Input: xpad - add support for Xbox1 PDP Camo series gamepad
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_si_intf.c
blobe0a53156b782f086e944ac333652873faf71cad1
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
78 #define PFX "ipmi_si: "
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112 #define DEVICE_NAME "ipmi_si"
114 static struct platform_driver ipmi_driver;
117 * Indexes into stats[] in smi_info below.
119 enum si_stat_indexes {
121 * Number of times the driver requested a timer while an operation
122 * was in progress.
124 SI_STAT_short_timeouts = 0,
127 * Number of times the driver requested a timer while nothing was in
128 * progress.
130 SI_STAT_long_timeouts,
132 /* Number of times the interface was idle while being polled. */
133 SI_STAT_idles,
135 /* Number of interrupts the driver handled. */
136 SI_STAT_interrupts,
138 /* Number of time the driver got an ATTN from the hardware. */
139 SI_STAT_attentions,
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches,
144 /* Number of times the hardware didn't follow the state machine. */
145 SI_STAT_hosed_count,
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions,
150 /* Number of IPMI events received from the hardware. */
151 SI_STAT_events,
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts,
156 /* Number of asynchronous messages received. */
157 SI_STAT_incoming_messages,
160 /* This *must* remain last, add new values above this. */
161 SI_NUM_STATS
164 struct smi_info {
165 int intf_num;
166 ipmi_smi_t intf;
167 struct si_sm_data *si_sm;
168 const struct si_sm_handlers *handlers;
169 enum si_type si_type;
170 spinlock_t si_lock;
171 struct ipmi_smi_msg *waiting_msg;
172 struct ipmi_smi_msg *curr_msg;
173 enum si_intf_state si_state;
176 * Used to handle the various types of I/O that can occur with
177 * IPMI
179 struct si_sm_io io;
180 int (*io_setup)(struct smi_info *info);
181 void (*io_cleanup)(struct smi_info *info);
182 int (*irq_setup)(struct smi_info *info);
183 void (*irq_cleanup)(struct smi_info *info);
184 unsigned int io_size;
185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 void (*addr_source_cleanup)(struct smi_info *info);
187 void *addr_source_data;
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
194 int (*oem_data_avail_handler)(struct smi_info *smi_info);
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
199 * from the flags.
201 #define RECEIVE_MSG_AVAIL 0x01
202 #define EVENT_MSG_BUFFER_FULL 0x02
203 #define WDT_PRE_TIMEOUT_INT 0x08
204 #define OEM0_DATA_AVAIL 0x20
205 #define OEM1_DATA_AVAIL 0x40
206 #define OEM2_DATA_AVAIL 0x80
207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
208 OEM1_DATA_AVAIL | \
209 OEM2_DATA_AVAIL)
210 unsigned char msg_flags;
212 /* Does the BMC have an event buffer? */
213 bool has_event_buffer;
216 * If set to true, this will request events the next time the
217 * state machine is idle.
219 atomic_t req_events;
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
224 * out.
226 bool run_to_completion;
228 /* The I/O port of an SI interface. */
229 int port;
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
236 unsigned int spacing;
238 /* zero if no irq; */
239 int irq;
241 /* The timer for this si. */
242 struct timer_list si_timer;
244 /* This flag is set, if the timer can be set */
245 bool timer_can_start;
247 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
248 bool timer_running;
250 /* The time (in jiffies) the last timeout occurred at. */
251 unsigned long last_timeout_jiffies;
253 /* Are we waiting for the events, pretimeouts, received msgs? */
254 atomic_t need_watch;
257 * The driver will disable interrupts when it gets into a
258 * situation where it cannot handle messages due to lack of
259 * memory. Once that situation clears up, it will re-enable
260 * interrupts.
262 bool interrupt_disabled;
265 * Does the BMC support events?
267 bool supports_event_msg_buff;
270 * Can we disable interrupts the global enables receive irq
271 * bit? There are currently two forms of brokenness, some
272 * systems cannot disable the bit (which is technically within
273 * the spec but a bad idea) and some systems have the bit
274 * forced to zero even though interrupts work (which is
275 * clearly outside the spec). The next bool tells which form
276 * of brokenness is present.
278 bool cannot_disable_irq;
281 * Some systems are broken and cannot set the irq enable
282 * bit, even if they support interrupts.
284 bool irq_enable_broken;
287 * Did we get an attention that we did not handle?
289 bool got_attn;
291 /* From the get device id response... */
292 struct ipmi_device_id device_id;
294 /* Driver model stuff. */
295 struct device *dev;
296 struct platform_device *pdev;
299 * True if we allocated the device, false if it came from
300 * someplace else (like PCI).
302 bool dev_registered;
304 /* Slave address, could be reported from DMI. */
305 unsigned char slave_addr;
307 /* Counters and things for the proc filesystem. */
308 atomic_t stats[SI_NUM_STATS];
310 struct task_struct *thread;
312 struct list_head link;
313 union ipmi_smi_info_union addr_info;
316 #define smi_inc_stat(smi, stat) \
317 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
318 #define smi_get_stat(smi, stat) \
319 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
321 #define SI_MAX_PARMS 4
323 static int force_kipmid[SI_MAX_PARMS];
324 static int num_force_kipmid;
325 #ifdef CONFIG_PCI
326 static bool pci_registered;
327 #endif
328 #ifdef CONFIG_PARISC
329 static bool parisc_registered;
330 #endif
332 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
333 static int num_max_busy_us;
335 static bool unload_when_empty = true;
337 static int add_smi(struct smi_info *smi);
338 static int try_smi_init(struct smi_info *smi);
339 static void cleanup_one_si(struct smi_info *to_clean);
340 static void cleanup_ipmi_si(void);
342 #ifdef DEBUG_TIMING
343 void debug_timestamp(char *msg)
345 struct timespec64 t;
347 getnstimeofday64(&t);
348 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
350 #else
351 #define debug_timestamp(x)
352 #endif
354 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
355 static int register_xaction_notifier(struct notifier_block *nb)
357 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
360 static void deliver_recv_msg(struct smi_info *smi_info,
361 struct ipmi_smi_msg *msg)
363 /* Deliver the message to the upper layer. */
364 if (smi_info->intf)
365 ipmi_smi_msg_received(smi_info->intf, msg);
366 else
367 ipmi_free_smi_msg(msg);
370 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
372 struct ipmi_smi_msg *msg = smi_info->curr_msg;
374 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
375 cCode = IPMI_ERR_UNSPECIFIED;
376 /* else use it as is */
378 /* Make it a response */
379 msg->rsp[0] = msg->data[0] | 4;
380 msg->rsp[1] = msg->data[1];
381 msg->rsp[2] = cCode;
382 msg->rsp_size = 3;
384 smi_info->curr_msg = NULL;
385 deliver_recv_msg(smi_info, msg);
388 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
390 int rv;
392 if (!smi_info->waiting_msg) {
393 smi_info->curr_msg = NULL;
394 rv = SI_SM_IDLE;
395 } else {
396 int err;
398 smi_info->curr_msg = smi_info->waiting_msg;
399 smi_info->waiting_msg = NULL;
400 debug_timestamp("Start2");
401 err = atomic_notifier_call_chain(&xaction_notifier_list,
402 0, smi_info);
403 if (err & NOTIFY_STOP_MASK) {
404 rv = SI_SM_CALL_WITHOUT_DELAY;
405 goto out;
407 err = smi_info->handlers->start_transaction(
408 smi_info->si_sm,
409 smi_info->curr_msg->data,
410 smi_info->curr_msg->data_size);
411 if (err)
412 return_hosed_msg(smi_info, err);
414 rv = SI_SM_CALL_WITHOUT_DELAY;
416 out:
417 return rv;
420 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
422 if (!smi_info->timer_can_start)
423 return;
424 smi_info->last_timeout_jiffies = jiffies;
425 mod_timer(&smi_info->si_timer, new_val);
426 smi_info->timer_running = true;
430 * Start a new message and (re)start the timer and thread.
432 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
433 unsigned int size)
435 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
437 if (smi_info->thread)
438 wake_up_process(smi_info->thread);
440 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
443 static void start_check_enables(struct smi_info *smi_info)
445 unsigned char msg[2];
447 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
448 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
450 start_new_msg(smi_info, msg, 2);
451 smi_info->si_state = SI_CHECKING_ENABLES;
454 static void start_clear_flags(struct smi_info *smi_info)
456 unsigned char msg[3];
458 /* Make sure the watchdog pre-timeout flag is not set at startup. */
459 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
460 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
461 msg[2] = WDT_PRE_TIMEOUT_INT;
463 start_new_msg(smi_info, msg, 3);
464 smi_info->si_state = SI_CLEARING_FLAGS;
467 static void start_getting_msg_queue(struct smi_info *smi_info)
469 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
470 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
471 smi_info->curr_msg->data_size = 2;
473 start_new_msg(smi_info, smi_info->curr_msg->data,
474 smi_info->curr_msg->data_size);
475 smi_info->si_state = SI_GETTING_MESSAGES;
478 static void start_getting_events(struct smi_info *smi_info)
480 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
481 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
482 smi_info->curr_msg->data_size = 2;
484 start_new_msg(smi_info, smi_info->curr_msg->data,
485 smi_info->curr_msg->data_size);
486 smi_info->si_state = SI_GETTING_EVENTS;
490 * When we have a situtaion where we run out of memory and cannot
491 * allocate messages, we just leave them in the BMC and run the system
492 * polled until we can allocate some memory. Once we have some
493 * memory, we will re-enable the interrupt.
495 * Note that we cannot just use disable_irq(), since the interrupt may
496 * be shared.
498 static inline bool disable_si_irq(struct smi_info *smi_info)
500 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
501 smi_info->interrupt_disabled = true;
502 start_check_enables(smi_info);
503 return true;
505 return false;
508 static inline bool enable_si_irq(struct smi_info *smi_info)
510 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
511 smi_info->interrupt_disabled = false;
512 start_check_enables(smi_info);
513 return true;
515 return false;
519 * Allocate a message. If unable to allocate, start the interrupt
520 * disable process and return NULL. If able to allocate but
521 * interrupts are disabled, free the message and return NULL after
522 * starting the interrupt enable process.
524 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 struct ipmi_smi_msg *msg;
528 msg = ipmi_alloc_smi_msg();
529 if (!msg) {
530 if (!disable_si_irq(smi_info))
531 smi_info->si_state = SI_NORMAL;
532 } else if (enable_si_irq(smi_info)) {
533 ipmi_free_smi_msg(msg);
534 msg = NULL;
536 return msg;
539 static void handle_flags(struct smi_info *smi_info)
541 retry:
542 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
543 /* Watchdog pre-timeout */
544 smi_inc_stat(smi_info, watchdog_pretimeouts);
546 start_clear_flags(smi_info);
547 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
548 if (smi_info->intf)
549 ipmi_smi_watchdog_pretimeout(smi_info->intf);
550 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
551 /* Messages available. */
552 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
553 if (!smi_info->curr_msg)
554 return;
556 start_getting_msg_queue(smi_info);
557 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
558 /* Events available. */
559 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
560 if (!smi_info->curr_msg)
561 return;
563 start_getting_events(smi_info);
564 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
565 smi_info->oem_data_avail_handler) {
566 if (smi_info->oem_data_avail_handler(smi_info))
567 goto retry;
568 } else
569 smi_info->si_state = SI_NORMAL;
573 * Global enables we care about.
