4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
78 #define PFX "ipmi_si: "
80 /* Measure times between events in the driver. */
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107 SI_KCS
, SI_SMIC
, SI_BT
110 static const char * const si_to_str
[] = { "kcs", "smic", "bt" };
112 #define DEVICE_NAME "ipmi_si"
114 static struct platform_driver ipmi_driver
;
117 * Indexes into stats[] in smi_info below.
119 enum si_stat_indexes
{
121 * Number of times the driver requested a timer while an operation
124 SI_STAT_short_timeouts
= 0,
127 * Number of times the driver requested a timer while nothing was in
130 SI_STAT_long_timeouts
,
132 /* Number of times the interface was idle while being polled. */
135 /* Number of interrupts the driver handled. */
138 /* Number of time the driver got an ATTN from the hardware. */
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches
,
144 /* Number of times the hardware didn't follow the state machine. */
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions
,
150 /* Number of IPMI events received from the hardware. */
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts
,
156 /* Number of asynchronous messages received. */
157 SI_STAT_incoming_messages
,
160 /* This *must* remain last, add new values above this. */
167 struct si_sm_data
*si_sm
;
168 const struct si_sm_handlers
*handlers
;
169 enum si_type si_type
;
171 struct ipmi_smi_msg
*waiting_msg
;
172 struct ipmi_smi_msg
*curr_msg
;
173 enum si_intf_state si_state
;
176 * Used to handle the various types of I/O that can occur with
180 int (*io_setup
)(struct smi_info
*info
);
181 void (*io_cleanup
)(struct smi_info
*info
);
182 int (*irq_setup
)(struct smi_info
*info
);
183 void (*irq_cleanup
)(struct smi_info
*info
);
184 unsigned int io_size
;
185 enum ipmi_addr_src addr_source
; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 void (*addr_source_cleanup
)(struct smi_info
*info
);
187 void *addr_source_data
;
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
194 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
201 #define RECEIVE_MSG_AVAIL 0x01
202 #define EVENT_MSG_BUFFER_FULL 0x02
203 #define WDT_PRE_TIMEOUT_INT 0x08
204 #define OEM0_DATA_AVAIL 0x20
205 #define OEM1_DATA_AVAIL 0x40
206 #define OEM2_DATA_AVAIL 0x80
207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
210 unsigned char msg_flags
;
212 /* Does the BMC have an event buffer? */
213 bool has_event_buffer
;
216 * If set to true, this will request events the next time the
217 * state machine is idle.
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
226 bool run_to_completion
;
228 /* The I/O port of an SI interface. */
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
236 unsigned int spacing
;
238 /* zero if no irq; */
241 /* The timer for this si. */
242 struct timer_list si_timer
;
244 /* This flag is set, if the timer can be set */
245 bool timer_can_start
;
247 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
250 /* The time (in jiffies) the last timeout occurred at. */
251 unsigned long last_timeout_jiffies
;
253 /* Are we waiting for the events, pretimeouts, received msgs? */
257 * The driver will disable interrupts when it gets into a
258 * situation where it cannot handle messages due to lack of
259 * memory. Once that situation clears up, it will re-enable
262 bool interrupt_disabled
;
265 * Does the BMC support events?
267 bool supports_event_msg_buff
;
270 * Can we disable interrupts the global enables receive irq
271 * bit? There are currently two forms of brokenness, some
272 * systems cannot disable the bit (which is technically within
273 * the spec but a bad idea) and some systems have the bit
274 * forced to zero even though interrupts work (which is
275 * clearly outside the spec). The next bool tells which form
276 * of brokenness is present.
278 bool cannot_disable_irq
;
281 * Some systems are broken and cannot set the irq enable
282 * bit, even if they support interrupts.
284 bool irq_enable_broken
;
287 * Did we get an attention that we did not handle?
291 /* From the get device id response... */
292 struct ipmi_device_id device_id
;
294 /* Driver model stuff. */
296 struct platform_device
*pdev
;
299 * True if we allocated the device, false if it came from
300 * someplace else (like PCI).
304 /* Slave address, could be reported from DMI. */
305 unsigned char slave_addr
;
307 /* Counters and things for the proc filesystem. */
308 atomic_t stats
[SI_NUM_STATS
];
310 struct task_struct
*thread
;
312 struct list_head link
;
313 union ipmi_smi_info_union addr_info
;
316 #define smi_inc_stat(smi, stat) \
317 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
318 #define smi_get_stat(smi, stat) \
319 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
321 #define SI_MAX_PARMS 4
323 static int force_kipmid
[SI_MAX_PARMS
];
324 static int num_force_kipmid
;
326 static bool pci_registered
;
329 static bool parisc_registered
;
332 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
333 static int num_max_busy_us
;
335 static bool unload_when_empty
= true;
337 static int add_smi(struct smi_info
*smi
);
338 static int try_smi_init(struct smi_info
*smi
);
339 static void cleanup_one_si(struct smi_info
*to_clean
);
340 static void cleanup_ipmi_si(void);
343 void debug_timestamp(char *msg
)
347 getnstimeofday64(&t
);
348 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
351 #define debug_timestamp(x)
354 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
355 static int register_xaction_notifier(struct notifier_block
*nb
)
357 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
360 static void deliver_recv_msg(struct smi_info
*smi_info
,
361 struct ipmi_smi_msg
*msg
)
363 /* Deliver the message to the upper layer. */
365 ipmi_smi_msg_received(smi_info
->intf
, msg
);
367 ipmi_free_smi_msg(msg
);
370 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
372 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
374 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
375 cCode
= IPMI_ERR_UNSPECIFIED
;
376 /* else use it as is */
378 /* Make it a response */
379 msg
->rsp
[0] = msg
->data
[0] | 4;
380 msg
->rsp
[1] = msg
->data
[1];
384 smi_info
->curr_msg
= NULL
;
385 deliver_recv_msg(smi_info
, msg
);
388 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
392 if (!smi_info
->waiting_msg
) {
393 smi_info
->curr_msg
= NULL
;
398 smi_info
->curr_msg
= smi_info
->waiting_msg
;
399 smi_info
->waiting_msg
= NULL
;
400 debug_timestamp("Start2");
401 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
403 if (err
& NOTIFY_STOP_MASK
) {
404 rv
= SI_SM_CALL_WITHOUT_DELAY
;
407 err
= smi_info
->handlers
->start_transaction(
409 smi_info
->curr_msg
->data
,
410 smi_info
->curr_msg
->data_size
);
412 return_hosed_msg(smi_info
, err
);
414 rv
= SI_SM_CALL_WITHOUT_DELAY
;
420 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
422 if (!smi_info
->timer_can_start
)
424 smi_info
->last_timeout_jiffies
= jiffies
;
425 mod_timer(&smi_info
->si_timer
, new_val
);
426 smi_info
->timer_running
= true;
430 * Start a new message and (re)start the timer and thread.
432 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
435 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
437 if (smi_info
->thread
)
438 wake_up_process(smi_info
->thread
);
440 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
443 static void start_check_enables(struct smi_info
*smi_info
)
445 unsigned char msg
[2];
447 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
448 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
450 start_new_msg(smi_info
, msg
, 2);
451 smi_info
->si_state
= SI_CHECKING_ENABLES
;
454 static void start_clear_flags(struct smi_info
*smi_info
)
456 unsigned char msg
[3];
458 /* Make sure the watchdog pre-timeout flag is not set at startup. */
459 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
460 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
461 msg
[2] = WDT_PRE_TIMEOUT_INT
;
463 start_new_msg(smi_info
, msg
, 3);
464 smi_info
->si_state
= SI_CLEARING_FLAGS
;
467 static void start_getting_msg_queue(struct smi_info
*smi_info
)
469 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
470 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
471 smi_info
->curr_msg
->data_size
= 2;
473 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
474 smi_info
->curr_msg
->data_size
);
475 smi_info
->si_state
= SI_GETTING_MESSAGES
;
478 static void start_getting_events(struct smi_info
*smi_info
)
480 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
481 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
482 smi_info
->curr_msg
->data_size
= 2;
484 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
485 smi_info
->curr_msg
->data_size
);
486 smi_info
->si_state
= SI_GETTING_EVENTS
;
490 * When we have a situtaion where we run out of memory and cannot
491 * allocate messages, we just leave them in the BMC and run the system
492 * polled until we can allocate some memory. Once we have some
493 * memory, we will re-enable the interrupt.
495 * Note that we cannot just use disable_irq(), since the interrupt may
498 static inline bool disable_si_irq(struct smi_info
*smi_info
)
500 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
501 smi_info
->interrupt_disabled
= true;
502 start_check_enables(smi_info
);
508 static inline bool enable_si_irq(struct smi_info
*smi_info
)
510 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
511 smi_info
->interrupt_disabled
= false;
512 start_check_enables(smi_info
);
519 * Allocate a message. If unable to allocate, start the interrupt
520 * disable process and return NULL. If able to allocate but
521 * interrupts are disabled, free the message and return NULL after
522 * starting the interrupt enable process.
524 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
526 struct ipmi_smi_msg
*msg
;
528 msg
= ipmi_alloc_smi_msg();
530 if (!disable_si_irq(smi_info
))
531 smi_info
->si_state
= SI_NORMAL
;
532 } else if (enable_si_irq(smi_info
)) {
533 ipmi_free_smi_msg(msg
);
539 static void handle_flags(struct smi_info
*smi_info
)
542 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
543 /* Watchdog pre-timeout */
544 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
546 start_clear_flags(smi_info
);
547 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
549 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
550 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
551 /* Messages available. */
552 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
553 if (!smi_info
->curr_msg
)
556 start_getting_msg_queue(smi_info
);
557 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
558 /* Events available. */
559 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
560 if (!smi_info
->curr_msg
)
563 start_getting_events(smi_info
);
564 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
565 smi_info
->oem_data_avail_handler
) {
566 if (smi_info
->oem_data_avail_handler(smi_info
))
569 smi_info
->si_state
= SI_NORMAL
;
573 * Global enables we care about.
