Merge branch 'x86/microcode' into x86/urgent, to pick up cleanup
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
blob428e31763cb93e593f261a9f443c3999cb8c473d
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/extable.h> /* search_exception_tables */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
20 #include <asm/traps.h> /* dotraplinkage, ... */
21 #include <asm/pgalloc.h> /* pgd_*(), ... */
22 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
32 * Page fault error code bits:
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
39 * bit 5 == 1: protection keys block access
41 enum x86_pf_error_code {
43 PF_PROT = 1 << 0,
44 PF_WRITE = 1 << 1,
45 PF_USER = 1 << 2,
46 PF_RSVD = 1 << 3,
47 PF_INSTR = 1 << 4,
48 PF_PK = 1 << 5,
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
55 static nokprobe_inline int
56 kmmio_fault(struct pt_regs *regs, unsigned long addr)
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1)
60 return -1;
61 return 0;
64 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
66 int ret = 0;
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
76 return ret;
80 * Prefetch quirks:
82 * 32-bit mode:
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
87 * 64-bit mode:
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
92 * Opcode checker based on code by Richard Brunner.
94 static inline int
95 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 unsigned char opcode, int *prefetch)
98 unsigned char instr_hi = opcode & 0xf0;
99 unsigned char instr_lo = opcode & 0x0f;
101 switch (instr_hi) {
102 case 0x20:
103 case 0x30:
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
110 return ((instr_lo & 7) == 0x6);
111 #ifdef CONFIG_X86_64
112 case 0x40:
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
120 return (!user_mode(regs) || user_64bit_mode(regs));
121 #endif
122 case 0x60:
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo & 0xC) == 0x4;
125 case 0xF0:
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo || (instr_lo>>1) == 1;
128 case 0x00:
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr, opcode))
131 return 0;
133 *prefetch = (instr_lo == 0xF) &&
134 (opcode == 0x0D || opcode == 0x18);
135 return 0;
136 default:
137 return 0;
141 static int
142 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
144 unsigned char *max_instr;
145 unsigned char *instr;
146 int prefetch = 0;
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
152 if (error_code & PF_INSTR)
153 return 0;
155 instr = (void *)convert_ip_to_linear(current, regs);
156 max_instr = instr + 15;
158 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
159 return 0;
161 while (instr < max_instr) {
162 unsigned char opcode;
164 if (probe_kernel_address(instr, opcode))
165 break;
167 instr++;
169 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
170 break;
172 return prefetch;
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
180 * on the PTE.
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
189 * 3. T1 : faults...
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
195 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
196 struct vm_area_struct *vma)
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 return;
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code != SEGV_PKUERR)
204 return;
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
210 * valid VMA.
212 if (!vma) {
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
214 info->si_pkey = 0;
215 return;
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
222 info->si_pkey = vma_pkey(vma);
225 static void
226 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 struct task_struct *tsk, struct vm_area_struct *vma,
228 int fault)
230 unsigned lsb = 0;
231 siginfo_t info;
233 info.si_signo = si_signo;
234 info.si_errno = 0;
235 info.si_code = si_code;
236 info.si_addr = (void __user *)address;
237 if (fault & VM_FAULT_HWPOISON_LARGE)
238 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
239 if (fault & VM_FAULT_HWPOISON)
240 lsb = PAGE_SHIFT;
241 info.si_addr_lsb = lsb;
243 fill_sig_info_pkey(si_code, &info, vma);
245 force_sig_info(si_signo, &info, tsk);
248 DEFINE_SPINLOCK(pgd_lock);
249 LIST_HEAD(pgd_list);
251 #ifdef CONFIG_X86_32
252 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
254 unsigned index = pgd_index(address);
255 pgd_t *pgd_k;
256 pud_t *pud, *pud_k;
257 pmd_t *pmd, *pmd_k;
259 pgd += index;
260 pgd_k = init_mm.pgd + index;
262 if (!pgd_present(*pgd_k))
263 return NULL;
266 * set_pgd(pgd, *pgd_k); here would be useless on PAE
267 * and redundant with the set_pmd() on non-PAE. As would
268 * set_pud.
