2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
32 #include <asm/irq_regs.h>
34 #include "tick-internal.h"
36 #include <trace/events/timer.h>
39 * Per-CPU nohz control structure
41 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
43 struct tick_sched
*tick_get_tick_sched(int cpu
)
45 return &per_cpu(tick_cpu_sched
, cpu
);
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
52 static ktime_t last_jiffies_update
;
55 * Must be called with interrupts disabled !
57 static void tick_do_update_jiffies64(ktime_t now
)
59 unsigned long ticks
= 0;
63 * Do a quick check without holding jiffies_lock:
65 delta
= ktime_sub(now
, last_jiffies_update
);
66 if (delta
< tick_period
)
69 /* Reevaluate with jiffies_lock held */
70 write_seqlock(&jiffies_lock
);
72 delta
= ktime_sub(now
, last_jiffies_update
);
73 if (delta
>= tick_period
) {
75 delta
= ktime_sub(delta
, tick_period
);
76 last_jiffies_update
= ktime_add(last_jiffies_update
,
79 /* Slow path for long timeouts */
80 if (unlikely(delta
>= tick_period
)) {
81 s64 incr
= ktime_to_ns(tick_period
);
83 ticks
= ktime_divns(delta
, incr
);
85 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
90 /* Keep the tick_next_period variable up to date */
91 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
93 write_sequnlock(&jiffies_lock
);
96 write_sequnlock(&jiffies_lock
);
101 * Initialize and return retrieve the jiffies update.
103 static ktime_t
tick_init_jiffy_update(void)
107 write_seqlock(&jiffies_lock
);
108 /* Did we start the jiffies update yet ? */
109 if (last_jiffies_update
== 0)
110 last_jiffies_update
= tick_next_period
;
111 period
= last_jiffies_update
;
112 write_sequnlock(&jiffies_lock
);
117 static void tick_sched_do_timer(ktime_t now
)
119 int cpu
= smp_processor_id();
121 #ifdef CONFIG_NO_HZ_COMMON
123 * Check if the do_timer duty was dropped. We don't care about
124 * concurrency: This happens only when the CPU in charge went
125 * into a long sleep. If two CPUs happen to assign themselves to
126 * this duty, then the jiffies update is still serialized by
129 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
130 && !tick_nohz_full_cpu(cpu
))
131 tick_do_timer_cpu
= cpu
;
134 /* Check, if the jiffies need an update */
135 if (tick_do_timer_cpu
== cpu
)
136 tick_do_update_jiffies64(now
);
139 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
141 #ifdef CONFIG_NO_HZ_COMMON
143 * When we are idle and the tick is stopped, we have to touch
144 * the watchdog as we might not schedule for a really long
145 * time. This happens on complete idle SMP systems while
146 * waiting on the login prompt. We also increment the "start of
147 * idle" jiffy stamp so the idle accounting adjustment we do
148 * when we go busy again does not account too much ticks.
150 if (ts
->tick_stopped
) {
151 touch_softlockup_watchdog_sched();
152 if (is_idle_task(current
))
155 * In case the current tick fired too early past its expected
156 * expiration, make sure we don't bypass the next clock reprogramming
157 * to the same deadline.
162 update_process_times(user_mode(regs
));
163 profile_tick(CPU_PROFILING
);
167 #ifdef CONFIG_NO_HZ_FULL
168 cpumask_var_t tick_nohz_full_mask
;
169 bool tick_nohz_full_running
;
170 static atomic_t tick_dep_mask
;
172 static bool check_tick_dependency(atomic_t
*dep
)
174 int val
= atomic_read(dep
);
176 if (val
& TICK_DEP_MASK_POSIX_TIMER
) {
177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER
);
181 if (val
& TICK_DEP_MASK_PERF_EVENTS
) {
182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS
);
186 if (val
& TICK_DEP_MASK_SCHED
) {
187 trace_tick_stop(0, TICK_DEP_MASK_SCHED
);
191 if (val
& TICK_DEP_MASK_CLOCK_UNSTABLE
) {
192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE
);
199 static bool can_stop_full_tick(int cpu
, struct tick_sched
*ts
)
201 lockdep_assert_irqs_disabled();
203 if (unlikely(!cpu_online(cpu
)))
206 if (check_tick_dependency(&tick_dep_mask
))
209 if (check_tick_dependency(&ts
->tick_dep_mask
))
212 if (check_tick_dependency(¤t
->tick_dep_mask
))
215 if (check_tick_dependency(¤t
->signal
->tick_dep_mask
))
221 static void nohz_full_kick_func(struct irq_work
*work
)
223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
226 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
227 .func
= nohz_full_kick_func
,
231 * Kick this CPU if it's full dynticks in order to force it to
232 * re-evaluate its dependency on the tick and restart it if necessary.
