ARM: mmp: fix potential NULL dereference
[linux/fpc-iii.git] / arch / mips / kernel / perf_event_mipsxx.c
blob2f28d3b55687eac42469051c34cb9a6749b21473
1 /*
2 * Linux performance counter support for MIPS.
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
30 #define MIPS_MAX_HWEVENTS 4
32 struct cpu_hw_events {
33 /* Array of events on this cpu. */
34 struct perf_event *events[MIPS_MAX_HWEVENTS];
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
40 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
47 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 .saved_ctrl = {0},
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55 unsigned int event_id;
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
59 * even numbers.
61 unsigned int cntr_mask;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66 enum {
67 T = 0,
68 V = 1,
69 P = 2,
70 } range;
71 #else
72 #define T
73 #define V
74 #define P
75 #endif
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
84 struct mips_pmu {
85 u64 max_period;
86 u64 valid_count;
87 u64 overflow;
88 const char *name;
89 int irq;
90 u64 (*read_counter)(unsigned int idx);
91 void (*write_counter)(unsigned int idx, u64 val);
92 const struct mips_perf_event *(*map_raw_event)(u64 config);
93 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94 const struct mips_perf_event (*cache_event_map)
95 [PERF_COUNT_HW_CACHE_MAX]
96 [PERF_COUNT_HW_CACHE_OP_MAX]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX];
98 unsigned int num_counters;
101 static struct mips_pmu mipspmu;
103 #define M_CONFIG1_PC (1 << 4)
105 #define M_PERFCTL_EXL (1 << 0)
106 #define M_PERFCTL_KERNEL (1 << 1)
107 #define M_PERFCTL_SUPERVISOR (1 << 2)
108 #define M_PERFCTL_USER (1 << 3)
109 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117 #define M_PERFCTL_WIDE (1 << 30)
118 #define M_PERFCTL_MORE (1 << 31)
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
121 M_PERFCTL_KERNEL | \
122 M_PERFCTL_USER | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
128 #else
129 #define M_PERFCTL_CONFIG_MASK 0x1f
130 #endif
131 #define M_PERFCTL_EVENT_MASK 0xfe0
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters;
137 static DEFINE_RWLOCK(pmuint_rwlock);
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
146 #else
147 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
149 #endif
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
154 if (num_possible_cpus() > 1)
155 return 1;
157 return 0;
160 static unsigned int counters_total_to_per_cpu(unsigned int counters)
162 return counters >> vpe_shift();
165 #else /* !CONFIG_MIPS_MT_SMP */
166 #define vpe_id() 0
168 #endif /* CONFIG_MIPS_MT_SMP */
170 static void resume_local_counters(void);
171 static void pause_local_counters(void);
172 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
173 static int mipsxx_pmu_handle_shared_irq(void);
175 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
177 if (vpe_id() == 1)
178 idx = (idx + 2) & 3;
179 return idx;
182 static u64 mipsxx_pmu_read_counter(unsigned int idx)
184 idx = mipsxx_pmu_swizzle_perf_idx(idx);
186 switch (idx) {
187 case 0:
189 * The counters are unsigned, we must cast to truncate
190 * off the high bits.
192 return (u32)read_c0_perfcntr0();
193 case 1:
194 return (u32)read_c0_perfcntr1();
195 case 2:
196 return (u32)read_c0_perfcntr2();
197 case 3:
198 return (u32)read_c0_perfcntr3();
199 default:
200 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
201 return 0;
205 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
207 idx = mipsxx_pmu_swizzle_perf_idx(idx);
209 switch (idx) {
210 case 0:
211 return read_c0_perfcntr0_64();
212 case 1:
213 return read_c0_perfcntr1_64();
214 case 2:
215 return read_c0_perfcntr2_64();
216 case 3:
217 return read_c0_perfcntr3_64();
218 default:
219 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
220 return 0;
224 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
226 idx = mipsxx_pmu_swizzle_perf_idx(idx);
228 switch (idx) {
229 case 0:
230 write_c0_perfcntr0(val);
231 return;
232 case 1:
233 write_c0_perfcntr1(val);
234 return;
235 case 2:
236 write_c0_perfcntr2(val);
237 return;
238 case 3:
239 write_c0_perfcntr3(val);
240 return;
244 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
246 idx = mipsxx_pmu_swizzle_perf_idx(idx);
248 switch (idx) {
249 case 0:
250 write_c0_perfcntr0_64(val);
251 return;
252 case 1:
253 write_c0_perfcntr1_64(val);
254 return;
255 case 2:
256 write_c0_perfcntr2_64(val);
257 return;
258 case 3:
259 write_c0_perfcntr3_64(val);
260 return;
264 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
266 idx = mipsxx_pmu_swizzle_perf_idx(idx);
268 switch (idx) {
269 case 0:
270 return read_c0_perfctrl0();
271 case 1:
272 return read_c0_perfctrl1();
273 case 2:
274 return read_c0_perfctrl2();
275 case 3:
276 return read_c0_perfctrl3();
277 default:
278 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
279 return 0;
283 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
285 idx = mipsxx_pmu_swizzle_perf_idx(idx);
287 switch (idx) {
288 case 0:
289 write_c0_perfctrl0(val);
290 return;
291 case 1:
292 write_c0_perfctrl1(val);
293 return;
294 case 2:
295 write_c0_perfctrl2(val);
296 return;
297 case 3:
298 write_c0_perfctrl3(val);
299 return;
303 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
304 struct hw_perf_event *hwc)
306 int i;
309 * We only need to care the counter mask. The range has been
310 * checked definitely.
