sysctl: restrict write access to dmesg_restrict
[linux/fpc-iii.git] / drivers / video / pxafb.c
blob825b665245bbd8cbc6aa9f6a5575982d734e9f2d
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
32 * All Rights Reserved
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
58 #include <mach/hardware.h>
59 #include <asm/io.h>
60 #include <asm/irq.h>
61 #include <asm/div64.h>
62 #include <mach/bitfield.h>
63 #include <mach/pxafb.h>
66 * Complain if VAR is out of range.
68 #define DEBUG_VAR 1
70 #include "pxafb.h"
72 /* Bits which should not be set in machine configuration structures */
73 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
74 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
75 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
78 LCCR3_PCD | LCCR3_BPP(0xf))
80 static int pxafb_activate_var(struct fb_var_screeninfo *var,
81 struct pxafb_info *);
82 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
83 static void setup_base_frame(struct pxafb_info *fbi,
84 struct fb_var_screeninfo *var, int branch);
85 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
86 unsigned long offset, size_t size);
88 static unsigned long video_mem_size = 0;
90 static inline unsigned long
91 lcd_readl(struct pxafb_info *fbi, unsigned int off)
93 return __raw_readl(fbi->mmio_base + off);
96 static inline void
97 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
99 __raw_writel(val, fbi->mmio_base + off);
102 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
104 unsigned long flags;
106 local_irq_save(flags);
108 * We need to handle two requests being made at the same time.
109 * There are two important cases:
110 * 1. When we are changing VT (C_REENABLE) while unblanking
111 * (C_ENABLE) We must perform the unblanking, which will
112 * do our REENABLE for us.
113 * 2. When we are blanking, but immediately unblank before
114 * we have blanked. We do the "REENABLE" thing here as
115 * well, just to be sure.
117 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
118 state = (u_int) -1;
119 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
120 state = C_REENABLE;
122 if (state != (u_int)-1) {
123 fbi->task_state = state;
124 schedule_work(&fbi->task);
126 local_irq_restore(flags);
129 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
131 chan &= 0xffff;
132 chan >>= 16 - bf->length;
133 return chan << bf->offset;
136 static int
137 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
138 u_int trans, struct fb_info *info)
140 struct pxafb_info *fbi = (struct pxafb_info *)info;
141 u_int val;
143 if (regno >= fbi->palette_size)
144 return 1;
146 if (fbi->fb.var.grayscale) {
147 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
148 return 0;
151 switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
152 case LCCR4_PAL_FOR_0:
153 val = ((red >> 0) & 0xf800);
154 val |= ((green >> 5) & 0x07e0);
155 val |= ((blue >> 11) & 0x001f);
156 fbi->palette_cpu[regno] = val;
157 break;
158 case LCCR4_PAL_FOR_1:
159 val = ((red << 8) & 0x00f80000);
160 val |= ((green >> 0) & 0x0000fc00);
161 val |= ((blue >> 8) & 0x000000f8);
162 ((u32 *)(fbi->palette_cpu))[regno] = val;
163 break;
164 case LCCR4_PAL_FOR_2:
165 val = ((red << 8) & 0x00fc0000);
166 val |= ((green >> 0) & 0x0000fc00);
167 val |= ((blue >> 8) & 0x000000fc);
168 ((u32 *)(fbi->palette_cpu))[regno] = val;
169 break;
170 case LCCR4_PAL_FOR_3:
171 val = ((red << 8) & 0x00ff0000);
172 val |= ((green >> 0) & 0x0000ff00);
173 val |= ((blue >> 8) & 0x000000ff);
174 ((u32 *)(fbi->palette_cpu))[regno] = val;
175 break;
178 return 0;
181 static int
182 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
183 u_int trans, struct fb_info *info)
185 struct pxafb_info *fbi = (struct pxafb_info *)info;
186 unsigned int val;
187 int ret = 1;
190 * If inverse mode was selected, invert all the colours
191 * rather than the register number. The register number
192 * is what you poke into the framebuffer to produce the
193 * colour you requested.
195 if (fbi->cmap_inverse) {
196 red = 0xffff - red;
197 green = 0xffff - green;
198 blue = 0xffff - blue;
202 * If greyscale is true, then we convert the RGB value
203 * to greyscale no matter what visual we are using.
205 if (fbi->fb.var.grayscale)
206 red = green = blue = (19595 * red + 38470 * green +
207 7471 * blue) >> 16;
209 switch (fbi->fb.fix.visual) {
210 case FB_VISUAL_TRUECOLOR:
212 * 16-bit True Colour. We encode the RGB value
213 * according to the RGB bitfield information.
215 if (regno < 16) {
216 u32 *pal = fbi->fb.pseudo_palette;
218 val = chan_to_field(red, &fbi->fb.var.red);
219 val |= chan_to_field(green, &fbi->fb.var.green);
220 val |= chan_to_field(blue, &fbi->fb.var.blue);
222 pal[regno] = val;
223 ret = 0;
225 break;
227 case FB_VISUAL_STATIC_PSEUDOCOLOR:
228 case FB_VISUAL_PSEUDOCOLOR:
229 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
230 break;
233 return ret;
236 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
237 static inline int var_to_depth(struct fb_var_screeninfo *var)
239 return var->red.length + var->green.length +
240 var->blue.length + var->transp.length;
243 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
244 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
246 int bpp = -EINVAL;
248 switch (var->bits_per_pixel) {
249 case 1: bpp = 0; break;
250 case 2: bpp = 1; break;
251 case 4: bpp = 2; break;
252 case 8: bpp = 3; break;
253 case 16: bpp = 4; break;
254 case 24:
255 switch (var_to_depth(var)) {
256 case 18: bpp = 6; break; /* 18-bits/pixel packed */
257 case 19: bpp = 8; break; /* 19-bits/pixel packed */
258 case 24: bpp = 9; break;
260 break;
261 case 32:
262 switch (var_to_depth(var)) {
263 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
264 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
265 case 25: bpp = 10; break;
267 break;
269 return bpp;
273 * pxafb_var_to_lccr3():
274 * Convert a bits per pixel value to the correct bit pattern for LCCR3
276 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
277 * implication of the acutal use of transparency bit, which we handle it
278 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
279 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
281 * Transparency for palette pixel formats is not supported at the moment.
283 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
285 int bpp = pxafb_var_to_bpp(var);
286 uint32_t lccr3;
288 if (bpp < 0)
289 return 0;
291 lccr3 = LCCR3_BPP(bpp);
293 switch (var_to_depth(var)) {
294 case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
295 case 18: lccr3 |= LCCR3_PDFOR_3; break;
296 case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
297 break;
298 case 19:
299 case 25: lccr3 |= LCCR3_PDFOR_0; break;
301 return lccr3;
304 #define SET_PIXFMT(v, r, g, b, t) \
305 ({ \
306 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
307 (v)->transp.length = (t) ? (t) : 0; \
308 (v)->blue.length = (b); (v)->blue.offset = 0; \
309 (v)->green.length = (g); (v)->green.offset = (b); \
310 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
313 /* set the RGBT bitfields of fb_var_screeninf according to
314 * var->bits_per_pixel and given depth
316 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
318 if (depth == 0)
319 depth = var->bits_per_pixel;
321 if (var->bits_per_pixel < 16) {
322 /* indexed pixel formats */
323 var->red.offset = 0; var->red.length = 8;
324 var->green.offset = 0; var->green.length = 8;
325 var->blue.offset = 0; var->blue.length = 8;
326 var->transp.offset = 0; var->transp.length = 8;
329 switch (depth) {
330 case 16: var->transp.length ?