575 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
576 IPMI_BMC_EVT_MSG_INTR)
578 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
579 bool *irq_on)
581 u8 enables = 0;
583 if (smi_info->supports_event_msg_buff)
584 enables |= IPMI_BMC_EVT_MSG_BUFF;
586 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
587 smi_info->cannot_disable_irq) &&
588 !smi_info->irq_enable_broken)
589 enables |= IPMI_BMC_RCV_MSG_INTR;
591 if (smi_info->supports_event_msg_buff &&
592 smi_info->irq && !smi_info->interrupt_disabled &&
593 !smi_info->irq_enable_broken)
594 enables |= IPMI_BMC_EVT_MSG_INTR;
596 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598 return enables;
601 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607 if ((bool)irqstate == irq_on)
608 return;
610 if (irq_on)
611 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
612 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
613 else
614 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
617 static void handle_transaction_done(struct smi_info *smi_info)
619 struct ipmi_smi_msg *msg;
621 debug_timestamp("Done");
622 switch (smi_info->si_state) {
623 case SI_NORMAL:
624 if (!smi_info->curr_msg)
625 break;
627 smi_info->curr_msg->rsp_size
628 = smi_info->handlers->get_result(
629 smi_info->si_sm,
630 smi_info->curr_msg->rsp,
631 IPMI_MAX_MSG_LENGTH);
634 * Do this here becase deliver_recv_msg() releases the
635 * lock, and a new message can be put in during the
636 * time the lock is released.
638 msg = smi_info->curr_msg;
639 smi_info->curr_msg = NULL;
640 deliver_recv_msg(smi_info, msg);
641 break;
643 case SI_GETTING_FLAGS:
645 unsigned char msg[4];
646 unsigned int len;
648 /* We got the flags from the SMI, now handle them. */
649 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
650 if (msg[2] != 0) {
651 /* Error fetching flags, just give up for now. */
652 smi_info->si_state = SI_NORMAL;
653 } else if (len < 4) {
655 * Hmm, no flags. That's technically illegal, but
656 * don't use uninitialized data.
658 smi_info->si_state = SI_NORMAL;
659 } else {
660 smi_info->msg_flags = msg[3];
661 handle_flags(smi_info);
663 break;
666 case SI_CLEARING_FLAGS:
668 unsigned char msg[3];
670 /* We cleared the flags. */
671 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
672 if (msg[2] != 0) {
673 /* Error clearing flags */
674 dev_warn(smi_info->dev,
675 "Error clearing flags: %2.2x\n", msg[2]);
677 smi_info->si_state = SI_NORMAL;
678 break;
681 case SI_GETTING_EVENTS:
683 smi_info->curr_msg->rsp_size
684 = smi_info->handlers->get_result(
685 smi_info->si_sm,
686 smi_info->curr_msg->rsp,
687 IPMI_MAX_MSG_LENGTH);
690 * Do this here becase deliver_recv_msg() releases the
691 * lock, and a new message can be put in during the
692 * time the lock is released.
694 msg = smi_info->curr_msg;
695 smi_info->curr_msg = NULL;
696 if (msg->rsp[2] != 0) {
697 /* Error getting event, probably done. */
698 msg->done(msg);
700 /* Take off the event flag. */
701 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
702 handle_flags(smi_info);
703 } else {
704 smi_inc_stat(smi_info, events);
707 * Do this before we deliver the message
708 * because delivering the message releases the
709 * lock and something else can mess with the
710 * state.
712 handle_flags(smi_info);
714 deliver_recv_msg(smi_info, msg);
716 break;
719 case SI_GETTING_MESSAGES:
721 smi_info->curr_msg->rsp_size
722 = smi_info->handlers->get_result(
723 smi_info->si_sm,
724 smi_info->curr_msg->rsp,
725 IPMI_MAX_MSG_LENGTH);
728 * Do this here becase deliver_recv_msg() releases the
729 * lock, and a new message can be put in during the
730 * time the lock is released.
732 msg = smi_info->curr_msg;
733 smi_info->curr_msg = NULL;
734 if (msg->rsp[2] != 0) {
735 /* Error getting event, probably done. */
736 msg->done(msg);
738 /* Take off the msg flag. */
739 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
740 handle_flags(smi_info);
741 } else {
742 smi_inc_stat(smi_info, incoming_messages);
745 * Do this before we deliver the message
746 * because delivering the message releases the
747 * lock and something else can mess with the
748 * state.
750 handle_flags(smi_info);
752 deliver_recv_msg(smi_info, msg);
754 break;
757 case SI_CHECKING_ENABLES:
759 unsigned char msg[4];
760 u8 enables;
761 bool irq_on;
763 /* We got the flags from the SMI, now handle them. */
764 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
765 if (msg[2] != 0) {
766 dev_warn(smi_info->dev,
767 "Couldn't get irq info: %x.\n", msg[2]);
768 dev_warn(smi_info->dev,
769 "Maybe ok, but ipmi might run very slowly.\n");
770 smi_info->si_state = SI_NORMAL;
771 break;
773 enables = current_global_enables(smi_info, 0, &irq_on);
774 if (smi_info->si_type == SI_BT)
775 /* BT has its own interrupt enable bit. */
776 check_bt_irq(smi_info, irq_on);
777 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
778 /* Enables are not correct, fix them. */
779 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
780 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
781 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
782 smi_info->handlers->start_transaction(
783 smi_info->si_sm, msg, 3);
784 smi_info->si_state = SI_SETTING_ENABLES;
785 } else if (smi_info->supports_event_msg_buff) {
786 smi_info->curr_msg = ipmi_alloc_smi_msg();
787 if (!smi_info->curr_msg) {
788 smi_info->si_state = SI_NORMAL;
789 break;
791 start_getting_msg_queue(smi_info);
792 } else {
793 smi_info->si_state = SI_NORMAL;
795 break;
798 case SI_SETTING_ENABLES:
800 unsigned char msg[4];
802 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
803 if (msg[2] != 0)
804 dev_warn(smi_info->dev,
805 "Could not set the global enables: 0x%x.\n",
806 msg[2]);
808 if (smi_info->supports_event_msg_buff) {
809 smi_info->curr_msg = ipmi_alloc_smi_msg();
810 if (!smi_info->curr_msg) {
811 smi_info->si_state = SI_NORMAL;
812 break;
814 start_getting_msg_queue(smi_info);
815 } else {
816 smi_info->si_state = SI_NORMAL;
818 break;
824 * Called on timeouts and events. Timeouts should pass the elapsed
825 * time, interrupts should pass in zero. Must be called with
826 * si_lock held and interrupts disabled.
828 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
829 int time)
831 enum si_sm_result si_sm_result;
833 restart:
835 * There used to be a loop here that waited a little while
836 * (around 25us) before giving up. That turned out to be
837 * pointless, the minimum delays I was seeing were in the 300us
838 * range, which is far too long to wait in an interrupt. So
839 * we just run until the state machine tells us something
840 * happened or it needs a delay.
842 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
843 time = 0;
844 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
845 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
848 smi_inc_stat(smi_info, complete_transactions);
850 handle_transaction_done(smi_info);
851 goto restart;
852 } else if (si_sm_result == SI_SM_HOSED) {
853 smi_inc_stat(smi_info, hosed_count);
856 * Do the before return_hosed_msg, because that
857 * releases the lock.
859 smi_info->si_state = SI_NORMAL;
860 if (smi_info->curr_msg != NULL) {
862 * If we were handling a user message, format
863 * a response to send to the upper layer to
864 * tell it about the error.
866 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 goto restart;
872 * We prefer handling attn over new messages. But don't do
873 * this if there is not yet an upper layer to handle anything.
875 if (likely(smi_info->intf) &&
876 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
877 unsigned char msg[2];
879 if (smi_info->si_state != SI_NORMAL) {
881 * We got an ATTN, but we are doing something else.
882 * Handle the ATTN later.
884 smi_info->got_attn = true;
885 } else {
886 smi_info->got_attn = false;
887 smi_inc_stat(smi_info, attentions);
890 * Got a attn, send down a get message flags to see
891 * what's causing it. It would be better to handle
892 * this in the upper layer, but due to the way
893 * interrupts work with the SMI, that's not really
894 * possible.
896 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
897 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899 start_new_msg(smi_info, msg, 2);
900 smi_info->si_state = SI_GETTING_FLAGS;
901 goto restart;
905 /* If we are currently idle, try to start the next message. */
906 if (si_sm_result == SI_SM_IDLE) {
907 smi_inc_stat(smi_info, idles);
909 si_sm_result = start_next_msg(smi_info);
910 if (si_sm_result != SI_SM_IDLE)
911 goto restart;
914 if ((si_sm_result == SI_SM_IDLE)
915 && (atomic_read(&smi_info->req_events))) {
917 * We are idle and the upper layer requested that I fetch
918 * events, so do so.
920 atomic_set(&smi_info->req_events, 0);
923 * Take this opportunity to check the interrupt and
924 * message enable state for the BMC. The BMC can be
925 * asynchronously reset, and may thus get interrupts
926 * disable and messages disabled.
928 if (smi_info->supports_event_msg_buff || smi_info->irq) {
929 start_check_enables(smi_info);
930 } else {
931 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
932 if (!smi_info->curr_msg)
933 goto out;
935 start_getting_events(smi_info);
937 goto restart;
940 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
941 /* Ok it if fails, the timer will just go off. */
942 if (del_timer(&smi_info->si_timer))
943 smi_info->timer_running = false;
946 out:
947 return si_sm_result;
950 static void check_start_timer_thread(struct smi_info *smi_info)
952 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
953 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955 if (smi_info->thread)
956 wake_up_process(smi_info->thread);
958 start_next_msg(smi_info);
959 smi_event_handler(smi_info, 0);
963 static void flush_messages(void *send_info)
965 struct smi_info *smi_info = send_info;
966 enum si_sm_result result;
969 * Currently, this function is called only in run-to-completion
970 * mode. This means we are single-threaded, no need for locks.
972 result = smi_event_handler(smi_info, 0);
973 while (result != SI_SM_IDLE) {
974 udelay(SI_SHORT_TIMEOUT_USEC);
975 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
979 static void sender(void *send_info,
980 struct ipmi_smi_msg *msg)
982 struct smi_info *smi_info = send_info;
983 unsigned long flags;
985 debug_timestamp("Enqueue");
987 if (smi_info->run_to_completion) {
989 * If we are running to completion, start it. Upper
990 * layer will call flush_messages to clear it out.
992 smi_info->waiting_msg = msg;
993 return;
996 spin_lock_irqsave(&smi_info->si_lock, flags);
998 * The following two lines don't need to be under the lock for
999 * the lock's sake, but they do need SMP memory barriers to
1000 * avoid getting things out of order. We are already claiming
1001 * the lock, anyway, so just do it under the lock to avoid the
1002 * ordering problem.
1004 BUG_ON(smi_info->waiting_msg);
1005 smi_info->waiting_msg = msg;
1006 check_start_timer_thread(smi_info);
1007 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1010 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 struct smi_info *smi_info = send_info;
1014 smi_info->run_to_completion = i_run_to_completion;
1015 if (i_run_to_completion)
1016 flush_messages(smi_info);
1020 * Use -1 in the nsec value of the busy waiting timespec to tell that
1021 * we are spinning in kipmid looking for something and not delaying
1022 * between checks
1024 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 ts->tv_nsec = -1;
1028 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 return ts->tv_nsec != -1;
1033 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1034 const struct smi_info *smi_info,
1035 struct timespec64 *busy_until)
1037 unsigned int max_busy_us = 0;
1039 if (smi_info->intf_num < num_max_busy_us)
1040 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1041 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1042 ipmi_si_set_not_busy(busy_until);
1043 else if (!ipmi_si_is_busy(busy_until)) {
1044 getnstimeofday64(busy_until);
1045 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1046 } else {
1047 struct timespec64 now;
1049 getnstimeofday64(&now);
1050 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1051 ipmi_si_set_not_busy(busy_until);
1052 return 0;
1055 return 1;
1060 * A busy-waiting loop for speeding up IPMI operation.
1062 * Lousy hardware makes this hard. This is only enabled for systems
1063 * that are not BT and do not have interrupts. It starts spinning
1064 * when an operation is complete or until max_busy tells it to stop
1065 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1066 * Documentation/IPMI.txt for details.