575 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
576 IPMI_BMC_EVT_MSG_INTR)
578 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
583 if (smi_info
->supports_event_msg_buff
)
584 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
586 if (((smi_info
->irq
&& !smi_info
->interrupt_disabled
) ||
587 smi_info
->cannot_disable_irq
) &&
588 !smi_info
->irq_enable_broken
)
589 enables
|= IPMI_BMC_RCV_MSG_INTR
;
591 if (smi_info
->supports_event_msg_buff
&&
592 smi_info
->irq
&& !smi_info
->interrupt_disabled
&&
593 !smi_info
->irq_enable_broken
)
594 enables
|= IPMI_BMC_EVT_MSG_INTR
;
596 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
601 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
603 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
605 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
607 if ((bool)irqstate
== irq_on
)
611 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
612 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
614 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
617 static void handle_transaction_done(struct smi_info
*smi_info
)
619 struct ipmi_smi_msg
*msg
;
621 debug_timestamp("Done");
622 switch (smi_info
->si_state
) {
624 if (!smi_info
->curr_msg
)
627 smi_info
->curr_msg
->rsp_size
628 = smi_info
->handlers
->get_result(
630 smi_info
->curr_msg
->rsp
,
631 IPMI_MAX_MSG_LENGTH
);
634 * Do this here becase deliver_recv_msg() releases the
635 * lock, and a new message can be put in during the
636 * time the lock is released.
638 msg
= smi_info
->curr_msg
;
639 smi_info
->curr_msg
= NULL
;
640 deliver_recv_msg(smi_info
, msg
);
643 case SI_GETTING_FLAGS
:
645 unsigned char msg
[4];
648 /* We got the flags from the SMI, now handle them. */
649 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
651 /* Error fetching flags, just give up for now. */
652 smi_info
->si_state
= SI_NORMAL
;
653 } else if (len
< 4) {
655 * Hmm, no flags. That's technically illegal, but
656 * don't use uninitialized data.
658 smi_info
->si_state
= SI_NORMAL
;
660 smi_info
->msg_flags
= msg
[3];
661 handle_flags(smi_info
);
666 case SI_CLEARING_FLAGS
:
668 unsigned char msg
[3];
670 /* We cleared the flags. */
671 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
673 /* Error clearing flags */
674 dev_warn(smi_info
->dev
,
675 "Error clearing flags: %2.2x\n", msg
[2]);
677 smi_info
->si_state
= SI_NORMAL
;
681 case SI_GETTING_EVENTS
:
683 smi_info
->curr_msg
->rsp_size
684 = smi_info
->handlers
->get_result(
686 smi_info
->curr_msg
->rsp
,
687 IPMI_MAX_MSG_LENGTH
);
690 * Do this here becase deliver_recv_msg() releases the
691 * lock, and a new message can be put in during the
692 * time the lock is released.
694 msg
= smi_info
->curr_msg
;
695 smi_info
->curr_msg
= NULL
;
696 if (msg
->rsp
[2] != 0) {
697 /* Error getting event, probably done. */
700 /* Take off the event flag. */
701 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
702 handle_flags(smi_info
);
704 smi_inc_stat(smi_info
, events
);
707 * Do this before we deliver the message
708 * because delivering the message releases the
709 * lock and something else can mess with the
712 handle_flags(smi_info
);
714 deliver_recv_msg(smi_info
, msg
);
719 case SI_GETTING_MESSAGES
:
721 smi_info
->curr_msg
->rsp_size
722 = smi_info
->handlers
->get_result(
724 smi_info
->curr_msg
->rsp
,
725 IPMI_MAX_MSG_LENGTH
);
728 * Do this here becase deliver_recv_msg() releases the
729 * lock, and a new message can be put in during the
730 * time the lock is released.
732 msg
= smi_info
->curr_msg
;
733 smi_info
->curr_msg
= NULL
;
734 if (msg
->rsp
[2] != 0) {
735 /* Error getting event, probably done. */
738 /* Take off the msg flag. */
739 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
740 handle_flags(smi_info
);
742 smi_inc_stat(smi_info
, incoming_messages
);
745 * Do this before we deliver the message
746 * because delivering the message releases the
747 * lock and something else can mess with the
750 handle_flags(smi_info
);
752 deliver_recv_msg(smi_info
, msg
);
757 case SI_CHECKING_ENABLES
:
759 unsigned char msg
[4];
763 /* We got the flags from the SMI, now handle them. */
764 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
766 dev_warn(smi_info
->dev
,
767 "Couldn't get irq info: %x.\n", msg
[2]);
768 dev_warn(smi_info
->dev
,
769 "Maybe ok, but ipmi might run very slowly.\n");
770 smi_info
->si_state
= SI_NORMAL
;
773 enables
= current_global_enables(smi_info
, 0, &irq_on
);
774 if (smi_info
->si_type
== SI_BT
)
775 /* BT has its own interrupt enable bit. */
776 check_bt_irq(smi_info
, irq_on
);
777 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
778 /* Enables are not correct, fix them. */
779 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
780 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
781 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
782 smi_info
->handlers
->start_transaction(
783 smi_info
->si_sm
, msg
, 3);
784 smi_info
->si_state
= SI_SETTING_ENABLES
;
785 } else if (smi_info
->supports_event_msg_buff
) {
786 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
787 if (!smi_info
->curr_msg
) {
788 smi_info
->si_state
= SI_NORMAL
;
791 start_getting_msg_queue(smi_info
);
793 smi_info
->si_state
= SI_NORMAL
;
798 case SI_SETTING_ENABLES
:
800 unsigned char msg
[4];
802 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
804 dev_warn(smi_info
->dev
,
805 "Could not set the global enables: 0x%x.\n",
808 if (smi_info
->supports_event_msg_buff
) {
809 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
810 if (!smi_info
->curr_msg
) {
811 smi_info
->si_state
= SI_NORMAL
;
814 start_getting_msg_queue(smi_info
);
816 smi_info
->si_state
= SI_NORMAL
;
824 * Called on timeouts and events. Timeouts should pass the elapsed
825 * time, interrupts should pass in zero. Must be called with
826 * si_lock held and interrupts disabled.
828 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
831 enum si_sm_result si_sm_result
;
835 * There used to be a loop here that waited a little while
836 * (around 25us) before giving up. That turned out to be
837 * pointless, the minimum delays I was seeing were in the 300us
838 * range, which is far too long to wait in an interrupt. So
839 * we just run until the state machine tells us something
840 * happened or it needs a delay.
842 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
844 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
845 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
847 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
848 smi_inc_stat(smi_info
, complete_transactions
);
850 handle_transaction_done(smi_info
);
852 } else if (si_sm_result
== SI_SM_HOSED
) {
853 smi_inc_stat(smi_info
, hosed_count
);
856 * Do the before return_hosed_msg, because that
859 smi_info
->si_state
= SI_NORMAL
;
860 if (smi_info
->curr_msg
!= NULL
) {
862 * If we were handling a user message, format
863 * a response to send to the upper layer to
864 * tell it about the error.
866 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
872 * We prefer handling attn over new messages. But don't do
873 * this if there is not yet an upper layer to handle anything.
875 if (likely(smi_info
->intf
) &&
876 (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
)) {
877 unsigned char msg
[2];
879 if (smi_info
->si_state
!= SI_NORMAL
) {
881 * We got an ATTN, but we are doing something else.
882 * Handle the ATTN later.
884 smi_info
->got_attn
= true;
886 smi_info
->got_attn
= false;
887 smi_inc_stat(smi_info
, attentions
);
890 * Got a attn, send down a get message flags to see
891 * what's causing it. It would be better to handle
892 * this in the upper layer, but due to the way
893 * interrupts work with the SMI, that's not really
896 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
897 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
899 start_new_msg(smi_info
, msg
, 2);
900 smi_info
->si_state
= SI_GETTING_FLAGS
;
905 /* If we are currently idle, try to start the next message. */
906 if (si_sm_result
== SI_SM_IDLE
) {
907 smi_inc_stat(smi_info
, idles
);
909 si_sm_result
= start_next_msg(smi_info
);
910 if (si_sm_result
!= SI_SM_IDLE
)
914 if ((si_sm_result
== SI_SM_IDLE
)
915 && (atomic_read(&smi_info
->req_events
))) {
917 * We are idle and the upper layer requested that I fetch
920 atomic_set(&smi_info
->req_events
, 0);
923 * Take this opportunity to check the interrupt and
924 * message enable state for the BMC. The BMC can be
925 * asynchronously reset, and may thus get interrupts
926 * disable and messages disabled.
928 if (smi_info
->supports_event_msg_buff
|| smi_info
->irq
) {
929 start_check_enables(smi_info
);
931 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
932 if (!smi_info
->curr_msg
)
935 start_getting_events(smi_info
);
940 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
941 /* Ok it if fails, the timer will just go off. */
942 if (del_timer(&smi_info
->si_timer
))
943 smi_info
->timer_running
= false;
950 static void check_start_timer_thread(struct smi_info
*smi_info
)
952 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
953 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
955 if (smi_info
->thread
)
956 wake_up_process(smi_info
->thread
);
958 start_next_msg(smi_info
);
959 smi_event_handler(smi_info
, 0);
963 static void flush_messages(void *send_info
)
965 struct smi_info
*smi_info
= send_info
;
966 enum si_sm_result result
;
969 * Currently, this function is called only in run-to-completion
970 * mode. This means we are single-threaded, no need for locks.
972 result
= smi_event_handler(smi_info
, 0);
973 while (result
!= SI_SM_IDLE
) {
974 udelay(SI_SHORT_TIMEOUT_USEC
);
975 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
979 static void sender(void *send_info
,
980 struct ipmi_smi_msg
*msg
)
982 struct smi_info
*smi_info
= send_info
;
985 debug_timestamp("Enqueue");
987 if (smi_info
->run_to_completion
) {
989 * If we are running to completion, start it. Upper
990 * layer will call flush_messages to clear it out.
992 smi_info
->waiting_msg
= msg
;
996 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
998 * The following two lines don't need to be under the lock for
999 * the lock's sake, but they do need SMP memory barriers to
1000 * avoid getting things out of order. We are already claiming
1001 * the lock, anyway, so just do it under the lock to avoid the
1004 BUG_ON(smi_info
->waiting_msg
);
1005 smi_info
->waiting_msg
= msg
;
1006 check_start_timer_thread(smi_info
);
1007 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1010 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
1012 struct smi_info
*smi_info
= send_info
;
1014 smi_info
->run_to_completion
= i_run_to_completion
;
1015 if (i_run_to_completion
)
1016 flush_messages(smi_info
);
1020 * Use -1 in the nsec value of the busy waiting timespec to tell that
1021 * we are spinning in kipmid looking for something and not delaying
1024 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
1028 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
1030 return ts
->tv_nsec
!= -1;
1033 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
1034 const struct smi_info
*smi_info
,
1035 struct timespec64
*busy_until
)
1037 unsigned int max_busy_us
= 0;
1039 if (smi_info
->intf_num
< num_max_busy_us
)
1040 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
1041 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
1042 ipmi_si_set_not_busy(busy_until
);
1043 else if (!ipmi_si_is_busy(busy_until
)) {
1044 getnstimeofday64(busy_until
);
1045 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
1047 struct timespec64 now
;
1049 getnstimeofday64(&now
);
1050 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
1051 ipmi_si_set_not_busy(busy_until
);
1060 * A busy-waiting loop for speeding up IPMI operation.