331 SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
332 SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
333 case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
334 case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
335 case 24: var->transp.length ?
336 SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
337 SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
338 case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
342 #ifdef CONFIG_CPU_FREQ
344 * pxafb_display_dma_period()
345 * Calculate the minimum period (in picoseconds) between two DMA
346 * requests for the LCD controller. If we hit this, it means we're
347 * doing nothing but LCD DMA.
349 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
352 * Period = pixclock * bits_per_byte * bytes_per_transfer
353 * / memory_bits_per_pixel;
355 return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 #endif
360 * Select the smallest mode that allows the desired resolution to be
361 * displayed. If desired parameters can be rounded up.
363 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
364 struct fb_var_screeninfo *var)
366 struct pxafb_mode_info *mode = NULL;
367 struct pxafb_mode_info *modelist = mach->modes;
368 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
369 unsigned int i;
371 for (i = 0; i < mach->num_modes; i++) {
372 if (modelist[i].xres >= var->xres &&
373 modelist[i].yres >= var->yres &&
374 modelist[i].xres < best_x &&
375 modelist[i].yres < best_y &&
376 modelist[i].bpp >= var->bits_per_pixel) {
377 best_x = modelist[i].xres;
378 best_y = modelist[i].yres;
379 mode = &modelist[i];
383 return mode;
386 static void pxafb_setmode(struct fb_var_screeninfo *var,
387 struct pxafb_mode_info *mode)
389 var->xres = mode->xres;
390 var->yres = mode->yres;
391 var->bits_per_pixel = mode->bpp;
392 var->pixclock = mode->pixclock;
393 var->hsync_len = mode->hsync_len;
394 var->left_margin = mode->left_margin;
395 var->right_margin = mode->right_margin;
396 var->vsync_len = mode->vsync_len;
397 var->upper_margin = mode->upper_margin;
398 var->lower_margin = mode->lower_margin;
399 var->sync = mode->sync;
400 var->grayscale = mode->cmap_greyscale;
401 var->transp.length = mode->transparency;
403 /* set the initial RGBA bitfields */
404 pxafb_set_pixfmt(var, mode->depth);
407 static int pxafb_adjust_timing(struct pxafb_info *fbi,
408 struct fb_var_screeninfo *var)
410 int line_length;
412 var->xres = max_t(int, var->xres, MIN_XRES);
413 var->yres = max_t(int, var->yres, MIN_YRES);
415 if (!(fbi->lccr0 & LCCR0_LCDT)) {
416 clamp_val(var->hsync_len, 1, 64);
417 clamp_val(var->vsync_len, 1, 64);
418 clamp_val(var->left_margin, 1, 255);
419 clamp_val(var->right_margin, 1, 255);
420 clamp_val(var->upper_margin, 1, 255);
421 clamp_val(var->lower_margin, 1, 255);
424 /* make sure each line is aligned on word boundary */
425 line_length = var->xres * var->bits_per_pixel / 8;
426 line_length = ALIGN(line_length, 4);
427 var->xres = line_length * 8 / var->bits_per_pixel;
429 /* we don't support xpan, force xres_virtual to be equal to xres */
430 var->xres_virtual = var->xres;
432 if (var->accel_flags & FB_ACCELF_TEXT)
433 var->yres_virtual = fbi->fb.fix.smem_len / line_length;
434 else
435 var->yres_virtual = max(var->yres_virtual, var->yres);
437 /* check for limits */
438 if (var->xres > MAX_XRES || var->yres > MAX_YRES)
439 return -EINVAL;
441 if (var->yres > var->yres_virtual)
442 return -EINVAL;
444 return 0;
448 * pxafb_check_var():
449 * Get the video params out of 'var'. If a value doesn't fit, round it up,
450 * if it's too big, return -EINVAL.
452 * Round up in the following order: bits_per_pixel, xres,
453 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
454 * bitfields, horizontal timing, vertical timing.
456 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
458 struct pxafb_info *fbi = (struct pxafb_info *)info;
459 struct pxafb_mach_info *inf = fbi->dev->platform_data;
460 int err;
462 if (inf->fixed_modes) {
463 struct pxafb_mode_info *mode;
465 mode = pxafb_getmode(inf, var);
466 if (!mode)
467 return -EINVAL;
468 pxafb_setmode(var, mode);
471 /* do a test conversion to BPP fields to check the color formats */
472 err = pxafb_var_to_bpp(var);
473 if (err < 0)
474 return err;
476 pxafb_set_pixfmt(var, var_to_depth(var));
478 err = pxafb_adjust_timing(fbi, var);
479 if (err)
480 return err;
482 #ifdef CONFIG_CPU_FREQ
483 pr_debug("pxafb: dma period = %d ps\n",
484 pxafb_display_dma_period(var));
485 #endif
487 return 0;
491 * pxafb_set_par():
492 * Set the user defined part of the display for the specified console
494 static int pxafb_set_par(struct fb_info *info)
496 struct pxafb_info *fbi = (struct pxafb_info *)info;
497 struct fb_var_screeninfo *var = &info->var;
499 if (var->bits_per_pixel >= 16)
500 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
501 else if (!fbi->cmap_static)
502 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
503 else {
505 * Some people have weird ideas about wanting static
506 * pseudocolor maps. I suspect their user space
507 * applications are broken.
509 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
512 fbi->fb.fix.line_length = var->xres_virtual *
513 var->bits_per_pixel / 8;
514 if (var->bits_per_pixel >= 16)
515 fbi->palette_size = 0;
516 else
517 fbi->palette_size = var->bits_per_pixel == 1 ?
518 4 : 1 << var->bits_per_pixel;
520 fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
522 if (fbi->fb.var.bits_per_pixel >= 16)
523 fb_dealloc_cmap(&fbi->fb.cmap);
524 else
525 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
527 pxafb_activate_var(var, fbi);
529 return 0;
532 static int pxafb_pan_display(struct fb_var_screeninfo *var,
533 struct fb_info *info)
535 struct pxafb_info *fbi = (struct pxafb_info *)info;
536 struct fb_var_screeninfo newvar;
537 int dma = DMA_MAX + DMA_BASE;
539 if (fbi->state != C_ENABLE)
540 return 0;
542 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
543 * was passed in and copy the rest from the old screeninfo.
545 memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
546 newvar.xoffset = var->xoffset;
547 newvar.yoffset = var->yoffset;
548 newvar.vmode &= ~FB_VMODE_YWRAP;
549 newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
551 setup_base_frame(fbi, &newvar, 1);
553 if (fbi->lccr0 & LCCR0_SDS)
554 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
556 lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
557 return 0;
561 * pxafb_blank():
562 * Blank the display by setting all palette values to zero. Note, the
563 * 16 bpp mode does not really use the palette, so this will not
564 * blank the display in all modes.
