2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
20 #include "tick-internal.h"
21 #include "ntp_internal.h"
24 * NTP timekeeping variables:
26 * Note: All of the NTP state is protected by the timekeeping locks.
30 /* USER_HZ period (usecs): */
31 unsigned long tick_usec
= TICK_USEC
;
33 /* SHIFTED_HZ period (nsecs): */
34 unsigned long tick_nsec
;
36 static u64 tick_length
;
37 static u64 tick_length_base
;
39 #define MAX_TICKADJ 500LL /* usecs */
40 #define MAX_TICKADJ_SCALED \
41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
44 * phase-lock loop variables
48 * clock synchronization status
50 * (TIME_ERROR prevents overwriting the CMOS clock)
52 static int time_state
= TIME_OK
;
54 /* clock status bits: */
55 static int time_status
= STA_UNSYNC
;
57 /* time adjustment (nsecs): */
58 static s64 time_offset
;
60 /* pll time constant: */
61 static long time_constant
= 2;
63 /* maximum error (usecs): */
64 static long time_maxerror
= NTP_PHASE_LIMIT
;
66 /* estimated error (usecs): */
67 static long time_esterror
= NTP_PHASE_LIMIT
;
69 /* frequency offset (scaled nsecs/secs): */
72 /* time at last adjustment (secs): */
73 static long time_reftime
;
75 static long time_adjust
;
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj
;
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
87 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
88 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
96 static int pps_valid
; /* signal watchdog counter */
97 static long pps_tf
[3]; /* phase median filter */
98 static long pps_jitter
; /* current jitter (ns) */
99 static struct timespec pps_fbase
; /* beginning of the last freq interval */
100 static int pps_shift
; /* current interval duration (s) (shift) */
101 static int pps_intcnt
; /* interval counter */
102 static s64 pps_freq
; /* frequency offset (scaled ns/s) */
103 static long pps_stabil
; /* current stability (scaled ns/s) */
106 * PPS signal quality monitors
108 static long pps_calcnt
; /* calibration intervals */
109 static long pps_jitcnt
; /* jitter limit exceeded */
110 static long pps_stbcnt
; /* stability limit exceeded */
111 static long pps_errcnt
; /* calibration errors */
114 /* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
117 static inline s64
ntp_offset_chunk(s64 offset
)
119 if (time_status
& STA_PPSTIME
&& time_status
& STA_PPSSIGNAL
)
122 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
125 static inline void pps_reset_freq_interval(void)
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift
= PPS_INTMIN
;
134 * pps_clear - Clears the PPS state variables
136 static inline void pps_clear(void)
138 pps_reset_freq_interval();
142 pps_fbase
.tv_sec
= pps_fbase
.tv_nsec
= 0;
146 /* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 static inline void pps_dec_valid(void)
155 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
156 STA_PPSWANDER
| STA_PPSERROR
);
161 static inline void pps_set_freq(s64 freq
)
166 static inline int is_error_status(int status
)
168 return (status
& (STA_UNSYNC
|STA_CLOCKERR
))
169 /* PPS signal lost when either PPS time or
170 * PPS frequency synchronization requested
172 || ((status
& (STA_PPSFREQ
|STA_PPSTIME
))
173 && !(status
& STA_PPSSIGNAL
))
174 /* PPS jitter exceeded when
175 * PPS time synchronization requested */
176 || ((status
& (STA_PPSTIME
|STA_PPSJITTER
))
177 == (STA_PPSTIME
|STA_PPSJITTER
))
178 /* PPS wander exceeded or calibration error when
179 * PPS frequency synchronization requested
181 || ((status
& STA_PPSFREQ
)
182 && (status
& (STA_PPSWANDER
|STA_PPSERROR
)));
185 static inline void pps_fill_timex(struct timex
*txc
)
187 txc
->ppsfreq
= shift_right((pps_freq
>> PPM_SCALE_INV_SHIFT
) *
188 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
189 txc
->jitter
= pps_jitter
;
190 if (!(time_status
& STA_NANO
))
191 txc
->jitter
/= NSEC_PER_USEC
;
192 txc
->shift
= pps_shift
;
193 txc
->stabil
= pps_stabil
;
194 txc
->jitcnt
= pps_jitcnt
;
195 txc
->calcnt
= pps_calcnt
;
196 txc
->errcnt
= pps_errcnt
;
197 txc
->stbcnt
= pps_stbcnt
;
200 #else /* !CONFIG_NTP_PPS */
202 static inline s64
ntp_offset_chunk(s64 offset
)
204 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
207 static inline void pps_reset_freq_interval(void) {}
208 static inline void pps_clear(void) {}
209 static inline void pps_dec_valid(void) {}
210 static inline void pps_set_freq(s64 freq
) {}
212 static inline int is_error_status(int status
)
214 return status
& (STA_UNSYNC
|STA_CLOCKERR
);
217 static inline void pps_fill_timex(struct timex
*txc
)
219 /* PPS is not implemented, so these are zero */
230 #endif /* CONFIG_NTP_PPS */
234 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
237 static inline int ntp_synced(void)
