2 * Linux performance counter support for MIPS.
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
30 #define MIPS_MAX_HWEVENTS 4
32 struct cpu_hw_events
{
33 /* Array of events on this cpu. */
34 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
40 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
47 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
49 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
53 /* The description of MIPS performance events. */
54 struct mips_perf_event
{
55 unsigned int event_id
;
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
61 unsigned int cntr_mask
;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
78 static struct mips_perf_event raw_event
;
79 static DEFINE_MUTEX(raw_event_mutex
);
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
90 u64 (*read_counter
)(unsigned int idx
);
91 void (*write_counter
)(unsigned int idx
, u64 val
);
92 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
93 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
94 const struct mips_perf_event (*cache_event_map
)
95 [PERF_COUNT_HW_CACHE_MAX
]
96 [PERF_COUNT_HW_CACHE_OP_MAX
]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
98 unsigned int num_counters
;
101 static struct mips_pmu mipspmu
;
103 #define M_CONFIG1_PC (1 << 4)
105 #define M_PERFCTL_EXL (1 << 0)
106 #define M_PERFCTL_KERNEL (1 << 1)
107 #define M_PERFCTL_SUPERVISOR (1 << 2)
108 #define M_PERFCTL_USER (1 << 3)
109 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117 #define M_PERFCTL_WIDE (1 << 30)
118 #define M_PERFCTL_MORE (1 << 31)
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
129 #define M_PERFCTL_CONFIG_MASK 0x1f
131 #define M_PERFCTL_EVENT_MASK 0xfe0
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters
;
137 static DEFINE_RWLOCK(pmuint_rwlock
);
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
147 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
154 if (num_possible_cpus() > 1)
160 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
162 return counters
>> vpe_shift();
165 #else /* !CONFIG_MIPS_MT_SMP */
168 #endif /* CONFIG_MIPS_MT_SMP */
170 static void resume_local_counters(void);
171 static void pause_local_counters(void);
172 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
173 static int mipsxx_pmu_handle_shared_irq(void);
175 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
182 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
184 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
189 * The counters are unsigned, we must cast to truncate
192 return (u32
)read_c0_perfcntr0();
194 return (u32
)read_c0_perfcntr1();
196 return (u32
)read_c0_perfcntr2();
198 return (u32
)read_c0_perfcntr3();
200 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
205 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
207 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
211 return read_c0_perfcntr0_64();
213 return read_c0_perfcntr1_64();
215 return read_c0_perfcntr2_64();
217 return read_c0_perfcntr3_64();
219 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
224 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
226 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
230 write_c0_perfcntr0(val
);
233 write_c0_perfcntr1(val
);
236 write_c0_perfcntr2(val
);
239 write_c0_perfcntr3(val
);
244 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
246 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
250 write_c0_perfcntr0_64(val
);
253 write_c0_perfcntr1_64(val
);
256 write_c0_perfcntr2_64(val
);
259 write_c0_perfcntr3_64(val
);
264 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
266 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
270 return read_c0_perfctrl0();
272 return read_c0_perfctrl1();
274 return read_c0_perfctrl2();
276 return read_c0_perfctrl3();
278 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
283 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
285 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
289 write_c0_perfctrl0(val
);
292 write_c0_perfctrl1(val
);
295 write_c0_perfctrl2(val
);
298 write_c0_perfctrl3(val
);
303 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
304 struct hw_perf_event
*hwc
)
309 * We only need to care the counter mask. The range has been
310 * checked definitely.
312 unsigned long cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
314 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
316 * Note that some MIPS perf events can be counted by both
317 * even and odd counters, wheresas many other are only by
318 * even _or_ odd counters. This introduces an issue that
319 * when the former kind of event takes the counter the
320 * latter kind of event wants to use, then the "counter
321 * allocation" for the latter event will fail. In fact if
322 * they can be dynamically swapped, they both feel happy.
323 * But here we leave this issue alone for now.
325 if (test_bit(i
, &cntr_mask
) &&
326 !test_and_set_bit(i
, cpuc
->used_mask
))
333 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
335 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
337 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
339 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
340 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
341 /* Make sure interrupt enabled. */
342 M_PERFCTL_INTERRUPT_ENABLE
;
344 * We do not actually let the counter run. Leave it until start().