566 static int pxafb_blank(int blank, struct fb_info *info)
568 struct pxafb_info *fbi = (struct pxafb_info *)info;
569 int i;
571 switch (blank) {
572 case FB_BLANK_POWERDOWN:
573 case FB_BLANK_VSYNC_SUSPEND:
574 case FB_BLANK_HSYNC_SUSPEND:
575 case FB_BLANK_NORMAL:
576 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
577 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
578 for (i = 0; i < fbi->palette_size; i++)
579 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
581 pxafb_schedule_work(fbi, C_DISABLE);
582 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
583 break;
585 case FB_BLANK_UNBLANK:
586 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
587 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
588 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
589 fb_set_cmap(&fbi->fb.cmap, info);
590 pxafb_schedule_work(fbi, C_ENABLE);
592 return 0;
595 static struct fb_ops pxafb_ops = {
596 .owner = THIS_MODULE,
597 .fb_check_var = pxafb_check_var,
598 .fb_set_par = pxafb_set_par,
599 .fb_pan_display = pxafb_pan_display,
600 .fb_setcolreg = pxafb_setcolreg,
601 .fb_fillrect = cfb_fillrect,
602 .fb_copyarea = cfb_copyarea,
603 .fb_imageblit = cfb_imageblit,
604 .fb_blank = pxafb_blank,
607 #ifdef CONFIG_FB_PXA_OVERLAY
608 static void overlay1fb_setup(struct pxafb_layer *ofb)
610 int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
611 unsigned long start = ofb->video_mem_phys;
612 setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
615 /* Depending on the enable status of overlay1/2, the DMA should be
616 * updated from FDADRx (when disabled) or FBRx (when enabled).
618 static void overlay1fb_enable(struct pxafb_layer *ofb)
620 int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
621 uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
623 lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
624 lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
625 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
628 static void overlay1fb_disable(struct pxafb_layer *ofb)
630 uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
632 lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
634 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
635 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
636 lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
638 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
639 pr_warning("%s: timeout disabling overlay1\n", __func__);
641 lcd_writel(ofb->fbi, LCCR5, lccr5);
644 static void overlay2fb_setup(struct pxafb_layer *ofb)
646 int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
647 unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
649 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
650 size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
651 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
652 } else {
653 size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
654 switch (pfor) {
655 case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
656 case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
657 case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
659 start[1] = start[0] + size;
660 start[2] = start[1] + size / div;
661 setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
662 setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
663 setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
667 static void overlay2fb_enable(struct pxafb_layer *ofb)
669 int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
670 int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
671 uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
672 uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
673 uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
675 if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
676 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
677 else {
678 lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
679 lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
680 lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
682 lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
683 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
686 static void overlay2fb_disable(struct pxafb_layer *ofb)
688 uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
690 lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
692 lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
693 lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
694 lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
695 lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
696 lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
698 if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
699 pr_warning("%s: timeout disabling overlay2\n", __func__);
702 static struct pxafb_layer_ops ofb_ops[] = {
703 [0] = {
704 .enable = overlay1fb_enable,
705 .disable = overlay1fb_disable,
706 .setup = overlay1fb_setup,
708 [1] = {
709 .enable = overlay2fb_enable,
710 .disable = overlay2fb_disable,
711 .setup = overlay2fb_setup,
715 static int overlayfb_open(struct fb_info *info, int user)
717 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
719 /* no support for framebuffer console on overlay */
720 if (user == 0)
721 return -ENODEV;
723 /* allow only one user at a time */
724 if (atomic_inc_and_test(&ofb->usage))
725 return -EBUSY;
727 /* unblank the base framebuffer */
728 fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
729 return 0;
732 static int overlayfb_release(struct fb_info *info, int user)
734 struct pxafb_layer *ofb = (struct pxafb_layer*) info;
736 atomic_dec(&ofb->usage);
737 ofb->ops->disable(ofb);
739 free_pages_exact(ofb->video_mem, ofb->video_mem_size);
740 ofb->video_mem = NULL;
741 ofb->video_mem_size = 0;
742 return 0;
745 static int overlayfb_check_var(struct fb_var_screeninfo *var,
746 struct fb_info *info)
748 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
749 struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
750 int xpos, ypos, pfor, bpp;
752 xpos = NONSTD_TO_XPOS(var->nonstd);
753 ypos = NONSTD_TO_XPOS(var->nonstd);
754 pfor = NONSTD_TO_PFOR(var->nonstd);
756 bpp = pxafb_var_to_bpp(var);
757 if (bpp < 0)
758 return -EINVAL;
760 /* no support for YUV format on overlay1 */
761 if (ofb->id == OVERLAY1 && pfor != 0)
762 return -EINVAL;
764 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
765 switch (pfor) {
766 case OVERLAY_FORMAT_RGB:
767 bpp = pxafb_var_to_bpp(var);
768 if (bpp < 0)
769 return -EINVAL;
771 pxafb_set_pixfmt(var, var_to_depth(var));
772 break;
773 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
774 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
775 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
776 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
777 default:
778 return -EINVAL;
781 /* each line must start at a 32-bit word boundary */
782 if ((xpos * bpp) % 32)
783 return -EINVAL;
785 /* xres must align on 32-bit word boundary */
786 var->xres = roundup(var->xres * bpp, 32) / bpp;
788 if ((xpos + var->xres > base_var->xres) ||
789 (ypos + var->yres > base_var->yres))
790 return -EINVAL;
792 var->xres_virtual = var->xres;
793 var->yres_virtual = max(var->yres, var->yres_virtual);
794 return 0;
797 static int overlayfb_map_video_memory(struct pxafb_layer *ofb)
799 struct fb_var_screeninfo *var = &ofb->fb.var;
800 int pfor = NONSTD_TO_PFOR(var->nonstd);
801 int size, bpp = 0;
803 switch (pfor) {
804 case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
805 case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
806 case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
807 case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
808 case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
811 ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
813 size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
815 /* don't re-allocate if the original video memory is enough */
816 if (ofb->video_mem) {
817 if (ofb->video_mem_size >= size)
818 return 0;
820 free_pages_exact(ofb->video_mem, ofb->video_mem_size);
823 ofb->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
824 if (ofb->video_mem == NULL)
825 return -ENOMEM;
827 ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
828 ofb->video_mem_size = size;
830 mutex_lock(&ofb->fb.mm_lock);
831 ofb->fb.fix.smem_start = ofb->video_mem_phys;
832 ofb->fb.fix.smem_len = ofb->fb.fix.line_length * var->yres_virtual;
833 mutex_unlock(&ofb->fb.mm_lock);
834 ofb->fb.screen_base = ofb->video_mem;
835 return 0;
838 static int overlayfb_set_par(struct fb_info *info)
840 struct pxafb_layer *ofb = (struct pxafb_layer *)info;
841 struct fb_var_screeninfo *var = &info->var;
842 int xpos, ypos, pfor, bpp, ret;
844 ret = overlayfb_map_video_memory(ofb);
845 if (ret)
846 return ret;
848 bpp = pxafb_var_to_bpp(var);
849 xpos = NONSTD_TO_XPOS(var->nonstd);
850 ypos = NONSTD_TO_XPOS(var->nonstd);
851 pfor = NONSTD_TO_PFOR(var->nonstd);
853 ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
854 OVLxC1_BPP(bpp);
855 ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
857 if (ofb->id == OVERLAY2)
858 ofb->control[1] |= OVL2C2_PFOR(pfor);
860 ofb->ops->setup(ofb);
861 ofb->ops->enable(ofb);
862 return 0;
865 static struct fb_ops overlay_fb_ops = {
866 .owner = THIS_MODULE,
867 .fb_open = overlayfb_open,
868 .fb_release = overlayfb_release,
869 .fb_check_var = overlayfb_check_var,
870 .fb_set_par = overlayfb_set_par,
873 static void __devinit init_pxafb_overlay(struct pxafb_info *fbi,
874 struct pxafb_layer *ofb, int id)
876 sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
878 ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
879 ofb->fb.fix.xpanstep = 0;
880 ofb->fb.fix.ypanstep = 1;
882 ofb->fb.var.activate = FB_ACTIVATE_NOW;
883 ofb->fb.var.height = -1;
884 ofb->fb.var.width = -1;
885 ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
887 ofb->fb.fbops = &overlay_fb_ops;
888 ofb->fb.flags = FBINFO_FLAG_DEFAULT;
889 ofb->fb.node = -1;
890 ofb->fb.pseudo_palette = NULL;
892 ofb->id = id;
893 ofb->ops = &ofb_ops[id];
894 atomic_set(&ofb->usage, 0);
895 ofb->fbi = fbi;
896 init_completion(&ofb->branch_done);
899 static inline int pxafb_overlay_supported(void)
901 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
902 return 1;
904 return 0;
907 static int __devinit pxafb_overlay_init(struct pxafb_info *fbi)
909 int i, ret;
911 if (!pxafb_overlay_supported())
912 return 0;
914 for (i = 0; i < 2; i++) {
915 init_pxafb_overlay(fbi, &fbi->overlay[i], i);
916 ret = register_framebuffer(&fbi->overlay[i].fb);
917 if (ret) {
918 dev_err(fbi->dev, "failed to register overlay %d\n", i);
919 return ret;
923 /* mask all IU/BS/EOF/SOF interrupts */
924 lcd_writel(fbi, LCCR5, ~0);
926 /* place overlay(s) on top of base */
927 fbi->lccr0 |= LCCR0_OUC;
928 pr_info("PXA Overlay driver loaded successfully!\n");
929 return 0;
932 static void __devexit pxafb_overlay_exit(struct pxafb_info *fbi)
934 int i;
936 if (!pxafb_overlay_supported())
937 return;
939 for (i = 0; i < 2; i++)
940 unregister_framebuffer(&fbi->overlay[i].fb);
942 #else
943 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
944 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
945 #endif /* CONFIG_FB_PXA_OVERLAY */
948 * Calculate the PCD value from the clock rate (in picoseconds).