239 return !(time_status
& STA_UNSYNC
);
248 * Update (tick_length, tick_length_base, tick_nsec), based
249 * on (tick_usec, ntp_tick_adj, time_freq):
251 static void ntp_update_frequency(void)
256 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
259 second_length
+= ntp_tick_adj
;
260 second_length
+= time_freq
;
262 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
263 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
266 * Don't wait for the next second_overflow, apply
267 * the change to the tick length immediately:
269 tick_length
+= new_base
- tick_length_base
;
270 tick_length_base
= new_base
;
273 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
275 time_status
&= ~STA_MODE
;
280 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
283 time_status
|= STA_MODE
;
285 return div64_long(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
288 static void ntp_update_offset(long offset
)
294 if (!(time_status
& STA_PLL
))
297 if (!(time_status
& STA_NANO
))
298 offset
*= NSEC_PER_USEC
;
301 * Scale the phase adjustment and
302 * clamp to the operating range.
304 offset
= min(offset
, MAXPHASE
);
305 offset
= max(offset
, -MAXPHASE
);
308 * Select how the frequency is to be controlled
309 * and in which mode (PLL or FLL).
311 secs
= get_seconds() - time_reftime
;
312 if (unlikely(time_status
& STA_FREQHOLD
))
315 time_reftime
= get_seconds();
318 freq_adj
= ntp_update_offset_fll(offset64
, secs
);
321 * Clamp update interval to reduce PLL gain with low
322 * sampling rate (e.g. intermittent network connection)
323 * to avoid instability.
325 if (unlikely(secs
> 1 << (SHIFT_PLL
+ 1 + time_constant
)))
326 secs
= 1 << (SHIFT_PLL
+ 1 + time_constant
);
328 freq_adj
+= (offset64
* secs
) <<
329 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
331 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
333 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
335 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
339 * ntp_clear - Clears the NTP state variables
343 time_adjust
= 0; /* stop active adjtime() */
344 time_status
|= STA_UNSYNC
;
345 time_maxerror
= NTP_PHASE_LIMIT
;
346 time_esterror
= NTP_PHASE_LIMIT
;
348 ntp_update_frequency();
350 tick_length
= tick_length_base
;
353 /* Clear PPS state variables */
358 u64
ntp_tick_length(void)
365 * this routine handles the overflow of the microsecond field
367 * The tricky bits of code to handle the accurate clock support
368 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
369 * They were originally developed for SUN and DEC kernels.
370 * All the kudos should go to Dave for this stuff.
372 * Also handles leap second processing, and returns leap offset
374 int second_overflow(unsigned long secs
)
380 * Leap second processing. If in leap-insert state at the end of the
381 * day, the system clock is set back one second; if in leap-delete
382 * state, the system clock is set ahead one second.
384 switch (time_state
) {
386 if (time_status
& STA_INS
)
387 time_state
= TIME_INS
;
388 else if (time_status
& STA_DEL
)
389 time_state
= TIME_DEL
;
392 if (!(time_status
& STA_INS
))
393 time_state
= TIME_OK
;
394 else if (secs
% 86400 == 0) {
396 time_state
= TIME_OOP
;
398 "Clock: inserting leap second 23:59:60 UTC\n");
402 if (!(time_status
& STA_DEL
))
403 time_state
= TIME_OK
;
404 else if ((secs
+ 1) % 86400 == 0) {
406 time_state
= TIME_WAIT
;
408 "Clock: deleting leap second 23:59:59 UTC\n");
412 time_state
= TIME_WAIT
;
416 if (!(time_status
& (STA_INS
| STA_DEL
)))
417 time_state
= TIME_OK
;
422 /* Bump the maxerror field */
423 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
424 if (time_maxerror
> NTP_PHASE_LIMIT
) {
425 time_maxerror
= NTP_PHASE_LIMIT
;
426 time_status
|= STA_UNSYNC
;
429 /* Compute the phase adjustment for the next second */
430 tick_length
= tick_length_base
;
432 delta
= ntp_offset_chunk(time_offset
);
433 time_offset
-= delta
;
434 tick_length
+= delta
;
436 /* Check PPS signal */
442 if (time_adjust
> MAX_TICKADJ
) {
443 time_adjust
-= MAX_TICKADJ
;
444 tick_length
+= MAX_TICKADJ_SCALED
;
448 if (time_adjust
< -MAX_TICKADJ
) {
449 time_adjust
+= MAX_TICKADJ
;
450 tick_length
-= MAX_TICKADJ_SCALED
;
454 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
462 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
463 static void sync_cmos_clock(struct work_struct
*work
);
465 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
467 static void sync_cmos_clock(struct work_struct
*work
)
469 struct timespec64 now
;
470 struct timespec next
;
474 * If we have an externally synchronized Linux clock, then update
475 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
476 * called as close as possible to 500 ms before the new second starts.