233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
236 static void tick_nohz_full_kick(void)
238 if (!tick_nohz_full_cpu(smp_processor_id()))
241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work
));
245 * Kick the CPU if it's full dynticks in order to force it to
246 * re-evaluate its dependency on the tick and restart it if necessary.
248 void tick_nohz_full_kick_cpu(int cpu
)
250 if (!tick_nohz_full_cpu(cpu
))
253 irq_work_queue_on(&per_cpu(nohz_full_kick_work
, cpu
), cpu
);
257 * Kick all full dynticks CPUs in order to force these to re-evaluate
258 * their dependency on the tick and restart it if necessary.
260 static void tick_nohz_full_kick_all(void)
264 if (!tick_nohz_full_running
)
268 for_each_cpu_and(cpu
, tick_nohz_full_mask
, cpu_online_mask
)
269 tick_nohz_full_kick_cpu(cpu
);
273 static void tick_nohz_dep_set_all(atomic_t
*dep
,
274 enum tick_dep_bits bit
)
278 prev
= atomic_fetch_or(BIT(bit
), dep
);
280 tick_nohz_full_kick_all();
284 * Set a global tick dependency. Used by perf events that rely on freq and
287 void tick_nohz_dep_set(enum tick_dep_bits bit
)
289 tick_nohz_dep_set_all(&tick_dep_mask
, bit
);
292 void tick_nohz_dep_clear(enum tick_dep_bits bit
)
294 atomic_andnot(BIT(bit
), &tick_dep_mask
);
298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299 * manage events throttling.
301 void tick_nohz_dep_set_cpu(int cpu
, enum tick_dep_bits bit
)
304 struct tick_sched
*ts
;
306 ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
308 prev
= atomic_fetch_or(BIT(bit
), &ts
->tick_dep_mask
);
311 /* Perf needs local kick that is NMI safe */
312 if (cpu
== smp_processor_id()) {
313 tick_nohz_full_kick();
315 /* Remote irq work not NMI-safe */
316 if (!WARN_ON_ONCE(in_nmi()))
317 tick_nohz_full_kick_cpu(cpu
);
323 void tick_nohz_dep_clear_cpu(int cpu
, enum tick_dep_bits bit
)
325 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
327 atomic_andnot(BIT(bit
), &ts
->tick_dep_mask
);
331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
334 void tick_nohz_dep_set_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
337 * We could optimize this with just kicking the target running the task
338 * if that noise matters for nohz full users.
340 tick_nohz_dep_set_all(&tsk
->tick_dep_mask
, bit
);
343 void tick_nohz_dep_clear_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
345 atomic_andnot(BIT(bit
), &tsk
->tick_dep_mask
);
349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350 * per process timers.
352 void tick_nohz_dep_set_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
354 tick_nohz_dep_set_all(&sig
->tick_dep_mask
, bit
);
357 void tick_nohz_dep_clear_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
359 atomic_andnot(BIT(bit
), &sig
->tick_dep_mask
);
363 * Re-evaluate the need for the tick as we switch the current task.
364 * It might need the tick due to per task/process properties:
365 * perf events, posix CPU timers, ...
367 void __tick_nohz_task_switch(void)
370 struct tick_sched
*ts
;
372 local_irq_save(flags
);
374 if (!tick_nohz_full_cpu(smp_processor_id()))
377 ts
= this_cpu_ptr(&tick_cpu_sched
);
379 if (ts
->tick_stopped
) {
380 if (atomic_read(¤t
->tick_dep_mask
) ||
381 atomic_read(¤t
->signal
->tick_dep_mask
))
382 tick_nohz_full_kick();
385 local_irq_restore(flags
);
388 /* Get the boot-time nohz CPU list from the kernel parameters. */
389 void __init
tick_nohz_full_setup(cpumask_var_t cpumask
)
391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
392 cpumask_copy(tick_nohz_full_mask
, cpumask
);
393 tick_nohz_full_running
= true;
396 static int tick_nohz_cpu_down(unsigned int cpu
)
399 * The boot CPU handles housekeeping duty (unbound timers,
400 * workqueues, timekeeping, ...) on behalf of full dynticks
401 * CPUs. It must remain online when nohz full is enabled.
