ARM: mmp: fix potential NULL dereference
[linux/fpc-iii.git] / arch / mips / kernel / setup.c
bloba53f8ec37aac68beef41b905b88cf1fe92e805d9
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
26 #include <asm/addrspace.h>
27 #include <asm/bootinfo.h>
28 #include <asm/bugs.h>
29 #include <asm/cache.h>
30 #include <asm/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/smp-ops.h>
34 #include <asm/prom.h>
36 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
38 EXPORT_SYMBOL(cpu_data);
40 #ifdef CONFIG_VT
41 struct screen_info screen_info;
42 #endif
45 * Despite it's name this variable is even if we don't have PCI
47 unsigned int PCI_DMA_BUS_IS_PHYS;
49 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
52 * Setup information
54 * These are initialized so they are in the .data section
56 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
58 EXPORT_SYMBOL(mips_machtype);
60 struct boot_mem_map boot_mem_map;
62 static char __initdata command_line[COMMAND_LINE_SIZE];
63 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
65 #ifdef CONFIG_CMDLINE_BOOL
66 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
67 #endif
70 * mips_io_port_base is the begin of the address space to which x86 style
71 * I/O ports are mapped.
73 const unsigned long mips_io_port_base = -1;
74 EXPORT_SYMBOL(mips_io_port_base);
76 static struct resource code_resource = { .name = "Kernel code", };
77 static struct resource data_resource = { .name = "Kernel data", };
79 void __init add_memory_region(phys_t start, phys_t size, long type)
81 int x = boot_mem_map.nr_map;
82 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
84 /* Sanity check */
85 if (start + size < start) {
86 pr_warning("Trying to add an invalid memory region, skipped\n");
87 return;
91 * Try to merge with previous entry if any. This is far less than
92 * perfect but is sufficient for most real world cases.
94 if (x && prev->addr + prev->size == start && prev->type == type) {
95 prev->size += size;
96 return;
99 if (x == BOOT_MEM_MAP_MAX) {
100 pr_err("Ooops! Too many entries in the memory map!\n");
101 return;
104 boot_mem_map.map[x].addr = start;
105 boot_mem_map.map[x].size = size;
106 boot_mem_map.map[x].type = type;
107 boot_mem_map.nr_map++;
110 static void __init print_memory_map(void)
112 int i;
113 const int field = 2 * sizeof(unsigned long);
115 for (i = 0; i < boot_mem_map.nr_map; i++) {
116 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
117 field, (unsigned long long) boot_mem_map.map[i].size,
118 field, (unsigned long long) boot_mem_map.map[i].addr);
120 switch (boot_mem_map.map[i].type) {
121 case BOOT_MEM_RAM:
122 printk(KERN_CONT "(usable)\n");
123 break;
124 case BOOT_MEM_INIT_RAM:
125 printk(KERN_CONT "(usable after init)\n");
126 break;
127 case BOOT_MEM_ROM_DATA:
128 printk(KERN_CONT "(ROM data)\n");
129 break;
130 case BOOT_MEM_RESERVED:
131 printk(KERN_CONT "(reserved)\n");
132 break;
133 default:
134 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
135 break;
141 * Manage initrd
143 #ifdef CONFIG_BLK_DEV_INITRD
145 static int __init rd_start_early(char *p)
147 unsigned long start = memparse(p, &p);
149 #ifdef CONFIG_64BIT
150 /* Guess if the sign extension was forgotten by bootloader */
151 if (start < XKPHYS)
152 start = (int)start;
153 #endif
154 initrd_start = start;
155 initrd_end += start;
156 return 0;
158 early_param("rd_start", rd_start_early);
160 static int __init rd_size_early(char *p)
162 initrd_end += memparse(p, &p);
163 return 0;
165 early_param("rd_size", rd_size_early);
167 /* it returns the next free pfn after initrd */
168 static unsigned long __init init_initrd(void)
170 unsigned long end;
173 * Board specific code or command line parser should have
174 * already set up initrd_start and initrd_end. In these cases
175 * perfom sanity checks and use them if all looks good.
