2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
35 #include <linux/hardirq.h> /* in_interrupt() */
39 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
41 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
44 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
45 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
47 #define RADIX_TREE_TAG_LONGS \
48 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
50 struct radix_tree_node
{
51 unsigned int height
; /* Height from the bottom */
54 struct radix_tree_node
*parent
; /* Used when ascending tree */
55 struct rcu_head rcu_head
; /* Used when freeing node */
57 void __rcu
*slots
[RADIX_TREE_MAP_SIZE
];
58 unsigned long tags
[RADIX_TREE_MAX_TAGS
][RADIX_TREE_TAG_LONGS
];
61 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
62 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
63 RADIX_TREE_MAP_SHIFT))
66 * The height_to_maxindex array needs to be one deeper than the maximum
67 * path as height 0 holds only 1 entry.
69 static unsigned long height_to_maxindex
[RADIX_TREE_MAX_PATH
+ 1] __read_mostly
;
72 * Radix tree node cache.
74 static struct kmem_cache
*radix_tree_node_cachep
;
77 * The radix tree is variable-height, so an insert operation not only has
78 * to build the branch to its corresponding item, it also has to build the
79 * branch to existing items if the size has to be increased (by
82 * The worst case is a zero height tree with just a single item at index 0,
83 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
84 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
87 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
90 * Per-cpu pool of preloaded nodes
92 struct radix_tree_preload
{
94 struct radix_tree_node
*nodes
[RADIX_TREE_PRELOAD_SIZE
];
96 static DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = { 0, };
98 static inline void *ptr_to_indirect(void *ptr
)
100 return (void *)((unsigned long)ptr
| RADIX_TREE_INDIRECT_PTR
);
103 static inline void *indirect_to_ptr(void *ptr
)
105 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INDIRECT_PTR
);
108 static inline gfp_t
root_gfp_mask(struct radix_tree_root
*root
)
110 return root
->gfp_mask
& __GFP_BITS_MASK
;
113 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
116 __set_bit(offset
, node
->tags
[tag
]);
119 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
122 __clear_bit(offset
, node
->tags
[tag
]);
125 static inline int tag_get(struct radix_tree_node
*node
, unsigned int tag
,
128 return test_bit(offset
, node
->tags
[tag
]);
131 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned int tag
)
133 root
->gfp_mask
|= (__force gfp_t
)(1 << (tag
+ __GFP_BITS_SHIFT
));
136 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned int tag
)
138 root
->gfp_mask
&= (__force gfp_t
)~(1 << (tag
+ __GFP_BITS_SHIFT
));
141 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
143 root
->gfp_mask
&= __GFP_BITS_MASK
;
146 static inline int root_tag_get(struct radix_tree_root
*root
, unsigned int tag
)
148 return (__force
unsigned)root
->gfp_mask
& (1 << (tag
+ __GFP_BITS_SHIFT
));
152 * Returns 1 if any slot in the node has this tag set.
153 * Otherwise returns 0.
155 static inline int any_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
158 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
159 if (node
->tags
[tag
][idx
])
166 * radix_tree_find_next_bit - find the next set bit in a memory region
168 * @addr: The address to base the search on
169 * @size: The bitmap size in bits
170 * @offset: The bitnumber to start searching at
172 * Unrollable variant of find_next_bit() for constant size arrays.
173 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
174 * Returns next bit offset, or size if nothing found.
176 static __always_inline
unsigned long
177 radix_tree_find_next_bit(const unsigned long *addr
,
178 unsigned long size
, unsigned long offset
)
180 if (!__builtin_constant_p(size
))
181 return find_next_bit(addr
, size
, offset
);
186 addr
+= offset
/ BITS_PER_LONG
;
187 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
189 return __ffs(tmp
) + offset
;
190 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
191 while (offset
< size
) {
194 return __ffs(tmp
) + offset
;
195 offset
+= BITS_PER_LONG
;
202 * This assumes that the caller has performed appropriate preallocation, and
203 * that the caller has pinned this thread of control to the current CPU.
205 static struct radix_tree_node
*
206 radix_tree_node_alloc(struct radix_tree_root
*root
)
208 struct radix_tree_node
*ret
= NULL
;
209 gfp_t gfp_mask
= root_gfp_mask(root
);
212 * Preload code isn't irq safe and it doesn't make sence to use
213 * preloading in the interrupt anyway as all the allocations have to
214 * be atomic. So just do normal allocation when in interrupt.