348 static void mipsxx_pmu_disable_event(int idx
)
350 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
353 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
355 local_irq_save(flags
);
356 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
357 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
358 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
359 local_irq_restore(flags
);
362 static int mipspmu_event_set_period(struct perf_event
*event
,
363 struct hw_perf_event
*hwc
,
366 u64 left
= local64_read(&hwc
->period_left
);
367 u64 period
= hwc
->sample_period
;
370 if (unlikely((left
+ period
) & (1ULL << 63))) {
371 /* left underflowed by more than period. */
373 local64_set(&hwc
->period_left
, left
);
374 hwc
->last_period
= period
;
376 } else if (unlikely((left
+ period
) <= period
)) {
377 /* left underflowed by less than period. */
379 local64_set(&hwc
->period_left
, left
);
380 hwc
->last_period
= period
;
384 if (left
> mipspmu
.max_period
) {
385 left
= mipspmu
.max_period
;
386 local64_set(&hwc
->period_left
, left
);
389 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
391 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
393 perf_event_update_userpage(event
);
398 static void mipspmu_event_update(struct perf_event
*event
,
399 struct hw_perf_event
*hwc
,
402 u64 prev_raw_count
, new_raw_count
;
406 prev_raw_count
= local64_read(&hwc
->prev_count
);
407 new_raw_count
= mipspmu
.read_counter(idx
);
409 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
410 new_raw_count
) != prev_raw_count
)
413 delta
= new_raw_count
- prev_raw_count
;
415 local64_add(delta
, &event
->count
);
416 local64_sub(delta
, &hwc
->period_left
);
419 static void mipspmu_start(struct perf_event
*event
, int flags
)
421 struct hw_perf_event
*hwc
= &event
->hw
;
423 if (flags
& PERF_EF_RELOAD
)
424 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
428 /* Set the period for the event. */
429 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
431 /* Enable the event. */
432 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
435 static void mipspmu_stop(struct perf_event
*event
, int flags
)
437 struct hw_perf_event
*hwc
= &event
->hw
;
439 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
440 /* We are working on a local event. */
441 mipsxx_pmu_disable_event(hwc
->idx
);
443 mipspmu_event_update(event
, hwc
, hwc
->idx
);
444 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
448 static int mipspmu_add(struct perf_event
*event
, int flags
)
450 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
451 struct hw_perf_event
*hwc
= &event
->hw
;
455 perf_pmu_disable(event
->pmu
);
457 /* To look for a free counter for this event. */
458 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
465 * If there is an event in the counter we are going to use then
466 * make sure it is disabled.
469 mipsxx_pmu_disable_event(idx
);
470 cpuc
->events
[idx
] = event
;
472 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
473 if (flags
& PERF_EF_START
)
474 mipspmu_start(event
, PERF_EF_RELOAD
);
476 /* Propagate our changes to the userspace mapping. */
477 perf_event_update_userpage(event
);
480 perf_pmu_enable(event
->pmu
);
484 static void mipspmu_del(struct perf_event
*event
, int flags
)
486 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
487 struct hw_perf_event
*hwc
= &event
->hw
;
490 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
492 mipspmu_stop(event
, PERF_EF_UPDATE
);
493 cpuc
->events
[idx
] = NULL
;
494 clear_bit(idx
, cpuc
->used_mask
);
496 perf_event_update_userpage(event
);
499 static void mipspmu_read(struct perf_event
*event
)
501 struct hw_perf_event
*hwc
= &event
->hw
;
503 /* Don't read disabled counters! */
507 mipspmu_event_update(event
, hwc
, hwc
->idx
);
510 static void mipspmu_enable(struct pmu
*pmu
)
512 #ifdef CONFIG_MIPS_MT_SMP
513 write_unlock(&pmuint_rwlock
);
515 resume_local_counters();
519 * MIPS performance counters can be per-TC. The control registers can
520 * not be directly accessed accross CPUs. Hence if we want to do global
521 * control, we need cross CPU calls. on_each_cpu() can help us, but we
522 * can not make sure this function is called with interrupts enabled. So
523 * here we pause local counters and then grab a rwlock and leave the
524 * counters on other CPUs alone. If any counter interrupt raises while
525 * we own the write lock, simply pause local counters on that CPU and
526 * spin in the handler. Also we know we won't be switched to another
527 * CPU after pausing local counters and before grabbing the lock.