403 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
408 static int tick_nohz_init_all(void)
412 #ifdef CONFIG_NO_HZ_FULL_ALL
413 if (!alloc_cpumask_var(&tick_nohz_full_mask
, GFP_KERNEL
)) {
414 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
418 cpumask_setall(tick_nohz_full_mask
);
419 tick_nohz_full_running
= true;
424 void __init
tick_nohz_init(void)
428 if (!tick_nohz_full_running
) {
429 if (tick_nohz_init_all() < 0)
434 * Full dynticks uses irq work to drive the tick rescheduling on safe
435 * locking contexts. But then we need irq work to raise its own
436 * interrupts to avoid circular dependency on the tick
438 if (!arch_irq_work_has_interrupt()) {
439 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
440 cpumask_clear(tick_nohz_full_mask
);
441 tick_nohz_full_running
= false;
445 cpu
= smp_processor_id();
447 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
448 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
450 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
453 for_each_cpu(cpu
, tick_nohz_full_mask
)
454 context_tracking_cpu_set(cpu
);
456 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
457 "kernel/nohz:predown", NULL
,
460 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
461 cpumask_pr_args(tick_nohz_full_mask
));
466 * NOHZ - aka dynamic tick functionality
468 #ifdef CONFIG_NO_HZ_COMMON
472 bool tick_nohz_enabled __read_mostly
= true;
473 unsigned long tick_nohz_active __read_mostly
;
475 * Enable / Disable tickless mode
477 static int __init
setup_tick_nohz(char *str
)
479 return (kstrtobool(str
, &tick_nohz_enabled
) == 0);
482 __setup("nohz=", setup_tick_nohz
);
484 int tick_nohz_tick_stopped(void)
486 return __this_cpu_read(tick_cpu_sched
.tick_stopped
);
490 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
492 * Called from interrupt entry when the CPU was idle
494 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
495 * must be updated. Otherwise an interrupt handler could use a stale jiffy
496 * value. We do this unconditionally on any CPU, as we don't know whether the
497 * CPU, which has the update task assigned is in a long sleep.
499 static void tick_nohz_update_jiffies(ktime_t now
)
503 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
505 local_irq_save(flags
);
506 tick_do_update_jiffies64(now
);
507 local_irq_restore(flags
);
509 touch_softlockup_watchdog_sched();
513 * Updates the per-CPU time idle statistics counters
516 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
520 if (ts
->idle_active
) {
521 delta
= ktime_sub(now
, ts
->idle_entrytime
);
522 if (nr_iowait_cpu(cpu
) > 0)
523 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
525 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
526 ts
->idle_entrytime
= now
;
529 if (last_update_time
)
530 *last_update_time
= ktime_to_us(now
);
534 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
536 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
539 sched_clock_idle_wakeup_event();
542 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
544 ktime_t now
= ktime_get();
546 ts
->idle_entrytime
= now
;
548 sched_clock_idle_sleep_event();
553 * get_cpu_idle_time_us - get the total idle time of a CPU
554 * @cpu: CPU number to query
555 * @last_update_time: variable to store update time in. Do not update
558 * Return the cumulative idle time (since boot) for a given
559 * CPU, in microseconds.
561 * This time is measured via accounting rather than sampling,
562 * and is as accurate as ktime_get() is.
564 * This function returns -1 if NOHZ is not enabled.
566 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
568 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
571 if (!tick_nohz_active
)
575 if (last_update_time
) {
576 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
577 idle
= ts
->idle_sleeptime
;
579 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
580 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
582 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
584 idle
= ts
->idle_sleeptime
;
588 return ktime_to_us(idle
);
591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
594 * get_cpu_iowait_time_us - get the total iowait time of a CPU
595 * @cpu: CPU number to query
596 * @last_update_time: variable to store update time in. Do not update
599 * Return the cumulative iowait time (since boot) for a given
600 * CPU, in microseconds.
