
;
572 EXPORT_SYMBOL(migrate_page_move_mapping
);
575 * The expected number of remaining references is the same as that
576 * of migrate_page_move_mapping().
578 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
579 struct page
*newpage
, struct page
*page
)
581 XA_STATE(xas
, &mapping
->i_pages
, page_index(page
));
585 expected_count
= 2 + page_has_private(page
);
586 if (page_count(page
) != expected_count
|| xas_load(&xas
) != page
) {
587 xas_unlock_irq(&xas
);
591 if (!page_ref_freeze(page
, expected_count
)) {
592 xas_unlock_irq(&xas
);
596 newpage
->index
= page
->index
;
597 newpage
->mapping
= page
->mapping
;
601 xas_store(&xas
, newpage
);
603 page_ref_unfreeze(page
, expected_count
- 1);
605 xas_unlock_irq(&xas
);
607 return MIGRATEPAGE_SUCCESS
;
611 * Gigantic pages are so large that we do not guarantee that page++ pointer
612 * arithmetic will work across the entire page. We need something more
615 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
619 struct page
*dst_base
= dst
;
620 struct page
*src_base
= src
;
622 for (i
= 0; i
< nr_pages
; ) {
624 copy_highpage(dst
, src
);
627 dst
= mem_map_next(dst
, dst_base
, i
);
628 src
= mem_map_next(src
, src_base
, i
);
632 static void copy_huge_page(struct page
*dst
, struct page
*src
)
639 struct hstate
*h
= page_hstate(src
);
640 nr_pages
= pages_per_huge_page(h
);
642 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
643 __copy_gigantic_page(dst
, src
, nr_pages
);
648 BUG_ON(!PageTransHuge(src
));
649 nr_pages
= hpage_nr_pages(src
);
652 for (i
= 0; i
< nr_pages
; i
++) {
654 copy_highpage(dst
+ i
, src
+ i
);
659 * Copy the page to its new location
661 void migrate_page_states(struct page
*newpage
, struct page
*page
)
666 SetPageError(newpage
);
667 if (PageReferenced(page
))
668 SetPageReferenced(newpage
);
669 if (PageUptodate(page
))
670 SetPageUptodate(newpage
);
671 if (TestClearPageActive(page
)) {
672 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
673 SetPageActive(newpage
);
674 } else if (TestClearPageUnevictable(page
))
675 SetPageUnevictable(newpage
);
676 if (PageWorkingset(page
))
677 SetPageWorkingset(newpage
);
678 if (PageChecked(page
))
679 SetPageChecked(newpage
);
680 if (PageMappedToDisk(page
))
681 SetPageMappedToDisk(newpage
);
683 /* Move dirty on pages not done by migrate_page_move_mapping() */
685 SetPageDirty(newpage
);
687 if (page_is_young(page
))
688 set_page_young(newpage
);
689 if (page_is_idle(page
))
690 set_page_idle(newpage
);
693 * Copy NUMA information to the new page, to prevent over-eager
694 * future migrations of this same page.
696 cpupid
= page_cpupid_xchg_last(page
, -1);
697 page_cpupid_xchg_last(newpage
, cpupid
);
699 ksm_migrate_page(newpage
, page
);
701 * Please do not reorder this without considering how mm/ksm.c's
702 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
704 if (PageSwapCache(page
))
705 ClearPageSwapCache(page
);
706 ClearPagePrivate(page
);
707 set_page_private(page
, 0);
710 * If any waiters have accumulated on the new page then
713 if (PageWriteback(newpage
))
714 end_page_writeback(newpage
);
716 copy_page_owner(page
, newpage
);
718 mem_cgroup_migrate(page
, newpage
);
720 EXPORT_SYMBOL(migrate_page_states
);
722 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
724 if (PageHuge(page
) || PageTransHuge(page
))
725 copy_huge_page(newpage
, page
);
727 copy_highpage(newpage
, page
);
729 migrate_page_states(newpage
, page
);
731 EXPORT_SYMBOL(migrate_page_copy
);
733 /************************************************************
734 * Migration functions
735 ***********************************************************/
738 * Common logic to directly migrate a single LRU page suitable for
739 * pages that do not use PagePrivate/PagePrivate2.
741 * Pages are locked upon entry and exit.
743 int migrate_page(struct address_space
*mapping
,
744 struct page
*newpage
, struct page
*page
,
745 enum migrate_mode mode
)
749 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
751 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
753 if (rc
!= MIGRATEPAGE_SUCCESS
)
756 if (mode
!= MIGRATE_SYNC_NO_COPY
)
757 migrate_page_copy(newpage
, page
);
759 migrate_page_states(newpage
, page
);
760 return MIGRATEPAGE_SUCCESS
;
762 EXPORT_SYMBOL(migrate_page
);
766 * Migration function for pages with buffers. This function can only be used
767 * if the underlying filesystem guarantees that no other references to "page"
770 int buffer_migrate_page(struct address_space
*mapping
,
771 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
773 struct buffer_head
*bh
, *head
;
776 if (!page_has_buffers(page
))
777 return migrate_page(mapping
, newpage
, page
, mode
);
779 head
= page_buffers(page
);
781 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
783 if (rc
!= MIGRATEPAGE_SUCCESS
)
787 * In the async case, migrate_page_move_mapping locked the buffers
788 * with an IRQ-safe spinlock held. In the sync case, the buffers
789 * need to be locked now
791 if (mode
!= MIGRATE_ASYNC
)
792 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
794 ClearPagePrivate(page
);
795 set_page_private(newpage
, page_private(page
));
796 set_page_private(page
, 0);
802 set_bh_page(bh
, newpage
, bh_offset(bh
));
803 bh
= bh
->b_this_page
;
805 } while (bh
!= head
);
807 SetPagePrivate(newpage
);
809 if (mode
!= MIGRATE_SYNC_NO_COPY
)
810 migrate_page_copy(newpage
, page
);
812 migrate_page_states(newpage
, page
);
818 bh
= bh
->b_this_page
;
820 } while (bh
!= head
);
822 return MIGRATEPAGE_SUCCESS
;
824 EXPORT_SYMBOL(buffer_migrate_page
);
828 * Writeback a page to clean the dirty state
830 static int writeout(struct address_space
*mapping
, struct page
*page
)
832 struct writeback_control wbc
= {
833 .sync_mode
= WB_SYNC_NONE
,
836 .range_end
= LLONG_MAX
,
841 if (!mapping
->a_ops
->writepage
)
842 /* No write method for the address space */
845 if (!clear_page_dirty_for_io(page
))
846 /* Someone else already triggered a write */
850 * A dirty page may imply that the underlying filesystem has
851 * the page on some queue. So the page must be clean for
852 * migration. Writeout may mean we loose the lock and the
853 * page state is no longer what we checked for earlier.
