2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/highmem.h>
61 #include <net/protocol.h>
64 #include <net/checksum.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
70 static kmem_cache_t
*skbuff_head_cache __read_mostly
;
71 static kmem_cache_t
*skbuff_fclone_cache __read_mostly
;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
89 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
92 skb
->dev
? skb
->dev
->name
: "<NULL>");
97 * skb_under_panic - private function
102 * Out of line support code for skb_push(). Not user callable.
105 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
107 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
110 skb
->dev
? skb
->dev
->name
: "<NULL>");
114 void skb_truesize_bug(struct sk_buff
*skb
)
116 printk(KERN_ERR
"SKB BUG: Invalid truesize (%u) "
117 "len=%u, sizeof(sk_buff)=%Zd\n",
118 skb
->truesize
, skb
->len
, sizeof(struct sk_buff
));
120 EXPORT_SYMBOL(skb_truesize_bug
);
122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
123 * 'private' fields and also do memory statistics to find all the
129 * __alloc_skb - allocate a network buffer
130 * @size: size to allocate
131 * @gfp_mask: allocation mask
132 * @fclone: allocate from fclone cache instead of head cache
133 * and allocate a cloned (child) skb
135 * Allocate a new &sk_buff. The returned buffer has no headroom and a
136 * tail room of size bytes. The object has a reference count of one.
137 * The return is the buffer. On a failure the return is %NULL.
139 * Buffers may only be allocated from interrupts using a @gfp_mask of
142 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
146 struct skb_shared_info
*shinfo
;
150 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
153 skb
= kmem_cache_alloc(cache
, gfp_mask
& ~__GFP_DMA
);
157 /* Get the DATA. Size must match skb_add_mtu(). */
158 size
= SKB_DATA_ALIGN(size
);
159 data
= ____kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
163 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
164 skb
->truesize
= size
+ sizeof(struct sk_buff
);
165 atomic_set(&skb
->users
, 1);
169 skb
->end
= data
+ size
;
170 /* make sure we initialize shinfo sequentially */
171 shinfo
= skb_shinfo(skb
);
172 atomic_set(&shinfo
->dataref
, 1);
173 shinfo
->nr_frags
= 0;
174 shinfo
->gso_size
= 0;
175 shinfo
->gso_segs
= 0;
176 shinfo
->gso_type
= 0;
177 shinfo
->ip6_frag_id
= 0;
178 shinfo
->frag_list
= NULL
;
181 struct sk_buff
*child
= skb
+ 1;
182 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
184 skb
->fclone
= SKB_FCLONE_ORIG
;
185 atomic_set(fclone_ref
, 1);
187 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
192 kmem_cache_free(cache
, skb
);
198 * alloc_skb_from_cache - allocate a network buffer
199 * @cp: kmem_cache from which to allocate the data area
200 * (object size must be big enough for @size bytes + skb overheads)
201 * @size: size to allocate
202 * @gfp_mask: allocation mask
204 * Allocate a new &sk_buff. The returned buffer has no headroom and
205 * tail room of size bytes. The object has a reference count of one.
206 * The return is the buffer. On a failure the return is %NULL.
208 * Buffers may only be allocated from interrupts using a @gfp_mask of
211 struct sk_buff
*alloc_skb_from_cache(kmem_cache_t
*cp
,
219 skb
= kmem_cache_alloc(skbuff_head_cache
,
220 gfp_mask
& ~__GFP_DMA
);
225 size
= SKB_DATA_ALIGN(size
);
226 data
= kmem_cache_alloc(cp
, gfp_mask
);
230 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
231 skb
->truesize
= size
+ sizeof(struct sk_buff
);
232 atomic_set(&skb
->users
, 1);
236 skb
->end
= data
+ size
;
238 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
239 skb_shinfo(skb
)->nr_frags
= 0;
240 skb_shinfo(skb
)->gso_size
= 0;
241 skb_shinfo(skb
)->gso_segs
= 0;
242 skb_shinfo(skb
)->gso_type
= 0;
243 skb_shinfo(skb
)->frag_list
= NULL
;
247 kmem_cache_free(skbuff_head_cache
, skb
);
253 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
254 * @dev: network device to receive on
255 * @length: length to allocate
256 * @gfp_mask: get_free_pages mask, passed to alloc_skb
258 * Allocate a new &sk_buff and assign it a usage count of one. The
259 * buffer has unspecified headroom built in. Users should allocate
260 * the headroom they think they need without accounting for the
261 * built in space. The built in space is used for optimisations.
263 * %NULL is returned if there is no free memory.
265 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
266 unsigned int length
, gfp_t gfp_mask
)
270 skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
272 skb_reserve(skb
, NET_SKB_PAD
);
278 static void skb_drop_list(struct sk_buff
**listp
)
280 struct sk_buff
*list
= *listp
;
285 struct sk_buff
*this = list
;
291 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
293 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
296 static void skb_clone_fraglist(struct sk_buff
*skb
)
298 struct sk_buff
*list
;
300 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
304 static void skb_release_data(struct sk_buff
*skb
)
307 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
308 &skb_shinfo(skb
)->dataref
)) {
309 if (skb_shinfo(skb
)->nr_frags
) {
311 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
312 put_page(skb_shinfo(skb
)->frags
[i
].page
);
315 if (skb_shinfo(skb
)->frag_list
)
316 skb_drop_fraglist(skb
);
323 * Free an skbuff by memory without cleaning the state.