312 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
314 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
316 * Note that some MIPS perf events can be counted by both
317 * even and odd counters, wheresas many other are only by
318 * even _or_ odd counters. This introduces an issue that
319 * when the former kind of event takes the counter the
320 * latter kind of event wants to use, then the "counter
321 * allocation" for the latter event will fail. In fact if
322 * they can be dynamically swapped, they both feel happy.
323 * But here we leave this issue alone for now.
325 if (test_bit(i, &cntr_mask) &&
326 !test_and_set_bit(i, cpuc->used_mask))
327 return i;
330 return -EAGAIN;
333 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
335 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
337 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
339 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
340 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
341 /* Make sure interrupt enabled. */
342 M_PERFCTL_INTERRUPT_ENABLE;
344 * We do not actually let the counter run. Leave it until start().
348 static void mipsxx_pmu_disable_event(int idx)
350 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
351 unsigned long flags;
353 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
355 local_irq_save(flags);
356 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
357 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
358 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
359 local_irq_restore(flags);
362 static int mipspmu_event_set_period(struct perf_event *event,
363 struct hw_perf_event *hwc,
364 int idx)
366 u64 left = local64_read(&hwc->period_left);
367 u64 period = hwc->sample_period;
368 int ret = 0;
370 if (unlikely((left + period) & (1ULL << 63))) {
371 /* left underflowed by more than period. */
372 left = period;
373 local64_set(&hwc->period_left, left);
374 hwc->last_period = period;
375 ret = 1;
376 } else if (unlikely((left + period) <= period)) {
377 /* left underflowed by less than period. */
378 left += period;
379 local64_set(&hwc->period_left, left);
380 hwc->last_period = period;
381 ret = 1;
384 if (left > mipspmu.max_period) {
385 left = mipspmu.max_period;
386 local64_set(&hwc->period_left, left);
389 local64_set(&hwc->prev_count, mipspmu.overflow - left);
391 mipspmu.write_counter(idx, mipspmu.overflow - left);
393 perf_event_update_userpage(event);
395 return ret;
398 static void mipspmu_event_update(struct perf_event *event,
399 struct hw_perf_event *hwc,
400 int idx)
402 u64 prev_raw_count, new_raw_count;
403 u64 delta;
405 again:
406 prev_raw_count = local64_read(&hwc->prev_count);
407 new_raw_count = mipspmu.read_counter(idx);
409 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
410 new_raw_count) != prev_raw_count)
411 goto again;
413 delta = new_raw_count - prev_raw_count;
415 local64_add(delta, &event->count);
416 local64_sub(delta, &hwc->period_left);
419 static void mipspmu_start(struct perf_event *event, int flags)
421 struct hw_perf_event *hwc = &event->hw;
423 if (flags & PERF_EF_RELOAD)
424 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
426 hwc->state = 0;
428 /* Set the period for the event. */
429 mipspmu_event_set_period(event, hwc, hwc->idx);
431 /* Enable the event. */
432 mipsxx_pmu_enable_event(hwc, hwc->idx);
435 static void mipspmu_stop(struct perf_event *event, int flags)
437 struct hw_perf_event *hwc = &event->hw;
439 if (!(hwc->state & PERF_HES_STOPPED)) {
440 /* We are working on a local event. */
441 mipsxx_pmu_disable_event(hwc->idx);
442 barrier();
443 mipspmu_event_update(event, hwc, hwc->idx);
444 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
448 static int mipspmu_add(struct perf_event *event, int flags)
450 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
451 struct hw_perf_event *hwc = &event->hw;
452 int idx;
453 int err = 0;
455 perf_pmu_disable(event->pmu);
457 /* To look for a free counter for this event. */
458 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
459 if (idx < 0) {
460 err = idx;
461 goto out;
465 * If there is an event in the counter we are going to use then
466 * make sure it is disabled.