1062 * Lousy hardware makes this hard. This is only enabled for systems
1063 * that are not BT and do not have interrupts. It starts spinning
1064 * when an operation is complete or until max_busy tells it to stop
1065 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1066 * Documentation/IPMI.txt for details.
1068 static int ipmi_thread(void *data
)
1070 struct smi_info
*smi_info
= data
;
1071 unsigned long flags
;
1072 enum si_sm_result smi_result
;
1073 struct timespec64 busy_until
;
1075 ipmi_si_set_not_busy(&busy_until
);
1076 set_user_nice(current
, MAX_NICE
);
1077 while (!kthread_should_stop()) {
1080 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1081 smi_result
= smi_event_handler(smi_info
, 0);
1084 * If the driver is doing something, there is a possible
1085 * race with the timer. If the timer handler see idle,
1086 * and the thread here sees something else, the timer
1087 * handler won't restart the timer even though it is
1088 * required. So start it here if necessary.
1090 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1091 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1093 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1094 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1096 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1098 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1100 else if (smi_result
== SI_SM_IDLE
) {
1101 if (atomic_read(&smi_info
->need_watch
)) {
1102 schedule_timeout_interruptible(100);
1104 /* Wait to be woken up when we are needed. */
1105 __set_current_state(TASK_INTERRUPTIBLE
);
1109 schedule_timeout_interruptible(1);
1115 static void poll(void *send_info
)
1117 struct smi_info
*smi_info
= send_info
;
1118 unsigned long flags
= 0;
1119 bool run_to_completion
= smi_info
->run_to_completion
;
1122 * Make sure there is some delay in the poll loop so we can
1123 * drive time forward and timeout things.
1126 if (!run_to_completion
)
1127 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1128 smi_event_handler(smi_info
, 10);
1129 if (!run_to_completion
)
1130 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1133 static void request_events(void *send_info
)
1135 struct smi_info
*smi_info
= send_info
;
1137 if (!smi_info
->has_event_buffer
)
1140 atomic_set(&smi_info
->req_events
, 1);
1143 static void set_need_watch(void *send_info
, bool enable
)
1145 struct smi_info
*smi_info
= send_info
;
1146 unsigned long flags
;
1148 atomic_set(&smi_info
->need_watch
, enable
);
1149 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1150 check_start_timer_thread(smi_info
);
1151 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1154 static int initialized
;
1156 static void smi_timeout(unsigned long data
)
1158 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1159 enum si_sm_result smi_result
;
1160 unsigned long flags
;
1161 unsigned long jiffies_now
;
1165 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1166 debug_timestamp("Timer");
1168 jiffies_now
= jiffies
;
1169 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1170 * SI_USEC_PER_JIFFY
);
1171 smi_result
= smi_event_handler(smi_info
, time_diff
);
1173 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1174 /* Running with interrupts, only do long timeouts. */
1175 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1176 smi_inc_stat(smi_info
, long_timeouts
);
1181 * If the state machine asks for a short delay, then shorten
1182 * the timer timeout.
1184 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1185 smi_inc_stat(smi_info
, short_timeouts
);
1186 timeout
= jiffies
+ 1;
1188 smi_inc_stat(smi_info
, long_timeouts
);
1189 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1193 if (smi_result
!= SI_SM_IDLE
)
1194 smi_mod_timer(smi_info
, timeout
);
1196 smi_info
->timer_running
= false;
1197 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1200 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1202 struct smi_info
*smi_info
= data
;
1203 unsigned long flags
;
1205 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1207 smi_inc_stat(smi_info
, interrupts
);
1209 debug_timestamp("Interrupt");
1211 smi_event_handler(smi_info
, 0);
1212 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1216 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1218 struct smi_info
*smi_info
= data
;
1219 /* We need to clear the IRQ flag for the BT interface. */
1220 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1221 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1222 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1223 return si_irq_handler(irq
, data
);
1226 static int smi_start_processing(void *send_info
,
1229 struct smi_info
*new_smi
= send_info
;
1232 new_smi
->intf
= intf
;
1234 /* Set up the timer that drives the interface. */
1235 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1236 new_smi
->timer_can_start
= true;
1237 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1239 /* Try to claim any interrupts. */
1240 if (new_smi
->irq_setup
)
1241 new_smi
->irq_setup(new_smi
);
1244 * Check if the user forcefully enabled the daemon.
1246 if (new_smi
->intf_num
< num_force_kipmid
)
1247 enable
= force_kipmid
[new_smi
->intf_num
];
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1252 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1256 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1257 "kipmi%d", new_smi
->intf_num
);
1258 if (IS_ERR(new_smi
->thread
)) {
1259 dev_notice(new_smi
->dev
, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi
->thread
));
1263 new_smi
->thread
= NULL
;
1270 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1272 struct smi_info
*smi
= send_info
;
1274 data
->addr_src
= smi
->addr_source
;
1275 data
->dev
= smi
->dev
;
1276 data
->addr_info
= smi
->addr_info
;
1277 get_device(smi
->dev
);
1282 static void set_maintenance_mode(void *send_info
, bool enable
)
1284 struct smi_info
*smi_info
= send_info
;
1287 atomic_set(&smi_info
->req_events
, 0);
1290 static const struct ipmi_smi_handlers handlers
= {
1291 .owner
= THIS_MODULE
,
1292 .start_processing
= smi_start_processing
,
1293 .get_smi_info
= get_smi_info
,
1295 .request_events
= request_events
,
1296 .set_need_watch
= set_need_watch
,
1297 .set_maintenance_mode
= set_maintenance_mode
,
1298 .set_run_to_completion
= set_run_to_completion
,
1299 .flush_messages
= flush_messages
,
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1308 static LIST_HEAD(smi_infos
);
1309 static DEFINE_MUTEX(smi_infos_lock
);
1310 static int smi_num
; /* Used to sequence the SMIs */
1312 #define DEFAULT_REGSPACING 1
1313 #define DEFAULT_REGSIZE 1
1316 static bool si_tryacpi
= true;
1319 static bool si_trydmi
= true;
1321 static bool si_tryplatform
= true;
1323 static bool si_trypci
= true;
1325 static char *si_type
[SI_MAX_PARMS
];
1326 #define MAX_SI_TYPE_STR 30
1327 static char si_type_str
[MAX_SI_TYPE_STR
];
1328 static unsigned long addrs
[SI_MAX_PARMS
];
1329 static unsigned int num_addrs
;
1330 static unsigned int ports
[SI_MAX_PARMS
];
1331 static unsigned int num_ports
;
1332 static int irqs
[SI_MAX_PARMS
];
1333 static unsigned int num_irqs
;
1334 static int regspacings
[SI_MAX_PARMS
];
1335 static unsigned int num_regspacings
;
1336 static int regsizes
[SI_MAX_PARMS
];
1337 static unsigned int num_regsizes
;
1338 static int regshifts
[SI_MAX_PARMS
];
1339 static unsigned int num_regshifts
;
1340 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs
;
1343 #define IPMI_IO_ADDR_SPACE 0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1347 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1349 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1350 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1351 " Documentation/IPMI.txt in the kernel sources for the"
1355 module_param_named(tryacpi
, si_tryacpi
, bool, 0);
1356 MODULE_PARM_DESC(tryacpi
, "Setting this to zero will disable the"
1357 " default scan of the interfaces identified via ACPI");
1360 module_param_named(trydmi
, si_trydmi
, bool, 0);
1361 MODULE_PARM_DESC(trydmi
, "Setting this to zero will disable the"
1362 " default scan of the interfaces identified via DMI");
1364 module_param_named(tryplatform
, si_tryplatform
, bool, 0);
1365 MODULE_PARM_DESC(tryplatform
, "Setting this to zero will disable the"
1366 " default scan of the interfaces identified via platform"
1367 " interfaces like openfirmware");
1369 module_param_named(trypci
, si_trypci
, bool, 0);
1370 MODULE_PARM_DESC(trypci
, "Setting this to zero will disable the"
1371 " default scan of the interfaces identified via pci");
1373 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1374 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1375 " interface separated by commas. The types are 'kcs',"
1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1377 " the first interface to kcs and the second to bt");
1378 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1379 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1380 " addresses separated by commas. Only use if an interface"
1381 " is in memory. Otherwise, set it to zero or leave"
1383 module_param_array(ports
, uint
, &num_ports
, 0);
1384 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is a port. Otherwise, set it to zero or leave"
1388 module_param_array(irqs
, int, &num_irqs
, 0);
1389 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " has an interrupt. Otherwise, set it to zero or leave"
1393 module_param_array(regspacings
, int, &num_regspacings
, 0);
1394 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1395 " and each successive register used by the interface. For"
1396 " instance, if the start address is 0xca2 and the spacing"
1397 " is 2, then the second address is at 0xca4. Defaults"
1399 module_param_array(regsizes
, int, &num_regsizes
, 0);
1400 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1401 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1403 " the 8-bit IPMI register has to be read from a larger"
1405 module_param_array(regshifts
, int, &num_regshifts
, 0);
1406 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1407 " IPMI register, in bits. For instance, if the data"
1408 " is read from a 32-bit word and the IPMI data is in"
1409 " bit 8-15, then the shift would be 8");
1410 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1411 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1412 " the controller. Normally this is 0x20, but can be"
1413 " overridden by this parm. This is an array indexed"
1414 " by interface number.");
1415 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1416 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1417 " disabled(0). Normally the IPMI driver auto-detects"
1418 " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty
, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1421 " specified or found, default is 1. Setting to 0"
1422 " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us
,
1425 "Max time (in microseconds) to busy-wait for IPMI data before"
1426 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427 " if kipmid is using up a lot of CPU time.");
1430 static void std_irq_cleanup(struct smi_info
*info
)
1432 if (info
->si_type
== SI_BT
)
1433 /* Disable the interrupt in the BT interface. */
1434 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1435 free_irq(info
->irq
, info
);
1438 static int std_irq_setup(struct smi_info
*info
)
1445 if (info
->si_type
== SI_BT
) {
1446 rv
= request_irq(info
->irq
,
1452 /* Enable the interrupt in the BT interface. */
1453 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1456 rv
= request_irq(info
->irq
,
1462 dev_warn(info
->dev
, "%s unable to claim interrupt %d,"
1463 " running polled\n",
1464 DEVICE_NAME
, info
->irq
);
1467 info
->irq_cleanup
= std_irq_cleanup
;
1468 dev_info(info
->dev
, "Using irq %d\n", info
->irq
);
1474 static unsigned char port_inb(const struct si_sm_io
*io
, unsigned int offset
)
1476 unsigned int addr
= io
->addr_data
;
1478 return inb(addr
+ (offset
* io
->regspacing
));
1481 static void port_outb(const struct si_sm_io
*io
, unsigned int offset
,
1484 unsigned int addr
= io
->addr_data
;
1486 outb(b
, addr
+ (offset
* io
->regspacing
));
1489 static unsigned char port_inw(const struct si_sm_io
*io
, unsigned int offset
)
1491 unsigned int addr
= io
->addr_data
;
1493 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1496 static void port_outw(const struct si_sm_io
*io
, unsigned int offset
,
1499 unsigned int addr
= io
->addr_data
;
1501 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1504 static unsigned char port_inl(const struct si_sm_io
*io
, unsigned int offset
)
1506 unsigned int addr
= io
->addr_data
;
1508 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1511 static void port_outl(const struct si_sm_io
*io
, unsigned int offset
,
1514 unsigned int addr
= io
->addr_data
;
1516 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1519 static void port_cleanup(struct smi_info
*info
)
1521 unsigned int addr
= info
->io
.addr_data
;
1525 for (idx
= 0; idx
< info
->io_size
; idx
++)
1526 release_region(addr
+ idx
* info
->io
.regspacing
,
1531 static int port_setup(struct smi_info
*info
)
1533 unsigned int addr
= info
->io
.addr_data
;
1539 info
->io_cleanup
= port_cleanup
;
1542 * Figure out the actual inb/inw/inl/etc routine to use based
1543 * upon the register size.