325 void kfree_skbmem(struct sk_buff
*skb
)
327 struct sk_buff
*other
;
328 atomic_t
*fclone_ref
;
330 skb_release_data(skb
);
331 switch (skb
->fclone
) {
332 case SKB_FCLONE_UNAVAILABLE
:
333 kmem_cache_free(skbuff_head_cache
, skb
);
336 case SKB_FCLONE_ORIG
:
337 fclone_ref
= (atomic_t
*) (skb
+ 2);
338 if (atomic_dec_and_test(fclone_ref
))
339 kmem_cache_free(skbuff_fclone_cache
, skb
);
342 case SKB_FCLONE_CLONE
:
343 fclone_ref
= (atomic_t
*) (skb
+ 1);
346 /* The clone portion is available for
347 * fast-cloning again.
349 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
351 if (atomic_dec_and_test(fclone_ref
))
352 kmem_cache_free(skbuff_fclone_cache
, other
);
358 * __kfree_skb - private function
361 * Free an sk_buff. Release anything attached to the buffer.
362 * Clean the state. This is an internal helper function. Users should
363 * always call kfree_skb
366 void __kfree_skb(struct sk_buff
*skb
)
368 dst_release(skb
->dst
);
370 secpath_put(skb
->sp
);
372 if (skb
->destructor
) {
374 skb
->destructor(skb
);
376 #ifdef CONFIG_NETFILTER
377 nf_conntrack_put(skb
->nfct
);
378 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
379 nf_conntrack_put_reasm(skb
->nfct_reasm
);
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 nf_bridge_put(skb
->nf_bridge
);
385 /* XXX: IS this still necessary? - JHS */
386 #ifdef CONFIG_NET_SCHED
388 #ifdef CONFIG_NET_CLS_ACT
397 * kfree_skb - free an sk_buff
398 * @skb: buffer to free
400 * Drop a reference to the buffer and free it if the usage count has
403 void kfree_skb(struct sk_buff
*skb
)
407 if (likely(atomic_read(&skb
->users
) == 1))
409 else if (likely(!atomic_dec_and_test(&skb
->users
)))
415 * skb_clone - duplicate an sk_buff
416 * @skb: buffer to clone
417 * @gfp_mask: allocation priority
419 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
420 * copies share the same packet data but not structure. The new
421 * buffer has a reference count of 1. If the allocation fails the
422 * function returns %NULL otherwise the new buffer is returned.
424 * If this function is called from an interrupt gfp_mask() must be
428 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
433 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
434 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
435 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
436 n
->fclone
= SKB_FCLONE_CLONE
;
437 atomic_inc(fclone_ref
);
439 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
442 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
445 #define C(x) n->x = skb->x
447 n
->next
= n
->prev
= NULL
;
458 secpath_get(skb
->sp
);
460 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
470 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
474 n
->destructor
= NULL
;
475 #ifdef CONFIG_NETFILTER
478 nf_conntrack_get(skb
->nfct
);
480 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
482 nf_conntrack_get_reasm(skb
->nfct_reasm
);
484 #ifdef CONFIG_BRIDGE_NETFILTER
486 nf_bridge_get(skb
->nf_bridge
);
488 #endif /*CONFIG_NETFILTER*/
489 #ifdef CONFIG_NET_SCHED
491 #ifdef CONFIG_NET_CLS_ACT
492 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
493 n
->tc_verd
= CLR_TC_OK2MUNGE(n
->tc_verd
);
494 n
->tc_verd
= CLR_TC_MUNGED(n
->tc_verd
);
497 skb_copy_secmark(n
, skb
);
500 atomic_set(&n
->users
, 1);
506 atomic_inc(&(skb_shinfo(skb
)->dataref
));
512 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
515 * Shift between the two data areas in bytes
517 unsigned long offset
= new->data
- old
->data
;
521 new->priority
= old
->priority
;
522 new->protocol
= old
->protocol
;
523 new->dst
= dst_clone(old
->dst
);
525 new->sp
= secpath_get(old
->sp
);
527 new->h
.raw
= old
->h
.raw
+ offset
;
528 new->nh
.raw
= old
->nh
.raw
+ offset
;
529 new->mac
.raw
= old
->mac
.raw
+ offset
;
530 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
531 new->local_df
= old
->local_df
;
532 new->fclone
= SKB_FCLONE_UNAVAILABLE
;
533 new->pkt_type
= old
->pkt_type
;
534 new->tstamp
= old
->tstamp
;
535 new->destructor
= NULL
;
536 #ifdef CONFIG_NETFILTER
537 new->nfmark
= old
->nfmark
;
538 new->nfct
= old
->nfct
;
539 nf_conntrack_get(old
->nfct
);
540 new->nfctinfo
= old
->nfctinfo
;
541 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
542 new->nfct_reasm
= old
->nfct_reasm
;
543 nf_conntrack_get_reasm(old
->nfct_reasm
);
545 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
546 new->ipvs_property
= old
->ipvs_property
;
548 #ifdef CONFIG_BRIDGE_NETFILTER
549 new->nf_bridge
= old
->nf_bridge
;
550 nf_bridge_get(old
->nf_bridge
);
553 #ifdef CONFIG_NET_SCHED
554 #ifdef CONFIG_NET_CLS_ACT
555 new->tc_verd
= old
->tc_verd
;
557 new->tc_index
= old
->tc_index
;
559 skb_copy_secmark(new, old
);
560 atomic_set(&new->users
, 1);
561 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
562 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
563 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
567 * skb_copy - create private copy of an sk_buff
568 * @skb: buffer to copy
569 * @gfp_mask: allocation priority
571 * Make a copy of both an &sk_buff and its data. This is used when the
572 * caller wishes to modify the data and needs a private copy of the
573 * data to alter. Returns %NULL on failure or the pointer to the buffer
574 * on success. The returned buffer has a reference count of 1.