270 pud = pud_offset(pgd, address);
271 pud_k = pud_offset(pgd_k, address);
272 if (!pud_present(*pud_k))
273 return NULL;
275 pmd = pmd_offset(pud, address);
276 pmd_k = pmd_offset(pud_k, address);
277 if (!pmd_present(*pmd_k))
278 return NULL;
280 if (!pmd_present(*pmd))
281 set_pmd(pmd, *pmd_k);
282 else
283 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
285 return pmd_k;
288 void vmalloc_sync_all(void)
290 unsigned long address;
292 if (SHARED_KERNEL_PMD)
293 return;
295 for (address = VMALLOC_START & PMD_MASK;
296 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
297 address += PMD_SIZE) {
298 struct page *page;
300 spin_lock(&pgd_lock);
301 list_for_each_entry(page, &pgd_list, lru) {
302 spinlock_t *pgt_lock;
303 pmd_t *ret;
305 /* the pgt_lock only for Xen */
306 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
308 spin_lock(pgt_lock);
309 ret = vmalloc_sync_one(page_address(page), address);
310 spin_unlock(pgt_lock);
312 if (!ret)
313 break;
315 spin_unlock(&pgd_lock);
320 * 32-bit:
322 * Handle a fault on the vmalloc or module mapping area
324 static noinline int vmalloc_fault(unsigned long address)
326 unsigned long pgd_paddr;
327 pmd_t *pmd_k;
328 pte_t *pte_k;
330 /* Make sure we are in vmalloc area: */
331 if (!(address >= VMALLOC_START && address < VMALLOC_END))
332 return -1;
334 WARN_ON_ONCE(in_nmi());
337 * Synchronize this task's top level page-table
338 * with the 'reference' page table.
340 * Do _not_ use "current" here. We might be inside
341 * an interrupt in the middle of a task switch..
343 pgd_paddr = read_cr3();
344 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
345 if (!pmd_k)
346 return -1;
348 if (pmd_huge(*pmd_k))
349 return 0;
351 pte_k = pte_offset_kernel(pmd_k, address);
352 if (!pte_present(*pte_k))
353 return -1;
355 return 0;
357 NOKPROBE_SYMBOL(vmalloc_fault);
360 * Did it hit the DOS screen memory VA from vm86 mode?
362 static inline void
363 check_v8086_mode(struct pt_regs *regs, unsigned long address,
364 struct task_struct *tsk)
366 #ifdef CONFIG_VM86
367 unsigned long bit;
369 if (!v8086_mode(regs) || !tsk->thread.vm86)
370 return;
372 bit = (address - 0xA0000) >> PAGE_SHIFT;
373 if (bit < 32)
374 tsk->thread.vm86->screen_bitmap |= 1 << bit;
375 #endif
378 static bool low_pfn(unsigned long pfn)
380 return pfn < max_low_pfn;
383 static void dump_pagetable(unsigned long address)
385 pgd_t *base = __va(read_cr3());
386 pgd_t *pgd = &base[pgd_index(address)];
387 pmd_t *pmd;
388 pte_t *pte;
390 #ifdef CONFIG_X86_PAE
391 printk("*pdpt = %016Lx ", pgd_val(*pgd));
392 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
393 goto out;
394 #endif
395 pmd = pmd_offset(pud_offset(pgd, address), address);
396 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
399 * We must not directly access the pte in the highpte
400 * case if the page table is located in highmem.
401 * And let's rather not kmap-atomic the pte, just in case
402 * it's allocated already:
404 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
405 goto out;
407 pte = pte_offset_kernel(pmd, address);
408 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
409 out:
410 printk("\n");
413 #else /* CONFIG_X86_64: */
415 void vmalloc_sync_all(void)
417 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
421 * 64-bit:
423 * Handle a fault on the vmalloc area
425 static noinline int vmalloc_fault(unsigned long address)
427 pgd_t *pgd, *pgd_ref;
428 pud_t *pud, *pud_ref;
429 pmd_t *pmd, *pmd_ref;
430 pte_t *pte, *pte_ref;
432 /* Make sure we are in vmalloc area: */
433 if (!(address >= VMALLOC_START && address < VMALLOC_END))
434 return -1;
436 WARN_ON_ONCE(in_nmi());
439 * Copy kernel mappings over when needed. This can also
440 * happen within a race in page table update. In the later
441 * case just flush:
443 pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
444 pgd_ref = pgd_offset_k(address);