949 * We take account of the PPCR clock setting.
950 * From PXA Developer's Manual:
952 * PixelClock = LCLK
953 * -------------
954 * 2 ( PCD + 1 )
956 * PCD = LCLK
957 * ------------- - 1
958 * 2(PixelClock)
960 * Where:
961 * LCLK = LCD/Memory Clock
962 * PCD = LCCR3[7:0]
964 * PixelClock here is in Hz while the pixclock argument given is the
965 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
967 * The function get_lclk_frequency_10khz returns LCLK in units of
968 * 10khz. Calling the result of this function lclk gives us the
969 * following
971 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
972 * -------------------------------------- - 1
975 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
977 static inline unsigned int get_pcd(struct pxafb_info *fbi,
978 unsigned int pixclock)
980 unsigned long long pcd;
982 /* FIXME: Need to take into account Double Pixel Clock mode
983 * (DPC) bit? or perhaps set it based on the various clock
984 * speeds */
985 pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
986 pcd *= pixclock;
987 do_div(pcd, 100000000 * 2);
988 /* no need for this, since we should subtract 1 anyway. they cancel */
989 /* pcd += 1; */ /* make up for integer math truncations */
990 return (unsigned int)pcd;
994 * Some touchscreens need hsync information from the video driver to
995 * function correctly. We export it here. Note that 'hsync_time' and
996 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
997 * of the hsync period in seconds.
999 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1001 unsigned long htime;
1003 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1004 fbi->hsync_time = 0;
1005 return;
1008 htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1010 fbi->hsync_time = htime;
1013 unsigned long pxafb_get_hsync_time(struct device *dev)
1015 struct pxafb_info *fbi = dev_get_drvdata(dev);
1017 /* If display is blanked/suspended, hsync isn't active */
1018 if (!fbi || (fbi->state != C_ENABLE))
1019 return 0;
1021 return fbi->hsync_time;
1023 EXPORT_SYMBOL(pxafb_get_hsync_time);
1025 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1026 unsigned long start, size_t size)
1028 struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1029 unsigned int dma_desc_off, pal_desc_off;
1031 if (dma < 0 || dma >= DMA_MAX * 2)
1032 return -EINVAL;
1034 dma_desc = &fbi->dma_buff->dma_desc[dma];
1035 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1037 dma_desc->fsadr = start;
1038 dma_desc->fidr = 0;
1039 dma_desc->ldcmd = size;
1041 if (pal < 0 || pal >= PAL_MAX * 2) {
1042 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1043 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1044 } else {
1045 pal_desc = &fbi->dma_buff->pal_desc[pal];
1046 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1048 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1049 pal_desc->fidr = 0;
1051 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1052 pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1053 else
1054 pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1056 pal_desc->ldcmd |= LDCMD_PAL;
1058 /* flip back and forth between palette and frame buffer */
1059 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1060 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1061 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1064 return 0;
1067 static void setup_base_frame(struct pxafb_info *fbi,
1068 struct fb_var_screeninfo *var,
1069 int branch)
1071 struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1072 int nbytes, dma, pal, bpp = var->bits_per_pixel;
1073 unsigned long offset;
1075 dma = DMA_BASE + (branch ? DMA_MAX : 0);
1076 pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1078 nbytes = fix->line_length * var->yres;
1079 offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1081 if (fbi->lccr0 & LCCR0_SDS) {
1082 nbytes = nbytes / 2;
1083 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1086 setup_frame_dma(fbi, dma, pal, offset, nbytes);
1089 #ifdef CONFIG_FB_PXA_SMARTPANEL
1090 static int setup_smart_dma(struct pxafb_info *fbi)
1092 struct pxafb_dma_descriptor *dma_desc;
1093 unsigned long dma_desc_off, cmd_buff_off;
1095 dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1096 dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1097 cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1099 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1100 dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1101 dma_desc->fidr = 0;
1102 dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1104 fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1105 return 0;
1108 int pxafb_smart_flush(struct fb_info *info)
1110 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1111 uint32_t prsr;
1112 int ret = 0;
1114 /* disable controller until all registers are set up */
1115 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1117 /* 1. make it an even number of commands to align on 32-bit boundary
1118 * 2. add the interrupt command to the end of the chain so we can
1119 * keep track of the end of the transfer
1122 while (fbi->n_smart_cmds & 1)
1123 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1125 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1126 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1127 setup_smart_dma(fbi);
1129 /* continue to execute next command */
1130 prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1131 lcd_writel(fbi, PRSR, prsr);
1133 /* stop the processor in case it executed "wait for sync" cmd */
1134 lcd_writel(fbi, CMDCR, 0x0001);
1136 /* don't send interrupts for fifo underruns on channel 6 */
1137 lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1139 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1140 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1141 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1142 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1143 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1144 lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1146 /* begin sending */
1147 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1149 if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1150 pr_warning("%s: timeout waiting for command done\n",
1151 __func__);
1152 ret = -ETIMEDOUT;
1155 /* quick disable */
1156 prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1157 lcd_writel(fbi, PRSR, prsr);
1158 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1159 lcd_writel(fbi, FDADR6, 0);
1160 fbi->n_smart_cmds = 0;
1161 return ret;
1164 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1166 int i;
1167 struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1169 for (i = 0; i < n_cmds; i++, cmds++) {
1170 /* if it is a software delay, flush and delay */
1171 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1172 pxafb_smart_flush(info);
1173 mdelay(*cmds & 0xff);
1174 continue;
1177 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1178 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1179 pxafb_smart_flush(info);
1181 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1184 return 0;
1187 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1189 unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1190 return (t == 0) ? 1 : t;
1193 static void setup_smart_timing(struct pxafb_info *fbi,
1194 struct fb_var_screeninfo *var)
1196 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1197 struct pxafb_mode_info *mode = &inf->modes[0];
1198 unsigned long lclk = clk_get_rate(fbi->clk);
1199 unsigned t1, t2, t3, t4;
1201 t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1202 t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1203 t3 = mode->op_hold_time;
1204 t4 = mode->cmd_inh_time;
1206 fbi->reg_lccr1 =
1207 LCCR1_DisWdth(var->xres) |
1208 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1209 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1210 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1212 fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1213 fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1214 fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1215 fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1217 /* FIXME: make this configurable */