576 * As by-product this function converts non-linear &sk_buff to linear
577 * one, so that &sk_buff becomes completely private and caller is allowed
578 * to modify all the data of returned buffer. This means that this
579 * function is not recommended for use in circumstances when only
580 * header is going to be modified. Use pskb_copy() instead.
583 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
585 int headerlen
= skb
->data
- skb
->head
;
587 * Allocate the copy buffer
589 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
,
594 /* Set the data pointer */
595 skb_reserve(n
, headerlen
);
596 /* Set the tail pointer and length */
597 skb_put(n
, skb
->len
);
599 n
->ip_summed
= skb
->ip_summed
;
601 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
604 copy_skb_header(n
, skb
);
610 * pskb_copy - create copy of an sk_buff with private head.
611 * @skb: buffer to copy
612 * @gfp_mask: allocation priority
614 * Make a copy of both an &sk_buff and part of its data, located
615 * in header. Fragmented data remain shared. This is used when
616 * the caller wishes to modify only header of &sk_buff and needs
617 * private copy of the header to alter. Returns %NULL on failure
618 * or the pointer to the buffer on success.
619 * The returned buffer has a reference count of 1.
622 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
625 * Allocate the copy buffer
627 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
632 /* Set the data pointer */
633 skb_reserve(n
, skb
->data
- skb
->head
);
634 /* Set the tail pointer and length */
635 skb_put(n
, skb_headlen(skb
));
637 memcpy(n
->data
, skb
->data
, n
->len
);
639 n
->ip_summed
= skb
->ip_summed
;
641 n
->data_len
= skb
->data_len
;
644 if (skb_shinfo(skb
)->nr_frags
) {
647 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
648 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
649 get_page(skb_shinfo(n
)->frags
[i
].page
);
651 skb_shinfo(n
)->nr_frags
= i
;
654 if (skb_shinfo(skb
)->frag_list
) {
655 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
656 skb_clone_fraglist(n
);
659 copy_skb_header(n
, skb
);
665 * pskb_expand_head - reallocate header of &sk_buff
666 * @skb: buffer to reallocate
667 * @nhead: room to add at head
668 * @ntail: room to add at tail
669 * @gfp_mask: allocation priority
671 * Expands (or creates identical copy, if &nhead and &ntail are zero)
672 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
673 * reference count of 1. Returns zero in the case of success or error,
674 * if expansion failed. In the last case, &sk_buff is not changed.
676 * All the pointers pointing into skb header may change and must be
677 * reloaded after call to this function.
680 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
685 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
691 size
= SKB_DATA_ALIGN(size
);
693 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
697 /* Copy only real data... and, alas, header. This should be
698 * optimized for the cases when header is void. */
699 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
700 memcpy(data
+ size
, skb
->end
, sizeof(struct skb_shared_info
));
702 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
703 get_page(skb_shinfo(skb
)->frags
[i
].page
);
705 if (skb_shinfo(skb
)->frag_list
)
706 skb_clone_fraglist(skb
);
708 skb_release_data(skb
);
710 off
= (data
+ nhead
) - skb
->head
;
713 skb
->end
= data
+ size
;
721 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
728 /* Make private copy of skb with writable head and some headroom */
730 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
732 struct sk_buff
*skb2
;
733 int delta
= headroom
- skb_headroom(skb
);
736 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
738 skb2
= skb_clone(skb
, GFP_ATOMIC
);
739 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
750 * skb_copy_expand - copy and expand sk_buff
751 * @skb: buffer to copy
752 * @newheadroom: new free bytes at head
753 * @newtailroom: new free bytes at tail
754 * @gfp_mask: allocation priority
756 * Make a copy of both an &sk_buff and its data and while doing so
757 * allocate additional space.
759 * This is used when the caller wishes to modify the data and needs a
760 * private copy of the data to alter as well as more space for new fields.
761 * Returns %NULL on failure or the pointer to the buffer
762 * on success. The returned buffer has a reference count of 1.
764 * You must pass %GFP_ATOMIC as the allocation priority if this function
765 * is called from an interrupt.
767 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
768 * only by netfilter in the cases when checksum is recalculated? --ANK
770 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
771 int newheadroom
, int newtailroom
,
775 * Allocate the copy buffer
777 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
779 int head_copy_len
, head_copy_off
;
784 skb_reserve(n
, newheadroom
);
786 /* Set the tail pointer and length */
787 skb_put(n
, skb
->len
);
789 head_copy_len
= skb_headroom(skb
);
791 if (newheadroom
<= head_copy_len
)
792 head_copy_len
= newheadroom
;
794 head_copy_off
= newheadroom
- head_copy_len
;
796 /* Copy the linear header and data. */
797 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
798 skb
->len
+ head_copy_len
))
801 copy_skb_header(n
, skb
);
807 * skb_pad - zero pad the tail of an skb
808 * @skb: buffer to pad
811 * Ensure that a buffer is followed by a padding area that is zero
812 * filled. Used by network drivers which may DMA or transfer data
813 * beyond the buffer end onto the wire.
815 * May return error in out of memory cases. The skb is freed on error.
818 int skb_pad(struct sk_buff
*skb
, int pad
)
823 /* If the skbuff is non linear tailroom is always zero.. */
824 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
825 memset(skb
->data
+skb
->len
, 0, pad
);
829 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
830 if (likely(skb_cloned(skb
) || ntail
> 0)) {
831 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
836 /* FIXME: The use of this function with non-linear skb's really needs
839 err
= skb_linearize(skb
);
843 memset(skb
->data
+ skb
->len
, 0, pad
);
851 /* Trims skb to length len. It can change skb pointers.