1068 static int ipmi_thread(void *data)
1070 struct smi_info *smi_info = data;
1071 unsigned long flags;
1072 enum si_sm_result smi_result;
1073 struct timespec64 busy_until;
1075 ipmi_si_set_not_busy(&busy_until);
1076 set_user_nice(current, MAX_NICE);
1077 while (!kthread_should_stop()) {
1078 int busy_wait;
1080 spin_lock_irqsave(&(smi_info->si_lock), flags);
1081 smi_result = smi_event_handler(smi_info, 0);
1084 * If the driver is doing something, there is a possible
1085 * race with the timer. If the timer handler see idle,
1086 * and the thread here sees something else, the timer
1087 * handler won't restart the timer even though it is
1088 * required. So start it here if necessary.
1090 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1091 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1094 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1095 &busy_until);
1096 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1097 ; /* do nothing */
1098 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1099 schedule();
1100 else if (smi_result == SI_SM_IDLE) {
1101 if (atomic_read(&smi_info->need_watch)) {
1102 schedule_timeout_interruptible(100);
1103 } else {
1104 /* Wait to be woken up when we are needed. */
1105 __set_current_state(TASK_INTERRUPTIBLE);
1106 schedule();
1108 } else
1109 schedule_timeout_interruptible(1);
1111 return 0;
1115 static void poll(void *send_info)
1117 struct smi_info *smi_info = send_info;
1118 unsigned long flags = 0;
1119 bool run_to_completion = smi_info->run_to_completion;
1122 * Make sure there is some delay in the poll loop so we can
1123 * drive time forward and timeout things.
1125 udelay(10);
1126 if (!run_to_completion)
1127 spin_lock_irqsave(&smi_info->si_lock, flags);
1128 smi_event_handler(smi_info, 10);
1129 if (!run_to_completion)
1130 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1133 static void request_events(void *send_info)
1135 struct smi_info *smi_info = send_info;
1137 if (!smi_info->has_event_buffer)
1138 return;
1140 atomic_set(&smi_info->req_events, 1);
1143 static void set_need_watch(void *send_info, bool enable)
1145 struct smi_info *smi_info = send_info;
1146 unsigned long flags;
1148 atomic_set(&smi_info->need_watch, enable);
1149 spin_lock_irqsave(&smi_info->si_lock, flags);
1150 check_start_timer_thread(smi_info);
1151 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1154 static int initialized;
1156 static void smi_timeout(unsigned long data)
1158 struct smi_info *smi_info = (struct smi_info *) data;
1159 enum si_sm_result smi_result;
1160 unsigned long flags;
1161 unsigned long jiffies_now;
1162 long time_diff;
1163 long timeout;
1165 spin_lock_irqsave(&(smi_info->si_lock), flags);
1166 debug_timestamp("Timer");
1168 jiffies_now = jiffies;
1169 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1170 * SI_USEC_PER_JIFFY);
1171 smi_result = smi_event_handler(smi_info, time_diff);
1173 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1174 /* Running with interrupts, only do long timeouts. */
1175 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1176 smi_inc_stat(smi_info, long_timeouts);
1177 goto do_mod_timer;
1181 * If the state machine asks for a short delay, then shorten
1182 * the timer timeout.
1184 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1185 smi_inc_stat(smi_info, short_timeouts);
1186 timeout = jiffies + 1;
1187 } else {
1188 smi_inc_stat(smi_info, long_timeouts);
1189 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1192 do_mod_timer:
1193 if (smi_result != SI_SM_IDLE)
1194 smi_mod_timer(smi_info, timeout);
1195 else
1196 smi_info->timer_running = false;
1197 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1200 static irqreturn_t si_irq_handler(int irq, void *data)
1202 struct smi_info *smi_info = data;
1203 unsigned long flags;
1205 spin_lock_irqsave(&(smi_info->si_lock), flags);
1207 smi_inc_stat(smi_info, interrupts);
1209 debug_timestamp("Interrupt");
1211 smi_event_handler(smi_info, 0);
1212 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1213 return IRQ_HANDLED;
1216 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 struct smi_info *smi_info = data;
1219 /* We need to clear the IRQ flag for the BT interface. */
1220 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1221 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1222 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1223 return si_irq_handler(irq, data);
1226 static int smi_start_processing(void *send_info,
1227 ipmi_smi_t intf)
1229 struct smi_info *new_smi = send_info;
1230 int enable = 0;
1232 new_smi->intf = intf;
1234 /* Set up the timer that drives the interface. */
1235 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1236 new_smi->timer_can_start = true;
1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1239 /* Try to claim any interrupts. */
1240 if (new_smi->irq_setup)
1241 new_smi->irq_setup(new_smi);
1244 * Check if the user forcefully enabled the daemon.
1246 if (new_smi->intf_num < num_force_kipmid)
1247 enable = force_kipmid[new_smi->intf_num];
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 enable = 1;
1255 if (enable) {
1256 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 "kipmi%d", new_smi->intf_num);
1258 if (IS_ERR(new_smi->thread)) {
1259 dev_notice(new_smi->dev, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi->thread));
1263 new_smi->thread = NULL;
1267 return 0;
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1272 struct smi_info *smi = send_info;
1274 data->addr_src = smi->addr_source;
1275 data->dev = smi->dev;
1276 data->addr_info = smi->addr_info;
1277 get_device(smi->dev);
1279 return 0;
1282 static void set_maintenance_mode(void *send_info, bool enable)
1284 struct smi_info *smi_info = send_info;
1286 if (!enable)
1287 atomic_set(&smi_info->req_events, 0);
1290 static const struct ipmi_smi_handlers handlers = {
1291 .owner = THIS_MODULE,
1292 .start_processing = smi_start_processing,
1293 .get_smi_info = get_smi_info,
1294 .sender = sender,
1295 .request_events = request_events,
1296 .set_need_watch = set_need_watch,
1297 .set_maintenance_mode = set_maintenance_mode,
1298 .set_run_to_completion = set_run_to_completion,
1299 .flush_messages = flush_messages,
1300 .poll = poll,
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1312 #define DEFAULT_REGSPACING 1
1313 #define DEFAULT_REGSIZE 1
1315 #ifdef CONFIG_ACPI
1316 static bool si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool si_trydmi = true;
1320 #endif
1321 static bool si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool si_trypci = true;
1324 #endif
1325 static char *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1343 #define IPMI_IO_ADDR_SPACE 0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1351 " Documentation/IPMI.txt in the kernel sources for the"
1352 " gory details.");
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362 " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1366 " default scan of the interfaces identified via platform"
1367 " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1371 " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1375 " interface separated by commas. The types are 'kcs',"
1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1377 " the first interface to kcs and the second to bt");
1378 module_param_array(addrs, ulong, &num_addrs, 0);
1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1380 " addresses separated by commas. Only use if an interface"
1381 " is in memory. Otherwise, set it to zero or leave"
1382 " it blank.");
1383 module_param_array(ports, uint, &num_ports, 0);
1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is a port. Otherwise, set it to zero or leave"
1387 " it blank.");
1388 module_param_array(irqs, int, &num_irqs, 0);
1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " has an interrupt. Otherwise, set it to zero or leave"
1392 " it blank.");
1393 module_param_array(regspacings, int, &num_regspacings, 0);
1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1395 " and each successive register used by the interface. For"
1396 " instance, if the start address is 0xca2 and the spacing"
1397 " is 2, then the second address is at 0xca4. Defaults"
1398 " to 1.");
1399 module_param_array(regsizes, int, &num_regsizes, 0);
1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1401 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1403 " the 8-bit IPMI register has to be read from a larger"
1404 " register.");
1405 module_param_array(regshifts, int, &num_regshifts, 0);
1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1407 " IPMI register, in bits. For instance, if the data"
1408 " is read from a 32-bit word and the IPMI data is in"
1409 " bit 8-15, then the shift would be 8");
1410 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1412 " the controller. Normally this is 0x20, but can be"
1413 " overridden by this parm. This is an array indexed"
1414 " by interface number.");
1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1417 " disabled(0). Normally the IPMI driver auto-detects"
1418 " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1421 " specified or found, default is 1. Setting to 0"
1422 " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us,
1425 "Max time (in microseconds) to busy-wait for IPMI data before"
1426 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427 " if kipmid is using up a lot of CPU time.");
1430 static void std_irq_cleanup(struct smi_info *info)
1432 if (info->si_type == SI_BT)
1433 /* Disable the interrupt in the BT interface. */
1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1435 free_irq(info->irq, info);
1438 static int std_irq_setup(struct smi_info *info)
1440 int rv;
1442 if (!info->irq)
1443 return 0;
1445 if (info->si_type == SI_BT) {
1446 rv = request_irq(info->irq,
1447 si_bt_irq_handler,
1448 IRQF_SHARED,
1449 DEVICE_NAME,
1450 info);
1451 if (!rv)
1452 /* Enable the interrupt in the BT interface. */
1453 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1455 } else
1456 rv = request_irq(info->irq,
1457 si_irq_handler,
1458 IRQF_SHARED,
1459 DEVICE_NAME,
1460 info);
1461 if (rv) {
1462 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1463 " running polled\n",
1464 DEVICE_NAME, info->irq);
1465 info->irq = 0;
1466 } else {
1467 info->irq_cleanup = std_irq_cleanup;
1468 dev_info(info->dev, "Using irq %d\n", info->irq);
1471 return rv;
1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1476 unsigned int addr = io->addr_data;
1478 return inb(addr + (offset * io->regspacing));
1481 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1482 unsigned char b)
1484 unsigned int addr = io->addr_data;
1486 outb(b, addr + (offset * io->regspacing));
1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1491 unsigned int addr = io->addr_data;
1493 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1496 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1497 unsigned char b)
1499 unsigned int addr = io->addr_data;
1501 outw(b << io->regshift, addr + (offset * io->regspacing));
1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1506 unsigned int addr = io->addr_data;
1508 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1511 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1512 unsigned char b)
1514 unsigned int addr = io->addr_data;
1516 outl(b << io->regshift, addr+(offset * io->regspacing));
1519 static void port_cleanup(struct smi_info *info)
1521 unsigned int addr = info->io.addr_data;
1522 int idx;
1524 if (addr) {
1525 for (idx = 0; idx < info->io_size; idx++)
1526 release_region(addr + idx * info->io.regspacing,
1527 info->io.regsize);
1531 static int port_setup(struct smi_info *info)
1533 unsigned int addr = info->io.addr_data;
1534 int idx;
1536 if (!addr)
1537 return -ENODEV;
1539 info->io_cleanup = port_cleanup;
1542 * Figure out the actual inb/inw/inl/etc routine to use based
1543 * upon the register size.
1545 switch (info->io.regsize) {
1546 case 1:
1547 info->io.inputb = port_inb;
1548 info->io.outputb = port_outb;
1549 break;
1550 case 2:
1551 info->io.inputb = port_inw;
1552 info->io.outputb = port_outw;
1553 break;
1554 case 4:
1555 info->io.inputb = port_inl;
1556 info->io.outputb = port_outl;
1557 break;
1558 default:
1559 dev_warn(info->dev, "Invalid register size: %d\n",
1560 info->io.regsize);
1561 return -EINVAL;
1565 * Some BIOSes reserve disjoint I/O regions in their ACPI
1566 * tables. This causes problems when trying to register the
1567 * entire I/O region. Therefore we must register each I/O
1568 * port separately.