216 if (!(gfp_mask
& __GFP_WAIT
) && !in_interrupt()) {
217 struct radix_tree_preload
*rtp
;
220 * Provided the caller has preloaded here, we will always
221 * succeed in getting a node here (and never reach
224 rtp
= &__get_cpu_var(radix_tree_preloads
);
226 ret
= rtp
->nodes
[rtp
->nr
- 1];
227 rtp
->nodes
[rtp
->nr
- 1] = NULL
;
232 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
234 BUG_ON(radix_tree_is_indirect_ptr(ret
));
238 static void radix_tree_node_rcu_free(struct rcu_head
*head
)
240 struct radix_tree_node
*node
=
241 container_of(head
, struct radix_tree_node
, rcu_head
);
245 * must only free zeroed nodes into the slab. radix_tree_shrink
246 * can leave us with a non-NULL entry in the first slot, so clear
247 * that here to make sure.
249 for (i
= 0; i
< RADIX_TREE_MAX_TAGS
; i
++)
250 tag_clear(node
, i
, 0);
252 node
->slots
[0] = NULL
;
255 kmem_cache_free(radix_tree_node_cachep
, node
);
259 radix_tree_node_free(struct radix_tree_node
*node
)
261 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
265 * Load up this CPU's radix_tree_node buffer with sufficient objects to
266 * ensure that the addition of a single element in the tree cannot fail. On
267 * success, return zero, with preemption disabled. On error, return -ENOMEM
268 * with preemption not disabled.
270 * To make use of this facility, the radix tree must be initialised without
271 * __GFP_WAIT being passed to INIT_RADIX_TREE().
273 static int __radix_tree_preload(gfp_t gfp_mask
)
275 struct radix_tree_preload
*rtp
;
276 struct radix_tree_node
*node
;
280 rtp
= &__get_cpu_var(radix_tree_preloads
);
281 while (rtp
->nr
< ARRAY_SIZE(rtp
->nodes
)) {
283 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
287 rtp
= &__get_cpu_var(radix_tree_preloads
);
288 if (rtp
->nr
< ARRAY_SIZE(rtp
->nodes
))
289 rtp
->nodes
[rtp
->nr
++] = node
;
291 kmem_cache_free(radix_tree_node_cachep
, node
);
299 * Load up this CPU's radix_tree_node buffer with sufficient objects to
300 * ensure that the addition of a single element in the tree cannot fail. On
301 * success, return zero, with preemption disabled. On error, return -ENOMEM
302 * with preemption not disabled.
304 * To make use of this facility, the radix tree must be initialised without
305 * __GFP_WAIT being passed to INIT_RADIX_TREE().
307 int radix_tree_preload(gfp_t gfp_mask
)
309 /* Warn on non-sensical use... */
310 WARN_ON_ONCE(!(gfp_mask
& __GFP_WAIT
));
311 return __radix_tree_preload(gfp_mask
);
313 EXPORT_SYMBOL(radix_tree_preload
);
316 * The same as above function, except we don't guarantee preloading happens.
317 * We do it, if we decide it helps. On success, return zero with preemption
318 * disabled. On error, return -ENOMEM with preemption not disabled.
320 int radix_tree_maybe_preload(gfp_t gfp_mask
)
322 if (gfp_mask
& __GFP_WAIT
)
323 return __radix_tree_preload(gfp_mask
);
324 /* Preloading doesn't help anything with this gfp mask, skip it */
328 EXPORT_SYMBOL(radix_tree_maybe_preload
);
331 * Return the maximum key which can be store into a
332 * radix tree with height HEIGHT.
334 static inline unsigned long radix_tree_maxindex(unsigned int height
)
336 return height_to_maxindex
[height
];
340 * Extend a radix tree so it can store key @index.
342 static int radix_tree_extend(struct radix_tree_root
*root
, unsigned long index
)
344 struct radix_tree_node
*node
;
345 struct radix_tree_node
*slot
;
349 /* Figure out what the height should be. */
350 height
= root
->height
+ 1;
351 while (index
> radix_tree_maxindex(height
))
354 if (root
->rnode
== NULL
) {
355 root
->height
= height
;
360 unsigned int newheight
;
361 if (!(node
= radix_tree_node_alloc(root
)))
364 /* Propagate the aggregated tag info into the new root */
365 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
366 if (root_tag_get(root
, tag
))
367 tag_set(node
, tag
, 0);
370 /* Increase the height. */
371 newheight
= root
->height
+1;
372 node
->height
= newheight
;
377 slot
= indirect_to_ptr(slot
);
380 node
->slots
[0] = slot
;
381 node
= ptr_to_indirect(node
);
382 rcu_assign_pointer(root
->rnode
, node
);
383 root
->height
= newheight
;
384 } while (height
> root
->height
);
390 * radix_tree_insert - insert into a radix tree
391 * @root: radix tree root
393 * @item: item to insert
395 * Insert an item into the radix tree at position @index.