854 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
856 struct sk_buff
**fragp
;
857 struct sk_buff
*frag
;
858 int offset
= skb_headlen(skb
);
859 int nfrags
= skb_shinfo(skb
)->nr_frags
;
863 if (skb_cloned(skb
) &&
864 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
871 for (; i
< nfrags
; i
++) {
872 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
879 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
882 skb_shinfo(skb
)->nr_frags
= i
;
884 for (; i
< nfrags
; i
++)
885 put_page(skb_shinfo(skb
)->frags
[i
].page
);
887 if (skb_shinfo(skb
)->frag_list
)
888 skb_drop_fraglist(skb
);
892 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
893 fragp
= &frag
->next
) {
894 int end
= offset
+ frag
->len
;
896 if (skb_shared(frag
)) {
897 struct sk_buff
*nfrag
;
899 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
900 if (unlikely(!nfrag
))
903 nfrag
->next
= frag
->next
;
915 unlikely((err
= pskb_trim(frag
, len
- offset
))))
919 skb_drop_list(&frag
->next
);
924 if (len
> skb_headlen(skb
)) {
925 skb
->data_len
-= skb
->len
- len
;
930 skb
->tail
= skb
->data
+ len
;
937 * __pskb_pull_tail - advance tail of skb header
938 * @skb: buffer to reallocate
939 * @delta: number of bytes to advance tail
941 * The function makes a sense only on a fragmented &sk_buff,
942 * it expands header moving its tail forward and copying necessary
943 * data from fragmented part.
945 * &sk_buff MUST have reference count of 1.
947 * Returns %NULL (and &sk_buff does not change) if pull failed
948 * or value of new tail of skb in the case of success.
950 * All the pointers pointing into skb header may change and must be
951 * reloaded after call to this function.
954 /* Moves tail of skb head forward, copying data from fragmented part,
955 * when it is necessary.
956 * 1. It may fail due to malloc failure.
957 * 2. It may change skb pointers.
959 * It is pretty complicated. Luckily, it is called only in exceptional cases.
961 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
963 /* If skb has not enough free space at tail, get new one
964 * plus 128 bytes for future expansions. If we have enough
965 * room at tail, reallocate without expansion only if skb is cloned.
967 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
969 if (eat
> 0 || skb_cloned(skb
)) {
970 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
975 if (skb_copy_bits(skb
, skb_headlen(skb
), skb
->tail
, delta
))
978 /* Optimization: no fragments, no reasons to preestimate
979 * size of pulled pages. Superb.
981 if (!skb_shinfo(skb
)->frag_list
)
984 /* Estimate size of pulled pages. */
986 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
987 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
989 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
992 /* If we need update frag list, we are in troubles.
993 * Certainly, it possible to add an offset to skb data,
994 * but taking into account that pulling is expected to
995 * be very rare operation, it is worth to fight against
996 * further bloating skb head and crucify ourselves here instead.
997 * Pure masohism, indeed. 8)8)
1000 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1001 struct sk_buff
*clone
= NULL
;
1002 struct sk_buff
*insp
= NULL
;
1007 if (list
->len
<= eat
) {
1008 /* Eaten as whole. */
1013 /* Eaten partially. */
1015 if (skb_shared(list
)) {
1016 /* Sucks! We need to fork list. :-( */
1017 clone
= skb_clone(list
, GFP_ATOMIC
);
1023 /* This may be pulled without
1027 if (!pskb_pull(list
, eat
)) {
1036 /* Free pulled out fragments. */
1037 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1038 skb_shinfo(skb
)->frag_list
= list
->next
;
1041 /* And insert new clone at head. */
1044 skb_shinfo(skb
)->frag_list
= clone
;
1047 /* Success! Now we may commit changes to skb data. */
1052 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1053 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1054 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1055 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1057 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1059 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1060 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1066 skb_shinfo(skb
)->nr_frags
= k
;
1069 skb
->data_len
-= delta
;
1074 /* Copy some data bits from skb to kernel buffer. */
1076 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1079 int start
= skb_headlen(skb
);
1081 if (offset
> (int)skb
->len
- len
)
1085 if ((copy
= start
- offset
) > 0) {
1088 memcpy(to
, skb
->data
+ offset
, copy
);
1089 if ((len
-= copy
) == 0)
1095 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1098 BUG_TRAP(start
<= offset
+ len
);
1100 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1101 if ((copy
= end
- offset
) > 0) {
1107 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1109 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1110 offset
- start
, copy
);
1111 kunmap_skb_frag(vaddr
);
1113 if ((len
-= copy
) == 0)
1121 if (skb_shinfo(skb
)->frag_list
) {
1122 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1124 for (; list
; list
= list
->next
) {
1127 BUG_TRAP(start
<= offset
+ len
);
1129 end
= start
+ list
->len
;
1130 if ((copy
= end
- offset
) > 0) {
1133 if (skb_copy_bits(list
, offset
- start
,
1136 if ((len
-= copy
) == 0)
1152 * skb_store_bits - store bits from kernel buffer to skb
1153 * @skb: destination buffer
1154 * @offset: offset in destination
1155 * @from: source buffer
1156 * @len: number of bytes to copy
1158 * Copy the specified number of bytes from the source buffer to the
1159 * destination skb. This function handles all the messy bits of
1160 * traversing fragment lists and such.