1545 switch (info
->io
.regsize
) {
1547 info
->io
.inputb
= port_inb
;
1548 info
->io
.outputb
= port_outb
;
1551 info
->io
.inputb
= port_inw
;
1552 info
->io
.outputb
= port_outw
;
1555 info
->io
.inputb
= port_inl
;
1556 info
->io
.outputb
= port_outl
;
1559 dev_warn(info
->dev
, "Invalid register size: %d\n",
1565 * Some BIOSes reserve disjoint I/O regions in their ACPI
1566 * tables. This causes problems when trying to register the
1567 * entire I/O region. Therefore we must register each I/O
1570 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1571 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1572 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1573 /* Undo allocations */
1575 release_region(addr
+ idx
* info
->io
.regspacing
,
1583 static unsigned char intf_mem_inb(const struct si_sm_io
*io
,
1584 unsigned int offset
)
1586 return readb((io
->addr
)+(offset
* io
->regspacing
));
1589 static void intf_mem_outb(const struct si_sm_io
*io
, unsigned int offset
,
1592 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1595 static unsigned char intf_mem_inw(const struct si_sm_io
*io
,
1596 unsigned int offset
)
1598 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1602 static void intf_mem_outw(const struct si_sm_io
*io
, unsigned int offset
,
1605 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1608 static unsigned char intf_mem_inl(const struct si_sm_io
*io
,
1609 unsigned int offset
)
1611 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1615 static void intf_mem_outl(const struct si_sm_io
*io
, unsigned int offset
,
1618 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1622 static unsigned char mem_inq(const struct si_sm_io
*io
, unsigned int offset
)
1624 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1628 static void mem_outq(const struct si_sm_io
*io
, unsigned int offset
,
1631 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1635 static void mem_region_cleanup(struct smi_info
*info
, int num
)
1637 unsigned long addr
= info
->io
.addr_data
;
1640 for (idx
= 0; idx
< num
; idx
++)
1641 release_mem_region(addr
+ idx
* info
->io
.regspacing
,
1645 static void mem_cleanup(struct smi_info
*info
)
1647 if (info
->io
.addr
) {
1648 iounmap(info
->io
.addr
);
1649 mem_region_cleanup(info
, info
->io_size
);
1653 static int mem_setup(struct smi_info
*info
)
1655 unsigned long addr
= info
->io
.addr_data
;
1661 info
->io_cleanup
= mem_cleanup
;
1664 * Figure out the actual readb/readw/readl/etc routine to use based
1665 * upon the register size.
1667 switch (info
->io
.regsize
) {
1669 info
->io
.inputb
= intf_mem_inb
;
1670 info
->io
.outputb
= intf_mem_outb
;
1673 info
->io
.inputb
= intf_mem_inw
;
1674 info
->io
.outputb
= intf_mem_outw
;
1677 info
->io
.inputb
= intf_mem_inl
;
1678 info
->io
.outputb
= intf_mem_outl
;
1682 info
->io
.inputb
= mem_inq
;
1683 info
->io
.outputb
= mem_outq
;
1687 dev_warn(info
->dev
, "Invalid register size: %d\n",
1693 * Some BIOSes reserve disjoint memory regions in their ACPI
1694 * tables. This causes problems when trying to request the
1695 * entire region. Therefore we must request each register
1698 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1699 if (request_mem_region(addr
+ idx
* info
->io
.regspacing
,
1700 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1701 /* Undo allocations */
1702 mem_region_cleanup(info
, idx
);
1708 * Calculate the total amount of memory to claim. This is an
1709 * unusual looking calculation, but it avoids claiming any
1710 * more memory than it has to. It will claim everything
1711 * between the first address to the end of the last full
1714 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1715 - (info
->io
.regspacing
- info
->io
.regsize
));
1716 info
->io
.addr
= ioremap(addr
, mapsize
);
1717 if (info
->io
.addr
== NULL
) {
1718 mem_region_cleanup(info
, info
->io_size
);
1725 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1734 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1735 struct hotmod_vals
{
1740 static const struct hotmod_vals hotmod_ops
[] = {
1742 { "remove", HM_REMOVE
},
1746 static const struct hotmod_vals hotmod_si
[] = {
1748 { "smic", SI_SMIC
},
1753 static const struct hotmod_vals hotmod_as
[] = {
1754 { "mem", IPMI_MEM_ADDR_SPACE
},
1755 { "i/o", IPMI_IO_ADDR_SPACE
},
1759 static int parse_str(const struct hotmod_vals
*v
, int *val
, char *name
,
1765 s
= strchr(*curr
, ',');
1767 printk(KERN_WARNING PFX
"No hotmod %s given.\n", name
);
1772 for (i
= 0; v
[i
].name
; i
++) {
1773 if (strcmp(*curr
, v
[i
].name
) == 0) {
1780 printk(KERN_WARNING PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1784 static int check_hotmod_int_op(const char *curr
, const char *option
,
1785 const char *name
, int *val
)
1789 if (strcmp(curr
, name
) == 0) {
1791 printk(KERN_WARNING PFX
1792 "No option given for '%s'\n",
1796 *val
= simple_strtoul(option
, &n
, 0);
1797 if ((*n
!= '\0') || (*option
== '\0')) {
1798 printk(KERN_WARNING PFX
1799 "Bad option given for '%s'\n",
1808 static struct smi_info
*smi_info_alloc(void)
1810 struct smi_info
*info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1813 spin_lock_init(&info
->si_lock
);
1817 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1819 char *str
= kstrdup(val
, GFP_KERNEL
);
1821 char *next
, *curr
, *s
, *n
, *o
;
1823 enum si_type si_type
;
1833 struct smi_info
*info
;
1838 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1841 while ((ival
>= 0) && isspace(str
[ival
])) {
1846 for (curr
= str
; curr
; curr
= next
) {
1851 ipmb
= 0; /* Choose the default if not specified */
1853 next
= strchr(curr
, ':');
1859 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1864 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1869 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1873 s
= strchr(curr
, ',');
1878 addr
= simple_strtoul(curr
, &n
, 0);
1879 if ((*n
!= '\0') || (*curr
== '\0')) {
1880 printk(KERN_WARNING PFX
"Invalid hotmod address"
1887 s
= strchr(curr
, ',');
1892 o
= strchr(curr
, '=');
1897 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1902 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1907 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1912 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1917 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1924 printk(KERN_WARNING PFX
1925 "Invalid hotmod option '%s'\n",
1931 info
= smi_info_alloc();
1937 info
->addr_source
= SI_HOTMOD
;
1938 info
->si_type
= si_type
;
1939 info
->io
.addr_data
= addr
;
1940 info
->io
.addr_type
= addr_space
;
1941 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1942 info
->io_setup
= mem_setup
;
1944 info
->io_setup
= port_setup
;
1946 info
->io
.addr
= NULL
;
1947 info
->io
.regspacing
= regspacing
;
1948 if (!info
->io
.regspacing
)
1949 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1950 info
->io
.regsize
= regsize
;
1951 if (!info
->io
.regsize
)
1952 info
->io
.regsize
= DEFAULT_REGSPACING
;
1953 info
->io
.regshift
= regshift
;
1956 info
->irq_setup
= std_irq_setup
;
1957 info
->slave_addr
= ipmb
;
1964 rv
= try_smi_init(info
);
1966 cleanup_one_si(info
);
1971 struct smi_info
*e
, *tmp_e
;
1973 mutex_lock(&smi_infos_lock
);
1974 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1975 if (e
->io
.addr_type
!= addr_space
)
1977 if (e
->si_type
!= si_type
)
1979 if (e
->io
.addr_data
== addr
)
1982 mutex_unlock(&smi_infos_lock
);
1991 static int hardcode_find_bmc(void)
1995 struct smi_info
*info
;
1997 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1998 if (!ports
[i
] && !addrs
[i
])
2001 info
= smi_info_alloc();
2005 info
->addr_source
= SI_HARDCODED
;
2006 printk(KERN_INFO PFX
"probing via hardcoded address\n");
2008 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
2009 info
->si_type
= SI_KCS
;
2010 } else if (strcmp(si_type
[i
], "smic") == 0) {
2011 info
->si_type
= SI_SMIC
;
2012 } else if (strcmp(si_type
[i
], "bt") == 0) {
2013 info
->si_type
= SI_BT
;
2015 printk(KERN_WARNING PFX
"Interface type specified "
2016 "for interface %d, was invalid: %s\n",
2024 info
->io_setup
= port_setup
;
2025 info
->io
.addr_data
= ports
[i
];
2026 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2027 } else if (addrs
[i
]) {
2029 info
->io_setup
= mem_setup
;
2030 info
->io
.addr_data
= addrs
[i
];
2031 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2033 printk(KERN_WARNING PFX
"Interface type specified "
2034 "for interface %d, but port and address were "
2035 "not set or set to zero.\n", i
);
2040 info
->io
.addr
= NULL
;
2041 info
->io
.regspacing
= regspacings
[i
];
2042 if (!info
->io
.regspacing
)
2043 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2044 info
->io
.regsize
= regsizes
[i
];
2045 if (!info
->io
.regsize
)
2046 info
->io
.regsize
= DEFAULT_REGSPACING
;
2047 info
->io
.regshift
= regshifts
[i
];
2048 info
->irq
= irqs
[i
];
2050 info
->irq_setup
= std_irq_setup
;
2051 info
->slave_addr
= slave_addrs
[i
];
2053 if (!add_smi(info
)) {
2054 if (try_smi_init(info
))
2055 cleanup_one_si(info
);
2067 * Once we get an ACPI failure, we don't try any more, because we go
2068 * through the tables sequentially. Once we don't find a table, there
2071 static int acpi_failure
;
2073 /* For GPE-type interrupts. */
2074 static u32
ipmi_acpi_gpe(acpi_handle gpe_device
,
2075 u32 gpe_number
, void *context
)
2077 struct smi_info
*smi_info
= context
;
2078 unsigned long flags
;
2080 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
2082 smi_inc_stat(smi_info
, interrupts
);
2084 debug_timestamp("ACPI_GPE");
2086 smi_event_handler(smi_info
, 0);
2087 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
2089 return ACPI_INTERRUPT_HANDLED
;
2092 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
2097 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
2100 static int acpi_gpe_irq_setup(struct smi_info
*info
)
2107 status
= acpi_install_gpe_handler(NULL
,
2109 ACPI_GPE_LEVEL_TRIGGERED
,
2112 if (status
!= AE_OK
) {
2113 dev_warn(info
->dev
, "%s unable to claim ACPI GPE %d,"
2114 " running polled\n", DEVICE_NAME
, info
->irq
);
2118 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
2119 dev_info(info
->dev
, "Using ACPI GPE %d\n", info
->irq
);
2126 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2137 s8 CreatorRevision
[4];
2140 s16 SpecificationRevision
;
2143 * Bit 0 - SCI interrupt supported
2144 * Bit 1 - I/O APIC/SAPIC
2149 * If bit 0 of InterruptType is set, then this is the SCI
2150 * interrupt in the GPEx_STS register.