529 static void mipspmu_disable(struct pmu
*pmu
)
531 pause_local_counters();
532 #ifdef CONFIG_MIPS_MT_SMP
533 write_lock(&pmuint_rwlock
);
537 static atomic_t active_events
= ATOMIC_INIT(0);
538 static DEFINE_MUTEX(pmu_reserve_mutex
);
539 static int (*save_perf_irq
)(void);
541 static int mipspmu_get_irq(void)
545 if (mipspmu
.irq
>= 0) {
546 /* Request my own irq handler. */
547 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
548 IRQF_PERCPU
| IRQF_NOBALANCING
,
549 "mips_perf_pmu", NULL
);
551 pr_warning("Unable to request IRQ%d for MIPS "
552 "performance counters!\n", mipspmu
.irq
);
554 } else if (cp0_perfcount_irq
< 0) {
556 * We are sharing the irq number with the timer interrupt.
558 save_perf_irq
= perf_irq
;
559 perf_irq
= mipsxx_pmu_handle_shared_irq
;
562 pr_warning("The platform hasn't properly defined its "
563 "interrupt controller.\n");
570 static void mipspmu_free_irq(void)
572 if (mipspmu
.irq
>= 0)
573 free_irq(mipspmu
.irq
, NULL
);
574 else if (cp0_perfcount_irq
< 0)
575 perf_irq
= save_perf_irq
;
579 * mipsxx/rm9000/loongson2 have different performance counters, they have
580 * specific low-level init routines.
582 static void reset_counters(void *arg
);
583 static int __hw_perf_event_init(struct perf_event
*event
);
585 static void hw_perf_event_destroy(struct perf_event
*event
)
587 if (atomic_dec_and_mutex_lock(&active_events
,
588 &pmu_reserve_mutex
)) {
590 * We must not call the destroy function with interrupts
593 on_each_cpu(reset_counters
,
594 (void *)(long)mipspmu
.num_counters
, 1);
596 mutex_unlock(&pmu_reserve_mutex
);
600 static int mipspmu_event_init(struct perf_event
*event
)
604 /* does not support taken branch sampling */
605 if (has_branch_stack(event
))
608 switch (event
->attr
.type
) {
610 case PERF_TYPE_HARDWARE
:
611 case PERF_TYPE_HW_CACHE
:
618 if (event
->cpu
>= nr_cpumask_bits
||
619 (event
->cpu
>= 0 && !cpu_online(event
->cpu
)))
622 if (!atomic_inc_not_zero(&active_events
)) {
623 mutex_lock(&pmu_reserve_mutex
);
624 if (atomic_read(&active_events
) == 0)
625 err
= mipspmu_get_irq();
628 atomic_inc(&active_events
);
629 mutex_unlock(&pmu_reserve_mutex
);
635 return __hw_perf_event_init(event
);
638 static struct pmu pmu
= {
639 .pmu_enable
= mipspmu_enable
,
640 .pmu_disable
= mipspmu_disable
,
641 .event_init
= mipspmu_event_init
,
644 .start
= mipspmu_start
,
645 .stop
= mipspmu_stop
,
646 .read
= mipspmu_read
,
649 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
652 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
655 #ifdef CONFIG_MIPS_MT_SMP
656 return ((unsigned int)pev
->range
<< 24) |
657 (pev
->cntr_mask
& 0xffff00) |
658 (pev
->event_id
& 0xff);
660 return (pev
->cntr_mask
& 0xffff00) |
661 (pev
->event_id
& 0xff);
665 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
667 const struct mips_perf_event
*pev
;
669 pev
= ((*mipspmu
.general_event_map
)[idx
].event_id
==
670 UNSUPPORTED_PERF_EVENT_ID
? ERR_PTR(-EOPNOTSUPP
) :
671 &(*mipspmu
.general_event_map
)[idx
]);
676 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
678 unsigned int cache_type
, cache_op
, cache_result
;
679 const struct mips_perf_event
*pev
;
681 cache_type
= (config
>> 0) & 0xff;
682 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
683 return ERR_PTR(-EINVAL
);
685 cache_op
= (config
>> 8) & 0xff;
686 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
687 return ERR_PTR(-EINVAL
);
689 cache_result
= (config
>> 16) & 0xff;
690 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
691 return ERR_PTR(-EINVAL
);
693 pev
= &((*mipspmu
.cache_event_map
)
698 if (pev
->event_id
== UNSUPPORTED_PERF_EVENT_ID
)
699 return ERR_PTR(-EOPNOTSUPP
);
705 static int validate_group(struct perf_event
*event
)
707 struct perf_event
*sibling
, *leader
= event
->group_leader
;
708 struct cpu_hw_events fake_cpuc
;
710 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
712 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &leader
->hw
) < 0)
715 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
716 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &sibling
->hw
) < 0)
720 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &event
->hw
) < 0)
726 /* This is needed by specific irq handlers in perf_event_*.c */
727 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
728 int idx
, struct perf_sample_data
*data
,
729 struct pt_regs
*regs
)
731 struct perf_event
*event
= cpuc
->events
[idx
];
732 struct hw_perf_event
*hwc
= &event
->hw
;
734 mipspmu_event_update(event
, hwc
, idx
);
735 data
->period
= event
->hw
.last_period
;
736 if (!mipspmu_event_set_period(event
, hwc
, idx
))
739 if (perf_event_overflow(event
, data
, regs
))
740 mipsxx_pmu_disable_event(idx
);
744 static int __n_counters(void)
746 if (!(read_c0_config1() & M_CONFIG1_PC
))
748 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE
))
750 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE
))
752 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE
))
758 static int n_counters(void)
762 switch (current_cpu_type()) {
773 counters
= __n_counters();
779 static void reset_counters(void *arg
)
781 int counters
= (int)(long)arg
;
784 mipsxx_pmu_write_control(3, 0);
785 mipspmu
.write_counter(3, 0);
787 mipsxx_pmu_write_control(2, 0);
788 mipspmu
.write_counter(2, 0);