1218 fbi->reg_cmdcr = 1;
1221 static int pxafb_smart_thread(void *arg)
1223 struct pxafb_info *fbi = arg;
1224 struct pxafb_mach_info *inf = fbi->dev->platform_data;
1226 if (!inf->smart_update) {
1227 pr_err("%s: not properly initialized, thread terminated\n",
1228 __func__);
1229 return -EINVAL;
1231 inf = fbi->dev->platform_data;
1233 pr_debug("%s(): task starting\n", __func__);
1235 set_freezable();
1236 while (!kthread_should_stop()) {
1238 if (try_to_freeze())
1239 continue;
1241 mutex_lock(&fbi->ctrlr_lock);
1243 if (fbi->state == C_ENABLE) {
1244 inf->smart_update(&fbi->fb);
1245 complete(&fbi->refresh_done);
1248 mutex_unlock(&fbi->ctrlr_lock);
1250 set_current_state(TASK_INTERRUPTIBLE);
1251 schedule_timeout(30 * HZ / 1000);
1254 pr_debug("%s(): task ending\n", __func__);
1255 return 0;
1258 static int pxafb_smart_init(struct pxafb_info *fbi)
1260 if (!(fbi->lccr0 & LCCR0_LCDT))
1261 return 0;
1263 fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1264 fbi->n_smart_cmds = 0;
1266 init_completion(&fbi->command_done);
1267 init_completion(&fbi->refresh_done);
1269 fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1270 "lcd_refresh");
1271 if (IS_ERR(fbi->smart_thread)) {
1272 pr_err("%s: unable to create kernel thread\n", __func__);
1273 return PTR_ERR(fbi->smart_thread);
1276 return 0;
1278 #else
1279 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1281 return 0;
1284 int pxafb_smart_flush(struct fb_info *info)
1286 return 0;
1289 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1290 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1292 static void setup_parallel_timing(struct pxafb_info *fbi,
1293 struct fb_var_screeninfo *var)
1295 unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1297 fbi->reg_lccr1 =
1298 LCCR1_DisWdth(var->xres) +
1299 LCCR1_HorSnchWdth(var->hsync_len) +
1300 LCCR1_BegLnDel(var->left_margin) +
1301 LCCR1_EndLnDel(var->right_margin);
1304 * If we have a dual scan LCD, we need to halve
1305 * the YRES parameter.
1307 lines_per_panel = var->yres;
1308 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1309 lines_per_panel /= 2;
1311 fbi->reg_lccr2 =
1312 LCCR2_DisHght(lines_per_panel) +
1313 LCCR2_VrtSnchWdth(var->vsync_len) +
1314 LCCR2_BegFrmDel(var->upper_margin) +
1315 LCCR2_EndFrmDel(var->lower_margin);
1317 fbi->reg_lccr3 = fbi->lccr3 |
1318 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1319 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1320 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1321 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1323 if (pcd) {
1324 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1325 set_hsync_time(fbi, pcd);
1330 * pxafb_activate_var():
1331 * Configures LCD Controller based on entries in var parameter.
1332 * Settings are only written to the controller if changes were made.
1334 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1335 struct pxafb_info *fbi)
1337 u_long flags;
1339 /* Update shadow copy atomically */
1340 local_irq_save(flags);
1342 #ifdef CONFIG_FB_PXA_SMARTPANEL
1343 if (fbi->lccr0 & LCCR0_LCDT)
1344 setup_smart_timing(fbi, var);
1345 else
1346 #endif
1347 setup_parallel_timing(fbi, var);
1349 setup_base_frame(fbi, var, 0);
1351 fbi->reg_lccr0 = fbi->lccr0 |
1352 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1353 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
1355 fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1357 fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1358 fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1359 local_irq_restore(flags);
1362 * Only update the registers if the controller is enabled
1363 * and something has changed.
1365 if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1366 (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1367 (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1368 (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1369 (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1370 (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1371 (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
1372 pxafb_schedule_work(fbi, C_REENABLE);
1374 return 0;
1378 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1379 * Do not call them directly; set_ctrlr_state does the correct serialisation
1380 * to ensure that things happen in the right way 100% of time time.
1381 * -- rmk
1383 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1385 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1387 if (fbi->backlight_power)
1388 fbi->backlight_power(on);
1391 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1393 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1395 if (fbi->lcd_power)
1396 fbi->lcd_power(on, &fbi->fb.var);
1399 static void pxafb_enable_controller(struct pxafb_info *fbi)
1401 pr_debug("pxafb: Enabling LCD controller\n");
1402 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1403 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1404 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1405 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1406 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1407 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1409 /* enable LCD controller clock */
1410 clk_enable(fbi->clk);
1412 if (fbi->lccr0 & LCCR0_LCDT)
1413 return;
1415 /* Sequence from 11.7.10 */
1416 lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1417 lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1418 lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1419 lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1420 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1422 lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1423 lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1424 lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1427 static void pxafb_disable_controller(struct pxafb_info *fbi)
1429 uint32_t lccr0;
1431 #ifdef CONFIG_FB_PXA_SMARTPANEL
1432 if (fbi->lccr0 & LCCR0_LCDT) {
1433 wait_for_completion_timeout(&fbi->refresh_done,
1434 200 * HZ / 1000);
1435 return;
1437 #endif
1439 /* Clear LCD Status Register */
1440 lcd_writel(fbi, LCSR, 0xffffffff);
1442 lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1443 lcd_writel(fbi, LCCR0, lccr0);
1444 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1446 wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1448 /* disable LCD controller clock */
1449 clk_disable(fbi->clk);
1453 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1455 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1457 struct pxafb_info *fbi = dev_id;
1458 unsigned int lccr0, lcsr;
1460 lcsr = lcd_readl(fbi, LCSR);
1461 if (lcsr & LCSR_LDD) {
1462 lccr0 = lcd_readl(fbi, LCCR0);
1463 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1464 complete(&fbi->disable_done);
1467 #ifdef CONFIG_FB_PXA_SMARTPANEL
1468 if (lcsr & LCSR_CMD_INT)
1469 complete(&fbi->command_done);
1470 #endif
1471 lcd_writel(fbi, LCSR, lcsr);
1473 #ifdef CONFIG_FB_PXA_OVERLAY
1475 unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1476 if (lcsr1 & LCSR1_BS(1))
1477 complete(&fbi->overlay[0].branch_done);
1479 if (lcsr1 & LCSR1_BS(2))
1480 complete(&fbi->overlay[1].branch_done);
1482 lcd_writel(fbi, LCSR1, lcsr1);
1484 #endif
1485 return IRQ_HANDLED;
1489 * This function must be called from task context only, since it will
1490 * sleep when disabling the LCD controller, or if we get two contending
1491 * processes trying to alter state.
1493 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1495 u_int old_state;
1497 mutex_lock(&fbi->ctrlr_lock);
1499 old_state = fbi->state;
1502 * Hack around fbcon initialisation.
1504 if (old_state == C_STARTUP && state == C_REENABLE)
1505 state = C_ENABLE;
1507 switch (state) {
1508 case C_DISABLE_CLKCHANGE:
1510 * Disable controller for clock change. If the
1511 * controller is already disabled, then do nothing.