1570 for (idx = 0; idx < info->io_size; idx++) {
1571 if (request_region(addr + idx * info->io.regspacing,
1572 info->io.regsize, DEVICE_NAME) == NULL) {
1573 /* Undo allocations */
1574 while (idx--)
1575 release_region(addr + idx * info->io.regspacing,
1576 info->io.regsize);
1577 return -EIO;
1580 return 0;
1583 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1584 unsigned int offset)
1586 return readb((io->addr)+(offset * io->regspacing));
1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1590 unsigned char b)
1592 writeb(b, (io->addr)+(offset * io->regspacing));
1595 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1596 unsigned int offset)
1598 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599 & 0xff;
1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1603 unsigned char b)
1605 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1608 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1609 unsigned int offset)
1611 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1612 & 0xff;
1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1616 unsigned char b)
1618 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1621 #ifdef readq
1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1624 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1625 & 0xff;
1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1629 unsigned char b)
1631 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1633 #endif
1635 static void mem_region_cleanup(struct smi_info *info, int num)
1637 unsigned long addr = info->io.addr_data;
1638 int idx;
1640 for (idx = 0; idx < num; idx++)
1641 release_mem_region(addr + idx * info->io.regspacing,
1642 info->io.regsize);
1645 static void mem_cleanup(struct smi_info *info)
1647 if (info->io.addr) {
1648 iounmap(info->io.addr);
1649 mem_region_cleanup(info, info->io_size);
1653 static int mem_setup(struct smi_info *info)
1655 unsigned long addr = info->io.addr_data;
1656 int mapsize, idx;
1658 if (!addr)
1659 return -ENODEV;
1661 info->io_cleanup = mem_cleanup;
1664 * Figure out the actual readb/readw/readl/etc routine to use based
1665 * upon the register size.
1667 switch (info->io.regsize) {
1668 case 1:
1669 info->io.inputb = intf_mem_inb;
1670 info->io.outputb = intf_mem_outb;
1671 break;
1672 case 2:
1673 info->io.inputb = intf_mem_inw;
1674 info->io.outputb = intf_mem_outw;
1675 break;
1676 case 4:
1677 info->io.inputb = intf_mem_inl;
1678 info->io.outputb = intf_mem_outl;
1679 break;
1680 #ifdef readq
1681 case 8:
1682 info->io.inputb = mem_inq;
1683 info->io.outputb = mem_outq;
1684 break;
1685 #endif
1686 default:
1687 dev_warn(info->dev, "Invalid register size: %d\n",
1688 info->io.regsize);
1689 return -EINVAL;
1693 * Some BIOSes reserve disjoint memory regions in their ACPI
1694 * tables. This causes problems when trying to request the
1695 * entire region. Therefore we must request each register
1696 * separately.
1698 for (idx = 0; idx < info->io_size; idx++) {
1699 if (request_mem_region(addr + idx * info->io.regspacing,
1700 info->io.regsize, DEVICE_NAME) == NULL) {
1701 /* Undo allocations */
1702 mem_region_cleanup(info, idx);
1703 return -EIO;
1708 * Calculate the total amount of memory to claim. This is an
1709 * unusual looking calculation, but it avoids claiming any
1710 * more memory than it has to. It will claim everything
1711 * between the first address to the end of the last full
1712 * register.
1714 mapsize = ((info->io_size * info->io.regspacing)
1715 - (info->io.regspacing - info->io.regsize));
1716 info->io.addr = ioremap(addr, mapsize);
1717 if (info->io.addr == NULL) {
1718 mem_region_cleanup(info, info->io_size);
1719 return -EIO;
1721 return 0;
1725 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1727 * Options are:
1728 * rsp=<regspacing>
1729 * rsi=<regsize>
1730 * rsh=<regshift>
1731 * irq=<irq>
1732 * ipmb=<ipmb addr>
1734 enum hotmod_op { HM_ADD, HM_REMOVE };
1735 struct hotmod_vals {
1736 const char *name;
1737 const int val;
1740 static const struct hotmod_vals hotmod_ops[] = {
1741 { "add", HM_ADD },
1742 { "remove", HM_REMOVE },
1743 { NULL }
1746 static const struct hotmod_vals hotmod_si[] = {
1747 { "kcs", SI_KCS },
1748 { "smic", SI_SMIC },
1749 { "bt", SI_BT },
1750 { NULL }
1753 static const struct hotmod_vals hotmod_as[] = {
1754 { "mem", IPMI_MEM_ADDR_SPACE },
1755 { "i/o", IPMI_IO_ADDR_SPACE },
1756 { NULL }
1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1760 char **curr)
1762 char *s;
1763 int i;
1765 s = strchr(*curr, ',');
1766 if (!s) {
1767 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1768 return -EINVAL;
1770 *s = '\0';
1771 s++;
1772 for (i = 0; v[i].name; i++) {
1773 if (strcmp(*curr, v[i].name) == 0) {
1774 *val = v[i].val;
1775 *curr = s;
1776 return 0;
1780 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781 return -EINVAL;
1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785 const char *name, int *val)
1787 char *n;
1789 if (strcmp(curr, name) == 0) {
1790 if (!option) {
1791 printk(KERN_WARNING PFX
1792 "No option given for '%s'\n",
1793 curr);
1794 return -EINVAL;
1796 *val = simple_strtoul(option, &n, 0);
1797 if ((*n != '\0') || (*option == '\0')) {
1798 printk(KERN_WARNING PFX
1799 "Bad option given for '%s'\n",
1800 curr);
1801 return -EINVAL;
1803 return 1;
1805 return 0;
1808 static struct smi_info *smi_info_alloc(void)
1810 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1812 if (info)
1813 spin_lock_init(&info->si_lock);
1814 return info;
1817 static int hotmod_handler(const char *val, struct kernel_param *kp)
1819 char *str = kstrdup(val, GFP_KERNEL);
1820 int rv;
1821 char *next, *curr, *s, *n, *o;
1822 enum hotmod_op op;
1823 enum si_type si_type;
1824 int addr_space;
1825 unsigned long addr;
1826 int regspacing;
1827 int regsize;
1828 int regshift;
1829 int irq;
1830 int ipmb;
1831 int ival;
1832 int len;
1833 struct smi_info *info;
1835 if (!str)
1836 return -ENOMEM;
1838 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1839 len = strlen(str);
1840 ival = len - 1;
1841 while ((ival >= 0) && isspace(str[ival])) {
1842 str[ival] = '\0';
1843 ival--;
1846 for (curr = str; curr; curr = next) {
1847 regspacing = 1;
1848 regsize = 1;
1849 regshift = 0;
1850 irq = 0;
1851 ipmb = 0; /* Choose the default if not specified */
1853 next = strchr(curr, ':');
1854 if (next) {
1855 *next = '\0';
1856 next++;
1859 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1860 if (rv)
1861 break;
1862 op = ival;
1864 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1865 if (rv)
1866 break;
1867 si_type = ival;
1869 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1870 if (rv)
1871 break;
1873 s = strchr(curr, ',');
1874 if (s) {
1875 *s = '\0';
1876 s++;
1878 addr = simple_strtoul(curr, &n, 0);
1879 if ((*n != '\0') || (*curr == '\0')) {
1880 printk(KERN_WARNING PFX "Invalid hotmod address"
1881 " '%s'\n", curr);
1882 break;
1885 while (s) {
1886 curr = s;
1887 s = strchr(curr, ',');
1888 if (s) {
1889 *s = '\0';
1890 s++;
1892 o = strchr(curr, '=');
1893 if (o) {
1894 *o = '\0';
1895 o++;
1897 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1898 if (rv < 0)
1899 goto out;
1900 else if (rv)
1901 continue;
1902 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1903 if (rv < 0)
1904 goto out;
1905 else if (rv)
1906 continue;
1907 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1908 if (rv < 0)
1909 goto out;
1910 else if (rv)
1911 continue;
1912 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1913 if (rv < 0)
1914 goto out;
1915 else if (rv)
1916 continue;
1917 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1918 if (rv < 0)
1919 goto out;
1920 else if (rv)
1921 continue;
1923 rv = -EINVAL;
1924 printk(KERN_WARNING PFX
1925 "Invalid hotmod option '%s'\n",
1926 curr);
1927 goto out;
1930 if (op == HM_ADD) {
1931 info = smi_info_alloc();
1932 if (!info) {
1933 rv = -ENOMEM;
1934 goto out;
1937 info->addr_source = SI_HOTMOD;
1938 info->si_type = si_type;
1939 info->io.addr_data = addr;
1940 info->io.addr_type = addr_space;
1941 if (addr_space == IPMI_MEM_ADDR_SPACE)
1942 info->io_setup = mem_setup;
1943 else
1944 info->io_setup = port_setup;
1946 info->io.addr = NULL;
1947 info->io.regspacing = regspacing;
1948 if (!info->io.regspacing)
1949 info->io.regspacing = DEFAULT_REGSPACING;
1950 info->io.regsize = regsize;
1951 if (!info->io.regsize)
1952 info->io.regsize = DEFAULT_REGSPACING;
1953 info->io.regshift = regshift;
1954 info->irq = irq;
1955 if (info->irq)
1956 info->irq_setup = std_irq_setup;
1957 info->slave_addr = ipmb;
1959 rv = add_smi(info);
1960 if (rv) {
1961 kfree(info);
1962 goto out;
1964 rv = try_smi_init(info);
1965 if (rv) {
1966 cleanup_one_si(info);
1967 goto out;
1969 } else {
1970 /* remove */
1971 struct smi_info *e, *tmp_e;
1973 mutex_lock(&smi_infos_lock);
1974 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1975 if (e->io.addr_type != addr_space)
1976 continue;
1977 if (e->si_type != si_type)
1978 continue;
1979 if (e->io.addr_data == addr)
1980 cleanup_one_si(e);
1982 mutex_unlock(&smi_infos_lock);
1985 rv = len;
1986 out:
1987 kfree(str);
1988 return rv;
1991 static int hardcode_find_bmc(void)
1993 int ret = -ENODEV;
1994 int i;
1995 struct smi_info *info;
1997 for (i = 0; i < SI_MAX_PARMS; i++) {
1998 if (!ports[i] && !addrs[i])
1999 continue;
2001 info = smi_info_alloc();
2002 if (!info)
2003 return -ENOMEM;
2005 info->addr_source = SI_HARDCODED;
2006 printk(KERN_INFO PFX "probing via hardcoded address\n");
2008 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2009 info->si_type = SI_KCS;
2010 } else if (strcmp(si_type[i], "smic") == 0) {
2011 info->si_type = SI_SMIC;
2012 } else if (strcmp(si_type[i], "bt") == 0) {
2013 info->si_type = SI_BT;
2014 } else {
2015 printk(KERN_WARNING PFX "Interface type specified "
2016 "for interface %d, was invalid: %s\n",
2017 i, si_type[i]);
2018 kfree(info);
2019 continue;
2022 if (ports[i]) {
2023 /* An I/O port */
2024 info->io_setup = port_setup;
2025 info->io.addr_data = ports[i];
2026 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2027 } else if (addrs[i]) {
2028 /* A memory port */
2029 info->io_setup = mem_setup;
2030 info->io.addr_data = addrs[i];
2031 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2032 } else {
2033 printk(KERN_WARNING PFX "Interface type specified "
2034 "for interface %d, but port and address were "
2035 "not set or set to zero.\n", i);
2036 kfree(info);
2037 continue;
2040 info->io.addr = NULL;
2041 info->io.regspacing = regspacings[i];
2042 if (!info->io.regspacing)
2043 info->io.regspacing = DEFAULT_REGSPACING;
2044 info->io.regsize = regsizes[i];
2045 if (!info->io.regsize)
2046 info->io.regsize = DEFAULT_REGSPACING;
2047 info->io.regshift = regshifts[i];
2048 info->irq = irqs[i];
2049 if (info->irq)
2050 info->irq_setup = std_irq_setup;
2051 info->slave_addr = slave_addrs[i];
2053 if (!add_smi(info)) {
2054 if (try_smi_init(info))
2055 cleanup_one_si(info);
2056 ret = 0;
2057 } else {
2058 kfree(info);
2061 return ret;
2064 #ifdef CONFIG_ACPI
2067 * Once we get an ACPI failure, we don't try any more, because we go
2068 * through the tables sequentially. Once we don't find a table, there
2069 * are no more.