445 if (pgd_none(*pgd_ref))
446 return -1;
448 if (pgd_none(*pgd)) {
449 set_pgd(pgd, *pgd_ref);
450 arch_flush_lazy_mmu_mode();
451 } else {
452 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
456 * Below here mismatches are bugs because these lower tables
457 * are shared:
460 pud = pud_offset(pgd, address);
461 pud_ref = pud_offset(pgd_ref, address);
462 if (pud_none(*pud_ref))
463 return -1;
465 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
466 BUG();
468 if (pud_huge(*pud))
469 return 0;
471 pmd = pmd_offset(pud, address);
472 pmd_ref = pmd_offset(pud_ref, address);
473 if (pmd_none(*pmd_ref))
474 return -1;
476 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
477 BUG();
479 if (pmd_huge(*pmd))
480 return 0;
482 pte_ref = pte_offset_kernel(pmd_ref, address);
483 if (!pte_present(*pte_ref))
484 return -1;
486 pte = pte_offset_kernel(pmd, address);
489 * Don't use pte_page here, because the mappings can point
490 * outside mem_map, and the NUMA hash lookup cannot handle
491 * that:
493 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
494 BUG();
496 return 0;
498 NOKPROBE_SYMBOL(vmalloc_fault);
500 #ifdef CONFIG_CPU_SUP_AMD
501 static const char errata93_warning[] =
502 KERN_ERR
503 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
504 "******* Working around it, but it may cause SEGVs or burn power.\n"
505 "******* Please consider a BIOS update.\n"
506 "******* Disabling USB legacy in the BIOS may also help.\n";
507 #endif
510 * No vm86 mode in 64-bit mode:
512 static inline void
513 check_v8086_mode(struct pt_regs *regs, unsigned long address,
514 struct task_struct *tsk)
518 static int bad_address(void *p)
520 unsigned long dummy;
522 return probe_kernel_address((unsigned long *)p, dummy);
525 static void dump_pagetable(unsigned long address)
527 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
528 pgd_t *pgd = base + pgd_index(address);
529 pud_t *pud;
530 pmd_t *pmd;
531 pte_t *pte;
533 if (bad_address(pgd))
534 goto bad;
536 printk("PGD %lx ", pgd_val(*pgd));
538 if (!pgd_present(*pgd))
539 goto out;
541 pud = pud_offset(pgd, address);
542 if (bad_address(pud))
543 goto bad;
545 printk("PUD %lx ", pud_val(*pud));
546 if (!pud_present(*pud) || pud_large(*pud))
547 goto out;
549 pmd = pmd_offset(pud, address);
550 if (bad_address(pmd))
551 goto bad;
553 printk("PMD %lx ", pmd_val(*pmd));
554 if (!pmd_present(*pmd) || pmd_large(*pmd))
555 goto out;
557 pte = pte_offset_kernel(pmd, address);
558 if (bad_address(pte))
559 goto bad;
561 printk("PTE %lx", pte_val(*pte));
562 out:
563 printk("\n");
564 return;
565 bad:
566 printk("BAD\n");
569 #endif /* CONFIG_X86_64 */
572 * Workaround for K8 erratum #93 & buggy BIOS.
574 * BIOS SMM functions are required to use a specific workaround
575 * to avoid corruption of the 64bit RIP register on C stepping K8.
577 * A lot of BIOS that didn't get tested properly miss this.
579 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
580 * Try to work around it here.
582 * Note we only handle faults in kernel here.
583 * Does nothing on 32-bit.
585 static int is_errata93(struct pt_regs *regs, unsigned long address)
587 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
588 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
589 || boot_cpu_data.x86 != 0xf)
590 return 0;
592 if (address != regs->ip)
593 return 0;
595 if ((address >> 32) != 0)
596 return 0;
598 address |= 0xffffffffUL << 32;
599 if ((address >= (u64)_stext && address <= (u64)_etext) ||
600 (address >= MODULES_VADDR && address <= MODULES_END)) {
601 printk_once(errata93_warning);
602 regs->ip = address;
603 return 1;
605 #endif
606 return 0;
610 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
611 * to illegal addresses >4GB.
613 * We catch this in the page fault handler because these addresses
614 * are not reachable. Just detect this case and return. Any code
615 * segment in LDT is compatibility mode.