854 * At this point we know that the migration attempt cannot
857 remove_migration_ptes(page
, page
, false);
859 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
861 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
862 /* unlocked. Relock */
865 return (rc
< 0) ? -EIO
: -EAGAIN
;
869 * Default handling if a filesystem does not provide a migration function.
871 static int fallback_migrate_page(struct address_space
*mapping
,
872 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
874 if (PageDirty(page
)) {
875 /* Only writeback pages in full synchronous migration */
878 case MIGRATE_SYNC_NO_COPY
:
883 return writeout(mapping
, page
);
887 * Buffers may be managed in a filesystem specific way.
888 * We must have no buffers or drop them.
890 if (page_has_private(page
) &&
891 !try_to_release_page(page
, GFP_KERNEL
))
894 return migrate_page(mapping
, newpage
, page
, mode
);
898 * Move a page to a newly allocated page
899 * The page is locked and all ptes have been successfully removed.
901 * The new page will have replaced the old page if this function
906 * MIGRATEPAGE_SUCCESS - success
908 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
909 enum migrate_mode mode
)
911 struct address_space
*mapping
;
913 bool is_lru
= !__PageMovable(page
);
915 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
916 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
918 mapping
= page_mapping(page
);
920 if (likely(is_lru
)) {
922 rc
= migrate_page(mapping
, newpage
, page
, mode
);
923 else if (mapping
->a_ops
->migratepage
)
925 * Most pages have a mapping and most filesystems
926 * provide a migratepage callback. Anonymous pages
927 * are part of swap space which also has its own
928 * migratepage callback. This is the most common path
929 * for page migration.
931 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
934 rc
= fallback_migrate_page(mapping
, newpage
,
938 * In case of non-lru page, it could be released after
939 * isolation step. In that case, we shouldn't try migration.
941 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
942 if (!PageMovable(page
)) {
943 rc
= MIGRATEPAGE_SUCCESS
;
944 __ClearPageIsolated(page
);
948 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
950 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
951 !PageIsolated(page
));
955 * When successful, old pagecache page->mapping must be cleared before
956 * page is freed; but stats require that PageAnon be left as PageAnon.
958 if (rc
== MIGRATEPAGE_SUCCESS
) {
959 if (__PageMovable(page
)) {
960 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
963 * We clear PG_movable under page_lock so any compactor
964 * cannot try to migrate this page.
966 __ClearPageIsolated(page
);
970 * Anonymous and movable page->mapping will be cleard by
971 * free_pages_prepare so don't reset it here for keeping
972 * the type to work PageAnon, for example.
974 if (!PageMappingFlags(page
))
975 page
->mapping
= NULL
;
981 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
982 int force
, enum migrate_mode mode
)
985 int page_was_mapped
= 0;
986 struct anon_vma
*anon_vma
= NULL
;
987 bool is_lru
= !__PageMovable(page
);
989 if (!trylock_page(page
)) {
990 if (!force
|| mode
== MIGRATE_ASYNC
)
994 * It's not safe for direct compaction to call lock_page.
995 * For example, during page readahead pages are added locked
996 * to the LRU. Later, when the IO completes the pages are
997 * marked uptodate and unlocked. However, the queueing
998 * could be merging multiple pages for one bio (e.g.
999 * mpage_readpages). If an allocation happens for the
1000 * second or third page, the process can end up locking
1001 * the same page twice and deadlocking. Rather than
1002 * trying to be clever about what pages can be locked,
1003 * avoid the use of lock_page for direct compaction
1006 if (current
->flags
& PF_MEMALLOC
)
1012 if (PageWriteback(page
)) {
1014 * Only in the case of a full synchronous migration is it
1015 * necessary to wait for PageWriteback. In the async case,
1016 * the retry loop is too short and in the sync-light case,
1017 * the overhead of stalling is too much
1021 case MIGRATE_SYNC_NO_COPY
:
1029 wait_on_page_writeback(page
);
1033 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1034 * we cannot notice that anon_vma is freed while we migrates a page.
1035 * This get_anon_vma() delays freeing anon_vma pointer until the end
1036 * of migration. File cache pages are no problem because of page_lock()
1037 * File Caches may use write_page() or lock_page() in migration, then,
1038 * just care Anon page here.
1040 * Only page_get_anon_vma() understands the subtleties of
1041 * getting a hold on an anon_vma from outside one of its mms.
1042 * But if we cannot get anon_vma, then we won't need it anyway,
1043 * because that implies that the anon page is no longer mapped
1044 * (and cannot be remapped so long as we hold the page lock).
1046 if (PageAnon(page
) && !PageKsm(page
))
1047 anon_vma
= page_get_anon_vma(page
);
1050 * Block others from accessing the new page when we get around to
1051 * establishing additional references. We are usually the only one
1052 * holding a reference to newpage at this point. We used to have a BUG
1053 * here if trylock_page(newpage) fails, but would like to allow for
1054 * cases where there might be a race with the previous use of newpage.
1055 * This is much like races on refcount of oldpage: just don't BUG().
1057 if (unlikely(!trylock_page(newpage
)))
1060 if (unlikely(!is_lru
)) {
1061 rc
= move_to_new_page(newpage
, page
, mode
);
1062 goto out_unlock_both
;
1066 * Corner case handling:
1067 * 1. When a new swap-cache page is read into, it is added to the LRU
1068 * and treated as swapcache but it has no rmap yet.
1069 * Calling try_to_unmap() against a page->mapping==NULL page will
1070 * trigger a BUG. So handle it here.
1071 * 2. An orphaned page (see truncate_complete_page) might have
1072 * fs-private metadata. The page can be picked up due to memory
1073 * offlining. Everywhere else except page reclaim, the page is
1074 * invisible to the vm, so the page can not be migrated. So try to
1075 * free the metadata, so the page can be freed.
1077 if (!page
->mapping
) {
1078 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1079 if (page_has_private(page
)) {
1080 try_to_free_buffers(page
);
1081 goto out_unlock_both
;
1083 } else if (page_mapped(page
)) {
1084 /* Establish migration ptes */
1085 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1088 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1089 page_was_mapped
= 1;
1092 if (!page_mapped(page
))
1093 rc
= move_to_new_page(newpage
, page
, mode
);
1095 if (page_was_mapped
)
1096 remove_migration_ptes(page
,
1097 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1100 unlock_page(newpage
);
1102 /* Drop an anon_vma reference if we took one */
1104 put_anon_vma(anon_vma
);
1108 * If migration is successful, decrease refcount of the newpage
1109 * which will not free the page because new page owner increased
1110 * refcounter. As well, if it is LRU page, add the page to LRU
1113 if (rc
== MIGRATEPAGE_SUCCESS
) {
1114 if (unlikely(__PageMovable(newpage
)))
1117 putback_lru_page(newpage
);
1124 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1127 #if defined(CONFIG_ARM) && \
1128 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1129 #define ICE_noinline noinline
1131 #define ICE_noinline
1135 * Obtain the lock on page, remove all ptes and migrate the page
1136 * to the newly allocated page in newpage.