397 int radix_tree_insert(struct radix_tree_root
*root
,
398 unsigned long index
, void *item
)
400 struct radix_tree_node
*node
= NULL
, *slot
;
401 unsigned int height
, shift
;
405 BUG_ON(radix_tree_is_indirect_ptr(item
));
407 /* Make sure the tree is high enough. */
408 if (index
> radix_tree_maxindex(root
->height
)) {
409 error
= radix_tree_extend(root
, index
);
414 slot
= indirect_to_ptr(root
->rnode
);
416 height
= root
->height
;
417 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
419 offset
= 0; /* uninitialised var warning */
422 /* Have to add a child node. */
423 if (!(slot
= radix_tree_node_alloc(root
)))
425 slot
->height
= height
;
428 rcu_assign_pointer(node
->slots
[offset
], slot
);
431 rcu_assign_pointer(root
->rnode
, ptr_to_indirect(slot
));
434 /* Go a level down */
435 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
437 slot
= node
->slots
[offset
];
438 shift
-= RADIX_TREE_MAP_SHIFT
;
447 rcu_assign_pointer(node
->slots
[offset
], item
);
448 BUG_ON(tag_get(node
, 0, offset
));
449 BUG_ON(tag_get(node
, 1, offset
));
451 rcu_assign_pointer(root
->rnode
, item
);
452 BUG_ON(root_tag_get(root
, 0));
453 BUG_ON(root_tag_get(root
, 1));
458 EXPORT_SYMBOL(radix_tree_insert
);
461 * is_slot == 1 : search for the slot.
462 * is_slot == 0 : search for the node.
464 static void *radix_tree_lookup_element(struct radix_tree_root
*root
,
465 unsigned long index
, int is_slot
)
467 unsigned int height
, shift
;
468 struct radix_tree_node
*node
, **slot
;
470 node
= rcu_dereference_raw(root
->rnode
);
474 if (!radix_tree_is_indirect_ptr(node
)) {
477 return is_slot
? (void *)&root
->rnode
: node
;
479 node
= indirect_to_ptr(node
);
481 height
= node
->height
;
482 if (index
> radix_tree_maxindex(height
))
485 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
488 slot
= (struct radix_tree_node
**)
489 (node
->slots
+ ((index
>>shift
) & RADIX_TREE_MAP_MASK
));
490 node
= rcu_dereference_raw(*slot
);
494 shift
-= RADIX_TREE_MAP_SHIFT
;
496 } while (height
> 0);
498 return is_slot
? (void *)slot
: indirect_to_ptr(node
);
502 * radix_tree_lookup_slot - lookup a slot in a radix tree
503 * @root: radix tree root
506 * Returns: the slot corresponding to the position @index in the
507 * radix tree @root. This is useful for update-if-exists operations.
509 * This function can be called under rcu_read_lock iff the slot is not
510 * modified by radix_tree_replace_slot, otherwise it must be called
511 * exclusive from other writers. Any dereference of the slot must be done
512 * using radix_tree_deref_slot.
514 void **radix_tree_lookup_slot(struct radix_tree_root
*root
, unsigned long index
)
516 return (void **)radix_tree_lookup_element(root
, index
, 1);
518 EXPORT_SYMBOL(radix_tree_lookup_slot
);
521 * radix_tree_lookup - perform lookup operation on a radix tree
522 * @root: radix tree root
525 * Lookup the item at the position @index in the radix tree @root.
527 * This function can be called under rcu_read_lock, however the caller
528 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
529 * them safely). No RCU barriers are required to access or modify the
530 * returned item, however.
532 void *radix_tree_lookup(struct radix_tree_root
*root
, unsigned long index
)
534 return radix_tree_lookup_element(root
, index
, 0);
536 EXPORT_SYMBOL(radix_tree_lookup
);
539 * radix_tree_tag_set - set a tag on a radix tree node
540 * @root: radix tree root
544 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
545 * corresponding to @index in the radix tree. From
546 * the root all the way down to the leaf node.
548 * Returns the address of the tagged item. Setting a tag on a not-present
551 void *radix_tree_tag_set(struct radix_tree_root
*root
,
552 unsigned long index
, unsigned int tag
)
554 unsigned int height
, shift
;
555 struct radix_tree_node
*slot
;
557 height
= root
->height
;
558 BUG_ON(index
> radix_tree_maxindex(height
));
560 slot
= indirect_to_ptr(root
->rnode
);
561 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
566 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
567 if (!tag_get(slot
, tag
, offset
))
568 tag_set(slot
, tag
, offset
);
569 slot
= slot
->slots
[offset
];
570 BUG_ON(slot
== NULL
);
571 shift
-= RADIX_TREE_MAP_SHIFT
;
575 /* set the root's tag bit */
576 if (slot
&& !root_tag_get(root
, tag
))
577 root_tag_set(root
, tag
);
581 EXPORT_SYMBOL(radix_tree_tag_set
);
584 * radix_tree_tag_clear - clear a tag on a radix tree node
585 * @root: radix tree root
589 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
590 * corresponding to @index in the radix tree. If
591 * this causes the leaf node to have no tags set then clear the tag in the
592 * next-to-leaf node, etc.