468 event->hw.idx = idx;
469 mipsxx_pmu_disable_event(idx);
470 cpuc->events[idx] = event;
472 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
473 if (flags & PERF_EF_START)
474 mipspmu_start(event, PERF_EF_RELOAD);
476 /* Propagate our changes to the userspace mapping. */
477 perf_event_update_userpage(event);
479 out:
480 perf_pmu_enable(event->pmu);
481 return err;
484 static void mipspmu_del(struct perf_event *event, int flags)
486 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
487 struct hw_perf_event *hwc = &event->hw;
488 int idx = hwc->idx;
490 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
492 mipspmu_stop(event, PERF_EF_UPDATE);
493 cpuc->events[idx] = NULL;
494 clear_bit(idx, cpuc->used_mask);
496 perf_event_update_userpage(event);
499 static void mipspmu_read(struct perf_event *event)
501 struct hw_perf_event *hwc = &event->hw;
503 /* Don't read disabled counters! */
504 if (hwc->idx < 0)
505 return;
507 mipspmu_event_update(event, hwc, hwc->idx);
510 static void mipspmu_enable(struct pmu *pmu)
512 #ifdef CONFIG_MIPS_MT_SMP
513 write_unlock(&pmuint_rwlock);
514 #endif
515 resume_local_counters();
519 * MIPS performance counters can be per-TC. The control registers can
520 * not be directly accessed accross CPUs. Hence if we want to do global
521 * control, we need cross CPU calls. on_each_cpu() can help us, but we
522 * can not make sure this function is called with interrupts enabled. So
523 * here we pause local counters and then grab a rwlock and leave the
524 * counters on other CPUs alone. If any counter interrupt raises while
525 * we own the write lock, simply pause local counters on that CPU and
526 * spin in the handler. Also we know we won't be switched to another
527 * CPU after pausing local counters and before grabbing the lock.
529 static void mipspmu_disable(struct pmu *pmu)
531 pause_local_counters();
532 #ifdef CONFIG_MIPS_MT_SMP
533 write_lock(&pmuint_rwlock);
534 #endif
537 static atomic_t active_events = ATOMIC_INIT(0);
538 static DEFINE_MUTEX(pmu_reserve_mutex);
539 static int (*save_perf_irq)(void);
541 static int mipspmu_get_irq(void)
543 int err;
545 if (mipspmu.irq >= 0) {
546 /* Request my own irq handler. */
547 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
548 IRQF_PERCPU | IRQF_NOBALANCING,
549 "mips_perf_pmu", NULL);
550 if (err) {
551 pr_warning("Unable to request IRQ%d for MIPS "
552 "performance counters!\n", mipspmu.irq);
554 } else if (cp0_perfcount_irq < 0) {
556 * We are sharing the irq number with the timer interrupt.
558 save_perf_irq = perf_irq;
559 perf_irq = mipsxx_pmu_handle_shared_irq;
560 err = 0;
561 } else {
562 pr_warning("The platform hasn't properly defined its "
563 "interrupt controller.\n");
564 err = -ENOENT;
567 return err;
570 static void mipspmu_free_irq(void)
572 if (mipspmu.irq >= 0)
573 free_irq(mipspmu.irq, NULL);
574 else if (cp0_perfcount_irq < 0)
575 perf_irq = save_perf_irq;
579 * mipsxx/rm9000/loongson2 have different performance counters, they have
580 * specific low-level init routines.
582 static void reset_counters(void *arg);
583 static int __hw_perf_event_init(struct perf_event *event);
585 static void hw_perf_event_destroy(struct perf_event *event)
587 if (atomic_dec_and_mutex_lock(&active_events,
588 &pmu_reserve_mutex)) {
590 * We must not call the destroy function with interrupts
591 * disabled.
593 on_each_cpu(reset_counters,
594 (void *)(long)mipspmu.num_counters, 1);
595 mipspmu_free_irq();
596 mutex_unlock(&pmu_reserve_mutex);
600 static int mipspmu_event_init(struct perf_event *event)
602 int err = 0;
604 /* does not support taken branch sampling */
605 if (has_branch_stack(event))
606 return -EOPNOTSUPP;
608 switch (event->attr.type) {
609 case PERF_TYPE_RAW:
610 case PERF_TYPE_HARDWARE:
611 case PERF_TYPE_HW_CACHE:
612 break;
614 default:
615 return -ENOENT;
618 if (event->cpu >= nr_cpumask_bits ||
619 (event->cpu >= 0 && !cpu_online(event->cpu)))
620 return -ENODEV;
622 if (!atomic_inc_not_zero(&active_events)) {
623 mutex_lock(&pmu_reserve_mutex);
624 if (atomic_read(&active_events) == 0)
625 err = mipspmu_get_irq();
627 if (!err)
628 atomic_inc(&active_events);
629 mutex_unlock(&pmu_reserve_mutex);
632 if (err)
633 return err;
635 return __hw_perf_event_init(event);
638 static struct pmu pmu = {
639 .pmu_enable = mipspmu_enable,
640 .pmu_disable = mipspmu_disable,
641 .event_init = mipspmu_event_init,
642 .add = mipspmu_add,
643 .del = mipspmu_del,
644 .start = mipspmu_start,
645 .stop = mipspmu_stop,
646 .read = mipspmu_read,
649 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
652 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
653 * event_id.