1138 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1139 free_page_t put_new_page
,
1140 unsigned long private, struct page
*page
,
1141 int force
, enum migrate_mode mode
,
1142 enum migrate_reason reason
)
1144 int rc
= MIGRATEPAGE_SUCCESS
;
1145 struct page
*newpage
;
1147 if (!thp_migration_supported() && PageTransHuge(page
))
1150 newpage
= get_new_page(page
, private);
1154 if (page_count(page
) == 1) {
1155 /* page was freed from under us. So we are done. */
1156 ClearPageActive(page
);
1157 ClearPageUnevictable(page
);
1158 if (unlikely(__PageMovable(page
))) {
1160 if (!PageMovable(page
))
1161 __ClearPageIsolated(page
);
1165 put_new_page(newpage
, private);
1171 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1172 if (rc
== MIGRATEPAGE_SUCCESS
)
1173 set_page_owner_migrate_reason(newpage
, reason
);
1176 if (rc
!= -EAGAIN
) {
1178 * A page that has been migrated has all references
1179 * removed and will be freed. A page that has not been
1180 * migrated will have kepts its references and be
1183 list_del(&page
->lru
);
1186 * Compaction can migrate also non-LRU pages which are
1187 * not accounted to NR_ISOLATED_*. They can be recognized
1190 if (likely(!__PageMovable(page
)))
1191 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1192 page_is_file_cache(page
), -hpage_nr_pages(page
));
1196 * If migration is successful, releases reference grabbed during
1197 * isolation. Otherwise, restore the page to right list unless
1200 if (rc
== MIGRATEPAGE_SUCCESS
) {
1202 if (reason
== MR_MEMORY_FAILURE
) {
1204 * Set PG_HWPoison on just freed page
1205 * intentionally. Although it's rather weird,
1206 * it's how HWPoison flag works at the moment.
1208 if (set_hwpoison_free_buddy_page(page
))
1209 num_poisoned_pages_inc();
1212 if (rc
!= -EAGAIN
) {
1213 if (likely(!__PageMovable(page
))) {
1214 putback_lru_page(page
);
1219 if (PageMovable(page
))
1220 putback_movable_page(page
);
1222 __ClearPageIsolated(page
);
1228 put_new_page(newpage
, private);
1237 * Counterpart of unmap_and_move_page() for hugepage migration.
1239 * This function doesn't wait the completion of hugepage I/O
1240 * because there is no race between I/O and migration for hugepage.
1241 * Note that currently hugepage I/O occurs only in direct I/O
1242 * where no lock is held and PG_writeback is irrelevant,
1243 * and writeback status of all subpages are counted in the reference
1244 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1245 * under direct I/O, the reference of the head page is 512 and a bit more.)
1246 * This means that when we try to migrate hugepage whose subpages are
1247 * doing direct I/O, some references remain after try_to_unmap() and
1248 * hugepage migration fails without data corruption.
1250 * There is also no race when direct I/O is issued on the page under migration,
1251 * because then pte is replaced with migration swap entry and direct I/O code
1252 * will wait in the page fault for migration to complete.
1254 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1255 free_page_t put_new_page
, unsigned long private,
1256 struct page
*hpage
, int force
,
1257 enum migrate_mode mode
, int reason
)
1260 int page_was_mapped
= 0;
1261 struct page
*new_hpage
;
1262 struct anon_vma
*anon_vma
= NULL
;
1265 * Movability of hugepages depends on architectures and hugepage size.
1266 * This check is necessary because some callers of hugepage migration
1267 * like soft offline and memory hotremove don't walk through page
1268 * tables or check whether the hugepage is pmd-based or not before
1269 * kicking migration.
1271 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1272 putback_active_hugepage(hpage
);
1276 new_hpage
= get_new_page(hpage
, private);
1280 if (!trylock_page(hpage
)) {
1285 case MIGRATE_SYNC_NO_COPY
:
1293 if (PageAnon(hpage
))
1294 anon_vma
= page_get_anon_vma(hpage
);
1296 if (unlikely(!trylock_page(new_hpage
)))
1299 if (page_mapped(hpage
)) {
1301 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1302 page_was_mapped
= 1;
1305 if (!page_mapped(hpage
))
1306 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1308 if (page_was_mapped
)
1309 remove_migration_ptes(hpage
,
1310 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1312 unlock_page(new_hpage
);
1316 put_anon_vma(anon_vma
);
1318 if (rc
== MIGRATEPAGE_SUCCESS
) {
1319 move_hugetlb_state(hpage
, new_hpage
, reason
);
1320 put_new_page
= NULL
;
1326 putback_active_hugepage(hpage
);
1329 * If migration was not successful and there's a freeing callback, use
1330 * it. Otherwise, put_page() will drop the reference grabbed during
1334 put_new_page(new_hpage
, private);
1336 putback_active_hugepage(new_hpage
);
1342 * migrate_pages - migrate the pages specified in a list, to the free pages
1343 * supplied as the target for the page migration
1345 * @from: The list of pages to be migrated.
1346 * @get_new_page: The function used to allocate free pages to be used
1347 * as the target of the page migration.
1348 * @put_new_page: The function used to free target pages if migration
1349 * fails, or NULL if no special handling is necessary.
1350 * @private: Private data to be passed on to get_new_page()
1351 * @mode: The migration mode that specifies the constraints for
1352 * page migration, if any.
1353 * @reason: The reason for page migration.
1355 * The function returns after 10 attempts or if no pages are movable any more
1356 * because the list has become empty or no retryable pages exist any more.
1357 * The caller should call putback_movable_pages() to return pages to the LRU
1358 * or free list only if ret != 0.
1360 * Returns the number of pages that were not migrated, or an error code.
1362 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1363 free_page_t put_new_page
, unsigned long private,
1364 enum migrate_mode mode
, int reason
)
1368 int nr_succeeded
= 0;
1372 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1376 current
->flags
|= PF_SWAPWRITE
;
1378 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1381 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1386 rc
= unmap_and_move_huge_page(get_new_page
,
1387 put_new_page
, private, page
,
1388 pass
> 2, mode
, reason
);
1390 rc
= unmap_and_move(get_new_page
, put_new_page
,
1391 private, page
, pass
> 2, mode
,
1397 * THP migration might be unsupported or the
1398 * allocation could've failed so we should
1399 * retry on the same page with the THP split
1402 * Head page is retried immediately and tail
1403 * pages are added to the tail of the list so
1404 * we encounter them after the rest of the list
1407 if (PageTransHuge(page
) && !PageHuge(page
)) {
1409 rc
= split_huge_page_to_list(page
, from
);
1412 list_safe_reset_next(page
, page2
, lru
);
1421 case MIGRATEPAGE_SUCCESS
:
1426 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1427 * unlike -EAGAIN case, the failed page is
1428 * removed from migration page list and not
1429 * retried in the next outer loop.