1163 int skb_store_bits(const struct sk_buff
*skb
, int offset
, void *from
, int len
)
1166 int start
= skb_headlen(skb
);
1168 if (offset
> (int)skb
->len
- len
)
1171 if ((copy
= start
- offset
) > 0) {
1174 memcpy(skb
->data
+ offset
, from
, copy
);
1175 if ((len
-= copy
) == 0)
1181 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1182 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1185 BUG_TRAP(start
<= offset
+ len
);
1187 end
= start
+ frag
->size
;
1188 if ((copy
= end
- offset
) > 0) {
1194 vaddr
= kmap_skb_frag(frag
);
1195 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1197 kunmap_skb_frag(vaddr
);
1199 if ((len
-= copy
) == 0)
1207 if (skb_shinfo(skb
)->frag_list
) {
1208 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1210 for (; list
; list
= list
->next
) {
1213 BUG_TRAP(start
<= offset
+ len
);
1215 end
= start
+ list
->len
;
1216 if ((copy
= end
- offset
) > 0) {
1219 if (skb_store_bits(list
, offset
- start
,
1222 if ((len
-= copy
) == 0)
1237 EXPORT_SYMBOL(skb_store_bits
);
1239 /* Checksum skb data. */
1241 unsigned int skb_checksum(const struct sk_buff
*skb
, int offset
,
1242 int len
, unsigned int csum
)
1244 int start
= skb_headlen(skb
);
1245 int i
, copy
= start
- offset
;
1248 /* Checksum header. */
1252 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1253 if ((len
-= copy
) == 0)
1259 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1262 BUG_TRAP(start
<= offset
+ len
);
1264 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1265 if ((copy
= end
- offset
) > 0) {
1268 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1272 vaddr
= kmap_skb_frag(frag
);
1273 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1274 offset
- start
, copy
, 0);
1275 kunmap_skb_frag(vaddr
);
1276 csum
= csum_block_add(csum
, csum2
, pos
);
1285 if (skb_shinfo(skb
)->frag_list
) {
1286 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1288 for (; list
; list
= list
->next
) {
1291 BUG_TRAP(start
<= offset
+ len
);
1293 end
= start
+ list
->len
;
1294 if ((copy
= end
- offset
) > 0) {
1298 csum2
= skb_checksum(list
, offset
- start
,
1300 csum
= csum_block_add(csum
, csum2
, pos
);
1301 if ((len
-= copy
) == 0)
1314 /* Both of above in one bottle. */
1316 unsigned int skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1317 u8
*to
, int len
, unsigned int csum
)
1319 int start
= skb_headlen(skb
);
1320 int i
, copy
= start
- offset
;
1327 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1329 if ((len
-= copy
) == 0)
1336 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1339 BUG_TRAP(start
<= offset
+ len
);
1341 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1342 if ((copy
= end
- offset
) > 0) {
1345 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1349 vaddr
= kmap_skb_frag(frag
);
1350 csum2
= csum_partial_copy_nocheck(vaddr
+
1354 kunmap_skb_frag(vaddr
);
1355 csum
= csum_block_add(csum
, csum2
, pos
);
1365 if (skb_shinfo(skb
)->frag_list
) {
1366 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1368 for (; list
; list
= list
->next
) {
1372 BUG_TRAP(start
<= offset
+ len
);
1374 end
= start
+ list
->len
;
1375 if ((copy
= end
- offset
) > 0) {
1378 csum2
= skb_copy_and_csum_bits(list
,
1381 csum
= csum_block_add(csum
, csum2
, pos
);
1382 if ((len
-= copy
) == 0)
1395 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1400 if (skb
->ip_summed
== CHECKSUM_HW
)
1401 csstart
= skb
->h
.raw
- skb
->data
;
1403 csstart
= skb_headlen(skb
);
1405 BUG_ON(csstart
> skb_headlen(skb
));
1407 memcpy(to
, skb
->data
, csstart
);
1410 if (csstart
!= skb
->len
)
1411 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1412 skb
->len
- csstart
, 0);
1414 if (skb
->ip_summed
== CHECKSUM_HW
) {
1415 long csstuff
= csstart
+ skb
->csum
;
1417 *((unsigned short *)(to
+ csstuff
)) = csum_fold(csum
);
1422 * skb_dequeue - remove from the head of the queue
1423 * @list: list to dequeue from
1425 * Remove the head of the list. The list lock is taken so the function
1426 * may be used safely with other locking list functions. The head item is
1427 * returned or %NULL if the list is empty.
1430 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1432 unsigned long flags
;
1433 struct sk_buff
*result
;
1435 spin_lock_irqsave(&list
->lock
, flags
);
1436 result
= __skb_dequeue(list
);
1437 spin_unlock_irqrestore(&list
->lock
, flags
);
1442 * skb_dequeue_tail - remove from the tail of the queue
1443 * @list: list to dequeue from
1445 * Remove the tail of the list. The list lock is taken so the function
1446 * may be used safely with other locking list functions. The tail item is
1447 * returned or %NULL if the list is empty.
1449 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1451 unsigned long flags
;
1452 struct sk_buff
*result
;
1454 spin_lock_irqsave(&list
->lock
, flags
);
1455 result
= __skb_dequeue_tail(list
);
1456 spin_unlock_irqrestore(&list
->lock
, flags
);
1461 * skb_queue_purge - empty a list
1462 * @list: list to empty
1464 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1465 * the list and one reference dropped. This function takes the list
1466 * lock and is atomic with respect to other list locking functions.
1468 void skb_queue_purge(struct sk_buff_head
*list
)
1470 struct sk_buff
*skb
;
1471 while ((skb
= skb_dequeue(list
)) != NULL
)
1476 * skb_queue_head - queue a buffer at the list head
1477 * @list: list to use
1478 * @newsk: buffer to queue
1480 * Queue a buffer at the start of the list. This function takes the
1481 * list lock and can be used safely with other locking &sk_buff functions
1484 * A buffer cannot be placed on two lists at the same time.