2157 * If bit 1 of InterruptType is set, then this is the I/O
2158 * APIC/SAPIC interrupt.
2160 u32 GlobalSystemInterrupt
;
2162 /* The actual register address. */
2163 struct acpi_generic_address addr
;
2167 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
2170 static int try_init_spmi(struct SPMITable
*spmi
)
2172 struct smi_info
*info
;
2175 if (spmi
->IPMIlegacy
!= 1) {
2176 printk(KERN_INFO PFX
"Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
2180 info
= smi_info_alloc();
2182 printk(KERN_ERR PFX
"Could not allocate SI data (3)\n");
2186 info
->addr_source
= SI_SPMI
;
2187 printk(KERN_INFO PFX
"probing via SPMI\n");
2189 /* Figure out the interface type. */
2190 switch (spmi
->InterfaceType
) {
2192 info
->si_type
= SI_KCS
;
2195 info
->si_type
= SI_SMIC
;
2198 info
->si_type
= SI_BT
;
2200 case 4: /* SSIF, just ignore */
2204 printk(KERN_INFO PFX
"Unknown ACPI/SPMI SI type %d\n",
2205 spmi
->InterfaceType
);
2210 if (spmi
->InterruptType
& 1) {
2211 /* We've got a GPE interrupt. */
2212 info
->irq
= spmi
->GPE
;
2213 info
->irq_setup
= acpi_gpe_irq_setup
;
2214 } else if (spmi
->InterruptType
& 2) {
2215 /* We've got an APIC/SAPIC interrupt. */
2216 info
->irq
= spmi
->GlobalSystemInterrupt
;
2217 info
->irq_setup
= std_irq_setup
;
2219 /* Use the default interrupt setting. */
2221 info
->irq_setup
= NULL
;
2224 if (spmi
->addr
.bit_width
) {
2225 /* A (hopefully) properly formed register bit width. */
2226 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2228 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2230 info
->io
.regsize
= info
->io
.regspacing
;
2231 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2233 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2234 info
->io_setup
= mem_setup
;
2235 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2236 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2237 info
->io_setup
= port_setup
;
2238 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2241 printk(KERN_WARNING PFX
"Unknown ACPI I/O Address type\n");
2244 info
->io
.addr_data
= spmi
->addr
.address
;
2246 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2247 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2248 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2258 static void spmi_find_bmc(void)
2261 struct SPMITable
*spmi
;
2270 for (i
= 0; ; i
++) {
2271 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2272 (struct acpi_table_header
**)&spmi
);
2273 if (status
!= AE_OK
)
2276 try_init_spmi(spmi
);
2282 struct dmi_ipmi_data
{
2285 unsigned long base_addr
;
2291 static int decode_dmi(const struct dmi_header
*dm
,
2292 struct dmi_ipmi_data
*dmi
)
2294 const u8
*data
= (const u8
*)dm
;
2295 unsigned long base_addr
;
2297 u8 len
= dm
->length
;
2299 dmi
->type
= data
[4];
2301 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2303 if (base_addr
& 1) {
2305 base_addr
&= 0xFFFE;
2306 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2309 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2311 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2313 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2315 dmi
->irq
= data
[0x11];
2317 /* The top two bits of byte 0x10 hold the register spacing. */
2318 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2319 switch (reg_spacing
) {
2320 case 0x00: /* Byte boundaries */
2323 case 0x01: /* 32-bit boundaries */
2326 case 0x02: /* 16-byte boundaries */
2330 /* Some other interface, just ignore it. */
2336 * Note that technically, the lower bit of the base
2337 * address should be 1 if the address is I/O and 0 if
2338 * the address is in memory. So many systems get that
2339 * wrong (and all that I have seen are I/O) so we just
2340 * ignore that bit and assume I/O. Systems that use
2341 * memory should use the newer spec, anyway.
2343 dmi
->base_addr
= base_addr
& 0xfffe;
2344 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2348 dmi
->slave_addr
= data
[6];
2353 static void try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2355 struct smi_info
*info
;
2357 info
= smi_info_alloc();
2359 printk(KERN_ERR PFX
"Could not allocate SI data\n");
2363 info
->addr_source
= SI_SMBIOS
;
2364 printk(KERN_INFO PFX
"probing via SMBIOS\n");
2366 switch (ipmi_data
->type
) {
2367 case 0x01: /* KCS */
2368 info
->si_type
= SI_KCS
;
2370 case 0x02: /* SMIC */
2371 info
->si_type
= SI_SMIC
;
2374 info
->si_type
= SI_BT
;
2381 switch (ipmi_data
->addr_space
) {
2382 case IPMI_MEM_ADDR_SPACE
:
2383 info
->io_setup
= mem_setup
;
2384 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2387 case IPMI_IO_ADDR_SPACE
:
2388 info
->io_setup
= port_setup
;
2389 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2394 printk(KERN_WARNING PFX
"Unknown SMBIOS I/O Address type: %d\n",
2395 ipmi_data
->addr_space
);
2398 info
->io
.addr_data
= ipmi_data
->base_addr
;
2400 info
->io
.regspacing
= ipmi_data
->offset
;
2401 if (!info
->io
.regspacing
)
2402 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2403 info
->io
.regsize
= DEFAULT_REGSPACING
;
2404 info
->io
.regshift
= 0;
2406 info
->slave_addr
= ipmi_data
->slave_addr
;
2408 info
->irq
= ipmi_data
->irq
;
2410 info
->irq_setup
= std_irq_setup
;
2412 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2413 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2414 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2421 static void dmi_find_bmc(void)
2423 const struct dmi_device
*dev
= NULL
;
2424 struct dmi_ipmi_data data
;
2427 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2428 memset(&data
, 0, sizeof(data
));
2429 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2432 try_init_dmi(&data
);
2435 #endif /* CONFIG_DMI */
2439 #define PCI_ERMC_CLASSCODE 0x0C0700
2440 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2441 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2442 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2443 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2444 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2446 #define PCI_HP_VENDOR_ID 0x103C
2447 #define PCI_MMC_DEVICE_ID 0x121A
2448 #define PCI_MMC_ADDR_CW 0x10
2450 static void ipmi_pci_cleanup(struct smi_info
*info
)
2452 struct pci_dev
*pdev
= info
->addr_source_data
;
2454 pci_disable_device(pdev
);
2457 static int ipmi_pci_probe_regspacing(struct smi_info
*info
)
2459 if (info
->si_type
== SI_KCS
) {
2460 unsigned char status
;
2463 info
->io
.regsize
= DEFAULT_REGSIZE
;
2464 info
->io
.regshift
= 0;
2466 info
->handlers
= &kcs_smi_handlers
;
2468 /* detect 1, 4, 16byte spacing */
2469 for (regspacing
= DEFAULT_REGSPACING
; regspacing
<= 16;) {
2470 info
->io
.regspacing
= regspacing
;
2471 if (info
->io_setup(info
)) {
2473 "Could not setup I/O space\n");
2474 return DEFAULT_REGSPACING
;
2476 /* write invalid cmd */
2477 info
->io
.outputb(&info
->io
, 1, 0x10);
2478 /* read status back */
2479 status
= info
->io
.inputb(&info
->io
, 1);
2480 info
->io_cleanup(info
);
2486 return DEFAULT_REGSPACING
;
2489 static int ipmi_pci_probe(struct pci_dev
*pdev
,
2490 const struct pci_device_id
*ent
)
2493 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2494 struct smi_info
*info
;
2496 info
= smi_info_alloc();
2500 info
->addr_source
= SI_PCI
;
2501 dev_info(&pdev
->dev
, "probing via PCI");
2503 switch (class_type
) {
2504 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2505 info
->si_type
= SI_SMIC
;
2508 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2509 info
->si_type
= SI_KCS
;
2512 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2513 info
->si_type
= SI_BT
;
2518 dev_info(&pdev
->dev
, "Unknown IPMI type: %d\n", class_type
);
2522 rv
= pci_enable_device(pdev
);
2524 dev_err(&pdev
->dev
, "couldn't enable PCI device\n");
2529 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2530 info
->addr_source_data
= pdev
;
2532 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2533 info
->io_setup
= port_setup
;
2534 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2536 info
->io_setup
= mem_setup
;
2537 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2539 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2541 info
->io
.regspacing
= ipmi_pci_probe_regspacing(info
);
2542 info
->io
.regsize
= DEFAULT_REGSIZE
;
2543 info
->io
.regshift
= 0;
2545 info
->irq
= pdev
->irq
;
2547 info
->irq_setup
= std_irq_setup
;
2549 info
->dev
= &pdev
->dev
;
2550 pci_set_drvdata(pdev
, info
);
2552 dev_info(&pdev
->dev
, "%pR regsize %d spacing %d irq %d\n",
2553 &pdev
->resource
[0], info
->io
.regsize
, info
->io
.regspacing
,
2559 pci_disable_device(pdev
);
2565 static void ipmi_pci_remove(struct pci_dev
*pdev
)
2567 struct smi_info
*info
= pci_get_drvdata(pdev
);
2568 cleanup_one_si(info
);
2571 static const struct pci_device_id ipmi_pci_devices
[] = {
2572 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2573 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2576 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2578 static struct pci_driver ipmi_pci_driver