1440 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1442 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1443 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1446 current
->flags
&= ~PF_SWAPWRITE
;
1453 static int store_status(int __user
*status
, int start
, int value
, int nr
)
1456 if (put_user(value
, status
+ start
))
1464 static int do_move_pages_to_node(struct mm_struct
*mm
,
1465 struct list_head
*pagelist
, int node
)
1469 if (list_empty(pagelist
))
1472 err
= migrate_pages(pagelist
, alloc_new_node_page
, NULL
, node
,
1473 MIGRATE_SYNC
, MR_SYSCALL
);
1475 putback_movable_pages(pagelist
);
1480 * Resolves the given address to a struct page, isolates it from the LRU and
1481 * puts it to the given pagelist.
1482 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1483 * queued or the page doesn't need to be migrated because it is already on
1486 static int add_page_for_migration(struct mm_struct
*mm
, unsigned long addr
,
1487 int node
, struct list_head
*pagelist
, bool migrate_all
)
1489 struct vm_area_struct
*vma
;
1491 unsigned int follflags
;
1494 down_read(&mm
->mmap_sem
);
1496 vma
= find_vma(mm
, addr
);
1497 if (!vma
|| addr
< vma
->vm_start
|| !vma_migratable(vma
))
1500 /* FOLL_DUMP to ignore special (like zero) pages */
1501 follflags
= FOLL_GET
| FOLL_DUMP
;
1502 page
= follow_page(vma
, addr
, follflags
);
1504 err
= PTR_ERR(page
);
1513 if (page_to_nid(page
) == node
)
1517 if (page_mapcount(page
) > 1 && !migrate_all
)
1520 if (PageHuge(page
)) {
1521 if (PageHead(page
)) {
1522 isolate_huge_page(page
, pagelist
);
1528 head
= compound_head(page
);
1529 err
= isolate_lru_page(head
);
1534 list_add_tail(&head
->lru
, pagelist
);
1535 mod_node_page_state(page_pgdat(head
),
1536 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1537 hpage_nr_pages(head
));
1541 * Either remove the duplicate refcount from
1542 * isolate_lru_page() or drop the page ref if it was
1547 up_read(&mm
->mmap_sem
);
1552 * Migrate an array of page address onto an array of nodes and fill
1553 * the corresponding array of status.
1555 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1556 unsigned long nr_pages
,
1557 const void __user
* __user
*pages
,
1558 const int __user
*nodes
,
1559 int __user
*status
, int flags
)
1561 int current_node
= NUMA_NO_NODE
;
1562 LIST_HEAD(pagelist
);
1568 for (i
= start
= 0; i
< nr_pages
; i
++) {
1569 const void __user
*p
;
1574 if (get_user(p
, pages
+ i
))
1576 if (get_user(node
, nodes
+ i
))
1578 addr
= (unsigned long)p
;
1581 if (node
< 0 || node
>= MAX_NUMNODES
)
1583 if (!node_state(node
, N_MEMORY
))
1587 if (!node_isset(node
, task_nodes
))
1590 if (current_node
== NUMA_NO_NODE
) {
1591 current_node
= node
;
1593 } else if (node
!= current_node
) {
1594 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1597 err
= store_status(status
, start
, current_node
, i
- start
);
1601 current_node
= node
;
1605 * Errors in the page lookup or isolation are not fatal and we simply
1606 * report them via status
1608 err
= add_page_for_migration(mm
, addr
, current_node
,
1609 &pagelist
, flags
& MPOL_MF_MOVE_ALL
);
1613 err
= store_status(status
, i
, err
, 1);
1617 err
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1621 err
= store_status(status
, start
, current_node
, i
- start
);
1625 current_node
= NUMA_NO_NODE
;
1628 if (list_empty(&pagelist
))
1631 /* Make sure we do not overwrite the existing error */
1632 err1
= do_move_pages_to_node(mm
, &pagelist
, current_node
);
1634 err1
= store_status(status
, start
, current_node
, i
- start
);
1642 * Determine the nodes of an array of pages and store it in an array of status.
1644 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1645 const void __user
**pages
, int *status
)
1649 down_read(&mm
->mmap_sem
);
1651 for (i
= 0; i
< nr_pages
; i
++) {
1652 unsigned long addr
= (unsigned long)(*pages
);
1653 struct vm_area_struct
*vma
;
1657 vma
= find_vma(mm
, addr
);
1658 if (!vma
|| addr
< vma
->vm_start
)
1661 /* FOLL_DUMP to ignore special (like zero) pages */
1662 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1664 err
= PTR_ERR(page
);
1668 err
= page
? page_to_nid(page
) : -ENOENT
;
1676 up_read(&mm
->mmap_sem
);
1680 * Determine the nodes of a user array of pages and store it in
1681 * a user array of status.
1683 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1684 const void __user
* __user
*pages
,
1687 #define DO_PAGES_STAT_CHUNK_NR 16
1688 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1689 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1692 unsigned long chunk_nr
;
1694 chunk_nr
= nr_pages
;
1695 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1696 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1698 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1701 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1703 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1708 nr_pages
-= chunk_nr
;
1710 return nr_pages
? -EFAULT
: 0;
1714 * Move a list of pages in the address space of the currently executing
1717 static int kernel_move_pages(pid_t pid
, unsigned long nr_pages
,
1718 const void __user
* __user
*pages
,
1719 const int __user
*nodes
,
1720 int __user
*status
, int flags
)
1722 struct task_struct
*task
;
1723 struct mm_struct
*mm
;
1725 nodemask_t task_nodes
;
1728 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1731 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1734 /* Find the mm_struct */
1736 task
= pid
? find_task_by_vpid(pid
) : current
;
1741 get_task_struct(task
);
1744 * Check if this process has the right to modify the specified
1745 * process. Use the regular "ptrace_may_access()" checks.