477 * This code is run on a timer. If the clock is set, that timer
478 * may not expire at the correct time. Thus, we adjust...
479 * We want the clock to be within a couple of ticks from the target.
483 * Not synced, exit, do not restart a timer (if one is
484 * running, let it run out).
489 getnstimeofday64(&now
);
490 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
* 5) {
491 struct timespec adjust
= timespec64_to_timespec(now
);
494 if (persistent_clock_is_local
)
495 adjust
.tv_sec
-= (sys_tz
.tz_minuteswest
* 60);
496 #ifdef CONFIG_GENERIC_CMOS_UPDATE
497 fail
= update_persistent_clock(adjust
);
499 #ifdef CONFIG_RTC_SYSTOHC
501 fail
= rtc_set_ntp_time(adjust
);
505 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
506 if (next
.tv_nsec
<= 0)
507 next
.tv_nsec
+= NSEC_PER_SEC
;
509 if (!fail
|| fail
== -ENODEV
)
514 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
516 next
.tv_nsec
-= NSEC_PER_SEC
;
518 queue_delayed_work(system_power_efficient_wq
,
519 &sync_cmos_work
, timespec_to_jiffies(&next
));
522 void ntp_notify_cmos_timer(void)
524 queue_delayed_work(system_power_efficient_wq
, &sync_cmos_work
, 0);
528 void ntp_notify_cmos_timer(void) { }
533 * Propagate a new txc->status value into the NTP state:
535 static inline void process_adj_status(struct timex
*txc
, struct timespec64
*ts
)
537 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
538 time_state
= TIME_OK
;
539 time_status
= STA_UNSYNC
;
540 /* restart PPS frequency calibration */
541 pps_reset_freq_interval();
545 * If we turn on PLL adjustments then reset the
546 * reference time to current time.
548 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
549 time_reftime
= get_seconds();
551 /* only set allowed bits */
552 time_status
&= STA_RONLY
;
553 time_status
|= txc
->status
& ~STA_RONLY
;
557 static inline void process_adjtimex_modes(struct timex
*txc
,
558 struct timespec64
*ts
,
561 if (txc
->modes
& ADJ_STATUS
)
562 process_adj_status(txc
, ts
);
564 if (txc
->modes
& ADJ_NANO
)
565 time_status
|= STA_NANO
;
567 if (txc
->modes
& ADJ_MICRO
)
568 time_status
&= ~STA_NANO
;
570 if (txc
->modes
& ADJ_FREQUENCY
) {
571 time_freq
= txc
->freq
* PPM_SCALE
;
572 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
573 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
574 /* update pps_freq */
575 pps_set_freq(time_freq
);
578 if (txc
->modes
& ADJ_MAXERROR
)
579 time_maxerror
= txc
->maxerror
;
581 if (txc
->modes
& ADJ_ESTERROR
)
582 time_esterror
= txc
->esterror
;
584 if (txc
->modes
& ADJ_TIMECONST
) {
585 time_constant
= txc
->constant
;
586 if (!(time_status
& STA_NANO
))
588 time_constant
= min(time_constant
, (long)MAXTC
);
589 time_constant
= max(time_constant
, 0l);
592 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
593 *time_tai
= txc
->constant
;
595 if (txc
->modes
& ADJ_OFFSET
)
596 ntp_update_offset(txc
->offset
);
598 if (txc
->modes
& ADJ_TICK
)
599 tick_usec
= txc
->tick
;
601 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
602 ntp_update_frequency();
608 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
610 int ntp_validate_timex(struct timex
*txc
)
612 if (txc
->modes
& ADJ_ADJTIME
) {
613 /* singleshot must not be used with any other mode bits */
614 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
616 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
617 !capable(CAP_SYS_TIME
))
620 /* In order to modify anything, you gotta be super-user! */
621 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
624 * if the quartz is off by more than 10% then
625 * something is VERY wrong!