617 static int is_errata100(struct pt_regs *regs, unsigned long address)
619 #ifdef CONFIG_X86_64
620 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
621 return 1;
622 #endif
623 return 0;
626 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
628 #ifdef CONFIG_X86_F00F_BUG
629 unsigned long nr;
632 * Pentium F0 0F C7 C8 bug workaround:
634 if (boot_cpu_has_bug(X86_BUG_F00F)) {
635 nr = (address - idt_descr.address) >> 3;
637 if (nr == 6) {
638 do_invalid_op(regs, 0);
639 return 1;
642 #endif
643 return 0;
646 static const char nx_warning[] = KERN_CRIT
647 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
648 static const char smep_warning[] = KERN_CRIT
649 "unable to execute userspace code (SMEP?) (uid: %d)\n";
651 static void
652 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
653 unsigned long address)
655 if (!oops_may_print())
656 return;
658 if (error_code & PF_INSTR) {
659 unsigned int level;
660 pgd_t *pgd;
661 pte_t *pte;
663 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
664 pgd += pgd_index(address);
666 pte = lookup_address_in_pgd(pgd, address, &level);
668 if (pte && pte_present(*pte) && !pte_exec(*pte))
669 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
670 if (pte && pte_present(*pte) && pte_exec(*pte) &&
671 (pgd_flags(*pgd) & _PAGE_USER) &&
672 (__read_cr4() & X86_CR4_SMEP))
673 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
676 printk(KERN_ALERT "BUG: unable to handle kernel ");
677 if (address < PAGE_SIZE)
678 printk(KERN_CONT "NULL pointer dereference");
679 else
680 printk(KERN_CONT "paging request");
682 printk(KERN_CONT " at %p\n", (void *) address);
683 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
685 dump_pagetable(address);
688 static noinline void
689 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
690 unsigned long address)
692 struct task_struct *tsk;
693 unsigned long flags;
694 int sig;
696 flags = oops_begin();
697 tsk = current;
698 sig = SIGKILL;
700 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
701 tsk->comm, address);
702 dump_pagetable(address);
704 tsk->thread.cr2 = address;
705 tsk->thread.trap_nr = X86_TRAP_PF;
706 tsk->thread.error_code = error_code;
708 if (__die("Bad pagetable", regs, error_code))
709 sig = 0;
711 oops_end(flags, regs, sig);
714 static noinline void
715 no_context(struct pt_regs *regs, unsigned long error_code,
716 unsigned long address, int signal, int si_code)
718 struct task_struct *tsk = current;
719 unsigned long flags;
720 int sig;
721 /* No context means no VMA to pass down */
722 struct vm_area_struct *vma = NULL;
724 /* Are we prepared to handle this kernel fault? */
725 if (fixup_exception(regs, X86_TRAP_PF)) {
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
729 * task context.
731 if (in_interrupt())
732 return;
735 * Per the above we're !in_interrupt(), aka. task context.
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
740 if (current->thread.sig_on_uaccess_err && signal) {
741 tsk->thread.trap_nr = X86_TRAP_PF;
742 tsk->thread.error_code = error_code | PF_USER;
743 tsk->thread.cr2 = address;
745 /* XXX: hwpoison faults will set the wrong code. */
746 force_sig_info_fault(signal, si_code, address,
747 tsk, vma, 0);
751 * Barring that, we can do the fixup and be happy.
753 return;
756 #ifdef CONFIG_VMAP_STACK
758 * Stack overflow? During boot, we can fault near the initial
759 * stack in the direct map, but that's not an overflow -- check
760 * that we're in vmalloc space to avoid this.
762 if (is_vmalloc_addr((void *)address) &&
763 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
764 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
765 register void *__sp asm("rsp");
766 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
768 * We're likely to be running with very little stack space
769 * left. It's plausible that we'd hit this condition but
770 * double-fault even before we get this far, in which case
771 * we're fine: the double-fault handler will deal with it.
773 * We don't want to make it all the way into the oops code
774 * and then double-fault, though, because we're likely to
775 * break the console driver and lose most of the stack dump.
777 asm volatile ("movq %[stack], %%rsp\n\t"
778 "call handle_stack_overflow\n\t"
779 "1: jmp 1b"
780 : "+r" (__sp)
781 : "D" ("kernel stack overflow (page fault)"),
782 "S" (regs), "d" (address),
783 [stack] "rm" (stack));
784 unreachable();
786 #endif
789 * 32-bit:
791 * Valid to do another page fault here, because if this fault
792 * had been triggered by is_prefetch fixup_exception would have
793 * handled it.
795 * 64-bit:
797 * Hall of shame of CPU/BIOS bugs.