1513 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1514 fbi->state = state;
1515 /* TODO __pxafb_lcd_power(fbi, 0); */
1516 pxafb_disable_controller(fbi);
1518 break;
1520 case C_DISABLE_PM:
1521 case C_DISABLE:
1523 * Disable controller
1525 if (old_state != C_DISABLE) {
1526 fbi->state = state;
1527 __pxafb_backlight_power(fbi, 0);
1528 __pxafb_lcd_power(fbi, 0);
1529 if (old_state != C_DISABLE_CLKCHANGE)
1530 pxafb_disable_controller(fbi);
1532 break;
1534 case C_ENABLE_CLKCHANGE:
1536 * Enable the controller after clock change. Only
1537 * do this if we were disabled for the clock change.
1539 if (old_state == C_DISABLE_CLKCHANGE) {
1540 fbi->state = C_ENABLE;
1541 pxafb_enable_controller(fbi);
1542 /* TODO __pxafb_lcd_power(fbi, 1); */
1544 break;
1546 case C_REENABLE:
1548 * Re-enable the controller only if it was already
1549 * enabled. This is so we reprogram the control
1550 * registers.
1552 if (old_state == C_ENABLE) {
1553 __pxafb_lcd_power(fbi, 0);
1554 pxafb_disable_controller(fbi);
1555 pxafb_enable_controller(fbi);
1556 __pxafb_lcd_power(fbi, 1);
1558 break;
1560 case C_ENABLE_PM:
1562 * Re-enable the controller after PM. This is not
1563 * perfect - think about the case where we were doing
1564 * a clock change, and we suspended half-way through.
1566 if (old_state != C_DISABLE_PM)
1567 break;
1568 /* fall through */
1570 case C_ENABLE:
1572 * Power up the LCD screen, enable controller, and
1573 * turn on the backlight.
1575 if (old_state != C_ENABLE) {
1576 fbi->state = C_ENABLE;
1577 pxafb_enable_controller(fbi);
1578 __pxafb_lcd_power(fbi, 1);
1579 __pxafb_backlight_power(fbi, 1);
1581 break;
1583 mutex_unlock(&fbi->ctrlr_lock);
1587 * Our LCD controller task (which is called when we blank or unblank)
1588 * via keventd.
1590 static void pxafb_task(struct work_struct *work)
1592 struct pxafb_info *fbi =
1593 container_of(work, struct pxafb_info, task);
1594 u_int state = xchg(&fbi->task_state, -1);
1596 set_ctrlr_state(fbi, state);
1599 #ifdef CONFIG_CPU_FREQ
1601 * CPU clock speed change handler. We need to adjust the LCD timing
1602 * parameters when the CPU clock is adjusted by the power management
1603 * subsystem.
1605 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1607 static int
1608 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1610 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1611 /* TODO struct cpufreq_freqs *f = data; */
1612 u_int pcd;
1614 switch (val) {
1615 case CPUFREQ_PRECHANGE:
1616 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1617 break;
1619 case CPUFREQ_POSTCHANGE:
1620 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1621 set_hsync_time(fbi, pcd);
1622 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1623 LCCR3_PixClkDiv(pcd);
1624 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1625 break;
1627 return 0;
1630 static int
1631 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1633 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1634 struct fb_var_screeninfo *var = &fbi->fb.var;
1635 struct cpufreq_policy *policy = data;
1637 switch (val) {
1638 case CPUFREQ_ADJUST:
1639 case CPUFREQ_INCOMPATIBLE:
1640 pr_debug("min dma period: %d ps, "
1641 "new clock %d kHz\n", pxafb_display_dma_period(var),
1642 policy->max);
1643 /* TODO: fill in min/max values */
1644 break;
1646 return 0;
1648 #endif
1650 #ifdef CONFIG_PM
1652 * Power management hooks. Note that we won't be called from IRQ context,
1653 * unlike the blank functions above, so we may sleep.
1655 static int pxafb_suspend(struct device *dev)
1657 struct pxafb_info *fbi = dev_get_drvdata(dev);
1659 set_ctrlr_state(fbi, C_DISABLE_PM);
1660 return 0;
1663 static int pxafb_resume(struct device *dev)
1665 struct pxafb_info *fbi = dev_get_drvdata(dev);
1667 set_ctrlr_state(fbi, C_ENABLE_PM);
1668 return 0;
1671 static const struct dev_pm_ops pxafb_pm_ops = {
1672 .suspend = pxafb_suspend,
1673 .resume = pxafb_resume,
1675 #endif
1677 static int __devinit pxafb_init_video_memory(struct pxafb_info *fbi)
1679 int size = PAGE_ALIGN(fbi->video_mem_size);
1681 fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1682 if (fbi->video_mem == NULL)
1683 return -ENOMEM;
1685 fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1686 fbi->video_mem_size = size;
1688 fbi->fb.fix.smem_start = fbi->video_mem_phys;
1689 fbi->fb.fix.smem_len = fbi->video_mem_size;
1690 fbi->fb.screen_base = fbi->video_mem;
1692 return fbi->video_mem ? 0 : -ENOMEM;
1695 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1696 struct pxafb_mach_info *inf)
1698 unsigned int lcd_conn = inf->lcd_conn;
1699 struct pxafb_mode_info *m;
1700 int i;
1702 fbi->cmap_inverse = inf->cmap_inverse;
1703 fbi->cmap_static = inf->cmap_static;
1704 fbi->lccr4 = inf->lccr4;
1706 switch (lcd_conn & LCD_TYPE_MASK) {
1707 case LCD_TYPE_MONO_STN:
1708 fbi->lccr0 = LCCR0_CMS;
1709 break;
1710 case LCD_TYPE_MONO_DSTN:
1711 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1712 break;
1713 case LCD_TYPE_COLOR_STN:
1714 fbi->lccr0 = 0;
1715 break;
1716 case LCD_TYPE_COLOR_DSTN:
1717 fbi->lccr0 = LCCR0_SDS;
1718 break;
1719 case LCD_TYPE_COLOR_TFT:
1720 fbi->lccr0 = LCCR0_PAS;
1721 break;
1722 case LCD_TYPE_SMART_PANEL:
1723 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1724 break;
1725 default:
1726 /* fall back to backward compatibility way */
1727 fbi->lccr0 = inf->lccr0;
1728 fbi->lccr3 = inf->lccr3;
1729 goto decode_mode;
1732 if (lcd_conn == LCD_MONO_STN_8BPP)
1733 fbi->lccr0 |= LCCR0_DPD;
1735 fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1737 fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1738 fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1739 fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1741 decode_mode:
1742 pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1744 /* decide video memory size as follows:
1745 * 1. default to mode of maximum resolution
1746 * 2. allow platform to override
1747 * 3. allow module parameter to override
1749 for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1750 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1751 m->xres * m->yres * m->bpp / 8);
1753 if (inf->video_mem_size > fbi->video_mem_size)
1754 fbi->video_mem_size = inf->video_mem_size;
1756 if (video_mem_size > fbi->video_mem_size)
1757 fbi->video_mem_size = video_mem_size;
1760 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1762 struct pxafb_info *fbi;
1763 void *addr;
1764 struct pxafb_mach_info *inf = dev->platform_data;
1766 /* Alloc the pxafb_info and pseudo_palette in one step */
1767 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1768 if (!fbi)
1769 return NULL;
1771 memset(fbi, 0, sizeof(struct pxafb_info));
1772 fbi->dev = dev;
1774 fbi->clk = clk_get(dev, NULL);
1775 if (IS_ERR(fbi->clk)) {
1776 kfree(fbi);
1777 return NULL;
1780 strcpy(fbi->fb.fix.id, PXA_NAME);
1782 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1783 fbi->fb.fix.type_aux = 0;
1784 fbi->fb.fix.xpanstep = 0;
1785 fbi->fb.fix.ypanstep = 1;
1786 fbi->fb.fix.ywrapstep = 0;
1787 fbi->fb.fix.accel = FB_ACCEL_NONE;
1789 fbi->fb.var.nonstd = 0;
1790 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1791 fbi->fb.var.height = -1;
1792 fbi->fb.var.width = -1;