1747 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1754 err
= security_task_movememory(task
);
1758 task_nodes
= cpuset_mems_allowed(task
);
1759 mm
= get_task_mm(task
);
1760 put_task_struct(task
);
1766 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1767 nodes
, status
, flags
);
1769 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1775 put_task_struct(task
);
1779 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1780 const void __user
* __user
*, pages
,
1781 const int __user
*, nodes
,
1782 int __user
*, status
, int, flags
)
1784 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1787 #ifdef CONFIG_COMPAT
1788 COMPAT_SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, compat_ulong_t
, nr_pages
,
1789 compat_uptr_t __user
*, pages32
,
1790 const int __user
*, nodes
,
1791 int __user
*, status
,
1794 const void __user
* __user
*pages
;
1797 pages
= compat_alloc_user_space(nr_pages
* sizeof(void *));
1798 for (i
= 0; i
< nr_pages
; i
++) {
1801 if (get_user(p
, pages32
+ i
) ||
1802 put_user(compat_ptr(p
), pages
+ i
))
1805 return kernel_move_pages(pid
, nr_pages
, pages
, nodes
, status
, flags
);
1807 #endif /* CONFIG_COMPAT */
1809 #ifdef CONFIG_NUMA_BALANCING
1811 * Returns true if this is a safe migration target node for misplaced NUMA
1812 * pages. Currently it only checks the watermarks which crude
1814 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1815 unsigned long nr_migrate_pages
)
1819 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1820 struct zone
*zone
= pgdat
->node_zones
+ z
;
1822 if (!populated_zone(zone
))
1825 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1826 if (!zone_watermark_ok(zone
, 0,
1827 high_wmark_pages(zone
) +
1836 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1839 int nid
= (int) data
;
1840 struct page
*newpage
;
1842 newpage
= __alloc_pages_node(nid
,
1843 (GFP_HIGHUSER_MOVABLE
|
1844 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1845 __GFP_NORETRY
| __GFP_NOWARN
) &
1851 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1855 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1857 /* Avoid migrating to a node that is nearly full */
1858 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1861 if (isolate_lru_page(page
))
1865 * migrate_misplaced_transhuge_page() skips page migration's usual
1866 * check on page_count(), so we must do it here, now that the page
1867 * has been isolated: a GUP pin, or any other pin, prevents migration.
1868 * The expected page count is 3: 1 for page's mapcount and 1 for the
1869 * caller's pin and 1 for the reference taken by isolate_lru_page().
1871 if (PageTransHuge(page
) && page_count(page
) != 3) {
1872 putback_lru_page(page
);
1876 page_lru
= page_is_file_cache(page
);
1877 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1878 hpage_nr_pages(page
));
1881 * Isolating the page has taken another reference, so the
1882 * caller's reference can be safely dropped without the page
1883 * disappearing underneath us during migration.
1889 bool pmd_trans_migrating(pmd_t pmd
)
1891 struct page
*page
= pmd_page(pmd
);
1892 return PageLocked(page
);
1896 * Attempt to migrate a misplaced page to the specified destination
1897 * node. Caller is expected to have an elevated reference count on
1898 * the page that will be dropped by this function before returning.
1900 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1903 pg_data_t
*pgdat
= NODE_DATA(node
);
1906 LIST_HEAD(migratepages
);
1909 * Don't migrate file pages that are mapped in multiple processes
1910 * with execute permissions as they are probably shared libraries.
1912 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1913 (vma
->vm_flags
& VM_EXEC
))
1917 * Also do not migrate dirty pages as not all filesystems can move
1918 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1920 if (page_is_file_cache(page
) && PageDirty(page
))
1923 isolated
= numamigrate_isolate_page(pgdat
, page
);
1927 list_add(&page
->lru
, &migratepages
);
1928 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1929 NULL
, node
, MIGRATE_ASYNC
,
1932 if (!list_empty(&migratepages
)) {
1933 list_del(&page
->lru
);
1934 dec_node_page_state(page
, NR_ISOLATED_ANON
+
1935 page_is_file_cache(page
));
1936 putback_lru_page(page
);
1940 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1941 BUG_ON(!list_empty(&migratepages
));
1948 #endif /* CONFIG_NUMA_BALANCING */
1950 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1952 * Migrates a THP to a given target node. page must be locked and is unlocked
1955 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1956 struct vm_area_struct
*vma
,
1957 pmd_t
*pmd
, pmd_t entry
,
1958 unsigned long address
,
1959 struct page
*page
, int node
)
1962 pg_data_t
*pgdat
= NODE_DATA(node
);
1964 struct page
*new_page
= NULL
;
1965 int page_lru
= page_is_file_cache(page
);
1966 unsigned long start
= address
& HPAGE_PMD_MASK
;
1968 new_page
= alloc_pages_node(node
,
1969 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
1973 prep_transhuge_page(new_page
);
1975 isolated
= numamigrate_isolate_page(pgdat
, page
);
1981 /* Prepare a page as a migration target */
1982 __SetPageLocked(new_page
);
1983 if (PageSwapBacked(page
))
1984 __SetPageSwapBacked(new_page
);
1986 /* anon mapping, we can simply copy page->mapping to the new page: */
1987 new_page
->mapping
= page
->mapping
;
1988 new_page
->index
= page
->index
;
1989 /* flush the cache before copying using the kernel virtual address */
1990 flush_cache_range(vma
, start
, start
+ HPAGE_PMD_SIZE
);
1991 migrate_page_copy(new_page
, page
);
1992 WARN_ON(PageLRU(new_page
));
1994 /* Recheck the target PMD */
1995 ptl
= pmd_lock(mm
, pmd
);
1996 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
1999 /* Reverse changes made by migrate_page_copy() */
2000 if (TestClearPageActive(new_page
))
2001 SetPageActive(page
);
2002 if (TestClearPageUnevictable(new_page
))
2003 SetPageUnevictable(page
);
2005 unlock_page(new_page
);
2006 put_page(new_page
); /* Free it */
2008 /* Retake the callers reference and putback on LRU */
2010 putback_lru_page(page
);
2011 mod_node_page_state(page_pgdat(page
),
2012 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2017 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2018 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2021 * Overwrite the old entry under pagetable lock and establish
2022 * the new PTE. Any parallel GUP will either observe the old
2023 * page blocking on the page lock, block on the page table
2024 * lock or observe the new page. The SetPageUptodate on the
2025 * new page and page_add_new_anon_rmap guarantee the copy is
2026 * visible before the pagetable update.