799 if (is_prefetch(regs, error_code, address))
800 return;
802 if (is_errata93(regs, address))
803 return;
806 * Oops. The kernel tried to access some bad page. We'll have to
807 * terminate things with extreme prejudice:
809 flags = oops_begin();
811 show_fault_oops(regs, error_code, address);
813 if (task_stack_end_corrupted(tsk))
814 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
816 tsk->thread.cr2 = address;
817 tsk->thread.trap_nr = X86_TRAP_PF;
818 tsk->thread.error_code = error_code;
820 sig = SIGKILL;
821 if (__die("Oops", regs, error_code))
822 sig = 0;
824 /* Executive summary in case the body of the oops scrolled away */
825 printk(KERN_DEFAULT "CR2: %016lx\n", address);
827 oops_end(flags, regs, sig);
831 * Print out info about fatal segfaults, if the show_unhandled_signals
832 * sysctl is set:
834 static inline void
835 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
836 unsigned long address, struct task_struct *tsk)
838 if (!unhandled_signal(tsk, SIGSEGV))
839 return;
841 if (!printk_ratelimit())
842 return;
844 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
845 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
846 tsk->comm, task_pid_nr(tsk), address,
847 (void *)regs->ip, (void *)regs->sp, error_code);
849 print_vma_addr(KERN_CONT " in ", regs->ip);
851 printk(KERN_CONT "\n");
854 static void
855 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
856 unsigned long address, struct vm_area_struct *vma,
857 int si_code)
859 struct task_struct *tsk = current;
861 /* User mode accesses just cause a SIGSEGV */
862 if (error_code & PF_USER) {
864 * It's possible to have interrupts off here:
866 local_irq_enable();
869 * Valid to do another page fault here because this one came
870 * from user space:
872 if (is_prefetch(regs, error_code, address))
873 return;
875 if (is_errata100(regs, address))
876 return;
878 #ifdef CONFIG_X86_64
880 * Instruction fetch faults in the vsyscall page might need
881 * emulation.
883 if (unlikely((error_code & PF_INSTR) &&
884 ((address & ~0xfff) == VSYSCALL_ADDR))) {
885 if (emulate_vsyscall(regs, address))
886 return;
888 #endif
891 * To avoid leaking information about the kernel page table
892 * layout, pretend that user-mode accesses to kernel addresses
893 * are always protection faults.
895 if (address >= TASK_SIZE_MAX)
896 error_code |= PF_PROT;
898 if (likely(show_unhandled_signals))
899 show_signal_msg(regs, error_code, address, tsk);
901 tsk->thread.cr2 = address;
902 tsk->thread.error_code = error_code;
903 tsk->thread.trap_nr = X86_TRAP_PF;
905 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
907 return;
910 if (is_f00f_bug(regs, address))
911 return;
913 no_context(regs, error_code, address, SIGSEGV, si_code);
916 static noinline void
917 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
918 unsigned long address, struct vm_area_struct *vma)
920 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
923 static void
924 __bad_area(struct pt_regs *regs, unsigned long error_code,
925 unsigned long address, struct vm_area_struct *vma, int si_code)
927 struct mm_struct *mm = current->mm;
930 * Something tried to access memory that isn't in our memory map..
931 * Fix it, but check if it's kernel or user first..
933 up_read(&mm->mmap_sem);
935 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
938 static noinline void
939 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
941 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
944 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
945 struct vm_area_struct *vma)
947 /* This code is always called on the current mm */
948 bool foreign = false;
950 if (!boot_cpu_has(X86_FEATURE_OSPKE))
951 return false;
952 if (error_code & PF_PK)
953 return true;
954 /* this checks permission keys on the VMA: */
955 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
956 (error_code & PF_INSTR), foreign))
957 return true;
958 return false;
961 static noinline void
962 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
963 unsigned long address, struct vm_area_struct *vma)
966 * This OSPKE check is not strictly necessary at runtime.
967 * But, doing it this way allows compiler optimizations
968 * if pkeys are compiled out.