790 mipsxx_pmu_write_control(1, 0);
791 mipspmu
.write_counter(1, 0);
793 mipsxx_pmu_write_control(0, 0);
794 mipspmu
.write_counter(0, 0);
798 /* 24K/34K/1004K cores can share the same event map. */
799 static const struct mips_perf_event mipsxxcore_event_map
800 [PERF_COUNT_HW_MAX
] = {
801 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
802 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
803 [PERF_COUNT_HW_CACHE_REFERENCES
] = { UNSUPPORTED_PERF_EVENT_ID
},
804 [PERF_COUNT_HW_CACHE_MISSES
] = { UNSUPPORTED_PERF_EVENT_ID
},
805 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
806 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
807 [PERF_COUNT_HW_BUS_CYCLES
] = { UNSUPPORTED_PERF_EVENT_ID
},
810 /* 74K core has different branch event code. */
811 static const struct mips_perf_event mipsxx74Kcore_event_map
812 [PERF_COUNT_HW_MAX
] = {
813 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
814 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
815 [PERF_COUNT_HW_CACHE_REFERENCES
] = { UNSUPPORTED_PERF_EVENT_ID
},
816 [PERF_COUNT_HW_CACHE_MISSES
] = { UNSUPPORTED_PERF_EVENT_ID
},
817 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
818 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
819 [PERF_COUNT_HW_BUS_CYCLES
] = { UNSUPPORTED_PERF_EVENT_ID
},
822 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
823 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
824 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
825 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
826 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
827 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
828 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
829 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
832 /* 24K/34K/1004K cores can share the same cache event map. */
833 static const struct mips_perf_event mipsxxcore_cache_map
834 [PERF_COUNT_HW_CACHE_MAX
]
835 [PERF_COUNT_HW_CACHE_OP_MAX
]
836 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
839 * Like some other architectures (e.g. ARM), the performance
840 * counters don't differentiate between read and write
841 * accesses/misses, so this isn't strictly correct, but it's the
842 * best we can do. Writes and reads get combined.
845 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
846 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
849 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
850 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
853 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
854 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
859 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
860 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
863 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
864 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
867 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
869 * Note that MIPS has only "hit" events countable for
870 * the prefetch operation.
872 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
877 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
878 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
881 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
882 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
885 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
886 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
891 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
892 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
895 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
896 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
899 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
900 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
905 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
906 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
909 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
910 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
913 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
914 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
918 /* Using the same code for *HW_BRANCH* */
920 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
921 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
924 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
925 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
928 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
929 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
934 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
935 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
938 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
939 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
942 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
943 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
948 /* 74K core has completely different cache event map. */
949 static const struct mips_perf_event mipsxx74Kcore_cache_map
950 [PERF_COUNT_HW_CACHE_MAX
]
951 [PERF_COUNT_HW_CACHE_OP_MAX
]
952 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
955 * Like some other architectures (e.g. ARM), the performance
956 * counters don't differentiate between read and write
957 * accesses/misses, so this isn't strictly correct, but it's the
958 * best we can do. Writes and reads get combined.