2028 page_add_anon_rmap(new_page
, vma
, start
, true);
2030 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2031 * has already been flushed globally. So no TLB can be currently
2032 * caching this non present pmd mapping. There's no need to clear the
2033 * pmd before doing set_pmd_at(), nor to flush the TLB after
2034 * set_pmd_at(). Clearing the pmd here would introduce a race
2035 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2036 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2037 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2040 set_pmd_at(mm
, start
, pmd
, entry
);
2041 update_mmu_cache_pmd(vma
, address
, &entry
);
2043 page_ref_unfreeze(page
, 2);
2044 mlock_migrate_page(new_page
, page
);
2045 page_remove_rmap(page
, true);
2046 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2050 /* Take an "isolate" reference and put new page on the LRU. */
2052 putback_lru_page(new_page
);
2054 unlock_page(new_page
);
2056 put_page(page
); /* Drop the rmap reference */
2057 put_page(page
); /* Drop the LRU isolation reference */
2059 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2060 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2062 mod_node_page_state(page_pgdat(page
),
2063 NR_ISOLATED_ANON
+ page_lru
,
2068 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2069 ptl
= pmd_lock(mm
, pmd
);
2070 if (pmd_same(*pmd
, entry
)) {
2071 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2072 set_pmd_at(mm
, start
, pmd
, entry
);
2073 update_mmu_cache_pmd(vma
, address
, &entry
);
2082 #endif /* CONFIG_NUMA_BALANCING */
2084 #endif /* CONFIG_NUMA */
2086 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2087 struct migrate_vma
{
2088 struct vm_area_struct
*vma
;
2091 unsigned long cpages
;
2092 unsigned long npages
;
2093 unsigned long start
;
2097 static int migrate_vma_collect_hole(unsigned long start
,
2099 struct mm_walk
*walk
)
2101 struct migrate_vma
*migrate
= walk
->private;
2104 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2105 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2106 migrate
->dst
[migrate
->npages
] = 0;
2114 static int migrate_vma_collect_skip(unsigned long start
,
2116 struct mm_walk
*walk
)
2118 struct migrate_vma
*migrate
= walk
->private;
2121 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2122 migrate
->dst
[migrate
->npages
] = 0;
2123 migrate
->src
[migrate
->npages
++] = 0;
2129 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2130 unsigned long start
,
2132 struct mm_walk
*walk
)
2134 struct migrate_vma
*migrate
= walk
->private;
2135 struct vm_area_struct
*vma
= walk
->vma
;
2136 struct mm_struct
*mm
= vma
->vm_mm
;
2137 unsigned long addr
= start
, unmapped
= 0;
2142 if (pmd_none(*pmdp
))
2143 return migrate_vma_collect_hole(start
, end
, walk
);
2145 if (pmd_trans_huge(*pmdp
)) {
2148 ptl
= pmd_lock(mm
, pmdp
);
2149 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2154 page
= pmd_page(*pmdp
);
2155 if (is_huge_zero_page(page
)) {
2157 split_huge_pmd(vma
, pmdp
, addr
);
2158 if (pmd_trans_unstable(pmdp
))
2159 return migrate_vma_collect_skip(start
, end
,
2166 if (unlikely(!trylock_page(page
)))
2167 return migrate_vma_collect_skip(start
, end
,
2169 ret
= split_huge_page(page
);
2173 return migrate_vma_collect_skip(start
, end
,
2175 if (pmd_none(*pmdp
))
2176 return migrate_vma_collect_hole(start
, end
,
2181 if (unlikely(pmd_bad(*pmdp
)))
2182 return migrate_vma_collect_skip(start
, end
, walk
);
2184 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2185 arch_enter_lazy_mmu_mode();
2187 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2188 unsigned long mpfn
, pfn
;
2196 if (pte_none(pte
)) {
2197 mpfn
= MIGRATE_PFN_MIGRATE
;
2203 if (!pte_present(pte
)) {
2207 * Only care about unaddressable device page special
2208 * page table entry. Other special swap entries are not
2209 * migratable, and we ignore regular swapped page.
2211 entry
= pte_to_swp_entry(pte
);
2212 if (!is_device_private_entry(entry
))
2215 page
= device_private_entry_to_page(entry
);
2216 mpfn
= migrate_pfn(page_to_pfn(page
))|
2217 MIGRATE_PFN_DEVICE
| MIGRATE_PFN_MIGRATE
;
2218 if (is_write_device_private_entry(entry
))
2219 mpfn
|= MIGRATE_PFN_WRITE
;
2221 if (is_zero_pfn(pfn
)) {
2222 mpfn
= MIGRATE_PFN_MIGRATE
;
2227 page
= _vm_normal_page(migrate
->vma
, addr
, pte
, true);
2228 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2229 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2232 /* FIXME support THP */
2233 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2237 pfn
= page_to_pfn(page
);
2240 * By getting a reference on the page we pin it and that blocks
2241 * any kind of migration. Side effect is that it "freezes" the
2244 * We drop this reference after isolating the page from the lru
2245 * for non device page (device page are not on the lru and thus
2246 * can't be dropped from it).
2252 * Optimize for the common case where page is only mapped once
2253 * in one process. If we can lock the page, then we can safely
2254 * set up a special migration page table entry now.
2256 if (trylock_page(page
)) {
2259 mpfn
|= MIGRATE_PFN_LOCKED
;
2260 ptep_get_and_clear(mm
, addr
, ptep
);
2262 /* Setup special migration page table entry */
2263 entry
= make_migration_entry(page
, mpfn
&
2265 swp_pte
= swp_entry_to_pte(entry
);
2266 if (pte_soft_dirty(pte
))
2267 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2268 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2271 * This is like regular unmap: we remove the rmap and
2272 * drop page refcount. Page won't be freed, as we took
2273 * a reference just above.
2275 page_remove_rmap(page
, false);
2278 if (pte_present(pte
))
2283 migrate
->dst
[migrate
->npages
] = 0;
2284 migrate
->src
[migrate
->npages
++] = mpfn
;
2286 arch_leave_lazy_mmu_mode();
2287 pte_unmap_unlock(ptep
- 1, ptl
);
2289 /* Only flush the TLB if we actually modified any entries */
2291 flush_tlb_range(walk
->vma
, start
, end
);
2297 * migrate_vma_collect() - collect pages over a range of virtual addresses
2298 * @migrate: migrate struct containing all migration information
2300 * This will walk the CPU page table. For each virtual address backed by a
2301 * valid page, it updates the src array and takes a reference on the page, in
2302 * order to pin the page until we lock it and unmap it.
2304 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2306 struct mm_walk mm_walk
;
2308 mm_walk
.pmd_entry
= migrate_vma_collect_pmd
;
2309 mm_walk
.pte_entry
= NULL
;
2310 mm_walk
.pte_hole
= migrate_vma_collect_hole
;
2311 mm_walk
.hugetlb_entry
= NULL
;
2312 mm_walk
.test_walk
= NULL
;
2313 mm_walk
.vma
= migrate
->vma
;
2314 mm_walk
.mm
= migrate
->vma
->vm_mm
;
2315 mm_walk
.private = migrate
;
2317 mmu_notifier_invalidate_range_start(mm_walk
.mm
,
2320 walk_page_range(migrate
->start
, migrate
->end
, &mm_walk
);
2321 mmu_notifier_invalidate_range_end(mm_walk
.mm
,
2325 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2329 * migrate_vma_check_page() - check if page is pinned or not
2330 * @page: struct page to check
2332 * Pinned pages cannot be migrated. This is the same test as in
2333 * migrate_page_move_mapping(), except that here we allow migration of a
2336 static bool migrate_vma_check_page(struct page
*page
)
2339 * One extra ref because caller holds an extra reference, either from
2340 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2346 * FIXME support THP (transparent huge page), it is bit more complex to
2347 * check them than regular pages, because they can be mapped with a pmd
2348 * or with a pte (split pte mapping).