655 #ifdef CONFIG_MIPS_MT_SMP
656 return ((unsigned int)pev->range << 24) |
657 (pev->cntr_mask & 0xffff00) |
658 (pev->event_id & 0xff);
659 #else
660 return (pev->cntr_mask & 0xffff00) |
661 (pev->event_id & 0xff);
662 #endif
665 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
667 const struct mips_perf_event *pev;
669 pev = ((*mipspmu.general_event_map)[idx].event_id ==
670 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
671 &(*mipspmu.general_event_map)[idx]);
673 return pev;
676 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
678 unsigned int cache_type, cache_op, cache_result;
679 const struct mips_perf_event *pev;
681 cache_type = (config >> 0) & 0xff;
682 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
683 return ERR_PTR(-EINVAL);
685 cache_op = (config >> 8) & 0xff;
686 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
687 return ERR_PTR(-EINVAL);
689 cache_result = (config >> 16) & 0xff;
690 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
691 return ERR_PTR(-EINVAL);
693 pev = &((*mipspmu.cache_event_map)
694 [cache_type]
695 [cache_op]
696 [cache_result]);
698 if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
699 return ERR_PTR(-EOPNOTSUPP);
701 return pev;
705 static int validate_group(struct perf_event *event)
707 struct perf_event *sibling, *leader = event->group_leader;
708 struct cpu_hw_events fake_cpuc;
710 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
712 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
713 return -EINVAL;
715 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
716 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
717 return -EINVAL;
720 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
721 return -EINVAL;
723 return 0;
726 /* This is needed by specific irq handlers in perf_event_*.c */
727 static void handle_associated_event(struct cpu_hw_events *cpuc,
728 int idx, struct perf_sample_data *data,
729 struct pt_regs *regs)
731 struct perf_event *event = cpuc->events[idx];
732 struct hw_perf_event *hwc = &event->hw;
734 mipspmu_event_update(event, hwc, idx);
735 data->period = event->hw.last_period;
736 if (!mipspmu_event_set_period(event, hwc, idx))
737 return;
739 if (perf_event_overflow(event, data, regs))
740 mipsxx_pmu_disable_event(idx);
744 static int __n_counters(void)
746 if (!(read_c0_config1() & M_CONFIG1_PC))
747 return 0;
748 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
749 return 1;
750 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
751 return 2;
752 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
753 return 3;
755 return 4;
758 static int n_counters(void)
760 int counters;
762 switch (current_cpu_type()) {
763 case CPU_R10000:
764 counters = 2;
765 break;
767 case CPU_R12000:
768 case CPU_R14000:
769 counters = 4;
770 break;
772 default:
773 counters = __n_counters();
776 return counters;
779 static void reset_counters(void *arg)
781 int counters = (int)(long)arg;
782 switch (counters) {
783 case 4:
784 mipsxx_pmu_write_control(3, 0);
785 mipspmu.write_counter(3, 0);
786 case 3:
787 mipsxx_pmu_write_control(2, 0);
788 mipspmu.write_counter(2, 0);
789 case 2:
790 mipsxx_pmu_write_control(1, 0);
791 mipspmu.write_counter(1, 0);
792 case 1:
793 mipsxx_pmu_write_control(0, 0);
794 mipspmu.write_counter(0, 0);
798 /* 24K/34K/1004K cores can share the same event map. */
799 static const struct mips_perf_event mipsxxcore_event_map
800 [PERF_COUNT_HW_MAX] = {
801 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
802 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
803 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
804 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
805 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
806 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
807 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
810 /* 74K core has different branch event code. */
811 static const struct mips_perf_event mipsxx74Kcore_event_map
812 [PERF_COUNT_HW_MAX] = {
813 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
815 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
816 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
817 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
818 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
819 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
822 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
823 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
824 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
825 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
826 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
827 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
828 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
829 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
832 /* 24K/34K/1004K cores can share the same cache event map. */
833 static const struct mips_perf_event mipsxxcore_cache_map
834 [PERF_COUNT_HW_CACHE_MAX]
835 [PERF_COUNT_HW_CACHE_OP_MAX]
836 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
837 [C(L1D)] = {
839 * Like some other architectures (e.g. ARM), the performance
840 * counters don't differentiate between read and write
841 * accesses/misses, so this isn't strictly correct, but it's the
842 * best we can do. Writes and reads get combined.