= {
2579 .name
= DEVICE_NAME
,
2580 .id_table
= ipmi_pci_devices
,
2581 .probe
= ipmi_pci_probe
,
2582 .remove
= ipmi_pci_remove
,
2584 #endif /* CONFIG_PCI */
2587 static const struct of_device_id of_ipmi_match
[] = {
2588 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2589 .data
= (void *)(unsigned long) SI_KCS
},
2590 { .type
= "ipmi", .compatible
= "ipmi-smic",
2591 .data
= (void *)(unsigned long) SI_SMIC
},
2592 { .type
= "ipmi", .compatible
= "ipmi-bt",
2593 .data
= (void *)(unsigned long) SI_BT
},
2596 MODULE_DEVICE_TABLE(of
, of_ipmi_match
);
2598 static int of_ipmi_probe(struct platform_device
*dev
)
2600 const struct of_device_id
*match
;
2601 struct smi_info
*info
;
2602 struct resource resource
;
2603 const __be32
*regsize
, *regspacing
, *regshift
;
2604 struct device_node
*np
= dev
->dev
.of_node
;
2608 dev_info(&dev
->dev
, "probing via device tree\n");
2610 match
= of_match_device(of_ipmi_match
, &dev
->dev
);
2614 if (!of_device_is_available(np
))
2617 ret
= of_address_to_resource(np
, 0, &resource
);
2619 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2623 regsize
= of_get_property(np
, "reg-size", &proplen
);
2624 if (regsize
&& proplen
!= 4) {
2625 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2629 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2630 if (regspacing
&& proplen
!= 4) {
2631 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2635 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2636 if (regshift
&& proplen
!= 4) {
2637 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2641 info
= smi_info_alloc();
2645 "could not allocate memory for OF probe\n");
2649 info
->si_type
= (enum si_type
) match
->data
;
2650 info
->addr_source
= SI_DEVICETREE
;
2651 info
->irq_setup
= std_irq_setup
;
2653 if (resource
.flags
& IORESOURCE_IO
) {
2654 info
->io_setup
= port_setup
;
2655 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2657 info
->io_setup
= mem_setup
;
2658 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2661 info
->io
.addr_data
= resource
.start
;
2663 info
->io
.regsize
= regsize
? be32_to_cpup(regsize
) : DEFAULT_REGSIZE
;
2664 info
->io
.regspacing
= regspacing
? be32_to_cpup(regspacing
) : DEFAULT_REGSPACING
;
2665 info
->io
.regshift
= regshift
? be32_to_cpup(regshift
) : 0;
2667 info
->irq
= irq_of_parse_and_map(dev
->dev
.of_node
, 0);
2668 info
->dev
= &dev
->dev
;
2670 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %d\n",
2671 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2674 dev_set_drvdata(&dev
->dev
, info
);
2676 ret
= add_smi(info
);
2684 #define of_ipmi_match NULL
2685 static int of_ipmi_probe(struct platform_device
*dev
)
2692 static int acpi_ipmi_probe(struct platform_device
*dev
)
2694 struct smi_info
*info
;
2695 struct resource
*res
, *res_second
;
2698 unsigned long long tmp
;
2704 handle
= ACPI_HANDLE(&dev
->dev
);
2708 info
= smi_info_alloc();
2712 info
->addr_source
= SI_ACPI
;
2713 dev_info(&dev
->dev
, PFX
"probing via ACPI\n");
2715 info
->addr_info
.acpi_info
.acpi_handle
= handle
;
2717 /* _IFT tells us the interface type: KCS, BT, etc */
2718 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2719 if (ACPI_FAILURE(status
)) {
2720 dev_err(&dev
->dev
, "Could not find ACPI IPMI interface type\n");
2726 info
->si_type
= SI_KCS
;
2729 info
->si_type
= SI_SMIC
;
2732 info
->si_type
= SI_BT
;
2734 case 4: /* SSIF, just ignore */
2738 dev_info(&dev
->dev
, "unknown IPMI type %lld\n", tmp
);
2742 res
= platform_get_resource(dev
, IORESOURCE_IO
, 0);
2744 info
->io_setup
= port_setup
;
2745 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2747 res
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2749 info
->io_setup
= mem_setup
;
2750 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2754 dev_err(&dev
->dev
, "no I/O or memory address\n");
2757 info
->io
.addr_data
= res
->start
;
2759 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2760 res_second
= platform_get_resource(dev
,
2761 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ?
2762 IORESOURCE_IO
: IORESOURCE_MEM
,
2765 if (res_second
->start
> info
->io
.addr_data
)
2766 info
->io
.regspacing
=
2767 res_second
->start
- info
->io
.addr_data
;
2769 info
->io
.regsize
= DEFAULT_REGSPACING
;
2770 info
->io
.regshift
= 0;
2772 /* If _GPE exists, use it; otherwise use standard interrupts */
2773 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2774 if (ACPI_SUCCESS(status
)) {
2776 info
->irq_setup
= acpi_gpe_irq_setup
;
2778 int irq
= platform_get_irq(dev
, 0);
2782 info
->irq_setup
= std_irq_setup
;
2786 info
->dev
= &dev
->dev
;
2787 platform_set_drvdata(dev
, info
);
2789 dev_info(info
->dev
, "%pR regsize %d spacing %d irq %d\n",
2790 res
, info
->io
.regsize
, info
->io
.regspacing
,
2804 static const struct acpi_device_id acpi_ipmi_match
[] = {
2808 MODULE_DEVICE_TABLE(acpi
, acpi_ipmi_match
);
2810 static int acpi_ipmi_probe(struct platform_device
*dev
)
2816 static int ipmi_probe(struct platform_device
*dev
)
2818 if (of_ipmi_probe(dev
) == 0)
2821 return acpi_ipmi_probe(dev
);
2824 static int ipmi_remove(struct platform_device
*dev
)
2826 struct smi_info
*info
= dev_get_drvdata(&dev
->dev
);
2828 cleanup_one_si(info
);
2832 static struct platform_driver ipmi_driver
= {
2834 .name
= DEVICE_NAME
,
2835 .of_match_table
= of_ipmi_match
,
2836 .acpi_match_table
= ACPI_PTR(acpi_ipmi_match
),
2838 .probe
= ipmi_probe
,
2839 .remove
= ipmi_remove
,
2842 #ifdef CONFIG_PARISC
2843 static int ipmi_parisc_probe(struct parisc_device
*dev
)
2845 struct smi_info
*info
;
2848 info
= smi_info_alloc();
2852 "could not allocate memory for PARISC probe\n");
2856 info
->si_type
= SI_KCS
;
2857 info
->addr_source
= SI_DEVICETREE
;
2858 info
->io_setup
= mem_setup
;
2859 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2860 info
->io
.addr_data
= dev
->hpa
.start
;
2861 info
->io
.regsize
= 1;
2862 info
->io
.regspacing
= 1;
2863 info
->io
.regshift
= 0;
2864 info
->irq
= 0; /* no interrupt */
2865 info
->irq_setup
= NULL
;
2866 info
->dev
= &dev
->dev
;
2868 dev_dbg(&dev
->dev
, "addr 0x%lx\n", info
->io
.addr_data
);
2870 dev_set_drvdata(&dev
->dev
, info
);
2881 static int ipmi_parisc_remove(struct parisc_device
*dev
)
2883 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2887 static const struct parisc_device_id ipmi_parisc_tbl
[] = {
2888 { HPHW_MC
, HVERSION_REV_ANY_ID
, 0x004, 0xC0 },
2892 static struct parisc_driver ipmi_parisc_driver
= {
2894 .id_table
= ipmi_parisc_tbl
,
2895 .probe
= ipmi_parisc_probe
,
2896 .remove
= ipmi_parisc_remove
,
2898 #endif /* CONFIG_PARISC */
2900 static int wait_for_msg_done(struct smi_info
*smi_info
)
2902 enum si_sm_result smi_result
;
2904 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2906 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2907 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2908 schedule_timeout_uninterruptible(1);
2909 smi_result
= smi_info
->handlers
->event(
2910 smi_info
->si_sm
, jiffies_to_usecs(1));
2911 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2912 smi_result
= smi_info
->handlers
->event(
2913 smi_info
->si_sm
, 0);
2917 if (smi_result
== SI_SM_HOSED
)
2919 * We couldn't get the state machine to run, so whatever's at
2920 * the port is probably not an IPMI SMI interface.
2927 static int try_get_dev_id(struct smi_info
*smi_info
)
2929 unsigned char msg
[2];
2930 unsigned char *resp
;
2931 unsigned long resp_len
;
2934 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2939 * Do a Get Device ID command, since it comes back with some
2942 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2943 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2944 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2946 rv
= wait_for_msg_done(smi_info
);
2950 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2951 resp
, IPMI_MAX_MSG_LENGTH
);
2953 /* Check and record info from the get device id, in case we need it. */
2954 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2961 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
2963 unsigned char msg
[3];
2964 unsigned char *resp
;
2965 unsigned long resp_len
;
2968 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2972 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2973 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2974 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2976 rv
= wait_for_msg_done(smi_info
);
2978 dev_warn(smi_info
->dev
,
2979 "Error getting response from get global enables command: %d\n",
2984 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2985 resp
, IPMI_MAX_MSG_LENGTH
);
2988 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2989 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2991 dev_warn(smi_info
->dev
,
2992 "Invalid return from get global enables command: %ld %x %x %x\n",
2993 resp_len
, resp
[0], resp
[1], resp
[2]);
3006 * Returns 1 if it gets an error from the command.