961 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
962 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
965 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
966 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
969 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
970 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
975 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
976 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
979 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
980 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
983 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
985 * Note that MIPS has only "hit" events countable for
986 * the prefetch operation.
988 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
993 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
994 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
| CNTR_ODD
, P
},
997 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
998 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
| CNTR_ODD
, P
},
1000 [C(OP_PREFETCH
)] = {
1001 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1002 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1006 /* 74K core does not have specific DTLB events. */
1008 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1009 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1012 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1013 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1015 [C(OP_PREFETCH
)] = {
1016 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1017 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1022 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1023 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1026 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1027 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1029 [C(OP_PREFETCH
)] = {
1030 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1031 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1035 /* Using the same code for *HW_BRANCH* */
1037 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1038 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1041 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1042 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1044 [C(OP_PREFETCH
)] = {
1045 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1046 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1051 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1052 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1055 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1056 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1058 [C(OP_PREFETCH
)] = {
1059 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1060 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1066 static const struct mips_perf_event octeon_cache_map
1067 [PERF_COUNT_HW_CACHE_MAX
]
1068 [PERF_COUNT_HW_CACHE_OP_MAX
]
1069 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1072 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1073 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1076 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1077 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1079 [C(OP_PREFETCH
)] = {
1080 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1081 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1086 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1087 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1090 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1091 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1093 [C(OP_PREFETCH
)] = {
1094 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1095 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1100 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1101 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1104 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1105 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1107 [C(OP_PREFETCH
)] = {
1108 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1109 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1114 * Only general DTLB misses are counted use the same event for
1118 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1119 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1122 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1123 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1125 [C(OP_PREFETCH
)] = {
1126 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1127 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1132 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1133 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1136 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1137 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1139 [C(OP_PREFETCH
)] = {
1140 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1141 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1145 /* Using the same code for *HW_BRANCH* */
1147 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1148 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1151 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1152 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1154 [C(OP_PREFETCH
)] = {
1155 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1156 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1161 #ifdef CONFIG_MIPS_MT_SMP
1162 static void check_and_calc_range(struct perf_event
*event
,
1163 const struct mips_perf_event
*pev
)
1165 struct hw_perf_event
*hwc
= &event
->hw
;
1167 if (event
->cpu
>= 0) {
1168 if (pev
->range
> V
) {
1170 * The user selected an event that is processor
1171 * wide, while expecting it to be VPE wide.
1173 hwc
->config_base
|= M_TC_EN_ALL
;
1176 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1179 hwc
->config_base
|= M_PERFCTL_VPEID(event
->cpu
);
1180 hwc
->config_base
|= M_TC_EN_VPE
;
1183 hwc
->config_base
|= M_TC_EN_ALL
;
1186 static void check_and_calc_range(struct perf_event
*event
,
1187 const struct mips_perf_event
*pev
)
1192 static int __hw_perf_event_init(struct perf_event
*event
)
1194 struct perf_event_attr
*attr
= &event
->attr
;
1195 struct hw_perf_event
*hwc
= &event
->hw
;
1196 const struct mips_perf_event
*pev
;
1199 /* Returning MIPS event descriptor for generic perf event. */
1200 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1201 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1203 pev
= mipspmu_map_general_event(event
->attr
.config
);
1204 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1205 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1206 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1207 /* We are working on the global raw event. */
1208 mutex_lock(&raw_event_mutex
);
1209 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1211 /* The event type is not (yet) supported. */
1216 if (PERF_TYPE_RAW
== event
->attr
.type
)
1217 mutex_unlock(&raw_event_mutex
);
1218 return PTR_ERR(pev
);
1222 * We allow max flexibility on how each individual counter shared
1223 * by the single CPU operates (the mode exclusion and the range).
