2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
4 * Copyright (C) 2011-2013 Xilinx
6 * based on arch/mips/kernel/time.c timer driver
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/clk.h>
19 #include <linux/interrupt.h>
20 #include <linux/clockchips.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
27 * This driver configures the 2 16/32-bit count-up timers as follows:
29 * T1: Timer 1, clocksource for generic timekeeping
30 * T2: Timer 2, clockevent source for hrtimers
31 * T3: Timer 3, <unused>
33 * The input frequency to the timer module for emulation is 2.5MHz which is
34 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35 * the timers are clocked at 78.125KHz (12.8 us resolution).
37 * The input frequency to the timer module in silicon is configurable and
38 * obtained from device tree. The pre-scaler of 32 is used.
42 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43 * and use same offsets for Timer 2
45 #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
46 #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
47 #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
48 #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
49 #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
50 #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
52 #define TTC_CNT_CNTRL_DISABLE_MASK 0x1
54 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
55 #define TTC_CLK_CNTRL_PSV_MASK 0x1e
56 #define TTC_CLK_CNTRL_PSV_SHIFT 1
59 * Setup the timers to use pre-scaling, using a fixed value for now that will
60 * work across most input frequency, but it may need to be more dynamic
62 #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
63 #define PRESCALE 2048 /* The exponent must match this */
64 #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
65 #define CLK_CNTRL_PRESCALE_EN 1
66 #define CNT_CNTRL_RESET (1 << 4)
71 * struct ttc_timer - This definition defines local timer structure
73 * @base_addr: Base address of timer
74 * @freq: Timer input clock frequency
75 * @clk: Associated clock source
76 * @clk_rate_change_nb Notifier block for clock rate changes
79 void __iomem
*base_addr
;
82 struct notifier_block clk_rate_change_nb
;
85 #define to_ttc_timer(x) \
86 container_of(x, struct ttc_timer, clk_rate_change_nb)
88 struct ttc_timer_clocksource
{
89 u32 scale_clk_ctrl_reg_old
;
90 u32 scale_clk_ctrl_reg_new
;
92 struct clocksource cs
;
95 #define to_ttc_timer_clksrc(x) \
96 container_of(x, struct ttc_timer_clocksource, cs)
98 struct ttc_timer_clockevent
{
100 struct clock_event_device ce
;
103 #define to_ttc_timer_clkevent(x) \
104 container_of(x, struct ttc_timer_clockevent, ce)
106 static void __iomem
*ttc_sched_clock_val_reg
;
109 * ttc_set_interval - Set the timer interval value
111 * @timer: Pointer to the timer instance
112 * @cycles: Timer interval ticks
114 static void ttc_set_interval(struct ttc_timer
*timer
,
115 unsigned long cycles
)
119 /* Disable the counter, set the counter value and re-enable counter */
120 ctrl_reg
= readl_relaxed(timer
->base_addr
+ TTC_CNT_CNTRL_OFFSET
);
121 ctrl_reg
|= TTC_CNT_CNTRL_DISABLE_MASK
;
122 writel_relaxed(ctrl_reg
, timer
->base_addr
+ TTC_CNT_CNTRL_OFFSET
);
124 writel_relaxed(cycles
, timer
->base_addr
+ TTC_INTR_VAL_OFFSET
);
127 * Reset the counter (0x10) so that it starts from 0, one-shot
128 * mode makes this needed for timing to be right.