1486 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1488 unsigned long flags
;
1490 spin_lock_irqsave(&list
->lock
, flags
);
1491 __skb_queue_head(list
, newsk
);
1492 spin_unlock_irqrestore(&list
->lock
, flags
);
1496 * skb_queue_tail - queue a buffer at the list tail
1497 * @list: list to use
1498 * @newsk: buffer to queue
1500 * Queue a buffer at the tail of the list. This function takes the
1501 * list lock and can be used safely with other locking &sk_buff functions
1504 * A buffer cannot be placed on two lists at the same time.
1506 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1508 unsigned long flags
;
1510 spin_lock_irqsave(&list
->lock
, flags
);
1511 __skb_queue_tail(list
, newsk
);
1512 spin_unlock_irqrestore(&list
->lock
, flags
);
1516 * skb_unlink - remove a buffer from a list
1517 * @skb: buffer to remove
1518 * @list: list to use
1520 * Remove a packet from a list. The list locks are taken and this
1521 * function is atomic with respect to other list locked calls
1523 * You must know what list the SKB is on.
1525 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1527 unsigned long flags
;
1529 spin_lock_irqsave(&list
->lock
, flags
);
1530 __skb_unlink(skb
, list
);
1531 spin_unlock_irqrestore(&list
->lock
, flags
);
1535 * skb_append - append a buffer
1536 * @old: buffer to insert after
1537 * @newsk: buffer to insert
1538 * @list: list to use
1540 * Place a packet after a given packet in a list. The list locks are taken
1541 * and this function is atomic with respect to other list locked calls.
1542 * A buffer cannot be placed on two lists at the same time.
1544 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1546 unsigned long flags
;
1548 spin_lock_irqsave(&list
->lock
, flags
);
1549 __skb_append(old
, newsk
, list
);
1550 spin_unlock_irqrestore(&list
->lock
, flags
);
1555 * skb_insert - insert a buffer
1556 * @old: buffer to insert before
1557 * @newsk: buffer to insert
1558 * @list: list to use
1560 * Place a packet before a given packet in a list. The list locks are
1561 * taken and this function is atomic with respect to other list locked
1564 * A buffer cannot be placed on two lists at the same time.
1566 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1568 unsigned long flags
;
1570 spin_lock_irqsave(&list
->lock
, flags
);
1571 __skb_insert(newsk
, old
->prev
, old
, list
);
1572 spin_unlock_irqrestore(&list
->lock
, flags
);
1577 * Tune the memory allocator for a new MTU size.
1579 void skb_add_mtu(int mtu
)
1581 /* Must match allocation in alloc_skb */
1582 mtu
= SKB_DATA_ALIGN(mtu
) + sizeof(struct skb_shared_info
);
1584 kmem_add_cache_size(mtu
);
1588 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1589 struct sk_buff
* skb1
,
1590 const u32 len
, const int pos
)
1594 memcpy(skb_put(skb1
, pos
- len
), skb
->data
+ len
, pos
- len
);
1596 /* And move data appendix as is. */
1597 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1598 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1600 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1601 skb_shinfo(skb
)->nr_frags
= 0;
1602 skb1
->data_len
= skb
->data_len
;
1603 skb1
->len
+= skb1
->data_len
;
1606 skb
->tail
= skb
->data
+ len
;
1609 static inline void skb_split_no_header(struct sk_buff
*skb
,
1610 struct sk_buff
* skb1
,
1611 const u32 len
, int pos
)
1614 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1616 skb_shinfo(skb
)->nr_frags
= 0;
1617 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1619 skb
->data_len
= len
- pos
;
1621 for (i
= 0; i
< nfrags
; i
++) {
1622 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1624 if (pos
+ size
> len
) {
1625 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1629 * We have two variants in this case:
1630 * 1. Move all the frag to the second
1631 * part, if it is possible. F.e.
1632 * this approach is mandatory for TUX,
1633 * where splitting is expensive.
1634 * 2. Split is accurately. We make this.
1636 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1637 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1638 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1639 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1640 skb_shinfo(skb
)->nr_frags
++;
1644 skb_shinfo(skb
)->nr_frags
++;
1647 skb_shinfo(skb1
)->nr_frags
= k
;
1651 * skb_split - Split fragmented skb to two parts at length len.
1652 * @skb: the buffer to split
1653 * @skb1: the buffer to receive the second part
1654 * @len: new length for skb
1656 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1658 int pos
= skb_headlen(skb
);
1660 if (len
< pos
) /* Split line is inside header. */
1661 skb_split_inside_header(skb
, skb1
, len
, pos
);
1662 else /* Second chunk has no header, nothing to copy. */
1663 skb_split_no_header(skb
, skb1
, len
, pos
);
1667 * skb_prepare_seq_read - Prepare a sequential read of skb data
1668 * @skb: the buffer to read
1669 * @from: lower offset of data to be read
1670 * @to: upper offset of data to be read
1671 * @st: state variable
1673 * Initializes the specified state variable. Must be called before
1674 * invoking skb_seq_read() for the first time.
1676 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1677 unsigned int to
, struct skb_seq_state
*st
)
1679 st
->lower_offset
= from
;
1680 st
->upper_offset
= to
;
1681 st
->root_skb
= st
->cur_skb
= skb
;
1682 st
->frag_idx
= st
->stepped_offset
= 0;
1683 st
->frag_data
= NULL
;
1687 * skb_seq_read - Sequentially read skb data
1688 * @consumed: number of bytes consumed by the caller so far
1689 * @data: destination pointer for data to be returned
1690 * @st: state variable
1692 * Reads a block of skb data at &consumed relative to the
1693 * lower offset specified to skb_prepare_seq_read(). Assigns
1694 * the head of the data block to &data and returns the length
1695 * of the block or 0 if the end of the skb data or the upper
1696 * offset has been reached.