844 [C(OP_READ)] = {
845 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
846 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
848 [C(OP_WRITE)] = {
849 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
850 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
852 [C(OP_PREFETCH)] = {
853 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
854 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
857 [C(L1I)] = {
858 [C(OP_READ)] = {
859 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
860 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
862 [C(OP_WRITE)] = {
863 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
864 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
866 [C(OP_PREFETCH)] = {
867 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
869 * Note that MIPS has only "hit" events countable for
870 * the prefetch operation.
872 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
875 [C(LL)] = {
876 [C(OP_READ)] = {
877 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
878 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
880 [C(OP_WRITE)] = {
881 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
882 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
884 [C(OP_PREFETCH)] = {
885 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
886 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
889 [C(DTLB)] = {
890 [C(OP_READ)] = {
891 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
892 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
894 [C(OP_WRITE)] = {
895 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
896 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
898 [C(OP_PREFETCH)] = {
899 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
900 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
903 [C(ITLB)] = {
904 [C(OP_READ)] = {
905 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
906 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
908 [C(OP_WRITE)] = {
909 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
910 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
912 [C(OP_PREFETCH)] = {
913 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
914 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
917 [C(BPU)] = {
918 /* Using the same code for *HW_BRANCH* */
919 [C(OP_READ)] = {
920 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
921 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
923 [C(OP_WRITE)] = {
924 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
925 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
927 [C(OP_PREFETCH)] = {
928 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
929 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
932 [C(NODE)] = {
933 [C(OP_READ)] = {
934 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
935 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
937 [C(OP_WRITE)] = {
938 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
939 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
941 [C(OP_PREFETCH)] = {
942 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
943 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
948 /* 74K core has completely different cache event map. */
949 static const struct mips_perf_event mipsxx74Kcore_cache_map
950 [PERF_COUNT_HW_CACHE_MAX]
951 [PERF_COUNT_HW_CACHE_OP_MAX]
952 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
953 [C(L1D)] = {
955 * Like some other architectures (e.g. ARM), the performance
956 * counters don't differentiate between read and write
957 * accesses/misses, so this isn't strictly correct, but it's the
958 * best we can do. Writes and reads get combined.
960 [C(OP_READ)] = {
961 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
962 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
964 [C(OP_WRITE)] = {
965 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
966 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
968 [C(OP_PREFETCH)] = {
969 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
970 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
973 [C(L1I)] = {
974 [C(OP_READ)] = {
975 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
976 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
978 [C(OP_WRITE)] = {
979 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
980 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
982 [C(OP_PREFETCH)] = {
983 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
985 * Note that MIPS has only "hit" events countable for
986 * the prefetch operation.
988 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
991 [C(LL)] = {
992 [C(OP_READ)] = {
993 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
994 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
996 [C(OP_WRITE)] = {
997 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
998 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1000 [C(OP_PREFETCH)] = {
1001 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1002 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1005 [C(DTLB)] = {
1006 /* 74K core does not have specific DTLB events. */
1007 [C(OP_READ)] = {
1008 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1009 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1011 [C(OP_WRITE)] = {
1012 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1013 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1015 [C(OP_PREFETCH)] = {
1016 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1017 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1020 [C(ITLB)] = {
1021 [C(OP_READ)] = {
1022 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1023 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1025 [C(OP_WRITE)] = {
1026 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1027 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1029 [C(OP_PREFETCH)] = {
1030 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1031 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1034 [C(BPU)] = {
1035 /* Using the same code for *HW_BRANCH* */
1036 [C(OP_READ)] = {
1037 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1038 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1040 [C(OP_WRITE)] = {
1041 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1042 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1044 [C(OP_PREFETCH)] = {
1045 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1046 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1049 [C(NODE)] = {
1050 [C(OP_READ)] = {
1051 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1052 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1054 [C(OP_WRITE)] = {
1055 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1056 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1058 [C(OP_PREFETCH)] = {
1059 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1060 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1066 static const struct mips_perf_event octeon_cache_map
1067 [PERF_COUNT_HW_CACHE_MAX]
1068 [PERF_COUNT_HW_CACHE_OP_MAX]
1069 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070 [C(L1D)] = {
1071 [C(OP_READ)] = {
1072 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1073 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1075 [C(OP_WRITE)] = {
1076 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1077 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1079 [C(OP_PREFETCH)] = {
1080 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1081 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1084 [C(L1I)] = {
1085 [C(OP_READ)] = {
1086 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1087 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1089 [C(OP_WRITE)] = {
1090 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1091 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1093 [C(OP_PREFETCH)] = {
1094 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1095 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1098 [C(LL)] = {
1099 [C(OP_READ)] = {
1100 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1101 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1103 [C(OP_WRITE)] = {
1104 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1105 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1107 [C(OP_PREFETCH)] = {
1108 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1109 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1112 [C(DTLB)] = {
1114 * Only general DTLB misses are counted use the same event for
1115 * read and write.