130 ctrl_reg
|= CNT_CNTRL_RESET
;
131 ctrl_reg
&= ~TTC_CNT_CNTRL_DISABLE_MASK
;
132 writel_relaxed(ctrl_reg
, timer
->base_addr
+ TTC_CNT_CNTRL_OFFSET
);
136 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 * @irq: IRQ number of the Timer
139 * @dev_id: void pointer to the ttc_timer instance
141 * returns: Always IRQ_HANDLED - success
143 static irqreturn_t
ttc_clock_event_interrupt(int irq
, void *dev_id
)
145 struct ttc_timer_clockevent
*ttce
= dev_id
;
146 struct ttc_timer
*timer
= &ttce
->ttc
;
148 /* Acknowledge the interrupt and call event handler */
149 readl_relaxed(timer
->base_addr
+ TTC_ISR_OFFSET
);
151 ttce
->ce
.event_handler(&ttce
->ce
);
157 * __ttc_clocksource_read - Reads the timer counter register
159 * returns: Current timer counter register value
161 static cycle_t
__ttc_clocksource_read(struct clocksource
*cs
)
163 struct ttc_timer
*timer
= &to_ttc_timer_clksrc(cs
)->ttc
;
165 return (cycle_t
)readl_relaxed(timer
->base_addr
+
166 TTC_COUNT_VAL_OFFSET
);
169 static u64 notrace
ttc_sched_clock_read(void)
171 return readl_relaxed(ttc_sched_clock_val_reg
);
175 * ttc_set_next_event - Sets the time interval for next event
177 * @cycles: Timer interval ticks
178 * @evt: Address of clock event instance
180 * returns: Always 0 - success
182 static int ttc_set_next_event(unsigned long cycles
,
183 struct clock_event_device
*evt
)
185 struct ttc_timer_clockevent
*ttce
= to_ttc_timer_clkevent(evt
);
186 struct ttc_timer
*timer
= &ttce
->ttc
;
188 ttc_set_interval(timer
, cycles
);
193 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
195 * @evt: Address of clock event instance
197 static int ttc_shutdown(struct clock_event_device
*evt
)
199 struct ttc_timer_clockevent
*ttce
= to_ttc_timer_clkevent(evt
);
200 struct ttc_timer
*timer
= &ttce
->ttc
;
203 ctrl_reg
= readl_relaxed(timer
->base_addr
+ TTC_CNT_CNTRL_OFFSET
);
204 ctrl_reg
|= TTC_CNT_CNTRL_DISABLE_MASK
;
205 writel_relaxed(ctrl_reg
, timer
->base_addr
+ TTC_CNT_CNTRL_OFFSET
);
209 static int ttc_set_periodic(struct clock_event_device
*evt
)
211 struct ttc_timer_clockevent
*ttce
= to_ttc_timer_clkevent(evt
);
212 struct ttc_timer
*timer
= &ttce
->ttc
;
214 ttc_set_interval(timer
,
215 DIV_ROUND_CLOSEST(ttce
->ttc
.freq
, PRESCALE
* HZ
));
219 static int ttc_resume(struct clock_event_device
*evt
)
221 struct ttc_timer_clockevent
*ttce
= to_ttc_timer_clkevent(evt
);
222 struct ttc_timer
*timer
= &ttce
->ttc
;
225 ctrl_reg
= readl_relaxed(timer
->base_addr
+ TTC_CNT_CNTRL_OFFSET
);
226 ctrl_reg
&= ~TTC_CNT_CNTRL_DISABLE_MASK
;
227 writel_relaxed(ctrl_reg
, timer
->base_addr
+ TTC_CNT_CNTRL_OFFSET
);
231 static int ttc_rate_change_clocksource_cb(struct notifier_block
*nb
,
232 unsigned long event
, void *data
)
234 struct clk_notifier_data
*ndata
= data
;
235 struct ttc_timer
*ttc
= to_ttc_timer(nb
);
236 struct ttc_timer_clocksource
*ttccs
= container_of(ttc
,
237 struct ttc_timer_clocksource
, ttc
);
240 case PRE_RATE_CHANGE
:
243 unsigned long factor
, rate_low
, rate_high
;
245 if (ndata
->new_rate
> ndata
->old_rate
) {
246 factor
= DIV_ROUND_CLOSEST(ndata
->new_rate
,
248 rate_low
= ndata
->old_rate
;
249 rate_high
= ndata
->new_rate
;
251 factor
= DIV_ROUND_CLOSEST(ndata
->old_rate
,
253 rate_low
= ndata
->new_rate
;
254 rate_high
= ndata
->old_rate
;
257 if (!is_power_of_2(factor
))
260 if (abs(rate_high
- (factor
* rate_low
)) > MAX_F_ERR
)
263 factor
= __ilog2_u32(factor
);