3008 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
3010 unsigned char msg
[3];
3011 unsigned char *resp
;
3012 unsigned long resp_len
;
3015 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
3019 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3020 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
3022 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
3024 rv
= wait_for_msg_done(smi_info
);
3026 dev_warn(smi_info
->dev
,
3027 "Error getting response from set global enables command: %d\n",
3032 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3033 resp
, IPMI_MAX_MSG_LENGTH
);
3036 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3037 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3038 dev_warn(smi_info
->dev
,
3039 "Invalid return from set global enables command: %ld %x %x\n",
3040 resp_len
, resp
[0], resp
[1]);
3054 * Some BMCs do not support clearing the receive irq bit in the global
3055 * enables (even if they don't support interrupts on the BMC). Check
3056 * for this and handle it properly.
3058 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
3063 rv
= get_global_enables(smi_info
, &enables
);
3065 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
3066 /* Already clear, should work ok. */
3069 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
3070 rv
= set_global_enables(smi_info
, enables
);
3074 dev_err(smi_info
->dev
,
3075 "Cannot check clearing the rcv irq: %d\n", rv
);
3081 * An error when setting the event buffer bit means
3082 * clearing the bit is not supported.
3084 dev_warn(smi_info
->dev
,
3085 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 smi_info
->cannot_disable_irq
= true;
3091 * Some BMCs do not support setting the interrupt bits in the global
3092 * enables even if they support interrupts. Clearly bad, but we can
3095 static void check_set_rcv_irq(struct smi_info
*smi_info
)
3103 rv
= get_global_enables(smi_info
, &enables
);
3105 enables
|= IPMI_BMC_RCV_MSG_INTR
;
3106 rv
= set_global_enables(smi_info
, enables
);
3110 dev_err(smi_info
->dev
,
3111 "Cannot check setting the rcv irq: %d\n", rv
);
3117 * An error when setting the event buffer bit means
3118 * setting the bit is not supported.
3120 dev_warn(smi_info
->dev
,
3121 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122 smi_info
->cannot_disable_irq
= true;
3123 smi_info
->irq_enable_broken
= true;
3127 static int try_enable_event_buffer(struct smi_info
*smi_info
)
3129 unsigned char msg
[3];
3130 unsigned char *resp
;
3131 unsigned long resp_len
;
3134 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
3138 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3139 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
3140 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
3142 rv
= wait_for_msg_done(smi_info
);
3144 printk(KERN_WARNING PFX
"Error getting response from get"
3145 " global enables command, the event buffer is not"
3150 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3151 resp
, IPMI_MAX_MSG_LENGTH
);
3154 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3155 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
3157 printk(KERN_WARNING PFX
"Invalid return from get global"
3158 " enables command, cannot enable the event buffer.\n");
3163 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
3164 /* buffer is already enabled, nothing to do. */
3165 smi_info
->supports_event_msg_buff
= true;
3169 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
3170 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
3171 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
3172 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
3174 rv
= wait_for_msg_done(smi_info
);
3176 printk(KERN_WARNING PFX
"Error getting response from set"
3177 " global, enables command, the event buffer is not"
3182 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
3183 resp
, IPMI_MAX_MSG_LENGTH
);
3186 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
3187 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
3188 printk(KERN_WARNING PFX
"Invalid return from get global,"
3189 "enables command, not enable the event buffer.\n");
3196 * An error when setting the event buffer bit means
3197 * that the event buffer is not supported.
3201 smi_info
->supports_event_msg_buff
= true;
3208 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
3210 struct smi_info
*smi
= m
->private;
3212 seq_printf(m
, "%s\n", si_to_str
[smi
->si_type
]);
3217 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
3219 return single_open(file
, smi_type_proc_show
, PDE_DATA(inode
));
3222 static const struct file_operations smi_type_proc_ops
= {
3223 .open
= smi_type_proc_open
,
3225 .llseek
= seq_lseek
,
3226 .release
= single_release
,
3229 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
3231 struct smi_info
*smi
= m
->private;
3233 seq_printf(m
, "interrupts_enabled: %d\n",
3234 smi
->irq
&& !smi
->interrupt_disabled
);
3235 seq_printf(m
, "short_timeouts: %u\n",
3236 smi_get_stat(smi
, short_timeouts
));
3237 seq_printf(m
, "long_timeouts: %u\n",
3238 smi_get_stat(smi
, long_timeouts
));
3239 seq_printf(m
, "idles: %u\n",
3240 smi_get_stat(smi
, idles
));
3241 seq_printf(m
, "interrupts: %u\n",
3242 smi_get_stat(smi
, interrupts
));
3243 seq_printf(m
, "attentions: %u\n",
3244 smi_get_stat(smi
, attentions
));
3245 seq_printf(m
, "flag_fetches: %u\n",
3246 smi_get_stat(smi
, flag_fetches
));
3247 seq_printf(m
, "hosed_count: %u\n",
3248 smi_get_stat(smi
, hosed_count
));
3249 seq_printf(m
, "complete_transactions: %u\n",
3250 smi_get_stat(smi
, complete_transactions
));
3251 seq_printf(m
, "events: %u\n",
3252 smi_get_stat(smi
, events
));
3253 seq_printf(m
, "watchdog_pretimeouts: %u\n",
3254 smi_get_stat(smi
, watchdog_pretimeouts
));
3255 seq_printf(m
, "incoming_messages: %u\n",
3256 smi_get_stat(smi
, incoming_messages
));
3260 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
3262 return single_open(file
, smi_si_stats_proc_show
, PDE_DATA(inode
));
3265 static const struct file_operations smi_si_stats_proc_ops
= {
3266 .open
= smi_si_stats_proc_open
,
3268 .llseek
= seq_lseek
,
3269 .release
= single_release
,
3272 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
3274 struct smi_info
*smi
= m
->private;
3277 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3278 si_to_str
[smi
->si_type
],
3279 addr_space_to_str
[smi
->io
.addr_type
],
3290 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
3292 return single_open(file
, smi_params_proc_show
, PDE_DATA(inode
));
3295 static const struct file_operations smi_params_proc_ops
= {
3296 .open
= smi_params_proc_open
,
3298 .llseek
= seq_lseek
,
3299 .release
= single_release
,
3303 * oem_data_avail_to_receive_msg_avail
3304 * @info - smi_info structure with msg_flags set
3306 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3307 * Returns 1 indicating need to re-run handle_flags().
3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
3311 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
3317 * setup_dell_poweredge_oem_data_handler
3318 * @info - smi_info.device_id must be populated
3320 * Systems that match, but have firmware version < 1.40 may assert
3321 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3322 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3323 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3324 * as RECEIVE_MSG_AVAIL instead.
3326 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3327 * assert the OEM[012] bits, and if it did, the driver would have to
3328 * change to handle that properly, we don't actually check for the
3330 * Device ID = 0x20 BMC on PowerEdge 8G servers
3331 * Device Revision = 0x80
3332 * Firmware Revision1 = 0x01 BMC version 1.40
3333 * Firmware Revision2 = 0x40 BCD encoded
3334 * IPMI Version = 0x51 IPMI 1.5
3335 * Manufacturer ID = A2 02 00 Dell IANA
3337 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3338 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3344 #define DELL_IANA_MFR_ID 0x0002a2
3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
3347 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3348 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
3349 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
3350 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
3351 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
3352 smi_info
->oem_data_avail_handler
=
3353 oem_data_avail_to_receive_msg_avail
;
3354 } else if (ipmi_version_major(id
) < 1 ||
3355 (ipmi_version_major(id
) == 1 &&
3356 ipmi_version_minor(id
) < 5)) {
3357 smi_info
->oem_data_avail_handler
=
3358 oem_data_avail_to_receive_msg_avail
;
3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3364 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
3366 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
3368 /* Make it a response */
3369 msg
->rsp
[0] = msg
->data
[0] | 4;
3370 msg
->rsp
[1] = msg
->data
[1];
3371 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
3373 smi_info
->curr_msg
= NULL
;
3374 deliver_recv_msg(smi_info
, msg
);
3378 * dell_poweredge_bt_xaction_handler
3379 * @info - smi_info.device_id must be populated
3381 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3382 * not respond to a Get SDR command if the length of the data
3383 * requested is exactly 0x3A, which leads to command timeouts and no
3384 * data returned. This intercepts such commands, and causes userspace
3385 * callers to try again with a different-sized buffer, which succeeds.
3388 #define STORAGE_NETFN 0x0A
3389 #define STORAGE_CMD_GET_SDR 0x23
3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
3391 unsigned long unused
,
3394 struct smi_info
*smi_info
= in
;
3395 unsigned char *data
= smi_info
->curr_msg
->data
;
3396 unsigned int size
= smi_info
->curr_msg
->data_size
;
3398 (data
[0]>>2) == STORAGE_NETFN
&&
3399 data
[1] == STORAGE_CMD_GET_SDR
&&
3401 return_hosed_msg_badsize(smi_info
);
3407 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
3408 .notifier_call
= dell_poweredge_bt_xaction_handler
,
3412 * setup_dell_poweredge_bt_xaction_handler
3413 * @info - smi_info.device_id must be filled in already
3415 * Fills in smi_info.device_id.start_transaction_pre_hook
3416 * when we know what function to use there.
3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
3421 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3422 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
3423 smi_info
->si_type
== SI_BT
)
3424 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
3428 * setup_oem_data_handler
3429 * @info - smi_info.device_id must be filled in already
3431 * Fills in smi_info.device_id.oem_data_available_handler
3432 * when we know what function to use there.