1117 [C(OP_READ)] = {
1118 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1119 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1121 [C(OP_WRITE)] = {
1122 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1123 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1125 [C(OP_PREFETCH)] = {
1126 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1127 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1130 [C(ITLB)] = {
1131 [C(OP_READ)] = {
1132 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1133 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1135 [C(OP_WRITE)] = {
1136 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1137 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1139 [C(OP_PREFETCH)] = {
1140 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1141 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1144 [C(BPU)] = {
1145 /* Using the same code for *HW_BRANCH* */
1146 [C(OP_READ)] = {
1147 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1148 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1150 [C(OP_WRITE)] = {
1151 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1152 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1154 [C(OP_PREFETCH)] = {
1155 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1156 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1161 #ifdef CONFIG_MIPS_MT_SMP
1162 static void check_and_calc_range(struct perf_event *event,
1163 const struct mips_perf_event *pev)
1165 struct hw_perf_event *hwc = &event->hw;
1167 if (event->cpu >= 0) {
1168 if (pev->range > V) {
1170 * The user selected an event that is processor
1171 * wide, while expecting it to be VPE wide.
1173 hwc->config_base |= M_TC_EN_ALL;
1174 } else {
1176 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177 * for both CPUs.
1179 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180 hwc->config_base |= M_TC_EN_VPE;
1182 } else
1183 hwc->config_base |= M_TC_EN_ALL;
1185 #else
1186 static void check_and_calc_range(struct perf_event *event,
1187 const struct mips_perf_event *pev)
1190 #endif
1192 static int __hw_perf_event_init(struct perf_event *event)
1194 struct perf_event_attr *attr = &event->attr;
1195 struct hw_perf_event *hwc = &event->hw;
1196 const struct mips_perf_event *pev;
1197 int err;
1199 /* Returning MIPS event descriptor for generic perf event. */
1200 if (PERF_TYPE_HARDWARE == event->attr.type) {
1201 if (event->attr.config >= PERF_COUNT_HW_MAX)
1202 return -EINVAL;
1203 pev = mipspmu_map_general_event(event->attr.config);
1204 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205 pev = mipspmu_map_cache_event(event->attr.config);
1206 } else if (PERF_TYPE_RAW == event->attr.type) {
1207 /* We are working on the global raw event. */
1208 mutex_lock(&raw_event_mutex);
1209 pev = mipspmu.map_raw_event(event->attr.config);
1210 } else {
1211 /* The event type is not (yet) supported. */
1212 return -EOPNOTSUPP;
1215 if (IS_ERR(pev)) {
1216 if (PERF_TYPE_RAW == event->attr.type)
1217 mutex_unlock(&raw_event_mutex);
1218 return PTR_ERR(pev);
1222 * We allow max flexibility on how each individual counter shared
1223 * by the single CPU operates (the mode exclusion and the range).
1225 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1227 /* Calculate range bits and validate it. */
1228 if (num_possible_cpus() > 1)
1229 check_and_calc_range(event, pev);
1231 hwc->event_base = mipspmu_perf_event_encode(pev);
1232 if (PERF_TYPE_RAW == event->attr.type)
1233 mutex_unlock(&raw_event_mutex);
1235 if (!attr->exclude_user)
1236 hwc->config_base |= M_PERFCTL_USER;
1237 if (!attr->exclude_kernel) {
1238 hwc->config_base |= M_PERFCTL_KERNEL;
1239 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240 hwc->config_base |= M_PERFCTL_EXL;
1242 if (!attr->exclude_hv)
1243 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1245 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1247 * The event can belong to another cpu. We do not assign a local
1248 * counter for it for now.