602 * This time is measured via accounting rather than sampling,
603 * and is as accurate as ktime_get() is.
605 * This function returns -1 if NOHZ is not enabled.
607 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
609 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
612 if (!tick_nohz_active
)
616 if (last_update_time
) {
617 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
618 iowait
= ts
->iowait_sleeptime
;
620 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
621 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
623 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
625 iowait
= ts
->iowait_sleeptime
;
629 return ktime_to_us(iowait
);
631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
633 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
635 hrtimer_cancel(&ts
->sched_timer
);
636 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
638 /* Forward the time to expire in the future */
639 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
641 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
642 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
644 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
647 * Reset to make sure next tick stop doesn't get fooled by past
648 * cached clock deadline.
653 static inline bool local_timer_softirq_pending(void)
655 return local_softirq_pending() & TIMER_SOFTIRQ
;
658 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
659 ktime_t now
, int cpu
)
661 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
662 u64 basemono
, next_tick
, next_tmr
, next_rcu
, delta
, expires
;
663 unsigned long seq
, basejiff
;
666 /* Read jiffies and the time when jiffies were updated last */
668 seq
= read_seqbegin(&jiffies_lock
);
669 basemono
= last_jiffies_update
;
671 } while (read_seqretry(&jiffies_lock
, seq
));
672 ts
->last_jiffies
= basejiff
;
675 * Keep the periodic tick, when RCU, architecture or irq_work
677 * Aside of that check whether the local timer softirq is
678 * pending. If so its a bad idea to call get_next_timer_interrupt()
679 * because there is an already expired timer, so it will request
680 * immeditate expiry, which rearms the hardware timer with a
681 * minimal delta which brings us back to this place
682 * immediately. Lather, rinse and repeat...
684 if (rcu_needs_cpu(basemono
, &next_rcu
) || arch_needs_cpu() ||
685 irq_work_needs_cpu() || local_timer_softirq_pending()) {
686 next_tick
= basemono
+ TICK_NSEC
;
689 * Get the next pending timer. If high resolution
690 * timers are enabled this only takes the timer wheel
691 * timers into account. If high resolution timers are
692 * disabled this also looks at the next expiring
695 next_tmr
= get_next_timer_interrupt(basejiff
, basemono
);
696 ts
->next_timer
= next_tmr
;
697 /* Take the next rcu event into account */
698 next_tick
= next_rcu
< next_tmr
? next_rcu
: next_tmr
;
702 * If the tick is due in the next period, keep it ticking or
703 * force prod the timer.
705 delta
= next_tick
- basemono
;
706 if (delta
<= (u64
)TICK_NSEC
) {
708 * Tell the timer code that the base is not idle, i.e. undo
709 * the effect of get_next_timer_interrupt():
713 * We've not stopped the tick yet, and there's a timer in the
714 * next period, so no point in stopping it either, bail.
716 if (!ts
->tick_stopped
) {
723 * If this CPU is the one which updates jiffies, then give up
724 * the assignment and let it be taken by the CPU which runs
725 * the tick timer next, which might be this CPU as well. If we
726 * don't drop this here the jiffies might be stale and
727 * do_timer() never invoked. Keep track of the fact that it
728 * was the one which had the do_timer() duty last. If this CPU
729 * is the one which had the do_timer() duty last, we limit the
730 * sleep time to the timekeeping max_deferment value.
731 * Otherwise we can sleep as long as we want.