3435 static void setup_oem_data_handler(struct smi_info
*smi_info
)
3437 setup_dell_poweredge_oem_data_handler(smi_info
);
3440 static void setup_xaction_handlers(struct smi_info
*smi_info
)
3442 setup_dell_poweredge_bt_xaction_handler(smi_info
);
3445 static void check_for_broken_irqs(struct smi_info
*smi_info
)
3447 check_clr_rcv_irq(smi_info
);
3448 check_set_rcv_irq(smi_info
);
3451 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
3453 if (smi_info
->thread
!= NULL
)
3454 kthread_stop(smi_info
->thread
);
3456 smi_info
->timer_can_start
= false;
3457 if (smi_info
->timer_running
)
3458 del_timer_sync(&smi_info
->si_timer
);
3461 static int is_new_interface(struct smi_info
*info
)
3465 list_for_each_entry(e
, &smi_infos
, link
) {
3466 if (e
->io
.addr_type
!= info
->io
.addr_type
)
3468 if (e
->io
.addr_data
== info
->io
.addr_data
)
3475 static int add_smi(struct smi_info
*new_smi
)
3479 printk(KERN_INFO PFX
"Adding %s-specified %s state machine",
3480 ipmi_addr_src_to_str(new_smi
->addr_source
),
3481 si_to_str
[new_smi
->si_type
]);
3482 mutex_lock(&smi_infos_lock
);
3483 if (!is_new_interface(new_smi
)) {
3484 printk(KERN_CONT
" duplicate interface\n");
3489 printk(KERN_CONT
"\n");
3491 /* So we know not to free it unless we have allocated one. */
3492 new_smi
->intf
= NULL
;
3493 new_smi
->si_sm
= NULL
;
3494 new_smi
->handlers
= NULL
;
3496 list_add_tail(&new_smi
->link
, &smi_infos
);
3499 mutex_unlock(&smi_infos_lock
);
3503 static int try_smi_init(struct smi_info
*new_smi
)
3508 printk(KERN_INFO PFX
"Trying %s-specified %s state"
3509 " machine at %s address 0x%lx, slave address 0x%x,"
3511 ipmi_addr_src_to_str(new_smi
->addr_source
),
3512 si_to_str
[new_smi
->si_type
],
3513 addr_space_to_str
[new_smi
->io
.addr_type
],
3514 new_smi
->io
.addr_data
,
3515 new_smi
->slave_addr
, new_smi
->irq
);
3517 switch (new_smi
->si_type
) {
3519 new_smi
->handlers
= &kcs_smi_handlers
;
3523 new_smi
->handlers
= &smic_smi_handlers
;
3527 new_smi
->handlers
= &bt_smi_handlers
;
3531 /* No support for anything else yet. */
3536 /* Allocate the state machine's data and initialize it. */
3537 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3538 if (!new_smi
->si_sm
) {
3540 "Could not allocate state machine memory\n");
3544 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3547 /* Now that we know the I/O size, we can set up the I/O. */
3548 rv
= new_smi
->io_setup(new_smi
);
3550 printk(KERN_ERR PFX
"Could not set up I/O space\n");
3554 /* Do low-level detection first. */
3555 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3556 if (new_smi
->addr_source
)
3557 printk(KERN_INFO PFX
"Interface detection failed\n");
3563 * Attempt a get device id command. If it fails, we probably
3564 * don't have a BMC here.
3566 rv
= try_get_dev_id(new_smi
);
3568 if (new_smi
->addr_source
)
3569 printk(KERN_INFO PFX
"There appears to be no BMC"
3570 " at this location\n");
3574 setup_oem_data_handler(new_smi
);
3575 setup_xaction_handlers(new_smi
);
3576 check_for_broken_irqs(new_smi
);
3578 new_smi
->waiting_msg
= NULL
;
3579 new_smi
->curr_msg
= NULL
;
3580 atomic_set(&new_smi
->req_events
, 0);
3581 new_smi
->run_to_completion
= false;
3582 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3583 atomic_set(&new_smi
->stats
[i
], 0);
3585 new_smi
->interrupt_disabled
= true;
3586 atomic_set(&new_smi
->need_watch
, 0);
3587 new_smi
->intf_num
= smi_num
;
3590 rv
= try_enable_event_buffer(new_smi
);
3592 new_smi
->has_event_buffer
= true;
3595 * Start clearing the flags before we enable interrupts or the
3596 * timer to avoid racing with the timer.
3598 start_clear_flags(new_smi
);
3601 * IRQ is defined to be set when non-zero. req_events will
3602 * cause a global flags check that will enable interrupts.
3605 new_smi
->interrupt_disabled
= false;
3606 atomic_set(&new_smi
->req_events
, 1);
3609 if (!new_smi
->dev
) {
3611 * If we don't already have a device from something
3612 * else (like PCI), then register a new one.
3614 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3616 if (!new_smi
->pdev
) {
3618 "Unable to allocate platform device\n");
3621 new_smi
->dev
= &new_smi
->pdev
->dev
;
3622 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3624 rv
= platform_device_add(new_smi
->pdev
);
3627 "Unable to register system interface device:"
3632 new_smi
->dev_registered
= true;
3635 rv
= ipmi_register_smi(&handlers
,
3637 &new_smi
->device_id
,
3639 new_smi
->slave_addr
);
3641 dev_err(new_smi
->dev
, "Unable to register device: error %d\n",
3643 goto out_err_stop_timer
;
3646 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3650 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3651 goto out_err_stop_timer
;
3654 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3655 &smi_si_stats_proc_ops
,
3658 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3659 goto out_err_stop_timer
;
3662 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3663 &smi_params_proc_ops
,
3666 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3667 goto out_err_stop_timer
;
3670 dev_info(new_smi
->dev
, "IPMI %s interface initialized\n",
3671 si_to_str
[new_smi
->si_type
]);
3676 stop_timer_and_thread(new_smi
);
3679 new_smi
->interrupt_disabled
= true;
3681 if (new_smi
->intf
) {
3682 ipmi_smi_t intf
= new_smi
->intf
;
3683 new_smi
->intf
= NULL
;
3684 ipmi_unregister_smi(intf
);
3687 if (new_smi
->irq_cleanup
) {
3688 new_smi
->irq_cleanup(new_smi
);
3689 new_smi
->irq_cleanup
= NULL
;
3693 * Wait until we know that we are out of any interrupt
3694 * handlers might have been running before we freed the
3697 synchronize_sched();
3699 if (new_smi
->si_sm
) {
3700 if (new_smi
->handlers
)
3701 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3702 kfree(new_smi
->si_sm
);
3703 new_smi
->si_sm
= NULL
;
3705 if (new_smi
->addr_source_cleanup
) {
3706 new_smi
->addr_source_cleanup(new_smi
);
3707 new_smi
->addr_source_cleanup
= NULL
;
3709 if (new_smi
->io_cleanup
) {
3710 new_smi
->io_cleanup(new_smi
);
3711 new_smi
->io_cleanup
= NULL
;
3714 if (new_smi
->dev_registered
) {
3715 platform_device_unregister(new_smi
->pdev
);
3716 new_smi
->dev_registered
= false;
3722 static int init_ipmi_si(void)
3728 enum ipmi_addr_src type
= SI_INVALID
;
3734 if (si_tryplatform
) {
3735 rv
= platform_driver_register(&ipmi_driver
);
3737 printk(KERN_ERR PFX
"Unable to register "
3738 "driver: %d\n", rv
);
3743 /* Parse out the si_type string into its components. */
3746 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3748 str
= strchr(str
, ',');
3758 printk(KERN_INFO
"IPMI System Interface driver.\n");
3760 /* If the user gave us a device, they presumably want us to use it */
3761 if (!hardcode_find_bmc())
3766 rv
= pci_register_driver(&ipmi_pci_driver
);
3768 printk(KERN_ERR PFX
"Unable to register "
3769 "PCI driver: %d\n", rv
);
3771 pci_registered
= true;
3785 #ifdef CONFIG_PARISC
3786 register_parisc_driver(&ipmi_parisc_driver
);
3787 parisc_registered
= true;
3790 /* We prefer devices with interrupts, but in the case of a machine
3791 with multiple BMCs we assume that there will be several instances
3792 of a given type so if we succeed in registering a type then also
3793 try to register everything else of the same type */
3795 mutex_lock(&smi_infos_lock
);
3796 list_for_each_entry(e
, &smi_infos
, link
) {
3797 /* Try to register a device if it has an IRQ and we either
3798 haven't successfully registered a device yet or this
3799 device has the same type as one we successfully registered */
3800 if (e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3801 if (!try_smi_init(e
)) {
3802 type
= e
->addr_source
;
3807 /* type will only have been set if we successfully registered an si */
3809 mutex_unlock(&smi_infos_lock
);
3813 /* Fall back to the preferred device */
3815 list_for_each_entry(e
, &smi_infos
, link
) {
3816 if (!e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3817 if (!try_smi_init(e
)) {
3818 type
= e
->addr_source
;
3822 mutex_unlock(&smi_infos_lock
);
3827 mutex_lock(&smi_infos_lock
);
3828 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3829 mutex_unlock(&smi_infos_lock
);
3831 printk(KERN_WARNING PFX
3832 "Unable to find any System Interface(s)\n");
3835 mutex_unlock(&smi_infos_lock
);
3839 module_init(init_ipmi_si
);
3841 static void cleanup_one_si(struct smi_info
*to_clean
)
3848 if (to_clean
->intf
) {
3849 ipmi_smi_t intf
= to_clean
->intf
;
3851 to_clean
->intf
= NULL
;
3852 rv
= ipmi_unregister_smi(intf
);
3854 pr_err(PFX
"Unable to unregister device: errno=%d\n",
3860 dev_set_drvdata(to_clean
->dev
, NULL
);
3862 list_del(&to_clean
->link
);
3865 * Make sure that interrupts, the timer and the thread are
3866 * stopped and will not run again.
3868 if (to_clean
->irq_cleanup
)
3869 to_clean
->irq_cleanup(to_clean
);
3870 stop_timer_and_thread(to_clean
);
3873 * Timeouts are stopped, now make sure the interrupts are off
3874 * in the BMC. Note that timers and CPU interrupts are off,
3875 * so no need for locks.
3877 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3879 schedule_timeout_uninterruptible(1);
3881 disable_si_irq(to_clean
);
3882 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3884 schedule_timeout_uninterruptible(1);
3887 if (to_clean
->handlers
)
3888 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3890 kfree(to_clean
->si_sm
);
3892 if (to_clean
->addr_source_cleanup
)
3893 to_clean
->addr_source_cleanup(to_clean
);
3894 if (to_clean
->io_cleanup
)
3895 to_clean
->io_cleanup(to_clean
);
3897 if (to_clean
->dev_registered
)
3898 platform_device_unregister(to_clean
->pdev
);
3903 static void cleanup_ipmi_si(void)
3905 struct smi_info
*e
, *tmp_e
;
3912 pci_unregister_driver(&ipmi_pci_driver
);
3914 #ifdef CONFIG_PARISC
3915 if (parisc_registered
)
3916 unregister_parisc_driver(&ipmi_parisc_driver
);
3919 platform_driver_unregister(&ipmi_driver
);
3921 mutex_lock(&smi_infos_lock
);
3922 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3924 mutex_unlock(&smi_infos_lock
);
3926 module_exit(cleanup_ipmi_si
);
3928 MODULE_LICENSE("GPL");
3929 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3930 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3931 " system interfaces.");