2071 static int acpi_failure;
2073 /* For GPE-type interrupts. */
2074 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2075 u32 gpe_number, void *context)
2077 struct smi_info *smi_info = context;
2078 unsigned long flags;
2080 spin_lock_irqsave(&(smi_info->si_lock), flags);
2082 smi_inc_stat(smi_info, interrupts);
2084 debug_timestamp("ACPI_GPE");
2086 smi_event_handler(smi_info, 0);
2087 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2089 return ACPI_INTERRUPT_HANDLED;
2092 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2094 if (!info->irq)
2095 return;
2097 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2100 static int acpi_gpe_irq_setup(struct smi_info *info)
2102 acpi_status status;
2104 if (!info->irq)
2105 return 0;
2107 status = acpi_install_gpe_handler(NULL,
2108 info->irq,
2109 ACPI_GPE_LEVEL_TRIGGERED,
2110 &ipmi_acpi_gpe,
2111 info);
2112 if (status != AE_OK) {
2113 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2114 " running polled\n", DEVICE_NAME, info->irq);
2115 info->irq = 0;
2116 return -EINVAL;
2117 } else {
2118 info->irq_cleanup = acpi_gpe_irq_cleanup;
2119 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2120 return 0;
2125 * Defined at
2126 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2128 struct SPMITable {
2129 s8 Signature[4];
2130 u32 Length;
2131 u8 Revision;
2132 u8 Checksum;
2133 s8 OEMID[6];
2134 s8 OEMTableID[8];
2135 s8 OEMRevision[4];
2136 s8 CreatorID[4];
2137 s8 CreatorRevision[4];
2138 u8 InterfaceType;
2139 u8 IPMIlegacy;
2140 s16 SpecificationRevision;
2143 * Bit 0 - SCI interrupt supported
2144 * Bit 1 - I/O APIC/SAPIC
2146 u8 InterruptType;
2149 * If bit 0 of InterruptType is set, then this is the SCI
2150 * interrupt in the GPEx_STS register.
2152 u8 GPE;
2154 s16 Reserved;
2157 * If bit 1 of InterruptType is set, then this is the I/O
2158 * APIC/SAPIC interrupt.
2160 u32 GlobalSystemInterrupt;
2162 /* The actual register address. */
2163 struct acpi_generic_address addr;
2165 u8 UID[4];
2167 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2170 static int try_init_spmi(struct SPMITable *spmi)
2172 struct smi_info *info;
2173 int rv;
2175 if (spmi->IPMIlegacy != 1) {
2176 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2177 return -ENODEV;
2180 info = smi_info_alloc();
2181 if (!info) {
2182 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2183 return -ENOMEM;
2186 info->addr_source = SI_SPMI;
2187 printk(KERN_INFO PFX "probing via SPMI\n");
2189 /* Figure out the interface type. */
2190 switch (spmi->InterfaceType) {
2191 case 1: /* KCS */
2192 info->si_type = SI_KCS;
2193 break;
2194 case 2: /* SMIC */
2195 info->si_type = SI_SMIC;
2196 break;
2197 case 3: /* BT */
2198 info->si_type = SI_BT;
2199 break;
2200 case 4: /* SSIF, just ignore */
2201 kfree(info);
2202 return -EIO;
2203 default:
2204 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2205 spmi->InterfaceType);
2206 kfree(info);
2207 return -EIO;
2210 if (spmi->InterruptType & 1) {
2211 /* We've got a GPE interrupt. */
2212 info->irq = spmi->GPE;
2213 info->irq_setup = acpi_gpe_irq_setup;
2214 } else if (spmi->InterruptType & 2) {
2215 /* We've got an APIC/SAPIC interrupt. */
2216 info->irq = spmi->GlobalSystemInterrupt;
2217 info->irq_setup = std_irq_setup;
2218 } else {
2219 /* Use the default interrupt setting. */
2220 info->irq = 0;
2221 info->irq_setup = NULL;
2224 if (spmi->addr.bit_width) {
2225 /* A (hopefully) properly formed register bit width. */
2226 info->io.regspacing = spmi->addr.bit_width / 8;
2227 } else {
2228 info->io.regspacing = DEFAULT_REGSPACING;
2230 info->io.regsize = info->io.regspacing;
2231 info->io.regshift = spmi->addr.bit_offset;
2233 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2234 info->io_setup = mem_setup;
2235 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2236 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2237 info->io_setup = port_setup;
2238 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2239 } else {
2240 kfree(info);
2241 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2242 return -EIO;
2244 info->io.addr_data = spmi->addr.address;
2246 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2247 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2248 info->io.addr_data, info->io.regsize, info->io.regspacing,
2249 info->irq);
2251 rv = add_smi(info);
2252 if (rv)
2253 kfree(info);
2255 return rv;
2258 static void spmi_find_bmc(void)
2260 acpi_status status;
2261 struct SPMITable *spmi;
2262 int i;
2264 if (acpi_disabled)
2265 return;
2267 if (acpi_failure)
2268 return;
2270 for (i = 0; ; i++) {
2271 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2272 (struct acpi_table_header **)&spmi);
2273 if (status != AE_OK)
2274 return;
2276 try_init_spmi(spmi);
2279 #endif
2281 #ifdef CONFIG_DMI
2282 struct dmi_ipmi_data {
2283 u8 type;
2284 u8 addr_space;
2285 unsigned long base_addr;
2286 u8 irq;
2287 u8 offset;
2288 u8 slave_addr;
2291 static int decode_dmi(const struct dmi_header *dm,
2292 struct dmi_ipmi_data *dmi)
2294 const u8 *data = (const u8 *)dm;
2295 unsigned long base_addr;
2296 u8 reg_spacing;
2297 u8 len = dm->length;
2299 dmi->type = data[4];
2301 memcpy(&base_addr, data+8, sizeof(unsigned long));
2302 if (len >= 0x11) {
2303 if (base_addr & 1) {
2304 /* I/O */
2305 base_addr &= 0xFFFE;
2306 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2307 } else
2308 /* Memory */
2309 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2311 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2312 is odd. */
2313 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2315 dmi->irq = data[0x11];
2317 /* The top two bits of byte 0x10 hold the register spacing. */
2318 reg_spacing = (data[0x10] & 0xC0) >> 6;
2319 switch (reg_spacing) {
2320 case 0x00: /* Byte boundaries */
2321 dmi->offset = 1;
2322 break;
2323 case 0x01: /* 32-bit boundaries */
2324 dmi->offset = 4;
2325 break;
2326 case 0x02: /* 16-byte boundaries */
2327 dmi->offset = 16;
2328 break;
2329 default:
2330 /* Some other interface, just ignore it. */
2331 return -EIO;
2333 } else {
2334 /* Old DMI spec. */
2336 * Note that technically, the lower bit of the base
2337 * address should be 1 if the address is I/O and 0 if
2338 * the address is in memory. So many systems get that
2339 * wrong (and all that I have seen are I/O) so we just
2340 * ignore that bit and assume I/O. Systems that use
2341 * memory should use the newer spec, anyway.
2343 dmi->base_addr = base_addr & 0xfffe;
2344 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2345 dmi->offset = 1;
2348 dmi->slave_addr = data[6];
2350 return 0;
2353 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2355 struct smi_info *info;
2357 info = smi_info_alloc();
2358 if (!info) {
2359 printk(KERN_ERR PFX "Could not allocate SI data\n");
2360 return;
2363 info->addr_source = SI_SMBIOS;
2364 printk(KERN_INFO PFX "probing via SMBIOS\n");
2366 switch (ipmi_data->type) {
2367 case 0x01: /* KCS */
2368 info->si_type = SI_KCS;
2369 break;
2370 case 0x02: /* SMIC */
2371 info->si_type = SI_SMIC;
2372 break;
2373 case 0x03: /* BT */
2374 info->si_type = SI_BT;
2375 break;
2376 default:
2377 kfree(info);
2378 return;
2381 switch (ipmi_data->addr_space) {
2382 case IPMI_MEM_ADDR_SPACE:
2383 info->io_setup = mem_setup;
2384 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2385 break;
2387 case IPMI_IO_ADDR_SPACE:
2388 info->io_setup = port_setup;
2389 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2390 break;
2392 default:
2393 kfree(info);
2394 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2395 ipmi_data->addr_space);
2396 return;
2398 info->io.addr_data = ipmi_data->base_addr;
2400 info->io.regspacing = ipmi_data->offset;
2401 if (!info->io.regspacing)
2402 info->io.regspacing = DEFAULT_REGSPACING;
2403 info->io.regsize = DEFAULT_REGSPACING;
2404 info->io.regshift = 0;
2406 info->slave_addr = ipmi_data->slave_addr;
2408 info->irq = ipmi_data->irq;
2409 if (info->irq)
2410 info->irq_setup = std_irq_setup;
2412 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2413 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2414 info->io.addr_data, info->io.regsize, info->io.regspacing,
2415 info->irq);
2417 if (add_smi(info))
2418 kfree(info);
2421 static void dmi_find_bmc(void)
2423 const struct dmi_device *dev = NULL;
2424 struct dmi_ipmi_data data;
2425 int rv;
2427 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2428 memset(&data, 0, sizeof(data));
2429 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2430 &data);
2431 if (!rv)
2432 try_init_dmi(&data);
2435 #endif /* CONFIG_DMI */
2437 #ifdef CONFIG_PCI
2439 #define PCI_ERMC_CLASSCODE 0x0C0700
2440 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2441 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2442 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2443 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2444 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2446 #define PCI_HP_VENDOR_ID 0x103C
2447 #define PCI_MMC_DEVICE_ID 0x121A
2448 #define PCI_MMC_ADDR_CW 0x10
2450 static void ipmi_pci_cleanup(struct smi_info *info)
2452 struct pci_dev *pdev = info->addr_source_data;
2454 pci_disable_device(pdev);
2457 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2459 if (info->si_type == SI_KCS) {
2460 unsigned char status;
2461 int regspacing;
2463 info->io.regsize = DEFAULT_REGSIZE;
2464 info->io.regshift = 0;
2465 info->io_size = 2;
2466 info->handlers = &kcs_smi_handlers;
2468 /* detect 1, 4, 16byte spacing */
2469 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2470 info->io.regspacing = regspacing;
2471 if (info->io_setup(info)) {
2472 dev_err(info->dev,
2473 "Could not setup I/O space\n");
2474 return DEFAULT_REGSPACING;
2476 /* write invalid cmd */
2477 info->io.outputb(&info->io, 1, 0x10);
2478 /* read status back */
2479 status = info->io.inputb(&info->io, 1);
2480 info->io_cleanup(info);
2481 if (status)
2482 return regspacing;
2483 regspacing *= 4;
2486 return DEFAULT_REGSPACING;
2489 static int ipmi_pci_probe(struct pci_dev *pdev,
2490 const struct pci_device_id *ent)
2492 int rv;
2493 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2494 struct smi_info *info;
2496 info = smi_info_alloc();
2497 if (!info)
2498 return -ENOMEM;
2500 info->addr_source = SI_PCI;
2501 dev_info(&pdev->dev, "probing via PCI");
2503 switch (class_type) {
2504 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2505 info->si_type = SI_SMIC;
2506 break;
2508 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2509 info->si_type = SI_KCS;
2510 break;
2512 case PCI_ERMC_CLASSCODE_TYPE_BT:
2513 info->si_type = SI_BT;
2514 break;
2516 default:
2517 kfree(info);
2518 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2519 return -ENOMEM;
2522 rv = pci_enable_device(pdev);
2523 if (rv) {
2524 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2525 kfree(info);
2526 return rv;
2529 info->addr_source_cleanup = ipmi_pci_cleanup;
2530 info->addr_source_data = pdev;
2532 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2533 info->io_setup = port_setup;
2534 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2535 } else {
2536 info->io_setup = mem_setup;
2537 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2539 info->io.addr_data = pci_resource_start(pdev, 0);
2541 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2542 info->io.regsize = DEFAULT_REGSIZE;
2543 info->io.regshift = 0;
2545 info->irq = pdev->irq;
2546 if (info->irq)
2547 info->irq_setup = std_irq_setup;
2549 info->dev = &pdev->dev;
2550 pci_set_drvdata(pdev, info);
2552 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2553 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2554 info->irq);
2556 rv = add_smi(info);
2557 if (rv) {
2558 kfree(info);
2559 pci_disable_device(pdev);