1793 fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1794 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1796 fbi->fb.fbops = &pxafb_ops;
1797 fbi->fb.flags = FBINFO_DEFAULT;
1798 fbi->fb.node = -1;
1800 addr = fbi;
1801 addr = addr + sizeof(struct pxafb_info);
1802 fbi->fb.pseudo_palette = addr;
1804 fbi->state = C_STARTUP;
1805 fbi->task_state = (u_char)-1;
1807 pxafb_decode_mach_info(fbi, inf);
1809 init_waitqueue_head(&fbi->ctrlr_wait);
1810 INIT_WORK(&fbi->task, pxafb_task);
1811 mutex_init(&fbi->ctrlr_lock);
1812 init_completion(&fbi->disable_done);
1814 return fbi;
1817 #ifdef CONFIG_FB_PXA_PARAMETERS
1818 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1820 struct pxafb_mach_info *inf = dev->platform_data;
1822 const char *name = this_opt+5;
1823 unsigned int namelen = strlen(name);
1824 int res_specified = 0, bpp_specified = 0;
1825 unsigned int xres = 0, yres = 0, bpp = 0;
1826 int yres_specified = 0;
1827 int i;
1828 for (i = namelen-1; i >= 0; i--) {
1829 switch (name[i]) {
1830 case '-':
1831 namelen = i;
1832 if (!bpp_specified && !yres_specified) {
1833 bpp = simple_strtoul(&name[i+1], NULL, 0);
1834 bpp_specified = 1;
1835 } else
1836 goto done;
1837 break;
1838 case 'x':
1839 if (!yres_specified) {
1840 yres = simple_strtoul(&name[i+1], NULL, 0);
1841 yres_specified = 1;
1842 } else
1843 goto done;
1844 break;
1845 case '0' ... '9':
1846 break;
1847 default:
1848 goto done;
1851 if (i < 0 && yres_specified) {
1852 xres = simple_strtoul(name, NULL, 0);
1853 res_specified = 1;
1855 done:
1856 if (res_specified) {
1857 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1858 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1860 if (bpp_specified)
1861 switch (bpp) {
1862 case 1:
1863 case 2:
1864 case 4:
1865 case 8:
1866 case 16:
1867 inf->modes[0].bpp = bpp;
1868 dev_info(dev, "overriding bit depth: %d\n", bpp);
1869 break;
1870 default:
1871 dev_err(dev, "Depth %d is not valid\n", bpp);
1872 return -EINVAL;
1874 return 0;
1877 static int __devinit parse_opt(struct device *dev, char *this_opt)
1879 struct pxafb_mach_info *inf = dev->platform_data;
1880 struct pxafb_mode_info *mode = &inf->modes[0];
1881 char s[64];
1883 s[0] = '\0';
1885 if (!strncmp(this_opt, "vmem:", 5)) {
1886 video_mem_size = memparse(this_opt + 5, NULL);
1887 } else if (!strncmp(this_opt, "mode:", 5)) {
1888 return parse_opt_mode(dev, this_opt);
1889 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1890 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1891 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1892 } else if (!strncmp(this_opt, "left:", 5)) {
1893 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1894 sprintf(s, "left: %u\n", mode->left_margin);
1895 } else if (!strncmp(this_opt, "right:", 6)) {
1896 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1897 sprintf(s, "right: %u\n", mode->right_margin);
1898 } else if (!strncmp(this_opt, "upper:", 6)) {
1899 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1900 sprintf(s, "upper: %u\n", mode->upper_margin);
1901 } else if (!strncmp(this_opt, "lower:", 6)) {
1902 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1903 sprintf(s, "lower: %u\n", mode->lower_margin);
1904 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1905 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1906 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1907 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1908 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1909 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1910 } else if (!strncmp(this_opt, "hsync:", 6)) {
1911 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1912 sprintf(s, "hsync: Active Low\n");
1913 mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1914 } else {
1915 sprintf(s, "hsync: Active High\n");
1916 mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1918 } else if (!strncmp(this_opt, "vsync:", 6)) {
1919 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1920 sprintf(s, "vsync: Active Low\n");
1921 mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1922 } else {
1923 sprintf(s, "vsync: Active High\n");
1924 mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1926 } else if (!strncmp(this_opt, "dpc:", 4)) {
1927 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1928 sprintf(s, "double pixel clock: false\n");
1929 inf->lccr3 &= ~LCCR3_DPC;
1930 } else {
1931 sprintf(s, "double pixel clock: true\n");
1932 inf->lccr3 |= LCCR3_DPC;
1934 } else if (!strncmp(this_opt, "outputen:", 9)) {
1935 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1936 sprintf(s, "output enable: active low\n");
1937 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1938 } else {
1939 sprintf(s, "output enable: active high\n");
1940 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1942 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1943 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1944 sprintf(s, "pixel clock polarity: falling edge\n");
1945 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1946 } else {
1947 sprintf(s, "pixel clock polarity: rising edge\n");
1948 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1950 } else if (!strncmp(this_opt, "color", 5)) {
1951 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1952 } else if (!strncmp(this_opt, "mono", 4)) {
1953 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1954 } else if (!strncmp(this_opt, "active", 6)) {
1955 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1956 } else if (!strncmp(this_opt, "passive", 7)) {
1957 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1958 } else if (!strncmp(this_opt, "single", 6)) {
1959 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1960 } else if (!strncmp(this_opt, "dual", 4)) {
1961 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1962 } else if (!strncmp(this_opt, "4pix", 4)) {
1963 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1964 } else if (!strncmp(this_opt, "8pix", 4)) {
1965 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1966 } else {
1967 dev_err(dev, "unknown option: %s\n", this_opt);
1968 return -EINVAL;
1971 if (s[0] != '\0')
1972 dev_info(dev, "override %s", s);
1974 return 0;
1977 static int __devinit pxafb_parse_options(struct device *dev, char *options)
1979 char *this_opt;
1980 int ret;
1982 if (!options || !*options)
1983 return 0;
1985 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1987 /* could be made table driven or similar?... */
1988 while ((this_opt = strsep(&options, ",")) != NULL) {
1989 ret = parse_opt(dev, this_opt);
1990 if (ret)
1991 return ret;
1993 return 0;
1996 static char g_options[256] __devinitdata = "";
1998 #ifndef MODULE
1999 static int __init pxafb_setup_options(void)
2001 char *options = NULL;
2003 if (fb_get_options("pxafb", &options))
2004 return -ENODEV;
2006 if (options)
2007 strlcpy(g_options, options, sizeof(g_options));
2009 return 0;
2011 #else
2012 #define pxafb_setup_options() (0)
2014 module_param_string(options, g_options, sizeof(g_options), 0);
2015 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2016 #endif
2018 #else
2019 #define pxafb_parse_options(...) (0)
2020 #define pxafb_setup_options() (0)
2021 #endif
2023 #ifdef DEBUG_VAR