733 delta
= timekeeping_max_deferment();
734 if (cpu
== tick_do_timer_cpu
) {
735 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
736 ts
->do_timer_last
= 1;
737 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
739 ts
->do_timer_last
= 0;
740 } else if (!ts
->do_timer_last
) {
744 #ifdef CONFIG_NO_HZ_FULL
745 /* Limit the tick delta to the maximum scheduler deferment */
747 delta
= min(delta
, scheduler_tick_max_deferment());
750 /* Calculate the next expiry time */
751 if (delta
< (KTIME_MAX
- basemono
))
752 expires
= basemono
+ delta
;
756 expires
= min_t(u64
, expires
, next_tick
);
759 /* Skip reprogram of event if its not changed */
760 if (ts
->tick_stopped
&& (expires
== ts
->next_tick
)) {
761 /* Sanity check: make sure clockevent is actually programmed */
762 if (tick
== KTIME_MAX
|| ts
->next_tick
== hrtimer_get_expires(&ts
->sched_timer
))
766 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
767 basemono
, ts
->next_tick
, dev
->next_event
,
768 hrtimer_active(&ts
->sched_timer
), hrtimer_get_expires(&ts
->sched_timer
));
772 * nohz_stop_sched_tick can be called several times before
773 * the nohz_restart_sched_tick is called. This happens when
774 * interrupts arrive which do not cause a reschedule. In the
775 * first call we save the current tick time, so we can restart
776 * the scheduler tick in nohz_restart_sched_tick.
778 if (!ts
->tick_stopped
) {
779 calc_load_nohz_start();
780 cpu_load_update_nohz_start();
783 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
784 ts
->tick_stopped
= 1;
785 trace_tick_stop(1, TICK_DEP_MASK_NONE
);
788 ts
->next_tick
= tick
;
791 * If the expiration time == KTIME_MAX, then we simply stop
794 if (unlikely(expires
== KTIME_MAX
)) {
795 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
796 hrtimer_cancel(&ts
->sched_timer
);
800 hrtimer_set_expires(&ts
->sched_timer
, tick
);
802 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
803 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
805 tick_program_event(tick
, 1);
808 * Update the estimated sleep length until the next timer
809 * (not only the tick).
811 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
815 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
817 /* Update jiffies first */
818 tick_do_update_jiffies64(now
);
819 cpu_load_update_nohz_stop();
822 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
823 * the clock forward checks in the enqueue path:
827 calc_load_nohz_stop();
828 touch_softlockup_watchdog_sched();
830 * Cancel the scheduled timer and restore the tick
832 ts
->tick_stopped
= 0;
833 ts
->idle_exittime
= now
;
835 tick_nohz_restart(ts
, now
);
838 static void tick_nohz_full_update_tick(struct tick_sched
*ts
)
840 #ifdef CONFIG_NO_HZ_FULL
841 int cpu
= smp_processor_id();
843 if (!tick_nohz_full_cpu(cpu
))
846 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
849 if (can_stop_full_tick(cpu
, ts
))
850 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
851 else if (ts
->tick_stopped
)
852 tick_nohz_restart_sched_tick(ts
, ktime_get());
856 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
859 * If this CPU is offline and it is the one which updates
860 * jiffies, then give up the assignment and let it be taken by
861 * the CPU which runs the tick timer next. If we don't drop
862 * this here the jiffies might be stale and do_timer() never
865 if (unlikely(!cpu_online(cpu
))) {
866 if (cpu
== tick_do_timer_cpu
)
867 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
869 * Make sure the CPU doesn't get fooled by obsolete tick
870 * deadline if it comes back online later.
876 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
877 ts
->sleep_length
= NSEC_PER_SEC
/ HZ
;
884 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
885 static int ratelimit
;
887 if (ratelimit
< 10 &&
888 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
889 pr_warn("NOHZ: local_softirq_pending %02x\n",
890 (unsigned int) local_softirq_pending());
896 if (tick_nohz_full_enabled()) {
898 * Keep the tick alive to guarantee timekeeping progression
899 * if there are full dynticks CPUs around
901 if (tick_do_timer_cpu
== cpu
)
904 * Boot safety: make sure the timekeeping duty has been
905 * assigned before entering dyntick-idle mode,
907 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
914 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
916 ktime_t now
, expires
;
917 int cpu
= smp_processor_id();
919 now
= tick_nohz_start_idle(ts
);
921 if (can_stop_idle_tick(cpu
, ts
)) {
922 int was_stopped
= ts
->tick_stopped
;
926 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
929 ts
->idle_expires
= expires
;
932 if (!was_stopped
&& ts
->tick_stopped
) {
933 ts
->idle_jiffies
= ts
->last_jiffies
;
934 nohz_balance_enter_idle(cpu
);
940 * tick_nohz_idle_enter - stop the idle tick from the idle task
942 * When the next event is more than a tick into the future, stop the idle tick
943 * Called when we start the idle loop.