1698 * The caller is not required to consume all of the data
1699 * returned, i.e. &consumed is typically set to the number
1700 * of bytes already consumed and the next call to
1701 * skb_seq_read() will return the remaining part of the block.
1703 * Note: The size of each block of data returned can be arbitary,
1704 * this limitation is the cost for zerocopy seqeuental
1705 * reads of potentially non linear data.
1707 * Note: Fragment lists within fragments are not implemented
1708 * at the moment, state->root_skb could be replaced with
1709 * a stack for this purpose.
1711 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
1712 struct skb_seq_state
*st
)
1714 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
1717 if (unlikely(abs_offset
>= st
->upper_offset
))
1721 block_limit
= skb_headlen(st
->cur_skb
);
1723 if (abs_offset
< block_limit
) {
1724 *data
= st
->cur_skb
->data
+ abs_offset
;
1725 return block_limit
- abs_offset
;
1728 if (st
->frag_idx
== 0 && !st
->frag_data
)
1729 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
1731 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
1732 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
1733 block_limit
= frag
->size
+ st
->stepped_offset
;
1735 if (abs_offset
< block_limit
) {
1737 st
->frag_data
= kmap_skb_frag(frag
);
1739 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
1740 (abs_offset
- st
->stepped_offset
);
1742 return block_limit
- abs_offset
;
1745 if (st
->frag_data
) {
1746 kunmap_skb_frag(st
->frag_data
);
1747 st
->frag_data
= NULL
;
1751 st
->stepped_offset
+= frag
->size
;
1754 if (st
->cur_skb
->next
) {
1755 st
->cur_skb
= st
->cur_skb
->next
;
1758 } else if (st
->root_skb
== st
->cur_skb
&&
1759 skb_shinfo(st
->root_skb
)->frag_list
) {
1760 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
1768 * skb_abort_seq_read - Abort a sequential read of skb data
1769 * @st: state variable
1771 * Must be called if skb_seq_read() was not called until it
1774 void skb_abort_seq_read(struct skb_seq_state
*st
)
1777 kunmap_skb_frag(st
->frag_data
);
1780 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1782 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
1783 struct ts_config
*conf
,
1784 struct ts_state
*state
)
1786 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
1789 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
1791 skb_abort_seq_read(TS_SKB_CB(state
));
1795 * skb_find_text - Find a text pattern in skb data
1796 * @skb: the buffer to look in
1797 * @from: search offset
1799 * @config: textsearch configuration
1800 * @state: uninitialized textsearch state variable
1802 * Finds a pattern in the skb data according to the specified
1803 * textsearch configuration. Use textsearch_next() to retrieve
1804 * subsequent occurrences of the pattern. Returns the offset
1805 * to the first occurrence or UINT_MAX if no match was found.
1807 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
1808 unsigned int to
, struct ts_config
*config
,
1809 struct ts_state
*state
)
1813 config
->get_next_block
= skb_ts_get_next_block
;
1814 config
->finish
= skb_ts_finish
;
1816 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
1818 ret
= textsearch_find(config
, state
);
1819 return (ret
<= to
- from
? ret
: UINT_MAX
);
1823 * skb_append_datato_frags: - append the user data to a skb
1824 * @sk: sock structure
1825 * @skb: skb structure to be appened with user data.
1826 * @getfrag: call back function to be used for getting the user data
1827 * @from: pointer to user message iov
1828 * @length: length of the iov message
1830 * Description: This procedure append the user data in the fragment part
1831 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1833 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
1834 int (*getfrag
)(void *from
, char *to
, int offset
,
1835 int len
, int odd
, struct sk_buff
*skb
),
1836 void *from
, int length
)
1839 skb_frag_t
*frag
= NULL
;
1840 struct page
*page
= NULL
;
1846 /* Return error if we don't have space for new frag */
1847 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1848 if (frg_cnt
>= MAX_SKB_FRAGS
)
1851 /* allocate a new page for next frag */
1852 page
= alloc_pages(sk
->sk_allocation
, 0);
1854 /* If alloc_page fails just return failure and caller will
1855 * free previous allocated pages by doing kfree_skb()
1860 /* initialize the next frag */
1861 sk
->sk_sndmsg_page
= page
;
1862 sk
->sk_sndmsg_off
= 0;
1863 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
1864 skb
->truesize
+= PAGE_SIZE
;
1865 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
1867 /* get the new initialized frag */
1868 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1869 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
1871 /* copy the user data to page */
1872 left
= PAGE_SIZE
- frag
->page_offset
;
1873 copy
= (length
> left
)? left
: length
;
1875 ret
= getfrag(from
, (page_address(frag
->page
) +
1876 frag
->page_offset
+ frag
->size
),
1877 offset
, copy
, 0, skb
);
1881 /* copy was successful so update the size parameters */
1882 sk
->sk_sndmsg_off
+= copy
;
1885 skb
->data_len
+= copy
;
1889 } while (length
> 0);
1895 * skb_pull_rcsum - pull skb and update receive checksum
1896 * @skb: buffer to update
1897 * @start: start of data before pull
1898 * @len: length of data pulled
1900 * This function performs an skb_pull on the packet and updates
1901 * update the CHECKSUM_HW checksum. It should be used on receive
1902 * path processing instead of skb_pull unless you know that the
1903 * checksum difference is zero (e.g., a valid IP header) or you
1904 * are setting ip_summed to CHECKSUM_NONE.
1906 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
1908 BUG_ON(len
> skb
->len
);
1910 BUG_ON(skb
->len
< skb
->data_len
);
1911 skb_postpull_rcsum(skb
, skb
->data
, len
);
1912 return skb
->data
+= len
;
1915 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
1918 * skb_segment - Perform protocol segmentation on skb.