627 if (txc
->modes
& ADJ_TICK
&&
628 (txc
->tick
< 900000/USER_HZ
||
629 txc
->tick
> 1100000/USER_HZ
))
633 if ((txc
->modes
& ADJ_SETOFFSET
) && (!capable(CAP_SYS_TIME
)))
641 * adjtimex mainly allows reading (and writing, if superuser) of
642 * kernel time-keeping variables. used by xntpd.
644 int __do_adjtimex(struct timex
*txc
, struct timespec64
*ts
, s32
*time_tai
)
648 if (txc
->modes
& ADJ_ADJTIME
) {
649 long save_adjust
= time_adjust
;
651 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
652 /* adjtime() is independent from ntp_adjtime() */
653 time_adjust
= txc
->offset
;
654 ntp_update_frequency();
656 txc
->offset
= save_adjust
;
659 /* If there are input parameters, then process them: */
661 process_adjtimex_modes(txc
, ts
, time_tai
);
663 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
665 if (!(time_status
& STA_NANO
))
666 txc
->offset
/= NSEC_PER_USEC
;
669 result
= time_state
; /* mostly `TIME_OK' */
670 /* check for errors */
671 if (is_error_status(time_status
))
674 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
675 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
676 txc
->maxerror
= time_maxerror
;
677 txc
->esterror
= time_esterror
;
678 txc
->status
= time_status
;
679 txc
->constant
= time_constant
;
681 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
682 txc
->tick
= tick_usec
;
683 txc
->tai
= *time_tai
;
685 /* fill PPS status fields */
688 txc
->time
.tv_sec
= (time_t)ts
->tv_sec
;
689 txc
->time
.tv_usec
= ts
->tv_nsec
;
690 if (!(time_status
& STA_NANO
))
691 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
696 #ifdef CONFIG_NTP_PPS
698 /* actually struct pps_normtime is good old struct timespec, but it is
699 * semantically different (and it is the reason why it was invented):
700 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
701 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
702 struct pps_normtime
{
703 __kernel_time_t sec
; /* seconds */
704 long nsec
; /* nanoseconds */
707 /* normalize the timestamp so that nsec is in the
708 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
709 static inline struct pps_normtime
pps_normalize_ts(struct timespec ts
)
711 struct pps_normtime norm
= {
716 if (norm
.nsec
> (NSEC_PER_SEC
>> 1)) {
717 norm
.nsec
-= NSEC_PER_SEC
;
724 /* get current phase correction and jitter */
725 static inline long pps_phase_filter_get(long *jitter
)
727 *jitter
= pps_tf
[0] - pps_tf
[1];
731 /* TODO: test various filters */
735 /* add the sample to the phase filter */
736 static inline void pps_phase_filter_add(long err
)
738 pps_tf
[2] = pps_tf
[1];
739 pps_tf
[1] = pps_tf
[0];
743 /* decrease frequency calibration interval length.
744 * It is halved after four consecutive unstable intervals.
746 static inline void pps_dec_freq_interval(void)
748 if (--pps_intcnt
<= -PPS_INTCOUNT
) {
749 pps_intcnt
= -PPS_INTCOUNT
;
750 if (pps_shift
> PPS_INTMIN
) {
757 /* increase frequency calibration interval length.
758 * It is doubled after four consecutive stable intervals.
760 static inline void pps_inc_freq_interval(void)
762 if (++pps_intcnt
>= PPS_INTCOUNT
) {
763 pps_intcnt
= PPS_INTCOUNT
;
764 if (pps_shift
< PPS_INTMAX
) {
771 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
774 * At the end of the calibration interval the difference between the
775 * first and last MONOTONIC_RAW clock timestamps divided by the length
776 * of the interval becomes the frequency update. If the interval was
777 * too long, the data are discarded.
778 * Returns the difference between old and new frequency values.
780 static long hardpps_update_freq(struct pps_normtime freq_norm
)
782 long delta
, delta_mod
;
785 /* check if the frequency interval was too long */
786 if (freq_norm
.sec
> (2 << pps_shift
)) {
787 time_status
|= STA_PPSERROR
;
789 pps_dec_freq_interval();
790 printk_deferred(KERN_ERR
791 "hardpps: PPSERROR: interval too long - %ld s\n",
796 /* here the raw frequency offset and wander (stability) is
797 * calculated. If the wander is less than the wander threshold
798 * the interval is increased; otherwise it is decreased.