970 if (bad_area_access_from_pkeys(error_code, vma))
971 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
972 else
973 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
976 static void
977 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
978 struct vm_area_struct *vma, unsigned int fault)
980 struct task_struct *tsk = current;
981 int code = BUS_ADRERR;
983 /* Kernel mode? Handle exceptions or die: */
984 if (!(error_code & PF_USER)) {
985 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
986 return;
989 /* User-space => ok to do another page fault: */
990 if (is_prefetch(regs, error_code, address))
991 return;
993 tsk->thread.cr2 = address;
994 tsk->thread.error_code = error_code;
995 tsk->thread.trap_nr = X86_TRAP_PF;
997 #ifdef CONFIG_MEMORY_FAILURE
998 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
999 printk(KERN_ERR
1000 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1001 tsk->comm, tsk->pid, address);
1002 code = BUS_MCEERR_AR;
1004 #endif
1005 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1008 static noinline void
1009 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1010 unsigned long address, struct vm_area_struct *vma,
1011 unsigned int fault)
1013 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1014 no_context(regs, error_code, address, 0, 0);
1015 return;
1018 if (fault & VM_FAULT_OOM) {
1019 /* Kernel mode? Handle exceptions or die: */
1020 if (!(error_code & PF_USER)) {
1021 no_context(regs, error_code, address,
1022 SIGSEGV, SEGV_MAPERR);
1023 return;
1027 * We ran out of memory, call the OOM killer, and return the
1028 * userspace (which will retry the fault, or kill us if we got
1029 * oom-killed):
1031 pagefault_out_of_memory();
1032 } else {
1033 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1034 VM_FAULT_HWPOISON_LARGE))
1035 do_sigbus(regs, error_code, address, vma, fault);
1036 else if (fault & VM_FAULT_SIGSEGV)
1037 bad_area_nosemaphore(regs, error_code, address, vma);
1038 else
1039 BUG();
1043 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1045 if ((error_code & PF_WRITE) && !pte_write(*pte))
1046 return 0;
1048 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1049 return 0;
1051 * Note: We do not do lazy flushing on protection key
1052 * changes, so no spurious fault will ever set PF_PK.
1054 if ((error_code & PF_PK))
1055 return 1;
1057 return 1;
1061 * Handle a spurious fault caused by a stale TLB entry.
1063 * This allows us to lazily refresh the TLB when increasing the
1064 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1065 * eagerly is very expensive since that implies doing a full
1066 * cross-processor TLB flush, even if no stale TLB entries exist
1067 * on other processors.
1069 * Spurious faults may only occur if the TLB contains an entry with
1070 * fewer permission than the page table entry. Non-present (P = 0)
1071 * and reserved bit (R = 1) faults are never spurious.
1073 * There are no security implications to leaving a stale TLB when
1074 * increasing the permissions on a page.
1076 * Returns non-zero if a spurious fault was handled, zero otherwise.
1078 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1079 * (Optional Invalidation).
1081 static noinline int
1082 spurious_fault(unsigned long error_code, unsigned long address)
1084 pgd_t *pgd;
1085 pud_t *pud;
1086 pmd_t *pmd;
1087 pte_t *pte;
1088 int ret;
1091 * Only writes to RO or instruction fetches from NX may cause
1092 * spurious faults.
1094 * These could be from user or supervisor accesses but the TLB
1095 * is only lazily flushed after a kernel mapping protection
1096 * change, so user accesses are not expected to cause spurious
1097 * faults.
1099 if (error_code != (PF_WRITE | PF_PROT)
1100 && error_code != (PF_INSTR | PF_PROT))
1101 return 0;
1103 pgd = init_mm.pgd + pgd_index(address);
1104 if (!pgd_present(*pgd))
1105 return 0;
1107 pud = pud_offset(pgd, address);
1108 if (!pud_present(*pud))
1109 return 0;
1111 if (pud_large(*pud))
1112 return spurious_fault_check(error_code, (pte_t *) pud);
1114 pmd = pmd_offset(pud, address);
1115 if (!pmd_present(*pmd))
1116 return 0;
1118 if (pmd_large(*pmd))
1119 return spurious_fault_check(error_code, (pte_t *) pmd);
1121 pte = pte_offset_kernel(pmd, address);
1122 if (!pte_present(*pte))
1123 return 0;
1125 ret = spurious_fault_check(error_code, pte);
1126 if (!ret)
1127 return 0;
1130 * Make sure we have permissions in PMD.
1131 * If not, then there's a bug in the page tables:
1133 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1134 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1136 return ret;
1138 NOKPROBE_SYMBOL(spurious_fault);
1140 int show_unhandled_signals = 1;
1142 static inline int
1143 access_error(unsigned long error_code, struct vm_area_struct *vma)
1145 /* This is only called for the current mm, so: */
1146 bool foreign = false;
1149 * Read or write was blocked by protection keys. This is
1150 * always an unconditional error and can never result in
1151 * a follow-up action to resolve the fault, like a COW.
1153 if (error_code & PF_PK)
1154 return 1;
1157 * Make sure to check the VMA so that we do not perform
1158 * faults just to hit a PF_PK as soon as we fill in a
1159 * page.
