Merge branch 'x86/microcode' into x86/urgent, to pick up cleanup
[linux/fpc-iii.git] / arch / x86 / mm / pat_rbtree.c
blobd76485b228243c2215b287e3d7dc1012f685f425
1 /*
2 * Handle caching attributes in page tables (PAT)
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 * Interval tree (augmented rbtree) used to store the PAT memory type
8 * reservations.
9 */
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/rbtree_augmented.h>
15 #include <linux/sched.h>
16 #include <linux/gfp.h>
18 #include <asm/pgtable.h>
19 #include <asm/pat.h>
21 #include "pat_internal.h"
24 * The memtype tree keeps track of memory type for specific
25 * physical memory areas. Without proper tracking, conflicting memory
26 * types in different mappings can cause CPU cache corruption.
28 * The tree is an interval tree (augmented rbtree) with tree ordered
29 * on starting address. Tree can contain multiple entries for
30 * different regions which overlap. All the aliases have the same
31 * cache attributes of course.
33 * memtype_lock protects the rbtree.
36 static struct rb_root memtype_rbroot = RB_ROOT;
38 static int is_node_overlap(struct memtype *node, u64 start, u64 end)
40 if (node->start >= end || node->end <= start)
41 return 0;
43 return 1;
46 static u64 get_subtree_max_end(struct rb_node *node)
48 u64 ret = 0;
49 if (node) {
50 struct memtype *data = rb_entry(node, struct memtype, rb);
51 ret = data->subtree_max_end;
53 return ret;
56 static u64 compute_subtree_max_end(struct memtype *data)
58 u64 max_end = data->end, child_max_end;
60 child_max_end = get_subtree_max_end(data->rb.rb_right);
61 if (child_max_end > max_end)
62 max_end = child_max_end;
64 child_max_end = get_subtree_max_end(data->rb.rb_left);
65 if (child_max_end > max_end)
66 max_end = child_max_end;
68 return max_end;
71 RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb,
72 u64, subtree_max_end, compute_subtree_max_end)
74 /* Find the first (lowest start addr) overlapping range from rb tree */
75 static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
76 u64 start, u64 end)
78 struct rb_node *node = root->rb_node;
79 struct memtype *last_lower = NULL;
81 while (node) {
82 struct memtype *data = rb_entry(node, struct memtype, rb);
84 if (get_subtree_max_end(node->rb_left) > start) {
85 /* Lowest overlap if any must be on left side */
86 node = node->rb_left;
87 } else if (is_node_overlap(data, start, end)) {
88 last_lower = data;
89 break;
90 } else if (start >= data->start) {
91 /* Lowest overlap if any must be on right side */
92 node = node->rb_right;
93 } else {
94 break;
97 return last_lower; /* Returns NULL if there is no overlap */
100 enum {
101 MEMTYPE_EXACT_MATCH = 0,
102 MEMTYPE_END_MATCH = 1
105 static struct memtype *memtype_rb_match(struct rb_root *root,
106 u64 start, u64 end, int match_type)
108 struct memtype *match;
110 match = memtype_rb_lowest_match(root, start, end);
111 while (match != NULL && match->start < end) {
112 struct rb_node *node;
114 if ((match_type == MEMTYPE_EXACT_MATCH) &&
115 (match->start == start) && (match->end == end))
116 return match;
118 if ((match_type == MEMTYPE_END_MATCH) &&
119 (match->start < start) && (match->end == end))
120 return match;
122 node = rb_next(&match->rb);
123 if (node)
124 match = rb_entry(node, struct memtype, rb);
125 else
126 match = NULL;
129 return NULL; /* Returns NULL if there is no match */
132 static int memtype_rb_check_conflict(struct rb_root *root,
133 u64 start, u64 end,
134 enum page_cache_mode reqtype,
135 enum page_cache_mode *newtype)
137 struct rb_node *node;
138 struct memtype *match;
139 enum page_cache_mode found_type = reqtype;
141 match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
142 if (match == NULL)
143 goto success;
145 if (match->type != found_type && newtype == NULL)
146 goto failure;
148 dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
149 found_type = match->type;
151 node = rb_next(&match->rb);
152 while (node) {
153 match = rb_entry(node, struct memtype, rb);
155 if (match->start >= end) /* Checked all possible matches */
156 goto success;
158 if (is_node_overlap(match, start, end) &&
159 match->type != found_type) {
160 goto failure;
163 node = rb_next(&match->rb);
165 success:
166 if (newtype)
167 *newtype = found_type;
169 return 0;
171 failure:
172 pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
173 current->comm, current->pid, start, end,
174 cattr_name(found_type), cattr_name(match->type));
175 return -EBUSY;
178 static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
180 struct rb_node **node = &(root->rb_node);
181 struct rb_node *parent = NULL;
183 while (*node) {
184 struct memtype *data = rb_entry(*node, struct memtype, rb);
186 parent = *node;
187 if (data->subtree_max_end < newdata->end)
188 data->subtree_max_end = newdata->end;
189 if (newdata->start <= data->start)
190 node = &((*node)->rb_left);
191 else if (newdata->start > data->start)
192 node = &((*node)->rb_right);
195 newdata->subtree_max_end = newdata->end;
196 rb_link_node(&newdata->rb, parent, node);
197 rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
200 int rbt_memtype_check_insert(struct memtype *new,
201 enum page_cache_mode *ret_type)
203 int err = 0;
205 err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
206 new->type, ret_type);
208 if (!err) {
209 if (ret_type)
210 new->type = *ret_type;
212 new->subtree_max_end = new->end;
213 memtype_rb_insert(&memtype_rbroot, new);
215 return err;
218 struct memtype *rbt_memtype_erase(u64 start, u64 end)
220 struct memtype *data;
223 * Since the memtype_rbroot tree allows overlapping ranges,
224 * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free
225 * a whole node for the munmap case. If no such entry is found,
226 * it then checks with END_MATCH, i.e. shrink the size of a node
227 * from the end for the mremap case.
229 data = memtype_rb_match(&memtype_rbroot, start, end,
230 MEMTYPE_EXACT_MATCH);
231 if (!data) {
232 data = memtype_rb_match(&memtype_rbroot, start, end,
233 MEMTYPE_END_MATCH);
234 if (!data)
235 return ERR_PTR(-EINVAL);
238 if (data->start == start) {
239 /* munmap: erase this node */
240 rb_erase_augmented(&data->rb, &memtype_rbroot,
241 &memtype_rb_augment_cb);
242 } else {
243 /* mremap: update the end value of this node */
244 rb_erase_augmented(&data->rb, &memtype_rbroot,
245 &memtype_rb_augment_cb);
246 data->end = start;
247 data->subtree_max_end = data->end;
248 memtype_rb_insert(&memtype_rbroot, data);
249 return NULL;
252 return data;
255 struct memtype *rbt_memtype_lookup(u64 addr)
257 return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
260 #if defined(CONFIG_DEBUG_FS)
261 int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
263 struct rb_node *node;
264 int i = 1;
266 node = rb_first(&memtype_rbroot);
267 while (node && pos != i) {
268 node = rb_next(node);
269 i++;
272 if (node) { /* pos == i */
273 struct memtype *this = rb_entry(node, struct memtype, rb);
274 *out = *this;
275 return 0;
276 } else {
277 return 1;
280 #endif