594 * Returns the address of the tagged item on success, else NULL. ie:
595 * has the same return value and semantics as radix_tree_lookup().
597 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
598 unsigned long index
, unsigned int tag
)
600 struct radix_tree_node
*node
= NULL
;
601 struct radix_tree_node
*slot
= NULL
;
602 unsigned int height
, shift
;
603 int uninitialized_var(offset
);
605 height
= root
->height
;
606 if (index
> radix_tree_maxindex(height
))
609 shift
= height
* RADIX_TREE_MAP_SHIFT
;
610 slot
= indirect_to_ptr(root
->rnode
);
616 shift
-= RADIX_TREE_MAP_SHIFT
;
617 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
619 slot
= slot
->slots
[offset
];
626 if (!tag_get(node
, tag
, offset
))
628 tag_clear(node
, tag
, offset
);
629 if (any_tag_set(node
, tag
))
632 index
>>= RADIX_TREE_MAP_SHIFT
;
633 offset
= index
& RADIX_TREE_MAP_MASK
;
637 /* clear the root's tag bit */
638 if (root_tag_get(root
, tag
))
639 root_tag_clear(root
, tag
);
644 EXPORT_SYMBOL(radix_tree_tag_clear
);
647 * radix_tree_tag_get - get a tag on a radix tree node
648 * @root: radix tree root
650 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
654 * 0: tag not present or not set
657 * Note that the return value of this function may not be relied on, even if
658 * the RCU lock is held, unless tag modification and node deletion are excluded
661 int radix_tree_tag_get(struct radix_tree_root
*root
,
662 unsigned long index
, unsigned int tag
)
664 unsigned int height
, shift
;
665 struct radix_tree_node
*node
;
667 /* check the root's tag bit */
668 if (!root_tag_get(root
, tag
))
671 node
= rcu_dereference_raw(root
->rnode
);
675 if (!radix_tree_is_indirect_ptr(node
))
677 node
= indirect_to_ptr(node
);
679 height
= node
->height
;
680 if (index
> radix_tree_maxindex(height
))
683 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
691 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
692 if (!tag_get(node
, tag
, offset
))
696 node
= rcu_dereference_raw(node
->slots
[offset
]);
697 shift
-= RADIX_TREE_MAP_SHIFT
;
701 EXPORT_SYMBOL(radix_tree_tag_get
);
704 * radix_tree_next_chunk - find next chunk of slots for iteration
706 * @root: radix tree root
707 * @iter: iterator state
708 * @flags: RADIX_TREE_ITER_* flags and tag index
709 * Returns: pointer to chunk first slot, or NULL if iteration is over
711 void **radix_tree_next_chunk(struct radix_tree_root
*root
,
712 struct radix_tree_iter
*iter
, unsigned flags
)
714 unsigned shift
, tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
715 struct radix_tree_node
*rnode
, *node
;
716 unsigned long index
, offset
;
718 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
722 * Catch next_index overflow after ~0UL. iter->index never overflows
723 * during iterating; it can be zero only at the beginning.
724 * And we cannot overflow iter->next_index in a single step,
725 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
727 * This condition also used by radix_tree_next_slot() to stop
728 * contiguous iterating, and forbid swithing to the next chunk.