1161 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1162 (error_code & PF_INSTR), foreign))
1163 return 1;
1165 if (error_code & PF_WRITE) {
1166 /* write, present and write, not present: */
1167 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1168 return 1;
1169 return 0;
1172 /* read, present: */
1173 if (unlikely(error_code & PF_PROT))
1174 return 1;
1176 /* read, not present: */
1177 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1178 return 1;
1180 return 0;
1183 static int fault_in_kernel_space(unsigned long address)
1185 return address >= TASK_SIZE_MAX;
1188 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1190 if (!IS_ENABLED(CONFIG_X86_SMAP))
1191 return false;
1193 if (!static_cpu_has(X86_FEATURE_SMAP))
1194 return false;
1196 if (error_code & PF_USER)
1197 return false;
1199 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1200 return false;
1202 return true;
1206 * This routine handles page faults. It determines the address,
1207 * and the problem, and then passes it off to one of the appropriate
1208 * routines.
1210 * This function must have noinline because both callers
1211 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1212 * guarantees there's a function trace entry.
1214 static noinline void
1215 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1216 unsigned long address)
1218 struct vm_area_struct *vma;
1219 struct task_struct *tsk;
1220 struct mm_struct *mm;
1221 int fault, major = 0;
1222 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1224 tsk = current;
1225 mm = tsk->mm;
1228 * Detect and handle instructions that would cause a page fault for
1229 * both a tracked kernel page and a userspace page.
1231 if (kmemcheck_active(regs))
1232 kmemcheck_hide(regs);
1233 prefetchw(&mm->mmap_sem);
1235 if (unlikely(kmmio_fault(regs, address)))
1236 return;
1239 * We fault-in kernel-space virtual memory on-demand. The
1240 * 'reference' page table is init_mm.pgd.
1242 * NOTE! We MUST NOT take any locks for this case. We may
1243 * be in an interrupt or a critical region, and should
1244 * only copy the information from the master page table,
1245 * nothing more.
1247 * This verifies that the fault happens in kernel space
1248 * (error_code & 4) == 0, and that the fault was not a
1249 * protection error (error_code & 9) == 0.
1251 if (unlikely(fault_in_kernel_space(address))) {
1252 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1253 if (vmalloc_fault(address) >= 0)
1254 return;
1256 if (kmemcheck_fault(regs, address, error_code))
1257 return;
1260 /* Can handle a stale RO->RW TLB: */
1261 if (spurious_fault(error_code, address))
1262 return;
1264 /* kprobes don't want to hook the spurious faults: */
1265 if (kprobes_fault(regs))
1266 return;
1268 * Don't take the mm semaphore here. If we fixup a prefetch
1269 * fault we could otherwise deadlock:
1271 bad_area_nosemaphore(regs, error_code, address, NULL);
1273 return;
1276 /* kprobes don't want to hook the spurious faults: */
1277 if (unlikely(kprobes_fault(regs)))
1278 return;
1280 if (unlikely(error_code & PF_RSVD))
1281 pgtable_bad(regs, error_code, address);
1283 if (unlikely(smap_violation(error_code, regs))) {
1284 bad_area_nosemaphore(regs, error_code, address, NULL);
1285 return;
1289 * If we're in an interrupt, have no user context or are running
1290 * in a region with pagefaults disabled then we must not take the fault
1292 if (unlikely(faulthandler_disabled() || !mm)) {
1293 bad_area_nosemaphore(regs, error_code, address, NULL);
1294 return;
1298 * It's safe to allow irq's after cr2 has been saved and the
1299 * vmalloc fault has been handled.
1301 * User-mode registers count as a user access even for any
1302 * potential system fault or CPU buglet:
1304 if (user_mode(regs)) {
1305 local_irq_enable();
1306 error_code |= PF_USER;
1307 flags |= FAULT_FLAG_USER;
1308 } else {
1309 if (regs->flags & X86_EFLAGS_IF)
1310 local_irq_enable();
1313 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1315 if (error_code & PF_WRITE)
1316 flags |= FAULT_FLAG_WRITE;
1317 if (error_code & PF_INSTR)
1318 flags |= FAULT_FLAG_INSTRUCTION;
1321 * When running in the kernel we expect faults to occur only to
1322 * addresses in user space. All other faults represent errors in
1323 * the kernel and should generate an OOPS. Unfortunately, in the
1324 * case of an erroneous fault occurring in a code path which already
1325 * holds mmap_sem we will deadlock attempting to validate the fault
1326 * against the address space. Luckily the kernel only validly
1327 * references user space from well defined areas of code, which are
1328 * listed in the exceptions table.