2562 return rv;
2565 static void ipmi_pci_remove(struct pci_dev *pdev)
2567 struct smi_info *info = pci_get_drvdata(pdev);
2568 cleanup_one_si(info);
2571 static const struct pci_device_id ipmi_pci_devices[] = {
2572 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2573 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2574 { 0, }
2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2578 static struct pci_driver ipmi_pci_driver = {
2579 .name = DEVICE_NAME,
2580 .id_table = ipmi_pci_devices,
2581 .probe = ipmi_pci_probe,
2582 .remove = ipmi_pci_remove,
2584 #endif /* CONFIG_PCI */
2586 #ifdef CONFIG_OF
2587 static const struct of_device_id of_ipmi_match[] = {
2588 { .type = "ipmi", .compatible = "ipmi-kcs",
2589 .data = (void *)(unsigned long) SI_KCS },
2590 { .type = "ipmi", .compatible = "ipmi-smic",
2591 .data = (void *)(unsigned long) SI_SMIC },
2592 { .type = "ipmi", .compatible = "ipmi-bt",
2593 .data = (void *)(unsigned long) SI_BT },
2596 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2598 static int of_ipmi_probe(struct platform_device *dev)
2600 const struct of_device_id *match;
2601 struct smi_info *info;
2602 struct resource resource;
2603 const __be32 *regsize, *regspacing, *regshift;
2604 struct device_node *np = dev->dev.of_node;
2605 int ret;
2606 int proplen;
2608 dev_info(&dev->dev, "probing via device tree\n");
2610 match = of_match_device(of_ipmi_match, &dev->dev);
2611 if (!match)
2612 return -ENODEV;
2614 if (!of_device_is_available(np))
2615 return -EINVAL;
2617 ret = of_address_to_resource(np, 0, &resource);
2618 if (ret) {
2619 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2620 return ret;
2623 regsize = of_get_property(np, "reg-size", &proplen);
2624 if (regsize && proplen != 4) {
2625 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2626 return -EINVAL;
2629 regspacing = of_get_property(np, "reg-spacing", &proplen);
2630 if (regspacing && proplen != 4) {
2631 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2632 return -EINVAL;
2635 regshift = of_get_property(np, "reg-shift", &proplen);
2636 if (regshift && proplen != 4) {
2637 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2638 return -EINVAL;
2641 info = smi_info_alloc();
2643 if (!info) {
2644 dev_err(&dev->dev,
2645 "could not allocate memory for OF probe\n");
2646 return -ENOMEM;
2649 info->si_type = (enum si_type) match->data;
2650 info->addr_source = SI_DEVICETREE;
2651 info->irq_setup = std_irq_setup;
2653 if (resource.flags & IORESOURCE_IO) {
2654 info->io_setup = port_setup;
2655 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2656 } else {
2657 info->io_setup = mem_setup;
2658 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2661 info->io.addr_data = resource.start;
2663 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2664 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2665 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2667 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2668 info->dev = &dev->dev;
2670 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2671 info->io.addr_data, info->io.regsize, info->io.regspacing,
2672 info->irq);
2674 dev_set_drvdata(&dev->dev, info);
2676 ret = add_smi(info);
2677 if (ret) {
2678 kfree(info);
2679 return ret;
2681 return 0;
2683 #else
2684 #define of_ipmi_match NULL
2685 static int of_ipmi_probe(struct platform_device *dev)
2687 return -ENODEV;
2689 #endif
2691 #ifdef CONFIG_ACPI
2692 static int acpi_ipmi_probe(struct platform_device *dev)
2694 struct smi_info *info;
2695 struct resource *res, *res_second;
2696 acpi_handle handle;
2697 acpi_status status;
2698 unsigned long long tmp;
2699 int rv = -EINVAL;
2701 if (!si_tryacpi)
2702 return 0;
2704 handle = ACPI_HANDLE(&dev->dev);
2705 if (!handle)
2706 return -ENODEV;
2708 info = smi_info_alloc();
2709 if (!info)
2710 return -ENOMEM;
2712 info->addr_source = SI_ACPI;
2713 dev_info(&dev->dev, PFX "probing via ACPI\n");
2715 info->addr_info.acpi_info.acpi_handle = handle;
2717 /* _IFT tells us the interface type: KCS, BT, etc */
2718 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2719 if (ACPI_FAILURE(status)) {
2720 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2721 goto err_free;
2724 switch (tmp) {
2725 case 1:
2726 info->si_type = SI_KCS;
2727 break;
2728 case 2:
2729 info->si_type = SI_SMIC;
2730 break;
2731 case 3:
2732 info->si_type = SI_BT;
2733 break;
2734 case 4: /* SSIF, just ignore */
2735 rv = -ENODEV;
2736 goto err_free;
2737 default:
2738 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2739 goto err_free;
2742 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2743 if (res) {
2744 info->io_setup = port_setup;
2745 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2746 } else {
2747 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2748 if (res) {
2749 info->io_setup = mem_setup;
2750 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2753 if (!res) {
2754 dev_err(&dev->dev, "no I/O or memory address\n");
2755 goto err_free;
2757 info->io.addr_data = res->start;
2759 info->io.regspacing = DEFAULT_REGSPACING;
2760 res_second = platform_get_resource(dev,
2761 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2762 IORESOURCE_IO : IORESOURCE_MEM,
2764 if (res_second) {
2765 if (res_second->start > info->io.addr_data)
2766 info->io.regspacing =
2767 res_second->start - info->io.addr_data;
2769 info->io.regsize = DEFAULT_REGSPACING;
2770 info->io.regshift = 0;
2772 /* If _GPE exists, use it; otherwise use standard interrupts */
2773 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2774 if (ACPI_SUCCESS(status)) {
2775 info->irq = tmp;
2776 info->irq_setup = acpi_gpe_irq_setup;
2777 } else {
2778 int irq = platform_get_irq(dev, 0);
2780 if (irq > 0) {
2781 info->irq = irq;
2782 info->irq_setup = std_irq_setup;
2786 info->dev = &dev->dev;
2787 platform_set_drvdata(dev, info);
2789 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2790 res, info->io.regsize, info->io.regspacing,
2791 info->irq);
2793 rv = add_smi(info);
2794 if (rv)
2795 kfree(info);
2797 return rv;
2799 err_free:
2800 kfree(info);
2801 return rv;
2804 static const struct acpi_device_id acpi_ipmi_match[] = {
2805 { "IPI0001", 0 },
2806 { },
2808 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2809 #else
2810 static int acpi_ipmi_probe(struct platform_device *dev)
2812 return -ENODEV;
2814 #endif
2816 static int ipmi_probe(struct platform_device *dev)
2818 if (of_ipmi_probe(dev) == 0)
2819 return 0;
2821 return acpi_ipmi_probe(dev);
2824 static int ipmi_remove(struct platform_device *dev)
2826 struct smi_info *info = dev_get_drvdata(&dev->dev);
2828 cleanup_one_si(info);
2829 return 0;
2832 static struct platform_driver ipmi_driver = {
2833 .driver = {
2834 .name = DEVICE_NAME,
2835 .of_match_table = of_ipmi_match,
2836 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2838 .probe = ipmi_probe,
2839 .remove = ipmi_remove,
2842 #ifdef CONFIG_PARISC
2843 static int ipmi_parisc_probe(struct parisc_device *dev)
2845 struct smi_info *info;
2846 int rv;
2848 info = smi_info_alloc();
2850 if (!info) {
2851 dev_err(&dev->dev,
2852 "could not allocate memory for PARISC probe\n");
2853 return -ENOMEM;
2856 info->si_type = SI_KCS;
2857 info->addr_source = SI_DEVICETREE;
2858 info->io_setup = mem_setup;
2859 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2860 info->io.addr_data = dev->hpa.start;
2861 info->io.regsize = 1;
2862 info->io.regspacing = 1;
2863 info->io.regshift = 0;
2864 info->irq = 0; /* no interrupt */
2865 info->irq_setup = NULL;
2866 info->dev = &dev->dev;
2868 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2870 dev_set_drvdata(&dev->dev, info);
2872 rv = add_smi(info);
2873 if (rv) {
2874 kfree(info);
2875 return rv;
2878 return 0;
2881 static int ipmi_parisc_remove(struct parisc_device *dev)
2883 cleanup_one_si(dev_get_drvdata(&dev->dev));
2884 return 0;
2887 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2888 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2889 { 0, }
2892 static struct parisc_driver ipmi_parisc_driver = {
2893 .name = "ipmi",
2894 .id_table = ipmi_parisc_tbl,
2895 .probe = ipmi_parisc_probe,
2896 .remove = ipmi_parisc_remove,
2898 #endif /* CONFIG_PARISC */
2900 static int wait_for_msg_done(struct smi_info *smi_info)
2902 enum si_sm_result smi_result;
2904 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905 for (;;) {
2906 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908 schedule_timeout_uninterruptible(1);
2909 smi_result = smi_info->handlers->event(
2910 smi_info->si_sm, jiffies_to_usecs(1));
2911 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912 smi_result = smi_info->handlers->event(
2913 smi_info->si_sm, 0);
2914 } else
2915 break;
2917 if (smi_result == SI_SM_HOSED)
2919 * We couldn't get the state machine to run, so whatever's at
2920 * the port is probably not an IPMI SMI interface.
2922 return -ENODEV;
2924 return 0;
2927 static int try_get_dev_id(struct smi_info *smi_info)
2929 unsigned char msg[2];
2930 unsigned char *resp;
2931 unsigned long resp_len;
2932 int rv = 0;
2934 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935 if (!resp)
2936 return -ENOMEM;
2939 * Do a Get Device ID command, since it comes back with some
2940 * useful info.
2942 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2946 rv = wait_for_msg_done(smi_info);
2947 if (rv)
2948 goto out;
2950 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951 resp, IPMI_MAX_MSG_LENGTH);
2953 /* Check and record info from the get device id, in case we need it. */
2954 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2956 out:
2957 kfree(resp);
2958 return rv;
2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2963 unsigned char msg[3];
2964 unsigned char *resp;
2965 unsigned long resp_len;
2966 int rv;
2968 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969 if (!resp)
2970 return -ENOMEM;
2972 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2976 rv = wait_for_msg_done(smi_info);
2977 if (rv) {
2978 dev_warn(smi_info->dev,
2979 "Error getting response from get global enables command: %d\n",
2980 rv);
2981 goto out;
2984 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985 resp, IPMI_MAX_MSG_LENGTH);
2987 if (resp_len < 4 ||
2988 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2990 resp[2] != 0) {
2991 dev_warn(smi_info->dev,
2992 "Invalid return from get global enables command: %ld %x %x %x\n",
2993 resp_len, resp[0], resp[1], resp[2]);
2994 rv = -EINVAL;
2995 goto out;
2996 } else {
2997 *enables = resp[3];
3000 out:
3001 kfree(resp);
3002 return rv;
3006 * Returns 1 if it gets an error from the command.
3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3010 unsigned char msg[3];
3011 unsigned char *resp;
3012 unsigned long resp_len;
3013 int rv;
3015 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016 if (!resp)
3017 return -ENOMEM;
3019 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021 msg[2] = enables;
3022 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3024 rv = wait_for_msg_done(smi_info);
3025 if (rv) {
3026 dev_warn(smi_info->dev,
3027 "Error getting response from set global enables command: %d\n",
3028 rv);
3029 goto out;
3032 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033 resp, IPMI_MAX_MSG_LENGTH);
3035 if (resp_len < 3 ||
3036 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038 dev_warn(smi_info->dev,
3039 "Invalid return from set global enables command: %ld %x %x\n",
3040 resp_len, resp[0], resp[1]);
3041 rv = -EINVAL;
3042 goto out;
3045 if (resp[2] != 0)
3046 rv = 1;
3048 out:
3049 kfree(resp);
3050 return rv;
3054 * Some BMCs do not support clearing the receive irq bit in the global
3055 * enables (even if they don't support interrupts on the BMC). Check
3056 * for this and handle it properly.