266 * store timer clock ctrl register so we can restore it in case
269 ttccs
->scale_clk_ctrl_reg_old
=
270 readl_relaxed(ttccs
->ttc
.base_addr
+
271 TTC_CLK_CNTRL_OFFSET
);
273 psv
= (ttccs
->scale_clk_ctrl_reg_old
&
274 TTC_CLK_CNTRL_PSV_MASK
) >>
275 TTC_CLK_CNTRL_PSV_SHIFT
;
276 if (ndata
->new_rate
< ndata
->old_rate
)
281 /* prescaler within legal range? */
282 if (psv
& ~(TTC_CLK_CNTRL_PSV_MASK
>> TTC_CLK_CNTRL_PSV_SHIFT
))
285 ttccs
->scale_clk_ctrl_reg_new
= ttccs
->scale_clk_ctrl_reg_old
&
286 ~TTC_CLK_CNTRL_PSV_MASK
;
287 ttccs
->scale_clk_ctrl_reg_new
|= psv
<< TTC_CLK_CNTRL_PSV_SHIFT
;
290 /* scale down: adjust divider in post-change notification */
291 if (ndata
->new_rate
< ndata
->old_rate
)
294 /* scale up: adjust divider now - before frequency change */
295 writel_relaxed(ttccs
->scale_clk_ctrl_reg_new
,
296 ttccs
->ttc
.base_addr
+ TTC_CLK_CNTRL_OFFSET
);
299 case POST_RATE_CHANGE
:
300 /* scale up: pre-change notification did the adjustment */
301 if (ndata
->new_rate
> ndata
->old_rate
)
304 /* scale down: adjust divider now - after frequency change */
305 writel_relaxed(ttccs
->scale_clk_ctrl_reg_new
,
306 ttccs
->ttc
.base_addr
+ TTC_CLK_CNTRL_OFFSET
);
309 case ABORT_RATE_CHANGE
:
310 /* we have to undo the adjustment in case we scale up */
311 if (ndata
->new_rate
< ndata
->old_rate
)
314 /* restore original register value */
315 writel_relaxed(ttccs
->scale_clk_ctrl_reg_old
,
316 ttccs
->ttc
.base_addr
+ TTC_CLK_CNTRL_OFFSET
);
325 static void __init
ttc_setup_clocksource(struct clk
*clk
, void __iomem
*base
,
328 struct ttc_timer_clocksource
*ttccs
;
331 ttccs
= kzalloc(sizeof(*ttccs
), GFP_KERNEL
);
335 ttccs
->ttc
.clk
= clk
;
337 err
= clk_prepare_enable(ttccs
->ttc
.clk
);
343 ttccs
->ttc
.freq
= clk_get_rate(ttccs
->ttc
.clk
);
345 ttccs
->ttc
.clk_rate_change_nb
.notifier_call
=
346 ttc_rate_change_clocksource_cb
;
347 ttccs
->ttc
.clk_rate_change_nb
.next
= NULL
;
348 if (clk_notifier_register(ttccs
->ttc
.clk
,
349 &ttccs
->ttc
.clk_rate_change_nb
))
350 pr_warn("Unable to register clock notifier.\n");
352 ttccs
->ttc
.base_addr
= base
;
353 ttccs
->cs
.name
= "ttc_clocksource";
354 ttccs
->cs
.rating
= 200;
355 ttccs
->cs
.read
= __ttc_clocksource_read
;
356 ttccs
->cs
.mask
= CLOCKSOURCE_MASK(timer_width
);
357 ttccs
->cs
.flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
360 * Setup the clock source counter to be an incrementing counter
361 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
362 * it by 32 also. Let it start running now.
364 writel_relaxed(0x0, ttccs
->ttc
.base_addr
+ TTC_IER_OFFSET
);
365 writel_relaxed(CLK_CNTRL_PRESCALE
| CLK_CNTRL_PRESCALE_EN
,
366 ttccs
->ttc
.base_addr
+ TTC_CLK_CNTRL_OFFSET
);
367 writel_relaxed(CNT_CNTRL_RESET
,
368 ttccs
->ttc
.base_addr
+ TTC_CNT_CNTRL_OFFSET
);
370 err
= clocksource_register_hz(&ttccs
->cs
, ttccs
->ttc
.freq
/ PRESCALE
);
376 ttc_sched_clock_val_reg
= base
+ TTC_COUNT_VAL_OFFSET
;
377 sched_clock_register(ttc_sched_clock_read
, timer_width
,
378 ttccs
->ttc
.freq
/ PRESCALE
);
381 static int ttc_rate_change_clockevent_cb(struct notifier_block
*nb
,
382 unsigned long event
, void *data
)
384 struct clk_notifier_data
*ndata
= data
;
385 struct ttc_timer
*ttc
= to_ttc_timer(nb
);
386 struct ttc_timer_clockevent
*ttcce
= container_of(ttc
,
387 struct ttc_timer_clockevent
, ttc
);
390 case POST_RATE_CHANGE
:
391 /* update cached frequency */
392 ttc
->freq