1330 * As the vast majority of faults will be valid we will only perform
1331 * the source reference check when there is a possibility of a
1332 * deadlock. Attempt to lock the address space, if we cannot we then
1333 * validate the source. If this is invalid we can skip the address
1334 * space check, thus avoiding the deadlock:
1336 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1337 if ((error_code & PF_USER) == 0 &&
1338 !search_exception_tables(regs->ip)) {
1339 bad_area_nosemaphore(regs, error_code, address, NULL);
1340 return;
1342 retry:
1343 down_read(&mm->mmap_sem);
1344 } else {
1346 * The above down_read_trylock() might have succeeded in
1347 * which case we'll have missed the might_sleep() from
1348 * down_read():
1350 might_sleep();
1353 vma = find_vma(mm, address);
1354 if (unlikely(!vma)) {
1355 bad_area(regs, error_code, address);
1356 return;
1358 if (likely(vma->vm_start <= address))
1359 goto good_area;
1360 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1361 bad_area(regs, error_code, address);
1362 return;
1364 if (error_code & PF_USER) {
1366 * Accessing the stack below %sp is always a bug.
1367 * The large cushion allows instructions like enter
1368 * and pusha to work. ("enter $65535, $31" pushes
1369 * 32 pointers and then decrements %sp by 65535.)
1371 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1372 bad_area(regs, error_code, address);
1373 return;
1376 if (unlikely(expand_stack(vma, address))) {
1377 bad_area(regs, error_code, address);
1378 return;
1382 * Ok, we have a good vm_area for this memory access, so
1383 * we can handle it..
1385 good_area:
1386 if (unlikely(access_error(error_code, vma))) {
1387 bad_area_access_error(regs, error_code, address, vma);
1388 return;
1392 * If for any reason at all we couldn't handle the fault,
1393 * make sure we exit gracefully rather than endlessly redo
1394 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1395 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1397 fault = handle_mm_fault(vma, address, flags);
1398 major |= fault & VM_FAULT_MAJOR;
1401 * If we need to retry the mmap_sem has already been released,
1402 * and if there is a fatal signal pending there is no guarantee
1403 * that we made any progress. Handle this case first.
1405 if (unlikely(fault & VM_FAULT_RETRY)) {
1406 /* Retry at most once */
1407 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1408 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1409 flags |= FAULT_FLAG_TRIED;
1410 if (!fatal_signal_pending(tsk))
1411 goto retry;
1414 /* User mode? Just return to handle the fatal exception */
1415 if (flags & FAULT_FLAG_USER)
1416 return;
1418 /* Not returning to user mode? Handle exceptions or die: */
1419 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1420 return;
1423 up_read(&mm->mmap_sem);
1424 if (unlikely(fault & VM_FAULT_ERROR)) {
1425 mm_fault_error(regs, error_code, address, vma, fault);
1426 return;
1430 * Major/minor page fault accounting. If any of the events
1431 * returned VM_FAULT_MAJOR, we account it as a major fault.
1433 if (major) {
1434 tsk->maj_flt++;
1435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1436 } else {
1437 tsk->min_flt++;
1438 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1441 check_v8086_mode(regs, address, tsk);
1443 NOKPROBE_SYMBOL(__do_page_fault);
1445 dotraplinkage void notrace
1446 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1448 unsigned long address = read_cr2(); /* Get the faulting address */
1449 enum ctx_state prev_state;
1452 * We must have this function tagged with __kprobes, notrace and call
1453 * read_cr2() before calling anything else. To avoid calling any kind
1454 * of tracing machinery before we've observed the CR2 value.
1456 * exception_{enter,exit}() contain all sorts of tracepoints.
1459 prev_state = exception_enter();
1460 __do_page_fault(regs, error_code, address);
1461 exception_exit(prev_state);
1463 NOKPROBE_SYMBOL(do_page_fault);
1465 #ifdef CONFIG_TRACING
1466 static nokprobe_inline void
1467 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1468 unsigned long error_code)
1470 if (user_mode(regs))
1471 trace_page_fault_user(address, regs, error_code);
1472 else
1473 trace_page_fault_kernel(address, regs, error_code);
1476 dotraplinkage void notrace
1477 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1480 * The exception_enter and tracepoint processing could
1481 * trigger another page faults (user space callchain
1482 * reading) and destroy the original cr2 value, so read
1483 * the faulting address now.
1485 unsigned long address = read_cr2();
1486 enum ctx_state prev_state;
1488 prev_state = exception_enter();
1489 trace_page_fault_entries(address, regs, error_code);
1490 __do_page_fault(regs, error_code, address);
1491 exception_exit(prev_state);
1493 NOKPROBE_SYMBOL(trace_do_page_fault);
1494 #endif /* CONFIG_TRACING */