2024 /* Check for various illegal bit-combinations. Currently only
2025 * a warning is given. */
2026 static void __devinit pxafb_check_options(struct device *dev,
2027 struct pxafb_mach_info *inf)
2029 if (inf->lcd_conn)
2030 return;
2032 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2033 dev_warn(dev, "machine LCCR0 setting contains "
2034 "illegal bits: %08x\n",
2035 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2036 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2037 dev_warn(dev, "machine LCCR3 setting contains "
2038 "illegal bits: %08x\n",
2039 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2040 if (inf->lccr0 & LCCR0_DPD &&
2041 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2042 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2043 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2044 dev_warn(dev, "Double Pixel Data (DPD) mode is "
2045 "only valid in passive mono"
2046 " single panel mode\n");
2047 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2048 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2049 dev_warn(dev, "Dual panel only valid in passive mode\n");
2050 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2051 (inf->modes->upper_margin || inf->modes->lower_margin))
2052 dev_warn(dev, "Upper and lower margins must be 0 in "
2053 "passive mode\n");
2055 #else
2056 #define pxafb_check_options(...) do {} while (0)
2057 #endif
2059 static int __devinit pxafb_probe(struct platform_device *dev)
2061 struct pxafb_info *fbi;
2062 struct pxafb_mach_info *inf;
2063 struct resource *r;
2064 int irq, ret;
2066 dev_dbg(&dev->dev, "pxafb_probe\n");
2068 inf = dev->dev.platform_data;
2069 ret = -ENOMEM;
2070 fbi = NULL;
2071 if (!inf)
2072 goto failed;
2074 ret = pxafb_parse_options(&dev->dev, g_options);
2075 if (ret < 0)
2076 goto failed;
2078 pxafb_check_options(&dev->dev, inf);
2080 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2081 inf->modes->xres,
2082 inf->modes->yres,
2083 inf->modes->bpp);
2084 if (inf->modes->xres == 0 ||
2085 inf->modes->yres == 0 ||
2086 inf->modes->bpp == 0) {
2087 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2088 ret = -EINVAL;
2089 goto failed;
2092 fbi = pxafb_init_fbinfo(&dev->dev);
2093 if (!fbi) {
2094 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2095 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2096 ret = -ENOMEM;
2097 goto failed;
2100 if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2101 fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2103 fbi->backlight_power = inf->pxafb_backlight_power;
2104 fbi->lcd_power = inf->pxafb_lcd_power;
2106 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2107 if (r == NULL) {
2108 dev_err(&dev->dev, "no I/O memory resource defined\n");
2109 ret = -ENODEV;
2110 goto failed_fbi;
2113 r = request_mem_region(r->start, resource_size(r), dev->name);
2114 if (r == NULL) {
2115 dev_err(&dev->dev, "failed to request I/O memory\n");
2116 ret = -EBUSY;
2117 goto failed_fbi;
2120 fbi->mmio_base = ioremap(r->start, resource_size(r));
2121 if (fbi->mmio_base == NULL) {
2122 dev_err(&dev->dev, "failed to map I/O memory\n");
2123 ret = -EBUSY;
2124 goto failed_free_res;
2127 fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2128 fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2129 &fbi->dma_buff_phys, GFP_KERNEL);
2130 if (fbi->dma_buff == NULL) {
2131 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2132 ret = -ENOMEM;
2133 goto failed_free_io;
2136 ret = pxafb_init_video_memory(fbi);
2137 if (ret) {
2138 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2139 ret = -ENOMEM;
2140 goto failed_free_dma;
2143 irq = platform_get_irq(dev, 0);
2144 if (irq < 0) {
2145 dev_err(&dev->dev, "no IRQ defined\n");
2146 ret = -ENODEV;
2147 goto failed_free_mem;
2150 ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
2151 if (ret) {
2152 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2153 ret = -EBUSY;
2154 goto failed_free_mem;
2157 ret = pxafb_smart_init(fbi);
2158 if (ret) {
2159 dev_err(&dev->dev, "failed to initialize smartpanel\n");
2160 goto failed_free_irq;
2164 * This makes sure that our colour bitfield
2165 * descriptors are correctly initialised.
2167 ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2168 if (ret) {
2169 dev_err(&dev->dev, "failed to get suitable mode\n");
2170 goto failed_free_irq;
2173 ret = pxafb_set_par(&fbi->fb);
2174 if (ret) {
2175 dev_err(&dev->dev, "Failed to set parameters\n");
2176 goto failed_free_irq;
2179 platform_set_drvdata(dev, fbi);
2181 ret = register_framebuffer(&fbi->fb);
2182 if (ret < 0) {
2183 dev_err(&dev->dev,
2184 "Failed to register framebuffer device: %d\n", ret);
2185 goto failed_free_cmap;
2188 pxafb_overlay_init(fbi);
2190 #ifdef CONFIG_CPU_FREQ
2191 fbi->freq_transition.notifier_call = pxafb_freq_transition;
2192 fbi->freq_policy.notifier_call = pxafb_freq_policy;
2193 cpufreq_register_notifier(&fbi->freq_transition,
2194 CPUFREQ_TRANSITION_NOTIFIER);
2195 cpufreq_register_notifier(&fbi->freq_policy,
2196 CPUFREQ_POLICY_NOTIFIER);
2197 #endif
2200 * Ok, now enable the LCD controller
2202 set_ctrlr_state(fbi, C_ENABLE);
2204 return 0;
2206 failed_free_cmap:
2207 if (fbi->fb.cmap.len)
2208 fb_dealloc_cmap(&fbi->fb.cmap);
2209 failed_free_irq:
2210 free_irq(irq, fbi);
2211 failed_free_mem:
2212 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2213 failed_free_dma:
2214 dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2215 fbi->dma_buff, fbi->dma_buff_phys);
2216 failed_free_io:
2217 iounmap(fbi->mmio_base);
2218 failed_free_res:
2219 release_mem_region(r->start, resource_size(r));
2220 failed_fbi:
2221 clk_put(fbi->clk);
2222 platform_set_drvdata(dev, NULL);
2223 kfree(fbi);
2224 failed:
2225 return ret;
2228 static int __devexit pxafb_remove(struct platform_device *dev)
2230 struct pxafb_info *fbi = platform_get_drvdata(dev);
2231 struct resource *r;
2232 int irq;
2233 struct fb_info *info;
2235 if (!fbi)
2236 return 0;
2238 info = &fbi->fb;
2240 pxafb_overlay_exit(fbi);
2241 unregister_framebuffer(info);
2243 pxafb_disable_controller(fbi);
2245 if (fbi->fb.cmap.len)
2246 fb_dealloc_cmap(&fbi->fb.cmap);
2248 irq = platform_get_irq(dev, 0);
2249 free_irq(irq, fbi);
2251 free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2253 dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
2254 fbi->dma_buff, fbi->dma_buff_phys);
2256 iounmap(fbi->mmio_base);
2258 r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2259 release_mem_region(r->start, resource_size(r));
2261 clk_put(fbi->clk);
2262 kfree(fbi);
2264 return 0;
2267 static struct platform_driver pxafb_driver = {
2268 .probe = pxafb_probe,
2269 .remove = __devexit_p(pxafb_remove),
2270 .driver = {
2271 .owner = THIS_MODULE,
2272 .name = "pxa2xx-fb",
2273 #ifdef CONFIG_PM
2274 .pm = &pxafb_pm_ops,
2275 #endif
2279 static int __init pxafb_init(void)
2281 if (pxafb_setup_options())
2282 return -EINVAL;
2284 return platform_driver_register(&pxafb_driver);
2287 static void __exit pxafb_exit(void)
2289 platform_driver_unregister(&pxafb_driver);
2292 module_init(pxafb_init);
2293 module_exit(pxafb_exit);
2295 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2296 MODULE_LICENSE("GPL");