945 * The arch is responsible of calling:
947 * - rcu_idle_enter() after its last use of RCU before the CPU is put
949 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
951 void tick_nohz_idle_enter(void)
953 struct tick_sched
*ts
;
955 lockdep_assert_irqs_enabled();
957 * Update the idle state in the scheduler domain hierarchy
958 * when tick_nohz_stop_sched_tick() is called from the idle loop.
959 * State will be updated to busy during the first busy tick after
962 set_cpu_sd_state_idle();
966 ts
= this_cpu_ptr(&tick_cpu_sched
);
968 __tick_nohz_idle_enter(ts
);
974 * tick_nohz_irq_exit - update next tick event from interrupt exit
976 * When an interrupt fires while we are idle and it doesn't cause
977 * a reschedule, it may still add, modify or delete a timer, enqueue
978 * an RCU callback, etc...
979 * So we need to re-calculate and reprogram the next tick event.
981 void tick_nohz_irq_exit(void)
983 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
986 __tick_nohz_idle_enter(ts
);
988 tick_nohz_full_update_tick(ts
);
992 * tick_nohz_get_sleep_length - return the length of the current sleep
994 * Called from power state control code with interrupts disabled
996 ktime_t
tick_nohz_get_sleep_length(void)
998 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1000 return ts
->sleep_length
;
1004 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1005 * for a particular CPU.
1007 * Called from the schedutil frequency scaling governor in scheduler context.
1009 unsigned long tick_nohz_get_idle_calls_cpu(int cpu
)
1011 struct tick_sched
*ts
= tick_get_tick_sched(cpu
);
1013 return ts
->idle_calls
;
1017 * tick_nohz_get_idle_calls - return the current idle calls counter value
1019 * Called from the schedutil frequency scaling governor in scheduler context.
1021 unsigned long tick_nohz_get_idle_calls(void)
1023 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1025 return ts
->idle_calls
;
1028 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
1030 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1031 unsigned long ticks
;
1033 if (vtime_accounting_cpu_enabled())
1036 * We stopped the tick in idle. Update process times would miss the
1037 * time we slept as update_process_times does only a 1 tick
1038 * accounting. Enforce that this is accounted to idle !
1040 ticks
= jiffies
- ts
->idle_jiffies
;
1042 * We might be one off. Do not randomly account a huge number of ticks!
1044 if (ticks
&& ticks
< LONG_MAX
)
1045 account_idle_ticks(ticks
);
1050 * tick_nohz_idle_exit - restart the idle tick from the idle task
1052 * Restart the idle tick when the CPU is woken up from idle
1053 * This also exit the RCU extended quiescent state. The CPU
1054 * can use RCU again after this function is called.
1056 void tick_nohz_idle_exit(void)
1058 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1061 local_irq_disable();
1063 WARN_ON_ONCE(!ts
->inidle
);
1067 if (ts
->idle_active
|| ts
->tick_stopped
)
1070 if (ts
->idle_active
)
1071 tick_nohz_stop_idle(ts
, now
);
1073 if (ts
->tick_stopped
) {
1074 tick_nohz_restart_sched_tick(ts
, now
);
1075 tick_nohz_account_idle_ticks(ts
);
1082 * The nohz low res interrupt handler
1084 static void tick_nohz_handler(struct clock_event_device
*dev
)
1086 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1087 struct pt_regs
*regs
= get_irq_regs();
1088 ktime_t now
= ktime_get();
1090 dev
->next_event
= KTIME_MAX
;
1092 tick_sched_do_timer(now
);
1093 tick_sched_handle(ts
, regs
);
1095 /* No need to reprogram if we are running tickless */
1096 if (unlikely(ts
->tick_stopped
))
1099 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1100 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1103 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
)
1105 if (!tick_nohz_enabled
)
1107 ts
->nohz_mode
= mode
;
1108 /* One update is enough */
1109 if (!test_and_set_bit(0, &tick_nohz_active
))
1110 timers_update_nohz();
1114 * tick_nohz_switch_to_nohz - switch to nohz mode
1116 static void tick_nohz_switch_to_nohz(void)
1118 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1121 if (!tick_nohz_enabled
)
1124 if (tick_switch_to_oneshot(tick_nohz_handler
))
1128 * Recycle the hrtimer in ts, so we can share the
1129 * hrtimer_forward with the highres code.