800 ftemp
= div_s64(((s64
)(-freq_norm
.nsec
)) << NTP_SCALE_SHIFT
,
802 delta
= shift_right(ftemp
- pps_freq
, NTP_SCALE_SHIFT
);
804 if (delta
> PPS_MAXWANDER
|| delta
< -PPS_MAXWANDER
) {
805 printk_deferred(KERN_WARNING
806 "hardpps: PPSWANDER: change=%ld\n", delta
);
807 time_status
|= STA_PPSWANDER
;
809 pps_dec_freq_interval();
810 } else { /* good sample */
811 pps_inc_freq_interval();
814 /* the stability metric is calculated as the average of recent
815 * frequency changes, but is used only for performance
820 delta_mod
= -delta_mod
;
821 pps_stabil
+= (div_s64(((s64
)delta_mod
) <<
822 (NTP_SCALE_SHIFT
- SHIFT_USEC
),
823 NSEC_PER_USEC
) - pps_stabil
) >> PPS_INTMIN
;
825 /* if enabled, the system clock frequency is updated */
826 if ((time_status
& STA_PPSFREQ
) != 0 &&
827 (time_status
& STA_FREQHOLD
) == 0) {
828 time_freq
= pps_freq
;
829 ntp_update_frequency();
835 /* correct REALTIME clock phase error against PPS signal */
836 static void hardpps_update_phase(long error
)
838 long correction
= -error
;
841 /* add the sample to the median filter */
842 pps_phase_filter_add(correction
);
843 correction
= pps_phase_filter_get(&jitter
);
845 /* Nominal jitter is due to PPS signal noise. If it exceeds the
846 * threshold, the sample is discarded; otherwise, if so enabled,
847 * the time offset is updated.
849 if (jitter
> (pps_jitter
<< PPS_POPCORN
)) {
850 printk_deferred(KERN_WARNING
851 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
852 jitter
, (pps_jitter
<< PPS_POPCORN
));
853 time_status
|= STA_PPSJITTER
;
855 } else if (time_status
& STA_PPSTIME
) {
856 /* correct the time using the phase offset */
857 time_offset
= div_s64(((s64
)correction
) << NTP_SCALE_SHIFT
,
859 /* cancel running adjtime() */
863 pps_jitter
+= (jitter
- pps_jitter
) >> PPS_INTMIN
;
867 * __hardpps() - discipline CPU clock oscillator to external PPS signal
869 * This routine is called at each PPS signal arrival in order to
870 * discipline the CPU clock oscillator to the PPS signal. It takes two
871 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
872 * is used to correct clock phase error and the latter is used to
873 * correct the frequency.
875 * This code is based on David Mills's reference nanokernel
876 * implementation. It was mostly rewritten but keeps the same idea.
878 void __hardpps(const struct timespec
*phase_ts
, const struct timespec
*raw_ts
)
880 struct pps_normtime pts_norm
, freq_norm
;
882 pts_norm
= pps_normalize_ts(*phase_ts
);
884 /* clear the error bits, they will be set again if needed */
885 time_status
&= ~(STA_PPSJITTER
| STA_PPSWANDER
| STA_PPSERROR
);
887 /* indicate signal presence */
888 time_status
|= STA_PPSSIGNAL
;
889 pps_valid
= PPS_VALID
;
891 /* when called for the first time,
892 * just start the frequency interval */
893 if (unlikely(pps_fbase
.tv_sec
== 0)) {
898 /* ok, now we have a base for frequency calculation */
899 freq_norm
= pps_normalize_ts(timespec_sub(*raw_ts
, pps_fbase
));
901 /* check that the signal is in the range
902 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
903 if ((freq_norm
.sec
== 0) ||
904 (freq_norm
.nsec
> MAXFREQ
* freq_norm
.sec
) ||
905 (freq_norm
.nsec
< -MAXFREQ
* freq_norm
.sec
)) {
906 time_status
|= STA_PPSJITTER
;
907 /* restart the frequency calibration interval */
909 printk_deferred(KERN_ERR
"hardpps: PPSJITTER: bad pulse\n");
915 /* check if the current frequency interval is finished */
916 if (freq_norm
.sec
>= (1 << pps_shift
)) {
918 /* restart the frequency calibration interval */
920 hardpps_update_freq(freq_norm
);
923 hardpps_update_phase(pts_norm
.nsec
);
926 #endif /* CONFIG_NTP_PPS */
928 static int __init
ntp_tick_adj_setup(char *str
)
930 int rc
= kstrtol(str
, 0, (long *)&ntp_tick_adj
);
934 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
939 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
941 void __init
ntp_init(void)