1250 hwc->idx = -1;
1251 hwc->config = 0;
1253 if (!hwc->sample_period) {
1254 hwc->sample_period = mipspmu.max_period;
1255 hwc->last_period = hwc->sample_period;
1256 local64_set(&hwc->period_left, hwc->sample_period);
1259 err = 0;
1260 if (event->group_leader != event)
1261 err = validate_group(event);
1263 event->destroy = hw_perf_event_destroy;
1265 if (err)
1266 event->destroy(event);
1268 return err;
1271 static void pause_local_counters(void)
1273 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274 int ctr = mipspmu.num_counters;
1275 unsigned long flags;
1277 local_irq_save(flags);
1278 do {
1279 ctr--;
1280 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283 } while (ctr > 0);
1284 local_irq_restore(flags);
1287 static void resume_local_counters(void)
1289 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290 int ctr = mipspmu.num_counters;
1292 do {
1293 ctr--;
1294 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295 } while (ctr > 0);
1298 static int mipsxx_pmu_handle_shared_irq(void)
1300 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301 struct perf_sample_data data;
1302 unsigned int counters = mipspmu.num_counters;
1303 u64 counter;
1304 int handled = IRQ_NONE;
1305 struct pt_regs *regs;
1307 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1308 return handled;
1310 * First we pause the local counters, so that when we are locked
1311 * here, the counters are all paused. When it gets locked due to
1312 * perf_disable(), the timer interrupt handler will be delayed.
1314 * See also mipsxx_pmu_start().
1316 pause_local_counters();
1317 #ifdef CONFIG_MIPS_MT_SMP
1318 read_lock(&pmuint_rwlock);
1319 #endif
1321 regs = get_irq_regs();
1323 perf_sample_data_init(&data, 0, 0);
1325 switch (counters) {
1326 #define HANDLE_COUNTER(n) \
1327 case n + 1: \
1328 if (test_bit(n, cpuc->used_mask)) { \
1329 counter = mipspmu.read_counter(n); \
1330 if (counter & mipspmu.overflow) { \
1331 handle_associated_event(cpuc, n, &data, regs); \
1332 handled = IRQ_HANDLED; \
1335 HANDLE_COUNTER(3)
1336 HANDLE_COUNTER(2)
1337 HANDLE_COUNTER(1)
1338 HANDLE_COUNTER(0)
1342 * Do all the work for the pending perf events. We can do this
1343 * in here because the performance counter interrupt is a regular
1344 * interrupt, not NMI.
1346 if (handled == IRQ_HANDLED)
1347 irq_work_run();
1349 #ifdef CONFIG_MIPS_MT_SMP
1350 read_unlock(&pmuint_rwlock);
1351 #endif
1352 resume_local_counters();
1353 return handled;
1356 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1358 return mipsxx_pmu_handle_shared_irq();
1361 /* 24K */
1362 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1363 ((b) == 0 || (b) == 1 || (b) == 11)
1365 /* 34K */
1366 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1367 ((b) == 0 || (b) == 1 || (b) == 11)
1368 #ifdef CONFIG_MIPS_MT_SMP
1369 #define IS_RANGE_P_34K_EVENT(r, b) \
1370 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1371 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1372 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1373 ((b) >= 64 && (b) <= 67))
1374 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1375 #endif
1377 /* 74K */
1378 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1379 ((b) == 0 || (b) == 1)
1381 /* 1004K */
1382 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1383 ((b) == 0 || (b) == 1 || (b) == 11)
1384 #ifdef CONFIG_MIPS_MT_SMP
1385 #define IS_RANGE_P_1004K_EVENT(r, b) \
1386 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1387 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1388 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1389 (r) == 188 || (b) == 61 || (b) == 62 || \
1390 ((b) >= 64 && (b) <= 67))
1391 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1392 #endif
1395 * User can use 0-255 raw events, where 0-127 for the events of even
1396 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1397 * indicate the parity. So, for example, when user wants to take the
1398 * Event Num of 15 for odd counters (by referring to the user manual),
1399 * then 128 needs to be added to 15 as the input for the event config,
1400 * i.e., 143 (0x8F) to be used.
1402 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1404 unsigned int raw_id = config & 0xff;
1405 unsigned int base_id = raw_id & 0x7f;
1407 raw_event.event_id = base_id;
1409 switch (current_cpu_type()) {
1410 case CPU_24K:
1411 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1412 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1413 else
1414 raw_event.cntr_mask =
1415 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1416 #ifdef CONFIG_MIPS_MT_SMP
1418 * This is actually doing nothing. Non-multithreading
1419 * CPUs will not check and calculate the range.