= ndata
->new_rate
;
394 clockevents_update_freq(&ttcce
->ce
, ndata
->new_rate
/ PRESCALE
);
397 case PRE_RATE_CHANGE
:
398 case ABORT_RATE_CHANGE
:
404 static void __init
ttc_setup_clockevent(struct clk
*clk
,
405 void __iomem
*base
, u32 irq
)
407 struct ttc_timer_clockevent
*ttcce
;
410 ttcce
= kzalloc(sizeof(*ttcce
), GFP_KERNEL
);
414 ttcce
->ttc
.clk
= clk
;
416 err
= clk_prepare_enable(ttcce
->ttc
.clk
);
422 ttcce
->ttc
.clk_rate_change_nb
.notifier_call
=
423 ttc_rate_change_clockevent_cb
;
424 ttcce
->ttc
.clk_rate_change_nb
.next
= NULL
;
425 if (clk_notifier_register(ttcce
->ttc
.clk
,
426 &ttcce
->ttc
.clk_rate_change_nb
))
427 pr_warn("Unable to register clock notifier.\n");
428 ttcce
->ttc
.freq
= clk_get_rate(ttcce
->ttc
.clk
);
430 ttcce
->ttc
.base_addr
= base
;
431 ttcce
->ce
.name
= "ttc_clockevent";
432 ttcce
->ce
.features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
;
433 ttcce
->ce
.set_next_event
= ttc_set_next_event
;
434 ttcce
->ce
.set_state_shutdown
= ttc_shutdown
;
435 ttcce
->ce
.set_state_periodic
= ttc_set_periodic
;
436 ttcce
->ce
.set_state_oneshot
= ttc_shutdown
;
437 ttcce
->ce
.tick_resume
= ttc_resume
;
438 ttcce
->ce
.rating
= 200;
440 ttcce
->ce
.cpumask
= cpu_possible_mask
;
443 * Setup the clock event timer to be an interval timer which
444 * is prescaled by 32 using the interval interrupt. Leave it
447 writel_relaxed(0x23, ttcce
->ttc
.base_addr
+ TTC_CNT_CNTRL_OFFSET
);
448 writel_relaxed(CLK_CNTRL_PRESCALE
| CLK_CNTRL_PRESCALE_EN
,
449 ttcce
->ttc
.base_addr
+ TTC_CLK_CNTRL_OFFSET
);
450 writel_relaxed(0x1, ttcce
->ttc
.base_addr
+ TTC_IER_OFFSET
);
452 err
= request_irq(irq
, ttc_clock_event_interrupt
,
453 IRQF_TIMER
, ttcce
->ce
.name
, ttcce
);
459 clockevents_config_and_register(&ttcce
->ce
,
460 ttcce
->ttc
.freq
/ PRESCALE
, 1, 0xfffe);
464 * ttc_timer_init - Initialize the timer
466 * Initializes the timer hardware and register the clock source and clock event
467 * timers with Linux kernal timer framework
469 static void __init
ttc_timer_init(struct device_node
*timer
)
472 void __iomem
*timer_baseaddr
;
473 struct clk
*clk_cs
, *clk_ce
;
474 static int initialized
;
476 u32 timer_width
= 16;
484 * Get the 1st Triple Timer Counter (TTC) block from the device tree
485 * and use it. Note that the event timer uses the interrupt and it's the
486 * 2nd TTC hence the irq_of_parse_and_map(,1)
488 timer_baseaddr
= of_iomap(timer
, 0);
489 if (!timer_baseaddr
) {
490 pr_err("ERROR: invalid timer base address\n");
494 irq
= irq_of_parse_and_map(timer
, 1);
496 pr_err("ERROR: invalid interrupt number\n");
500 of_property_read_u32(timer
, "timer-width", &timer_width
);
502 clksel
= readl_relaxed(timer_baseaddr
+ TTC_CLK_CNTRL_OFFSET
);
503 clksel
= !!(clksel
& TTC_CLK_CNTRL_CSRC_MASK
);
504 clk_cs
= of_clk_get(timer
, clksel
);
505 if (IS_ERR(clk_cs
)) {
506 pr_err("ERROR: timer input clock not found\n");
510 clksel
= readl_relaxed(timer_baseaddr
+ 4 + TTC_CLK_CNTRL_OFFSET
);
511 clksel
= !!(clksel
& TTC_CLK_CNTRL_CSRC_MASK
);
512 clk_ce
= of_clk_get(timer
, clksel
);
513 if (IS_ERR(clk_ce
)) {
514 pr_err("ERROR: timer input clock not found\n");
518 ttc_setup_clocksource(clk_cs
, timer_baseaddr
, timer_width
);
519 ttc_setup_clockevent(clk_ce
, timer_baseaddr
+ 4, irq
);
521 pr_info("%s #0 at %p, irq=%d\n", timer
->name
, timer_baseaddr
, irq
);
524 CLOCKSOURCE_OF_DECLARE(ttc
, "cdns,ttc", ttc_timer_init
);