1919 * @skb: buffer to segment
1920 * @features: features for the output path (see dev->features)
1922 * This function performs segmentation on the given skb. It returns
1923 * the segment at the given position. It returns NULL if there are
1924 * no more segments to generate, or when an error is encountered.
1926 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
1928 struct sk_buff
*segs
= NULL
;
1929 struct sk_buff
*tail
= NULL
;
1930 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
1931 unsigned int doffset
= skb
->data
- skb
->mac
.raw
;
1932 unsigned int offset
= doffset
;
1933 unsigned int headroom
;
1935 int sg
= features
& NETIF_F_SG
;
1936 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1941 __skb_push(skb
, doffset
);
1942 headroom
= skb_headroom(skb
);
1943 pos
= skb_headlen(skb
);
1946 struct sk_buff
*nskb
;
1952 len
= skb
->len
- offset
;
1956 hsize
= skb_headlen(skb
) - offset
;
1959 nsize
= hsize
+ doffset
;
1960 if (nsize
> len
+ doffset
|| !sg
)
1961 nsize
= len
+ doffset
;
1963 nskb
= alloc_skb(nsize
+ headroom
, GFP_ATOMIC
);
1964 if (unlikely(!nskb
))
1973 nskb
->dev
= skb
->dev
;
1974 nskb
->priority
= skb
->priority
;
1975 nskb
->protocol
= skb
->protocol
;
1976 nskb
->dst
= dst_clone(skb
->dst
);
1977 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
1978 nskb
->pkt_type
= skb
->pkt_type
;
1979 nskb
->mac_len
= skb
->mac_len
;
1981 skb_reserve(nskb
, headroom
);
1982 nskb
->mac
.raw
= nskb
->data
;
1983 nskb
->nh
.raw
= nskb
->data
+ skb
->mac_len
;
1984 nskb
->h
.raw
= nskb
->nh
.raw
+ (skb
->h
.raw
- skb
->nh
.raw
);
1985 memcpy(skb_put(nskb
, doffset
), skb
->data
, doffset
);
1988 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
1994 frag
= skb_shinfo(nskb
)->frags
;
1997 nskb
->ip_summed
= CHECKSUM_HW
;
1998 nskb
->csum
= skb
->csum
;
1999 memcpy(skb_put(nskb
, hsize
), skb
->data
+ offset
, hsize
);
2001 while (pos
< offset
+ len
) {
2002 BUG_ON(i
>= nfrags
);
2004 *frag
= skb_shinfo(skb
)->frags
[i
];
2005 get_page(frag
->page
);
2009 frag
->page_offset
+= offset
- pos
;
2010 frag
->size
-= offset
- pos
;
2015 if (pos
+ size
<= offset
+ len
) {
2019 frag
->size
-= pos
+ size
- (offset
+ len
);
2026 skb_shinfo(nskb
)->nr_frags
= k
;
2027 nskb
->data_len
= len
- hsize
;
2028 nskb
->len
+= nskb
->data_len
;
2029 nskb
->truesize
+= nskb
->data_len
;
2030 } while ((offset
+= len
) < skb
->len
);
2035 while ((skb
= segs
)) {
2039 return ERR_PTR(err
);
2042 EXPORT_SYMBOL_GPL(skb_segment
);
2044 void __init
skb_init(void)
2046 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2047 sizeof(struct sk_buff
),
2051 if (!skbuff_head_cache
)
2052 panic("cannot create skbuff cache");
2054 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2055 (2*sizeof(struct sk_buff
)) +
2060 if (!skbuff_fclone_cache
)
2061 panic("cannot create skbuff cache");
2064 EXPORT_SYMBOL(___pskb_trim
);
2065 EXPORT_SYMBOL(__kfree_skb
);
2066 EXPORT_SYMBOL(kfree_skb
);
2067 EXPORT_SYMBOL(__pskb_pull_tail
);
2068 EXPORT_SYMBOL(__alloc_skb
);
2069 EXPORT_SYMBOL(__netdev_alloc_skb
);
2070 EXPORT_SYMBOL(pskb_copy
);
2071 EXPORT_SYMBOL(pskb_expand_head
);
2072 EXPORT_SYMBOL(skb_checksum
);
2073 EXPORT_SYMBOL(skb_clone
);
2074 EXPORT_SYMBOL(skb_clone_fraglist
);
2075 EXPORT_SYMBOL(skb_copy
);
2076 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2077 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2078 EXPORT_SYMBOL(skb_copy_bits
);
2079 EXPORT_SYMBOL(skb_copy_expand
);
2080 EXPORT_SYMBOL(skb_over_panic
);
2081 EXPORT_SYMBOL(skb_pad
);
2082 EXPORT_SYMBOL(skb_realloc_headroom
);
2083 EXPORT_SYMBOL(skb_under_panic
);
2084 EXPORT_SYMBOL(skb_dequeue
);
2085 EXPORT_SYMBOL(skb_dequeue_tail
);
2086 EXPORT_SYMBOL(skb_insert
);
2087 EXPORT_SYMBOL(skb_queue_purge
);
2088 EXPORT_SYMBOL(skb_queue_head
);
2089 EXPORT_SYMBOL(skb_queue_tail
);
2090 EXPORT_SYMBOL(skb_unlink
);
2091 EXPORT_SYMBOL(skb_append
);
2092 EXPORT_SYMBOL(skb_split
);
2093 EXPORT_SYMBOL(skb_prepare_seq_read
);
2094 EXPORT_SYMBOL(skb_seq_read
);
2095 EXPORT_SYMBOL(skb_abort_seq_read
);
2096 EXPORT_SYMBOL(skb_find_text
);
2097 EXPORT_SYMBOL(skb_append_datato_frags
);