730 index
= iter
->next_index
;
731 if (!index
&& iter
->index
)
734 rnode
= rcu_dereference_raw(root
->rnode
);
735 if (radix_tree_is_indirect_ptr(rnode
)) {
736 rnode
= indirect_to_ptr(rnode
);
737 } else if (rnode
&& !index
) {
738 /* Single-slot tree */
740 iter
->next_index
= 1;
742 return (void **)&root
->rnode
;
747 shift
= (rnode
->height
- 1) * RADIX_TREE_MAP_SHIFT
;
748 offset
= index
>> shift
;
750 /* Index outside of the tree */
751 if (offset
>= RADIX_TREE_MAP_SIZE
)
756 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
757 !test_bit(offset
, node
->tags
[tag
]) :
758 !node
->slots
[offset
]) {
760 if (flags
& RADIX_TREE_ITER_CONTIG
)
763 if (flags
& RADIX_TREE_ITER_TAGGED
)
764 offset
= radix_tree_find_next_bit(
769 while (++offset
< RADIX_TREE_MAP_SIZE
) {
770 if (node
->slots
[offset
])
773 index
&= ~((RADIX_TREE_MAP_SIZE
<< shift
) - 1);
774 index
+= offset
<< shift
;
775 /* Overflow after ~0UL */
778 if (offset
== RADIX_TREE_MAP_SIZE
)
782 /* This is leaf-node */
786 node
= rcu_dereference_raw(node
->slots
[offset
]);
789 shift
-= RADIX_TREE_MAP_SHIFT
;
790 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
793 /* Update the iterator state */
795 iter
->next_index
= (index
| RADIX_TREE_MAP_MASK
) + 1;
797 /* Construct iter->tags bit-mask from node->tags[tag] array */
798 if (flags
& RADIX_TREE_ITER_TAGGED
) {
799 unsigned tag_long
, tag_bit
;
801 tag_long
= offset
/ BITS_PER_LONG
;
802 tag_bit
= offset
% BITS_PER_LONG
;
803 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
804 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
805 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
806 /* Pick tags from next element */
808 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
809 (BITS_PER_LONG
- tag_bit
);
810 /* Clip chunk size, here only BITS_PER_LONG tags */
811 iter
->next_index
= index
+ BITS_PER_LONG
;
815 return node
->slots
+ offset
;
817 EXPORT_SYMBOL(radix_tree_next_chunk
);
820 * radix_tree_range_tag_if_tagged - for each item in given range set given
821 * tag if item has another tag set
822 * @root: radix tree root
823 * @first_indexp: pointer to a starting index of a range to scan
824 * @last_index: last index of a range to scan
825 * @nr_to_tag: maximum number items to tag
826 * @iftag: tag index to test
827 * @settag: tag index to set if tested tag is set
829 * This function scans range of radix tree from first_index to last_index
830 * (inclusive). For each item in the range if iftag is set, the function sets
831 * also settag. The function stops either after tagging nr_to_tag items or
832 * after reaching last_index.
834 * The tags must be set from the leaf level only and propagated back up the
835 * path to the root. We must do this so that we resolve the full path before
836 * setting any tags on intermediate nodes. If we set tags as we descend, then
837 * we can get to the leaf node and find that the index that has the iftag
838 * set is outside the range we are scanning. This reults in dangling tags and
839 * can lead to problems with later tag operations (e.g. livelocks on lookups).
841 * The function returns number of leaves where the tag was set and sets
842 * *first_indexp to the first unscanned index.
843 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
844 * be prepared to handle that.
846 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root
*root
,
847 unsigned long *first_indexp
, unsigned long last_index
,
848 unsigned long nr_to_tag
,
849 unsigned int iftag
, unsigned int settag
)
851 unsigned int height
= root
->height
;
852 struct radix_tree_node
*node
= NULL
;
853 struct radix_tree_node
*slot
;
855 unsigned long tagged
= 0;
856 unsigned long index
= *first_indexp
;
858 last_index
= min(last_index
, radix_tree_maxindex(height
));
859 if (index
> last_index
)
863 if (!root_tag_get(root
, iftag
)) {
864 *first_indexp
= last_index
+ 1;
868 *first_indexp
= last_index
+ 1;
869 root_tag_set(root
, settag
);
873 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
874 slot
= indirect_to_ptr(root
->rnode
);
877 unsigned long upindex
;
880 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
881 if (!slot
->slots
[offset
])
883 if (!tag_get(slot
, iftag
, offset
))
886 /* Go down one level */
887 shift
-= RADIX_TREE_MAP_SHIFT
;
889 slot
= slot
->slots
[offset
];
895 tag_set(slot
, settag
, offset
);
897 /* walk back up the path tagging interior nodes */
900 upindex
>>= RADIX_TREE_MAP_SHIFT
;
901 offset
= upindex
& RADIX_TREE_MAP_MASK
;
903 /* stop if we find a node with the tag already set */
904 if (tag_get(node
, settag
, offset
))
906 tag_set(node
, settag
, offset
);
911 * Small optimization: now clear that node pointer.
912 * Since all of this slot's ancestors now have the tag set
913 * from setting it above, we have no further need to walk
914 * back up the tree setting tags, until we update slot to
915 * point to another radix_tree_node.
920 /* Go to next item at level determined by 'shift' */
921 index
= ((index
>> shift
) + 1) << shift
;
922 /* Overflow can happen when last_index is ~0UL... */
923 if (index
> last_index
|| !index
)
925 if (tagged
>= nr_to_tag
)
927 while (((index
>> shift
) & RADIX_TREE_MAP_MASK
) == 0) {
929 * We've fully scanned this node. Go up. Because
930 * last_index is guaranteed to be in the tree, what
931 * we do below cannot wander astray.