1421 raw_event.range = P;
1422 #endif
1423 break;
1424 case CPU_34K:
1425 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1426 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1427 else
1428 raw_event.cntr_mask =
1429 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1430 #ifdef CONFIG_MIPS_MT_SMP
1431 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1432 raw_event.range = P;
1433 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1434 raw_event.range = V;
1435 else
1436 raw_event.range = T;
1437 #endif
1438 break;
1439 case CPU_74K:
1440 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1441 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1442 else
1443 raw_event.cntr_mask =
1444 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1445 #ifdef CONFIG_MIPS_MT_SMP
1446 raw_event.range = P;
1447 #endif
1448 break;
1449 case CPU_1004K:
1450 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1451 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1452 else
1453 raw_event.cntr_mask =
1454 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1455 #ifdef CONFIG_MIPS_MT_SMP
1456 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1457 raw_event.range = P;
1458 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1459 raw_event.range = V;
1460 else
1461 raw_event.range = T;
1462 #endif
1463 break;
1466 return &raw_event;
1469 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1471 unsigned int raw_id = config & 0xff;
1472 unsigned int base_id = raw_id & 0x7f;
1475 raw_event.cntr_mask = CNTR_ALL;
1476 raw_event.event_id = base_id;
1478 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1479 if (base_id > 0x42)
1480 return ERR_PTR(-EOPNOTSUPP);
1481 } else {
1482 if (base_id > 0x3a)
1483 return ERR_PTR(-EOPNOTSUPP);
1486 switch (base_id) {
1487 case 0x00:
1488 case 0x0f:
1489 case 0x1e:
1490 case 0x1f:
1491 case 0x2f:
1492 case 0x34:
1493 case 0x3b ... 0x3f:
1494 return ERR_PTR(-EOPNOTSUPP);
1495 default:
1496 break;
1499 return &raw_event;
1502 static int __init
1503 init_hw_perf_events(void)
1505 int counters, irq;
1506 int counter_bits;
1508 pr_info("Performance counters: ");
1510 counters = n_counters();
1511 if (counters == 0) {
1512 pr_cont("No available PMU.\n");
1513 return -ENODEV;
1516 #ifdef CONFIG_MIPS_MT_SMP
1517 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1518 if (!cpu_has_mipsmt_pertccounters)
1519 counters = counters_total_to_per_cpu(counters);
1520 #endif
1522 #ifdef MSC01E_INT_BASE
1523 if (cpu_has_veic) {
1525 * Using platform specific interrupt controller defines.
1527 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1528 } else {
1529 #endif
1530 if ((cp0_perfcount_irq >= 0) &&
1531 (cp0_compare_irq != cp0_perfcount_irq))
1532 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1533 else
1534 irq = -1;
1535 #ifdef MSC01E_INT_BASE
1537 #endif
1539 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1541 switch (current_cpu_type()) {
1542 case CPU_24K:
1543 mipspmu.name = "mips/24K";
1544 mipspmu.general_event_map = &mipsxxcore_event_map;
1545 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1546 break;
1547 case CPU_34K:
1548 mipspmu.name = "mips/34K";
1549 mipspmu.general_event_map = &mipsxxcore_event_map;
1550 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1551 break;
1552 case CPU_74K:
1553 mipspmu.name = "mips/74K";
1554 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1555 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1556 break;
1557 case CPU_1004K:
1558 mipspmu.name = "mips/1004K";
1559 mipspmu.general_event_map = &mipsxxcore_event_map;
1560 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1561 break;
1562 case CPU_LOONGSON1:
1563 mipspmu.name = "mips/loongson1";
1564 mipspmu.general_event_map = &mipsxxcore_event_map;
1565 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1566 break;
1567 case CPU_CAVIUM_OCTEON:
1568 case CPU_CAVIUM_OCTEON_PLUS:
1569 case CPU_CAVIUM_OCTEON2:
1570 mipspmu.name = "octeon";
1571 mipspmu.general_event_map = &octeon_event_map;
1572 mipspmu.cache_event_map = &octeon_cache_map;
1573 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1574 break;
1575 default:
1576 pr_cont("Either hardware does not support performance "
1577 "counters, or not yet implemented.\n");
1578 return -ENODEV;
1581 mipspmu.num_counters = counters;
1582 mipspmu.irq = irq;
1584 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1585 mipspmu.max_period = (1ULL << 63) - 1;
1586 mipspmu.valid_count = (1ULL << 63) - 1;
1587 mipspmu.overflow = 1ULL << 63;
1588 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1589 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1590 counter_bits = 64;
1591 } else {
1592 mipspmu.max_period = (1ULL << 31) - 1;
1593 mipspmu.valid_count = (1ULL << 31) - 1;
1594 mipspmu.overflow = 1ULL << 31;
1595 mipspmu.read_counter = mipsxx_pmu_read_counter;
1596 mipspmu.write_counter = mipsxx_pmu_write_counter;
1597 counter_bits = 32;
1600 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1602 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1603 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1604 irq < 0 ? " (share with timer interrupt)" : "");
1606 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1608 return 0;
1610 early_initcall(init_hw_perf_events);