1225 hwc
->config_base
= M_PERFCTL_INTERRUPT_ENABLE
;
1227 /* Calculate range bits and validate it. */
1228 if (num_possible_cpus() > 1)
1229 check_and_calc_range(event
, pev
);
1231 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1232 if (PERF_TYPE_RAW
== event
->attr
.type
)
1233 mutex_unlock(&raw_event_mutex
);
1235 if (!attr
->exclude_user
)
1236 hwc
->config_base
|= M_PERFCTL_USER
;
1237 if (!attr
->exclude_kernel
) {
1238 hwc
->config_base
|= M_PERFCTL_KERNEL
;
1239 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240 hwc
->config_base
|= M_PERFCTL_EXL
;
1242 if (!attr
->exclude_hv
)
1243 hwc
->config_base
|= M_PERFCTL_SUPERVISOR
;
1245 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1247 * The event can belong to another cpu. We do not assign a local
1248 * counter for it for now.
1253 if (!hwc
->sample_period
) {
1254 hwc
->sample_period
= mipspmu
.max_period
;
1255 hwc
->last_period
= hwc
->sample_period
;
1256 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1260 if (event
->group_leader
!= event
)
1261 err
= validate_group(event
);
1263 event
->destroy
= hw_perf_event_destroy
;
1266 event
->destroy(event
);
1271 static void pause_local_counters(void)
1273 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1274 int ctr
= mipspmu
.num_counters
;
1275 unsigned long flags
;
1277 local_irq_save(flags
);
1280 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1281 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1282 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1284 local_irq_restore(flags
);
1287 static void resume_local_counters(void)
1289 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1290 int ctr
= mipspmu
.num_counters
;
1294 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1298 static int mipsxx_pmu_handle_shared_irq(void)
1300 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1301 struct perf_sample_data data
;
1302 unsigned int counters
= mipspmu
.num_counters
;
1304 int handled
= IRQ_NONE
;
1305 struct pt_regs
*regs
;
1307 if (cpu_has_mips_r2
&& !(read_c0_cause() & (1 << 26)))
1310 * First we pause the local counters, so that when we are locked
1311 * here, the counters are all paused. When it gets locked due to
1312 * perf_disable(), the timer interrupt handler will be delayed.
1314 * See also mipsxx_pmu_start().
1316 pause_local_counters();
1317 #ifdef CONFIG_MIPS_MT_SMP
1318 read_lock(&pmuint_rwlock
);
1321 regs
= get_irq_regs();
1323 perf_sample_data_init(&data
, 0, 0);
1326 #define HANDLE_COUNTER(n) \
1328 if (test_bit(n, cpuc->used_mask)) { \
1329 counter = mipspmu.read_counter(n); \
1330 if (counter & mipspmu.overflow) { \
1331 handle_associated_event(cpuc, n, &data, regs); \
1332 handled = IRQ_HANDLED; \
1342 * Do all the work for the pending perf events. We can do this
1343 * in here because the performance counter interrupt is a regular
1344 * interrupt, not NMI.
1346 if (handled
== IRQ_HANDLED
)
1349 #ifdef CONFIG_MIPS_MT_SMP
1350 read_unlock(&pmuint_rwlock
);
1352 resume_local_counters();
1356 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1358 return mipsxx_pmu_handle_shared_irq();
1362 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1363 ((b) == 0 || (b) == 1 || (b) == 11)
1366 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1367 ((b) == 0 || (b) == 1 || (b) == 11)
1368 #ifdef CONFIG_MIPS_MT_SMP
1369 #define IS_RANGE_P_34K_EVENT(r, b) \
1370 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1371 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1372 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1373 ((b) >= 64 && (b) <= 67))
1374 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1378 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1379 ((b) == 0 || (b) == 1)
1382 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1383 ((b) == 0 || (b) == 1 || (b) == 11)
1384 #ifdef CONFIG_MIPS_MT_SMP
1385 #define IS_RANGE_P_1004K_EVENT(r, b) \
1386 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1387 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1388 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1389 (r) == 188 || (b) == 61 || (b) == 62 || \
1390 ((b) >= 64 && (b) <= 67))
1391 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1395 * User can use 0-255 raw events, where 0-127 for the events of even
1396 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1397 * indicate the parity. So, for example, when user wants to take the
1398 * Event Num of 15 for odd counters (by referring to the user manual),
1399 * then 128 needs to be added to 15 as the input for the event config,
1400 * i.e., 143 (0x8F) to be used.