3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3060 u8 enables = 0;
3061 int rv;
3063 rv = get_global_enables(smi_info, &enables);
3064 if (!rv) {
3065 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066 /* Already clear, should work ok. */
3067 return;
3069 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070 rv = set_global_enables(smi_info, enables);
3073 if (rv < 0) {
3074 dev_err(smi_info->dev,
3075 "Cannot check clearing the rcv irq: %d\n", rv);
3076 return;
3079 if (rv) {
3081 * An error when setting the event buffer bit means
3082 * clearing the bit is not supported.
3084 dev_warn(smi_info->dev,
3085 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 smi_info->cannot_disable_irq = true;
3091 * Some BMCs do not support setting the interrupt bits in the global
3092 * enables even if they support interrupts. Clearly bad, but we can
3093 * compensate.
3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3097 u8 enables = 0;
3098 int rv;
3100 if (!smi_info->irq)
3101 return;
3103 rv = get_global_enables(smi_info, &enables);
3104 if (!rv) {
3105 enables |= IPMI_BMC_RCV_MSG_INTR;
3106 rv = set_global_enables(smi_info, enables);
3109 if (rv < 0) {
3110 dev_err(smi_info->dev,
3111 "Cannot check setting the rcv irq: %d\n", rv);
3112 return;
3115 if (rv) {
3117 * An error when setting the event buffer bit means
3118 * setting the bit is not supported.
3120 dev_warn(smi_info->dev,
3121 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122 smi_info->cannot_disable_irq = true;
3123 smi_info->irq_enable_broken = true;
3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3129 unsigned char msg[3];
3130 unsigned char *resp;
3131 unsigned long resp_len;
3132 int rv = 0;
3134 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135 if (!resp)
3136 return -ENOMEM;
3138 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3142 rv = wait_for_msg_done(smi_info);
3143 if (rv) {
3144 printk(KERN_WARNING PFX "Error getting response from get"
3145 " global enables command, the event buffer is not"
3146 " enabled.\n");
3147 goto out;
3150 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3151 resp, IPMI_MAX_MSG_LENGTH);
3153 if (resp_len < 4 ||
3154 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3155 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3156 resp[2] != 0) {
3157 printk(KERN_WARNING PFX "Invalid return from get global"
3158 " enables command, cannot enable the event buffer.\n");
3159 rv = -EINVAL;
3160 goto out;
3163 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3164 /* buffer is already enabled, nothing to do. */
3165 smi_info->supports_event_msg_buff = true;
3166 goto out;
3169 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3170 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3171 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3172 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3174 rv = wait_for_msg_done(smi_info);
3175 if (rv) {
3176 printk(KERN_WARNING PFX "Error getting response from set"
3177 " global, enables command, the event buffer is not"
3178 " enabled.\n");
3179 goto out;
3182 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3183 resp, IPMI_MAX_MSG_LENGTH);
3185 if (resp_len < 3 ||
3186 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3187 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3188 printk(KERN_WARNING PFX "Invalid return from get global,"
3189 "enables command, not enable the event buffer.\n");
3190 rv = -EINVAL;
3191 goto out;
3194 if (resp[2] != 0)
3196 * An error when setting the event buffer bit means
3197 * that the event buffer is not supported.
3199 rv = -ENOENT;
3200 else
3201 smi_info->supports_event_msg_buff = true;
3203 out:
3204 kfree(resp);
3205 return rv;
3208 static int smi_type_proc_show(struct seq_file *m, void *v)
3210 struct smi_info *smi = m->private;
3212 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3214 return 0;
3217 static int smi_type_proc_open(struct inode *inode, struct file *file)
3219 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3222 static const struct file_operations smi_type_proc_ops = {
3223 .open = smi_type_proc_open,
3224 .read = seq_read,
3225 .llseek = seq_lseek,
3226 .release = single_release,
3229 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3231 struct smi_info *smi = m->private;
3233 seq_printf(m, "interrupts_enabled: %d\n",
3234 smi->irq && !smi->interrupt_disabled);
3235 seq_printf(m, "short_timeouts: %u\n",
3236 smi_get_stat(smi, short_timeouts));
3237 seq_printf(m, "long_timeouts: %u\n",
3238 smi_get_stat(smi, long_timeouts));
3239 seq_printf(m, "idles: %u\n",
3240 smi_get_stat(smi, idles));
3241 seq_printf(m, "interrupts: %u\n",
3242 smi_get_stat(smi, interrupts));
3243 seq_printf(m, "attentions: %u\n",
3244 smi_get_stat(smi, attentions));
3245 seq_printf(m, "flag_fetches: %u\n",
3246 smi_get_stat(smi, flag_fetches));
3247 seq_printf(m, "hosed_count: %u\n",
3248 smi_get_stat(smi, hosed_count));
3249 seq_printf(m, "complete_transactions: %u\n",
3250 smi_get_stat(smi, complete_transactions));
3251 seq_printf(m, "events: %u\n",
3252 smi_get_stat(smi, events));
3253 seq_printf(m, "watchdog_pretimeouts: %u\n",
3254 smi_get_stat(smi, watchdog_pretimeouts));
3255 seq_printf(m, "incoming_messages: %u\n",
3256 smi_get_stat(smi, incoming_messages));
3257 return 0;
3260 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3262 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3265 static const struct file_operations smi_si_stats_proc_ops = {
3266 .open = smi_si_stats_proc_open,
3267 .read = seq_read,
3268 .llseek = seq_lseek,
3269 .release = single_release,
3272 static int smi_params_proc_show(struct seq_file *m, void *v)
3274 struct smi_info *smi = m->private;
3276 seq_printf(m,
3277 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3278 si_to_str[smi->si_type],
3279 addr_space_to_str[smi->io.addr_type],
3280 smi->io.addr_data,
3281 smi->io.regspacing,
3282 smi->io.regsize,
3283 smi->io.regshift,
3284 smi->irq,
3285 smi->slave_addr);
3287 return 0;
3290 static int smi_params_proc_open(struct inode *inode, struct file *file)
3292 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3295 static const struct file_operations smi_params_proc_ops = {
3296 .open = smi_params_proc_open,
3297 .read = seq_read,
3298 .llseek = seq_lseek,
3299 .release = single_release,
3303 * oem_data_avail_to_receive_msg_avail
3304 * @info - smi_info structure with msg_flags set
3306 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3307 * Returns 1 indicating need to re-run handle_flags().
3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3311 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3312 RECEIVE_MSG_AVAIL);
3313 return 1;
3317 * setup_dell_poweredge_oem_data_handler
3318 * @info - smi_info.device_id must be populated
3320 * Systems that match, but have firmware version < 1.40 may assert
3321 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3322 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3323 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3324 * as RECEIVE_MSG_AVAIL instead.
3326 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3327 * assert the OEM[012] bits, and if it did, the driver would have to
3328 * change to handle that properly, we don't actually check for the
3329 * firmware version.
3330 * Device ID = 0x20 BMC on PowerEdge 8G servers
3331 * Device Revision = 0x80
3332 * Firmware Revision1 = 0x01 BMC version 1.40
3333 * Firmware Revision2 = 0x40 BCD encoded
3334 * IPMI Version = 0x51 IPMI 1.5
3335 * Manufacturer ID = A2 02 00 Dell IANA
3337 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3338 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3344 #define DELL_IANA_MFR_ID 0x0002a2
3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3347 struct ipmi_device_id *id = &smi_info->device_id;
3348 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3349 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3350 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3351 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3352 smi_info->oem_data_avail_handler =
3353 oem_data_avail_to_receive_msg_avail;
3354 } else if (ipmi_version_major(id) < 1 ||
3355 (ipmi_version_major(id) == 1 &&
3356 ipmi_version_minor(id) < 5)) {
3357 smi_info->oem_data_avail_handler =
3358 oem_data_avail_to_receive_msg_avail;
3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3364 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3366 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3368 /* Make it a response */
3369 msg->rsp[0] = msg->data[0] | 4;
3370 msg->rsp[1] = msg->data[1];
3371 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3372 msg->rsp_size = 3;
3373 smi_info->curr_msg = NULL;
3374 deliver_recv_msg(smi_info, msg);
3378 * dell_poweredge_bt_xaction_handler
3379 * @info - smi_info.device_id must be populated
3381 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3382 * not respond to a Get SDR command if the length of the data
3383 * requested is exactly 0x3A, which leads to command timeouts and no
3384 * data returned. This intercepts such commands, and causes userspace
3385 * callers to try again with a different-sized buffer, which succeeds.
3388 #define STORAGE_NETFN 0x0A
3389 #define STORAGE_CMD_GET_SDR 0x23
3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3391 unsigned long unused,
3392 void *in)
3394 struct smi_info *smi_info = in;
3395 unsigned char *data = smi_info->curr_msg->data;
3396 unsigned int size = smi_info->curr_msg->data_size;
3397 if (size >= 8 &&
3398 (data[0]>>2) == STORAGE_NETFN &&
3399 data[1] == STORAGE_CMD_GET_SDR &&
3400 data[7] == 0x3A) {
3401 return_hosed_msg_badsize(smi_info);
3402 return NOTIFY_STOP;
3404 return NOTIFY_DONE;
3407 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3408 .notifier_call = dell_poweredge_bt_xaction_handler,
3412 * setup_dell_poweredge_bt_xaction_handler
3413 * @info - smi_info.device_id must be filled in already
3415 * Fills in smi_info.device_id.start_transaction_pre_hook
3416 * when we know what function to use there.
3418 static void
3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3421 struct ipmi_device_id *id = &smi_info->device_id;
3422 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3423 smi_info->si_type == SI_BT)
3424 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3428 * setup_oem_data_handler
3429 * @info - smi_info.device_id must be filled in already
3431 * Fills in smi_info.device_id.oem_data_available_handler
3432 * when we know what function to use there.
3435 static void setup_oem_data_handler(struct smi_info *smi_info)
3437 setup_dell_poweredge_oem_data_handler(smi_info);
3440 static void setup_xaction_handlers(struct smi_info *smi_info)
3442 setup_dell_poweredge_bt_xaction_handler(smi_info);
3445 static void check_for_broken_irqs(struct smi_info *smi_info)
3447 check_clr_rcv_irq(smi_info);
3448 check_set_rcv_irq(smi_info);
3451 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3453 if (smi_info->thread != NULL)
3454 kthread_stop(smi_info->thread);
3456 smi_info->timer_can_start = false;
3457 if (smi_info->timer_running)
3458 del_timer_sync(&smi_info->si_timer);
3461 static int is_new_interface(struct smi_info *info)
3463 struct smi_info *e;
3465 list_for_each_entry(e, &smi_infos, link) {
3466 if (e->io.addr_type != info->io.addr_type)
3467 continue;
3468 if (e->io.addr_data == info->io.addr_data)
3469 return 0;
3472 return 1;
3475 static int add_smi(struct smi_info *new_smi)
3477 int rv = 0;
3479 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3480 ipmi_addr_src_to_str(new_smi->addr_source),
3481 si_to_str[new_smi->si_type]);
3482 mutex_lock(&smi_infos_lock);
3483 if (!is_new_interface(new_smi)) {
3484 printk(KERN_CONT " duplicate interface\n");
3485 rv = -EBUSY;
3486 goto out_err;
3489 printk(KERN_CONT "\n");
3491 /* So we know not to free it unless we have allocated one. */
3492 new_smi->intf = NULL;
3493 new_smi->si_sm = NULL;
3494 new_smi->handlers = NULL;
3496 list_add_tail(&new_smi->link, &smi_infos);
3498 out_err:
3499 mutex_unlock(&smi_infos_lock);
3500 return rv;
3503 static int try_smi_init(struct smi_info *new_smi)
3505 int rv = 0;
3506 int i;
3508 printk(KERN_INFO PFX "Trying %s-specified %s state"
3509 " machine at %s address 0x%lx, slave address 0x%x,"
3510 " irq %d\n",
3511 ipmi_addr_src_to_str(new_smi->addr_source),
3512 si_to_str[new_smi->si_type],
3513 addr_space_to_str[new_smi->io.addr_type],
3514 new_smi->io.addr_data,
3515 new_smi->slave_addr, new_smi->irq);
3517 switch (new_smi->si_type) {
3518 case SI_KCS:
3519 new_smi->handlers = &kcs_smi_handlers;
3520 break;
3522 case SI_SMIC:
3523 new_smi->handlers = &smic_smi_handlers;
3524 break;
3526 case SI_BT:
3527 new_smi->handlers = &bt_smi_handlers;
3528 break;
3530 default:
3531 /* No support for anything else yet. */
3532 rv = -EIO;
3533 goto out_err;
3536 /* Allocate the state machine's data and initialize it. */
3537 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3538 if (!new_smi->si_sm) {
3539 printk(KERN_ERR PFX
3540 "Could not allocate state machine memory\n");
3541 rv = -ENOMEM;
3542 goto out_err;
3544 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3545 &new_smi->io);
3547 /* Now that we know the I/O size, we can set up the I/O. */
3548 rv = new_smi->io_setup(new_smi);
3549 if (rv) {
3550 printk(KERN_ERR PFX "Could not set up I/O space\n");
3551 goto out_err;
3554 /* Do low-level detection first. */
3555 if (new_smi->handlers->detect(new_smi->si_sm)) {
3556 if (new_smi->addr_source)
3557 printk(KERN_INFO PFX "Interface detection failed\n");
3558 rv = -ENODEV;
3559 goto out_err;
3563 * Attempt a get device id command. If it fails, we probably
3564 * don't have a BMC here.