934 shift
+= RADIX_TREE_MAP_SHIFT
;
938 * We need not to tag the root tag if there is no tag which is set with
939 * settag within the range from *first_indexp to last_index.
942 root_tag_set(root
, settag
);
943 *first_indexp
= index
;
947 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged
);
951 * radix_tree_next_hole - find the next hole (not-present entry)
954 * @max_scan: maximum range to search
956 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
959 * Returns: the index of the hole if found, otherwise returns an index
960 * outside of the set specified (in which case 'return - index >= max_scan'
961 * will be true). In rare cases of index wrap-around, 0 will be returned.
963 * radix_tree_next_hole may be called under rcu_read_lock. However, like
964 * radix_tree_gang_lookup, this will not atomically search a snapshot of
965 * the tree at a single point in time. For example, if a hole is created
966 * at index 5, then subsequently a hole is created at index 10,
967 * radix_tree_next_hole covering both indexes may return 10 if called
968 * under rcu_read_lock.
970 unsigned long radix_tree_next_hole(struct radix_tree_root
*root
,
971 unsigned long index
, unsigned long max_scan
)
975 for (i
= 0; i
< max_scan
; i
++) {
976 if (!radix_tree_lookup(root
, index
))
985 EXPORT_SYMBOL(radix_tree_next_hole
);
988 * radix_tree_prev_hole - find the prev hole (not-present entry)
991 * @max_scan: maximum range to search
993 * Search backwards in the range [max(index-max_scan+1, 0), index]
994 * for the first hole.
996 * Returns: the index of the hole if found, otherwise returns an index
997 * outside of the set specified (in which case 'index - return >= max_scan'
998 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
1000 * radix_tree_next_hole may be called under rcu_read_lock. However, like
1001 * radix_tree_gang_lookup, this will not atomically search a snapshot of
1002 * the tree at a single point in time. For example, if a hole is created
1003 * at index 10, then subsequently a hole is created at index 5,
1004 * radix_tree_prev_hole covering both indexes may return 5 if called under
1007 unsigned long radix_tree_prev_hole(struct radix_tree_root
*root
,
1008 unsigned long index
, unsigned long max_scan
)
1012 for (i
= 0; i
< max_scan
; i
++) {
1013 if (!radix_tree_lookup(root
, index
))
1016 if (index
== ULONG_MAX
)
1022 EXPORT_SYMBOL(radix_tree_prev_hole
);
1025 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1026 * @root: radix tree root
1027 * @results: where the results of the lookup are placed
1028 * @first_index: start the lookup from this key
1029 * @max_items: place up to this many items at *results
1031 * Performs an index-ascending scan of the tree for present items. Places
1032 * them at *@results and returns the number of items which were placed at
1035 * The implementation is naive.
1037 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1038 * rcu_read_lock. In this case, rather than the returned results being
1039 * an atomic snapshot of the tree at a single point in time, the semantics
1040 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1041 * have been issued in individual locks, and results stored in 'results'.
1044 radix_tree_gang_lookup(struct radix_tree_root
*root
, void **results
,
1045 unsigned long first_index
, unsigned int max_items
)
1047 struct radix_tree_iter iter
;
1049 unsigned int ret
= 0;
1051 if (unlikely(!max_items
))
1054 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1055 results
[ret
] = indirect_to_ptr(rcu_dereference_raw(*slot
));
1058 if (++ret
== max_items
)
1064 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1067 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1068 * @root: radix tree root
1069 * @results: where the results of the lookup are placed
1070 * @indices: where their indices should be placed (but usually NULL)
1071 * @first_index: start the lookup from this key
1072 * @max_items: place up to this many items at *results
1074 * Performs an index-ascending scan of the tree for present items. Places
1075 * their slots at *@results and returns the number of items which were
1076 * placed at *@results.
1078 * The implementation is naive.
1080 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1081 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1082 * protection, radix_tree_deref_slot may fail requiring a retry.
1085 radix_tree_gang_lookup_slot(struct radix_tree_root
*root
,
1086 void ***results
, unsigned long *indices
,
1087 unsigned long first_index
, unsigned int max_items
)
1089 struct radix_tree_iter iter
;
1091 unsigned int ret
= 0;
1093 if (unlikely(!max_items
))
1096 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1097 results
[ret
] = slot
;
1099 indices
[ret
] = iter
.index
;
1100 if (++ret
== max_items
)
1106 EXPORT_SYMBOL(radix_tree_gang_lookup_slot
);
1109 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1111 * @root: radix tree root
1112 * @results: where the results of the lookup are placed
1113 * @first_index: start the lookup from this key
1114 * @max_items: place up to this many items at *results
1115 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1117 * Performs an index-ascending scan of the tree for present items which
1118 * have the tag indexed by @tag set. Places the items at *@results and
1119 * returns the number of items which were placed at *@results.