1402 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1404 unsigned int raw_id
= config
& 0xff;
1405 unsigned int base_id
= raw_id
& 0x7f;
1407 raw_event
.event_id
= base_id
;
1409 switch (current_cpu_type()) {
1411 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1412 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1414 raw_event
.cntr_mask
=
1415 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1416 #ifdef CONFIG_MIPS_MT_SMP
1418 * This is actually doing nothing. Non-multithreading
1419 * CPUs will not check and calculate the range.
1421 raw_event
.range
= P
;
1425 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1426 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1428 raw_event
.cntr_mask
=
1429 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1430 #ifdef CONFIG_MIPS_MT_SMP
1431 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1432 raw_event
.range
= P
;
1433 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1434 raw_event
.range
= V
;
1436 raw_event
.range
= T
;
1440 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1441 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1443 raw_event
.cntr_mask
=
1444 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1445 #ifdef CONFIG_MIPS_MT_SMP
1446 raw_event
.range
= P
;
1450 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1451 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1453 raw_event
.cntr_mask
=
1454 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1455 #ifdef CONFIG_MIPS_MT_SMP
1456 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1457 raw_event
.range
= P
;
1458 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1459 raw_event
.range
= V
;
1461 raw_event
.range
= T
;
1469 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1471 unsigned int raw_id
= config
& 0xff;
1472 unsigned int base_id
= raw_id
& 0x7f;
1475 raw_event
.cntr_mask
= CNTR_ALL
;
1476 raw_event
.event_id
= base_id
;
1478 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
1480 return ERR_PTR(-EOPNOTSUPP
);
1483 return ERR_PTR(-EOPNOTSUPP
);
1494 return ERR_PTR(-EOPNOTSUPP
);
1503 init_hw_perf_events(void)
1508 pr_info("Performance counters: ");
1510 counters
= n_counters();
1511 if (counters
== 0) {
1512 pr_cont("No available PMU.\n");
1516 #ifdef CONFIG_MIPS_MT_SMP
1517 cpu_has_mipsmt_pertccounters
= read_c0_config7() & (1<<19);
1518 if (!cpu_has_mipsmt_pertccounters
)
1519 counters
= counters_total_to_per_cpu(counters
);
1522 #ifdef MSC01E_INT_BASE
1525 * Using platform specific interrupt controller defines.
1527 irq
= MSC01E_INT_BASE
+ MSC01E_INT_PERFCTR
;
1530 if ((cp0_perfcount_irq
>= 0) &&
1531 (cp0_compare_irq
!= cp0_perfcount_irq
))
1532 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1535 #ifdef MSC01E_INT_BASE
1539 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1541 switch (current_cpu_type()) {
1543 mipspmu
.name
= "mips/24K";
1544 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1545 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1548 mipspmu
.name
= "mips/34K";
1549 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1550 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1553 mipspmu
.name
= "mips/74K";
1554 mipspmu
.general_event_map
= &mipsxx74Kcore_event_map
;
1555 mipspmu
.cache_event_map
= &mipsxx74Kcore_cache_map
;
1558 mipspmu
.name
= "mips/1004K";
1559 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1560 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1563 mipspmu
.name
= "mips/loongson1";
1564 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1565 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1567 case CPU_CAVIUM_OCTEON
:
1568 case CPU_CAVIUM_OCTEON_PLUS
:
1569 case CPU_CAVIUM_OCTEON2
:
1570 mipspmu
.name
= "octeon";
1571 mipspmu
.general_event_map
= &octeon_event_map
;
1572 mipspmu
.cache_event_map
= &octeon_cache_map
;
1573 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
1576 pr_cont("Either hardware does not support performance "
1577 "counters, or not yet implemented.\n");
1581 mipspmu
.num_counters
= counters
;
1584 if (read_c0_perfctrl0() & M_PERFCTL_WIDE
) {
1585 mipspmu
.max_period
= (1ULL << 63) - 1;
1586 mipspmu
.valid_count
= (1ULL << 63) - 1;
1587 mipspmu
.overflow
= 1ULL << 63;
1588 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
1589 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
1592 mipspmu
.max_period
= (1ULL << 31) - 1;
1593 mipspmu
.valid_count
= (1ULL << 31) - 1;
1594 mipspmu
.overflow
= 1ULL << 31;
1595 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
1596 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
1600 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
1602 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1603 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
1604 irq
< 0 ? " (share with timer interrupt)" : "");
1606 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1610 early_initcall(init_hw_perf_events
);