2350 if (PageCompound(page
))
2353 /* Page from ZONE_DEVICE have one extra reference */
2354 if (is_zone_device_page(page
)) {
2356 * Private page can never be pin as they have no valid pte and
2357 * GUP will fail for those. Yet if there is a pending migration
2358 * a thread might try to wait on the pte migration entry and
2359 * will bump the page reference count. Sadly there is no way to
2360 * differentiate a regular pin from migration wait. Hence to
2361 * avoid 2 racing thread trying to migrate back to CPU to enter
2362 * infinite loop (one stoping migration because the other is
2363 * waiting on pte migration entry). We always return true here.
2365 * FIXME proper solution is to rework migration_entry_wait() so
2366 * it does not need to take a reference on page.
2368 if (is_device_private_page(page
))
2372 * Only allow device public page to be migrated and account for
2373 * the extra reference count imply by ZONE_DEVICE pages.
2375 if (!is_device_public_page(page
))
2380 /* For file back page */
2381 if (page_mapping(page
))
2382 extra
+= 1 + page_has_private(page
);
2384 if ((page_count(page
) - extra
) > page_mapcount(page
))
2391 * migrate_vma_prepare() - lock pages and isolate them from the lru
2392 * @migrate: migrate struct containing all migration information
2394 * This locks pages that have been collected by migrate_vma_collect(). Once each
2395 * page is locked it is isolated from the lru (for non-device pages). Finally,
2396 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2397 * migrated by concurrent kernel threads.
2399 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2401 const unsigned long npages
= migrate
->npages
;
2402 const unsigned long start
= migrate
->start
;
2403 unsigned long addr
, i
, restore
= 0;
2404 bool allow_drain
= true;
2408 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2409 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2415 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2417 * Because we are migrating several pages there can be
2418 * a deadlock between 2 concurrent migration where each
2419 * are waiting on each other page lock.
2421 * Make migrate_vma() a best effort thing and backoff
2422 * for any page we can not lock right away.
2424 if (!trylock_page(page
)) {
2425 migrate
->src
[i
] = 0;
2431 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2434 /* ZONE_DEVICE pages are not on LRU */
2435 if (!is_zone_device_page(page
)) {
2436 if (!PageLRU(page
) && allow_drain
) {
2437 /* Drain CPU's pagevec */
2438 lru_add_drain_all();
2439 allow_drain
= false;
2442 if (isolate_lru_page(page
)) {
2444 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2448 migrate
->src
[i
] = 0;
2456 /* Drop the reference we took in collect */
2460 if (!migrate_vma_check_page(page
)) {
2462 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2466 if (!is_zone_device_page(page
)) {
2468 putback_lru_page(page
);
2471 migrate
->src
[i
] = 0;
2475 if (!is_zone_device_page(page
))
2476 putback_lru_page(page
);
2483 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2484 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2486 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2489 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2491 migrate
->src
[i
] = 0;
2499 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2500 * @migrate: migrate struct containing all migration information
2502 * Replace page mapping (CPU page table pte) with a special migration pte entry
2503 * and check again if it has been pinned. Pinned pages are restored because we
2504 * cannot migrate them.
2506 * This is the last step before we call the device driver callback to allocate
2507 * destination memory and copy contents of original page over to new page.
2509 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2511 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2512 const unsigned long npages
= migrate
->npages
;
2513 const unsigned long start
= migrate
->start
;
2514 unsigned long addr
, i
, restore
= 0;
2516 for (i
= 0; i
< npages
; i
++) {
2517 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2519 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2522 if (page_mapped(page
)) {
2523 try_to_unmap(page
, flags
);
2524 if (page_mapped(page
))
2528 if (migrate_vma_check_page(page
))
2532 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2537 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2538 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2540 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2543 remove_migration_ptes(page
, page
, false);
2545 migrate
->src
[i
] = 0;
2549 if (is_zone_device_page(page
))
2552 putback_lru_page(page
);
2556 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2562 struct vm_area_struct
*vma
= migrate
->vma
;
2563 struct mm_struct
*mm
= vma
->vm_mm
;
2564 struct mem_cgroup
*memcg
;
2574 /* Only allow populating anonymous memory */
2575 if (!vma_is_anonymous(vma
))
2578 pgdp
= pgd_offset(mm
, addr
);
2579 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2582 pudp
= pud_alloc(mm
, p4dp
, addr
);
2585 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2589 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2593 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2594 * pte_offset_map() on pmds where a huge pmd might be created
2595 * from a different thread.
2597 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2598 * parallel threads are excluded by other means.
2600 * Here we only have down_read(mmap_sem).
2602 if (pte_alloc(mm
, pmdp
, addr
))
2605 /* See the comment in pte_alloc_one_map() */
2606 if (unlikely(pmd_trans_unstable(pmdp
)))
2609 if (unlikely(anon_vma_prepare(vma
)))
2611 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2615 * The memory barrier inside __SetPageUptodate makes sure that
2616 * preceding stores to the page contents become visible before
2617 * the set_pte_at() write.
2619 __SetPageUptodate(page
);
2621 if (is_zone_device_page(page
)) {
2622 if (is_device_private_page(page
)) {
2623 swp_entry_t swp_entry
;
2625 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2626 entry
= swp_entry_to_pte(swp_entry
);
2627 } else if (is_device_public_page(page
)) {
2628 entry
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
2629 if (vma
->vm_flags
& VM_WRITE
)
2630 entry
= pte_mkwrite(pte_mkdirty(entry
));
2631 entry
= pte_mkdevmap(entry
);
2634 entry
= mk_pte(page
, vma
->vm_page_prot
);
2635 if (vma
->vm_flags
& VM_WRITE
)
2636 entry
= pte_mkwrite(pte_mkdirty(entry
));
2639 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2641 if (pte_present(*ptep
)) {
2642 unsigned long pfn
= pte_pfn(*ptep
);
2644 if (!is_zero_pfn(pfn
)) {
2645 pte_unmap_unlock(ptep
, ptl
);
2646 mem_cgroup_cancel_charge(page
, memcg
, false);
2650 } else if (!pte_none(*ptep
)) {
2651 pte_unmap_unlock(ptep
, ptl
);
2652 mem_cgroup_cancel_charge(page
, memcg
, false);
2657 * Check for usefaultfd but do not deliver the fault. Instead,
2660 if (userfaultfd_missing(vma
)) {
2661 pte_unmap_unlock(ptep
, ptl
);
2662 mem_cgroup_cancel_charge(page
, memcg
, false);
2666 inc_mm_counter(mm
, MM_ANONPAGES
);
2667 page_add_new_anon_rmap(page
, vma
, addr
, false);
2668 mem_cgroup_commit_charge(page
, memcg
, false, false);
2669 if (!is_zone_device_page(page
))
2670 lru_cache_add_active_or_unevictable(page
, vma
);
2674 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2675 ptep_clear_flush_notify(vma
, addr
, ptep
);
2676 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2677 update_mmu_cache(vma
, addr
, ptep
);
2679 /* No need to invalidate - it was non-present before */
2680 set_pte_at(mm
, addr
, ptep
, entry
);
2681 update_mmu_cache(vma
, addr
, ptep
);
2684 pte_unmap_unlock(ptep
, ptl
);
2685 *src
= MIGRATE_PFN_MIGRATE
;
2689 *src
&= ~MIGRATE_PFN_MIGRATE
;
2693 * migrate_vma_pages() - migrate meta-data from src page to dst page
2694 * @migrate: migrate struct containing all migration information
2696 * This migrates struct page meta-data from source struct page to destination
2697 * struct page. This effectively finishes the migration from source page to the
2700 static void migrate_vma_pages(struct migrate_vma
*migrate
)
2702 const unsigned long npages
= migrate
->npages
;
2703 const unsigned long start
= migrate
->start
;
2704 struct vm_area_struct
*vma
= migrate
->vma
;
2705 struct mm_struct
*mm
= vma
->vm_mm
;
2706 unsigned long addr
, i
, mmu_start
;
2707 bool notified
= false;
2709 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2710 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2711 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2712 struct address_space
*mapping
;
2716 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2721 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
)) {
2727 mmu_notifier_invalidate_range_start(mm
,
2731 migrate_vma_insert_page(migrate
, addr
, newpage
,
2737 mapping
= page_mapping(page
);
2739 if (is_zone_device_page(newpage
)) {
2740 if (is_device_private_page(newpage
)) {
2742 * For now only support private anonymous when
2743 * migrating to un-addressable device memory.