1131 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1132 /* Get the next period */
1133 next
= tick_init_jiffy_update();
1135 hrtimer_set_expires(&ts
->sched_timer
, next
);
1136 hrtimer_forward_now(&ts
->sched_timer
, tick_period
);
1137 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1138 tick_nohz_activate(ts
, NOHZ_MODE_LOWRES
);
1141 static inline void tick_nohz_irq_enter(void)
1143 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1146 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1149 if (ts
->idle_active
)
1150 tick_nohz_stop_idle(ts
, now
);
1151 if (ts
->tick_stopped
)
1152 tick_nohz_update_jiffies(now
);
1157 static inline void tick_nohz_switch_to_nohz(void) { }
1158 static inline void tick_nohz_irq_enter(void) { }
1159 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
) { }
1161 #endif /* CONFIG_NO_HZ_COMMON */
1164 * Called from irq_enter to notify about the possible interruption of idle()
1166 void tick_irq_enter(void)
1168 tick_check_oneshot_broadcast_this_cpu();
1169 tick_nohz_irq_enter();
1173 * High resolution timer specific code
1175 #ifdef CONFIG_HIGH_RES_TIMERS
1177 * We rearm the timer until we get disabled by the idle code.
1178 * Called with interrupts disabled.
1180 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1182 struct tick_sched
*ts
=
1183 container_of(timer
, struct tick_sched
, sched_timer
);
1184 struct pt_regs
*regs
= get_irq_regs();
1185 ktime_t now
= ktime_get();
1187 tick_sched_do_timer(now
);
1190 * Do not call, when we are not in irq context and have
1191 * no valid regs pointer
1194 tick_sched_handle(ts
, regs
);
1198 /* No need to reprogram if we are in idle or full dynticks mode */
1199 if (unlikely(ts
->tick_stopped
))
1200 return HRTIMER_NORESTART
;
1202 hrtimer_forward(timer
, now
, tick_period
);
1204 return HRTIMER_RESTART
;
1207 static int sched_skew_tick
;
1209 static int __init
skew_tick(char *str
)
1211 get_option(&str
, &sched_skew_tick
);
1215 early_param("skew_tick", skew_tick
);
1218 * tick_setup_sched_timer - setup the tick emulation timer
1220 void tick_setup_sched_timer(void)
1222 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1223 ktime_t now
= ktime_get();
1226 * Emulate tick processing via per-CPU hrtimers:
1228 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1229 ts
->sched_timer
.function
= tick_sched_timer
;
1231 /* Get the next period (per-CPU) */
1232 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1234 /* Offset the tick to avert jiffies_lock contention. */
1235 if (sched_skew_tick
) {
1236 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1237 do_div(offset
, num_possible_cpus());
1238 offset
*= smp_processor_id();
1239 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1242 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1243 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
1244 tick_nohz_activate(ts
, NOHZ_MODE_HIGHRES
);
1246 #endif /* HIGH_RES_TIMERS */
1248 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1249 void tick_cancel_sched_timer(int cpu
)
1251 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1253 # ifdef CONFIG_HIGH_RES_TIMERS
1254 if (ts
->sched_timer
.base
)
1255 hrtimer_cancel(&ts
->sched_timer
);
1258 memset(ts
, 0, sizeof(*ts
));
1263 * Async notification about clocksource changes
1265 void tick_clock_notify(void)
1269 for_each_possible_cpu(cpu
)
1270 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1274 * Async notification about clock event changes
1276 void tick_oneshot_notify(void)
1278 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1280 set_bit(0, &ts
->check_clocks
);
1284 * Check, if a change happened, which makes oneshot possible.
1286 * Called cyclic from the hrtimer softirq (driven by the timer
1287 * softirq) allow_nohz signals, that we can switch into low-res nohz
1288 * mode, because high resolution timers are disabled (either compile
1289 * or runtime). Called with interrupts disabled.
1291 int tick_check_oneshot_change(int allow_nohz
)
1293 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1295 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1298 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1301 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1307 tick_nohz_switch_to_nohz();