1122 radix_tree_gang_lookup_tag(struct radix_tree_root
*root
, void **results
,
1123 unsigned long first_index
, unsigned int max_items
,
1126 struct radix_tree_iter iter
;
1128 unsigned int ret
= 0;
1130 if (unlikely(!max_items
))
1133 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1134 results
[ret
] = indirect_to_ptr(rcu_dereference_raw(*slot
));
1137 if (++ret
== max_items
)
1143 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1146 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1147 * radix tree based on a tag
1148 * @root: radix tree root
1149 * @results: where the results of the lookup are placed
1150 * @first_index: start the lookup from this key
1151 * @max_items: place up to this many items at *results
1152 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1154 * Performs an index-ascending scan of the tree for present items which
1155 * have the tag indexed by @tag set. Places the slots at *@results and
1156 * returns the number of slots which were placed at *@results.
1159 radix_tree_gang_lookup_tag_slot(struct radix_tree_root
*root
, void ***results
,
1160 unsigned long first_index
, unsigned int max_items
,
1163 struct radix_tree_iter iter
;
1165 unsigned int ret
= 0;
1167 if (unlikely(!max_items
))
1170 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1171 results
[ret
] = slot
;
1172 if (++ret
== max_items
)
1178 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1180 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1181 #include <linux/sched.h> /* for cond_resched() */
1184 * This linear search is at present only useful to shmem_unuse_inode().
1186 static unsigned long __locate(struct radix_tree_node
*slot
, void *item
,
1187 unsigned long index
, unsigned long *found_index
)
1189 unsigned int shift
, height
;
1192 height
= slot
->height
;
1193 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
1195 for ( ; height
> 1; height
--) {
1196 i
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
1198 if (slot
->slots
[i
] != NULL
)
1200 index
&= ~((1UL << shift
) - 1);
1201 index
+= 1UL << shift
;
1203 goto out
; /* 32-bit wraparound */
1205 if (i
== RADIX_TREE_MAP_SIZE
)
1209 shift
-= RADIX_TREE_MAP_SHIFT
;
1210 slot
= rcu_dereference_raw(slot
->slots
[i
]);
1215 /* Bottom level: check items */
1216 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++) {
1217 if (slot
->slots
[i
] == item
) {
1218 *found_index
= index
+ i
;
1223 index
+= RADIX_TREE_MAP_SIZE
;
1229 * radix_tree_locate_item - search through radix tree for item
1230 * @root: radix tree root
1231 * @item: item to be found
1233 * Returns index where item was found, or -1 if not found.
1234 * Caller must hold no lock (since this time-consuming function needs
1235 * to be preemptible), and must check afterwards if item is still there.
1237 unsigned long radix_tree_locate_item(struct radix_tree_root
*root
, void *item
)
1239 struct radix_tree_node
*node
;
1240 unsigned long max_index
;
1241 unsigned long cur_index
= 0;
1242 unsigned long found_index
= -1;
1246 node
= rcu_dereference_raw(root
->rnode
);
1247 if (!radix_tree_is_indirect_ptr(node
)) {
1254 node
= indirect_to_ptr(node
);
1255 max_index
= radix_tree_maxindex(node
->height
);
1256 if (cur_index
> max_index
) {
1261 cur_index
= __locate(node
, item
, cur_index
, &found_index
);
1264 } while (cur_index
!= 0 && cur_index
<= max_index
);
1269 unsigned long radix_tree_locate_item(struct radix_tree_root
*root
, void *item
)
1273 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1276 * radix_tree_shrink - shrink height of a radix tree to minimal
1277 * @root radix tree root
1279 static inline void radix_tree_shrink(struct radix_tree_root
*root
)
1281 /* try to shrink tree height */
1282 while (root
->height
> 0) {
1283 struct radix_tree_node
*to_free
= root
->rnode
;
1284 struct radix_tree_node
*slot
;
1286 BUG_ON(!radix_tree_is_indirect_ptr(to_free
));
1287 to_free
= indirect_to_ptr(to_free
);
1290 * The candidate node has more than one child, or its child
1291 * is not at the leftmost slot, we cannot shrink.
1293 if (to_free
->count
!= 1)
1295 if (!to_free
->slots
[0])
1299 * We don't need rcu_assign_pointer(), since we are simply
1300 * moving the node from one part of the tree to another: if it
1301 * was safe to dereference the old pointer to it
1302 * (to_free->slots[0]), it will be safe to dereference the new
1303 * one (root->rnode) as far as dependent read barriers go.