2746 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2749 } else if (!is_device_public_page(newpage
)) {
2751 * Other types of ZONE_DEVICE page are not
2754 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2759 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2760 if (r
!= MIGRATEPAGE_SUCCESS
)
2761 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2765 * No need to double call mmu_notifier->invalidate_range() callback as
2766 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2767 * did already call it.
2770 mmu_notifier_invalidate_range_only_end(mm
, mmu_start
,
2775 * migrate_vma_finalize() - restore CPU page table entry
2776 * @migrate: migrate struct containing all migration information
2778 * This replaces the special migration pte entry with either a mapping to the
2779 * new page if migration was successful for that page, or to the original page
2782 * This also unlocks the pages and puts them back on the lru, or drops the extra
2783 * refcount, for device pages.
2785 static void migrate_vma_finalize(struct migrate_vma
*migrate
)
2787 const unsigned long npages
= migrate
->npages
;
2790 for (i
= 0; i
< npages
; i
++) {
2791 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2792 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2796 unlock_page(newpage
);
2802 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2804 unlock_page(newpage
);
2810 remove_migration_ptes(page
, newpage
, false);
2814 if (is_zone_device_page(page
))
2817 putback_lru_page(page
);
2819 if (newpage
!= page
) {
2820 unlock_page(newpage
);
2821 if (is_zone_device_page(newpage
))
2824 putback_lru_page(newpage
);
2830 * migrate_vma() - migrate a range of memory inside vma
2832 * @ops: migration callback for allocating destination memory and copying
2833 * @vma: virtual memory area containing the range to be migrated
2834 * @start: start address of the range to migrate (inclusive)
2835 * @end: end address of the range to migrate (exclusive)
2836 * @src: array of hmm_pfn_t containing source pfns
2837 * @dst: array of hmm_pfn_t containing destination pfns
2838 * @private: pointer passed back to each of the callback
2839 * Returns: 0 on success, error code otherwise
2841 * This function tries to migrate a range of memory virtual address range, using
2842 * callbacks to allocate and copy memory from source to destination. First it
2843 * collects all the pages backing each virtual address in the range, saving this
2844 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2845 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2846 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2847 * in the corresponding src array entry. It then restores any pages that are
2848 * pinned, by remapping and unlocking those pages.
2850 * At this point it calls the alloc_and_copy() callback. For documentation on
2851 * what is expected from that callback, see struct migrate_vma_ops comments in
2852 * include/linux/migrate.h
2854 * After the alloc_and_copy() callback, this function goes over each entry in
2855 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2856 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2857 * then the function tries to migrate struct page information from the source
2858 * struct page to the destination struct page. If it fails to migrate the struct
2859 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2862 * At this point all successfully migrated pages have an entry in the src
2863 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2864 * array entry with MIGRATE_PFN_VALID flag set.
2866 * It then calls the finalize_and_map() callback. See comments for "struct
2867 * migrate_vma_ops", in include/linux/migrate.h for details about
2868 * finalize_and_map() behavior.
2870 * After the finalize_and_map() callback, for successfully migrated pages, this
2871 * function updates the CPU page table to point to new pages, otherwise it
2872 * restores the CPU page table to point to the original source pages.
2874 * Function returns 0 after the above steps, even if no pages were migrated
2875 * (The function only returns an error if any of the arguments are invalid.)
2877 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2878 * unsigned long entries.
2880 int migrate_vma(const struct migrate_vma_ops
*ops
,
2881 struct vm_area_struct
*vma
,
2882 unsigned long start
,
2888 struct migrate_vma migrate
;
2890 /* Sanity check the arguments */
2893 if (!vma
|| is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
) ||
2896 if (start
< vma
->vm_start
|| start
>= vma
->vm_end
)
2898 if (end
<= vma
->vm_start
|| end
> vma
->vm_end
)
2900 if (!ops
|| !src
|| !dst
|| start
>= end
)
2903 memset(src
, 0, sizeof(*src
) * ((end
- start
) >> PAGE_SHIFT
));
2906 migrate
.start
= start
;
2912 /* Collect, and try to unmap source pages */
2913 migrate_vma_collect(&migrate
);
2914 if (!migrate
.cpages
)
2917 /* Lock and isolate page */
2918 migrate_vma_prepare(&migrate
);
2919 if (!migrate
.cpages
)
2923 migrate_vma_unmap(&migrate
);
2924 if (!migrate
.cpages
)
2928 * At this point pages are locked and unmapped, and thus they have
2929 * stable content and can safely be copied to destination memory that
2930 * is allocated by the callback.
2932 * Note that migration can fail in migrate_vma_struct_page() for each
2935 ops
->alloc_and_copy(vma
, src
, dst
, start
, end
, private);
2937 /* This does the real migration of struct page */
2938 migrate_vma_pages(&migrate
);
2940 ops
->finalize_and_map(vma
, src
, dst
, start
, end
, private);
2942 /* Unlock and remap pages */
2943 migrate_vma_finalize(&migrate
);
2947 EXPORT_SYMBOL(migrate_vma
);
2948 #endif /* defined(MIGRATE_VMA_HELPER) */