3566 rv = try_get_dev_id(new_smi);
3567 if (rv) {
3568 if (new_smi->addr_source)
3569 printk(KERN_INFO PFX "There appears to be no BMC"
3570 " at this location\n");
3571 goto out_err;
3574 setup_oem_data_handler(new_smi);
3575 setup_xaction_handlers(new_smi);
3576 check_for_broken_irqs(new_smi);
3578 new_smi->waiting_msg = NULL;
3579 new_smi->curr_msg = NULL;
3580 atomic_set(&new_smi->req_events, 0);
3581 new_smi->run_to_completion = false;
3582 for (i = 0; i < SI_NUM_STATS; i++)
3583 atomic_set(&new_smi->stats[i], 0);
3585 new_smi->interrupt_disabled = true;
3586 atomic_set(&new_smi->need_watch, 0);
3587 new_smi->intf_num = smi_num;
3588 smi_num++;
3590 rv = try_enable_event_buffer(new_smi);
3591 if (rv == 0)
3592 new_smi->has_event_buffer = true;
3595 * Start clearing the flags before we enable interrupts or the
3596 * timer to avoid racing with the timer.
3598 start_clear_flags(new_smi);
3601 * IRQ is defined to be set when non-zero. req_events will
3602 * cause a global flags check that will enable interrupts.
3604 if (new_smi->irq) {
3605 new_smi->interrupt_disabled = false;
3606 atomic_set(&new_smi->req_events, 1);
3609 if (!new_smi->dev) {
3611 * If we don't already have a device from something
3612 * else (like PCI), then register a new one.
3614 new_smi->pdev = platform_device_alloc("ipmi_si",
3615 new_smi->intf_num);
3616 if (!new_smi->pdev) {
3617 printk(KERN_ERR PFX
3618 "Unable to allocate platform device\n");
3619 goto out_err;
3621 new_smi->dev = &new_smi->pdev->dev;
3622 new_smi->dev->driver = &ipmi_driver.driver;
3624 rv = platform_device_add(new_smi->pdev);
3625 if (rv) {
3626 printk(KERN_ERR PFX
3627 "Unable to register system interface device:"
3628 " %d\n",
3629 rv);
3630 goto out_err;
3632 new_smi->dev_registered = true;
3635 rv = ipmi_register_smi(&handlers,
3636 new_smi,
3637 &new_smi->device_id,
3638 new_smi->dev,
3639 new_smi->slave_addr);
3640 if (rv) {
3641 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3642 rv);
3643 goto out_err_stop_timer;
3646 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3647 &smi_type_proc_ops,
3648 new_smi);
3649 if (rv) {
3650 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3651 goto out_err_stop_timer;
3654 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3655 &smi_si_stats_proc_ops,
3656 new_smi);
3657 if (rv) {
3658 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3659 goto out_err_stop_timer;
3662 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3663 &smi_params_proc_ops,
3664 new_smi);
3665 if (rv) {
3666 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3667 goto out_err_stop_timer;
3670 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3671 si_to_str[new_smi->si_type]);
3673 return 0;
3675 out_err_stop_timer:
3676 stop_timer_and_thread(new_smi);
3678 out_err:
3679 new_smi->interrupt_disabled = true;
3681 if (new_smi->intf) {
3682 ipmi_smi_t intf = new_smi->intf;
3683 new_smi->intf = NULL;
3684 ipmi_unregister_smi(intf);
3687 if (new_smi->irq_cleanup) {
3688 new_smi->irq_cleanup(new_smi);
3689 new_smi->irq_cleanup = NULL;
3693 * Wait until we know that we are out of any interrupt
3694 * handlers might have been running before we freed the
3695 * interrupt.
3697 synchronize_sched();
3699 if (new_smi->si_sm) {
3700 if (new_smi->handlers)
3701 new_smi->handlers->cleanup(new_smi->si_sm);
3702 kfree(new_smi->si_sm);
3703 new_smi->si_sm = NULL;
3705 if (new_smi->addr_source_cleanup) {
3706 new_smi->addr_source_cleanup(new_smi);
3707 new_smi->addr_source_cleanup = NULL;
3709 if (new_smi->io_cleanup) {
3710 new_smi->io_cleanup(new_smi);
3711 new_smi->io_cleanup = NULL;
3714 if (new_smi->dev_registered) {
3715 platform_device_unregister(new_smi->pdev);
3716 new_smi->dev_registered = false;
3719 return rv;
3722 static int init_ipmi_si(void)
3724 int i;
3725 char *str;
3726 int rv;
3727 struct smi_info *e;
3728 enum ipmi_addr_src type = SI_INVALID;
3730 if (initialized)
3731 return 0;
3732 initialized = 1;
3734 if (si_tryplatform) {
3735 rv = platform_driver_register(&ipmi_driver);
3736 if (rv) {
3737 printk(KERN_ERR PFX "Unable to register "
3738 "driver: %d\n", rv);
3739 return rv;
3743 /* Parse out the si_type string into its components. */
3744 str = si_type_str;
3745 if (*str != '\0') {
3746 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3747 si_type[i] = str;
3748 str = strchr(str, ',');
3749 if (str) {
3750 *str = '\0';
3751 str++;
3752 } else {
3753 break;
3758 printk(KERN_INFO "IPMI System Interface driver.\n");
3760 /* If the user gave us a device, they presumably want us to use it */
3761 if (!hardcode_find_bmc())
3762 return 0;
3764 #ifdef CONFIG_PCI
3765 if (si_trypci) {
3766 rv = pci_register_driver(&ipmi_pci_driver);
3767 if (rv)
3768 printk(KERN_ERR PFX "Unable to register "
3769 "PCI driver: %d\n", rv);
3770 else
3771 pci_registered = true;
3773 #endif
3775 #ifdef CONFIG_DMI
3776 if (si_trydmi)
3777 dmi_find_bmc();
3778 #endif
3780 #ifdef CONFIG_ACPI
3781 if (si_tryacpi)
3782 spmi_find_bmc();
3783 #endif
3785 #ifdef CONFIG_PARISC
3786 register_parisc_driver(&ipmi_parisc_driver);
3787 parisc_registered = true;
3788 #endif
3790 /* We prefer devices with interrupts, but in the case of a machine
3791 with multiple BMCs we assume that there will be several instances
3792 of a given type so if we succeed in registering a type then also
3793 try to register everything else of the same type */
3795 mutex_lock(&smi_infos_lock);
3796 list_for_each_entry(e, &smi_infos, link) {
3797 /* Try to register a device if it has an IRQ and we either
3798 haven't successfully registered a device yet or this
3799 device has the same type as one we successfully registered */
3800 if (e->irq && (!type || e->addr_source == type)) {
3801 if (!try_smi_init(e)) {
3802 type = e->addr_source;
3807 /* type will only have been set if we successfully registered an si */
3808 if (type) {
3809 mutex_unlock(&smi_infos_lock);
3810 return 0;
3813 /* Fall back to the preferred device */
3815 list_for_each_entry(e, &smi_infos, link) {
3816 if (!e->irq && (!type || e->addr_source == type)) {
3817 if (!try_smi_init(e)) {
3818 type = e->addr_source;
3822 mutex_unlock(&smi_infos_lock);
3824 if (type)
3825 return 0;
3827 mutex_lock(&smi_infos_lock);
3828 if (unload_when_empty && list_empty(&smi_infos)) {
3829 mutex_unlock(&smi_infos_lock);
3830 cleanup_ipmi_si();
3831 printk(KERN_WARNING PFX
3832 "Unable to find any System Interface(s)\n");
3833 return -ENODEV;
3834 } else {
3835 mutex_unlock(&smi_infos_lock);
3836 return 0;
3839 module_init(init_ipmi_si);
3841 static void cleanup_one_si(struct smi_info *to_clean)
3843 int rv = 0;
3845 if (!to_clean)
3846 return;
3848 if (to_clean->intf) {
3849 ipmi_smi_t intf = to_clean->intf;
3851 to_clean->intf = NULL;
3852 rv = ipmi_unregister_smi(intf);
3853 if (rv) {
3854 pr_err(PFX "Unable to unregister device: errno=%d\n",
3855 rv);
3859 if (to_clean->dev)
3860 dev_set_drvdata(to_clean->dev, NULL);
3862 list_del(&to_clean->link);
3865 * Make sure that interrupts, the timer and the thread are
3866 * stopped and will not run again.
3868 if (to_clean->irq_cleanup)
3869 to_clean->irq_cleanup(to_clean);
3870 stop_timer_and_thread(to_clean);
3873 * Timeouts are stopped, now make sure the interrupts are off
3874 * in the BMC. Note that timers and CPU interrupts are off,
3875 * so no need for locks.
3877 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3878 poll(to_clean);
3879 schedule_timeout_uninterruptible(1);
3881 disable_si_irq(to_clean);
3882 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3883 poll(to_clean);
3884 schedule_timeout_uninterruptible(1);
3887 if (to_clean->handlers)
3888 to_clean->handlers->cleanup(to_clean->si_sm);
3890 kfree(to_clean->si_sm);
3892 if (to_clean->addr_source_cleanup)
3893 to_clean->addr_source_cleanup(to_clean);
3894 if (to_clean->io_cleanup)
3895 to_clean->io_cleanup(to_clean);
3897 if (to_clean->dev_registered)
3898 platform_device_unregister(to_clean->pdev);
3900 kfree(to_clean);
3903 static void cleanup_ipmi_si(void)
3905 struct smi_info *e, *tmp_e;
3907 if (!initialized)
3908 return;
3910 #ifdef CONFIG_PCI
3911 if (pci_registered)
3912 pci_unregister_driver(&ipmi_pci_driver);
3913 #endif
3914 #ifdef CONFIG_PARISC
3915 if (parisc_registered)
3916 unregister_parisc_driver(&ipmi_parisc_driver);
3917 #endif
3919 platform_driver_unregister(&ipmi_driver);
3921 mutex_lock(&smi_infos_lock);
3922 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3923 cleanup_one_si(e);
3924 mutex_unlock(&smi_infos_lock);
3926 module_exit(cleanup_ipmi_si);
3928 MODULE_LICENSE("GPL");
3929 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3930 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3931 " system interfaces.");