1305 slot
= to_free
->slots
[0];
1306 if (root
->height
> 1) {
1307 slot
->parent
= NULL
;
1308 slot
= ptr_to_indirect(slot
);
1314 * We have a dilemma here. The node's slot[0] must not be
1315 * NULLed in case there are concurrent lookups expecting to
1316 * find the item. However if this was a bottom-level node,
1317 * then it may be subject to the slot pointer being visible
1318 * to callers dereferencing it. If item corresponding to
1319 * slot[0] is subsequently deleted, these callers would expect
1320 * their slot to become empty sooner or later.
1322 * For example, lockless pagecache will look up a slot, deref
1323 * the page pointer, and if the page is 0 refcount it means it
1324 * was concurrently deleted from pagecache so try the deref
1325 * again. Fortunately there is already a requirement for logic
1326 * to retry the entire slot lookup -- the indirect pointer
1327 * problem (replacing direct root node with an indirect pointer
1328 * also results in a stale slot). So tag the slot as indirect
1329 * to force callers to retry.
1331 if (root
->height
== 0)
1332 *((unsigned long *)&to_free
->slots
[0]) |=
1333 RADIX_TREE_INDIRECT_PTR
;
1335 radix_tree_node_free(to_free
);
1340 * radix_tree_delete - delete an item from a radix tree
1341 * @root: radix tree root
1344 * Remove the item at @index from the radix tree rooted at @root.
1346 * Returns the address of the deleted item, or NULL if it was not present.
1348 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
1350 struct radix_tree_node
*node
= NULL
;
1351 struct radix_tree_node
*slot
= NULL
;
1352 struct radix_tree_node
*to_free
;
1353 unsigned int height
, shift
;
1355 int uninitialized_var(offset
);
1357 height
= root
->height
;
1358 if (index
> radix_tree_maxindex(height
))
1363 root_tag_clear_all(root
);
1367 slot
= indirect_to_ptr(slot
);
1368 shift
= height
* RADIX_TREE_MAP_SHIFT
;
1374 shift
-= RADIX_TREE_MAP_SHIFT
;
1375 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
1377 slot
= slot
->slots
[offset
];
1384 * Clear all tags associated with the item to be deleted.
1385 * This way of doing it would be inefficient, but seldom is any set.
1387 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
1388 if (tag_get(node
, tag
, offset
))
1389 radix_tree_tag_clear(root
, index
, tag
);
1393 /* Now free the nodes we do not need anymore */
1395 node
->slots
[offset
] = NULL
;
1398 * Queue the node for deferred freeing after the
1399 * last reference to it disappears (set NULL, above).
1402 radix_tree_node_free(to_free
);
1405 if (node
== indirect_to_ptr(root
->rnode
))
1406 radix_tree_shrink(root
);
1410 /* Node with zero slots in use so free it */
1413 index
>>= RADIX_TREE_MAP_SHIFT
;
1414 offset
= index
& RADIX_TREE_MAP_MASK
;
1415 node
= node
->parent
;
1418 root_tag_clear_all(root
);
1422 radix_tree_node_free(to_free
);
1427 EXPORT_SYMBOL(radix_tree_delete
);
1430 * radix_tree_tagged - test whether any items in the tree are tagged
1431 * @root: radix tree root
1434 int radix_tree_tagged(struct radix_tree_root
*root
, unsigned int tag
)
1436 return root_tag_get(root
, tag
);
1438 EXPORT_SYMBOL(radix_tree_tagged
);
1441 radix_tree_node_ctor(void *node
)
1443 memset(node
, 0, sizeof(struct radix_tree_node
));
1446 static __init
unsigned long __maxindex(unsigned int height
)
1448 unsigned int width
= height
* RADIX_TREE_MAP_SHIFT
;
1449 int shift
= RADIX_TREE_INDEX_BITS
- width
;
1453 if (shift
>= BITS_PER_LONG
)
1455 return ~0UL >> shift
;
1458 static __init
void radix_tree_init_maxindex(void)
1462 for (i
= 0; i
< ARRAY_SIZE(height_to_maxindex
); i
++)
1463 height_to_maxindex
[i
] = __maxindex(i
);
1466 static int radix_tree_callback(struct notifier_block
*nfb
,
1467 unsigned long action
,
1470 int cpu
= (long)hcpu
;
1471 struct radix_tree_preload
*rtp
;
1473 /* Free per-cpu pool of perloaded nodes */
1474 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1475 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
1477 kmem_cache_free(radix_tree_node_cachep
,
1478 rtp
->nodes
[rtp
->nr
-1]);
1479 rtp
->nodes
[rtp
->nr
-1] = NULL
;
1486 void __init
radix_tree_init(void)
1488 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
1489 sizeof(struct radix_tree_node
), 0,
1490 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
1491 radix_tree_node_ctor
);
1492 radix_tree_init_maxindex();
1493 hotcpu_notifier(radix_tree_callback
, 0);