177 if (!initrd_start || initrd_end <= initrd_start)
178 goto disable;
180 if (initrd_start & ~PAGE_MASK) {
181 pr_err("initrd start must be page aligned\n");
182 goto disable;
184 if (initrd_start < PAGE_OFFSET) {
185 pr_err("initrd start < PAGE_OFFSET\n");
186 goto disable;
190 * Sanitize initrd addresses. For example firmware
191 * can't guess if they need to pass them through
192 * 64-bits values if the kernel has been built in pure
193 * 32-bit. We need also to switch from KSEG0 to XKPHYS
194 * addresses now, so the code can now safely use __pa().
196 end = __pa(initrd_end);
197 initrd_end = (unsigned long)__va(end);
198 initrd_start = (unsigned long)__va(__pa(initrd_start));
200 ROOT_DEV = Root_RAM0;
201 return PFN_UP(end);
202 disable:
203 initrd_start = 0;
204 initrd_end = 0;
205 return 0;
208 static void __init finalize_initrd(void)
210 unsigned long size = initrd_end - initrd_start;
212 if (size == 0) {
213 printk(KERN_INFO "Initrd not found or empty");
214 goto disable;
216 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
217 printk(KERN_ERR "Initrd extends beyond end of memory");
218 goto disable;
221 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
222 initrd_below_start_ok = 1;
224 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
225 initrd_start, size);
226 return;
227 disable:
228 printk(KERN_CONT " - disabling initrd\n");
229 initrd_start = 0;
230 initrd_end = 0;
233 #else /* !CONFIG_BLK_DEV_INITRD */
235 static unsigned long __init init_initrd(void)
237 return 0;
240 #define finalize_initrd() do {} while (0)
242 #endif
245 * Initialize the bootmem allocator. It also setup initrd related data
246 * if needed.
248 #ifdef CONFIG_SGI_IP27
250 static void __init bootmem_init(void)
252 init_initrd();
253 finalize_initrd();
256 #else /* !CONFIG_SGI_IP27 */
258 static void __init bootmem_init(void)
260 unsigned long reserved_end;
261 unsigned long mapstart = ~0UL;
262 unsigned long bootmap_size;
263 int i;
266 * Init any data related to initrd. It's a nop if INITRD is
267 * not selected. Once that done we can determine the low bound
268 * of usable memory.
270 reserved_end = max(init_initrd(),
271 (unsigned long) PFN_UP(__pa_symbol(&_end)));
274 * max_low_pfn is not a number of pages. The number of pages
275 * of the system is given by 'max_low_pfn - min_low_pfn'.
277 min_low_pfn = ~0UL;
278 max_low_pfn = 0;
281 * Find the highest page frame number we have available.
283 for (i = 0; i < boot_mem_map.nr_map; i++) {
284 unsigned long start, end;
286 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
287 continue;
289 start = PFN_UP(boot_mem_map.map[i].addr);
290 end = PFN_DOWN(boot_mem_map.map[i].addr
291 + boot_mem_map.map[i].size);
293 if (end > max_low_pfn)
294 max_low_pfn = end;
295 if (start < min_low_pfn)
296 min_low_pfn = start;
297 if (end <= reserved_end)
298 continue;
299 if (start >= mapstart)
300 continue;
301 mapstart = max(reserved_end, start);
304 if (min_low_pfn >= max_low_pfn)
305 panic("Incorrect memory mapping !!!");
306 if (min_low_pfn > ARCH_PFN_OFFSET) {
307 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
308 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
309 min_low_pfn - ARCH_PFN_OFFSET);
310 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
311 pr_info("%lu free pages won't be used\n",
312 ARCH_PFN_OFFSET - min_low_pfn);
314 min_low_pfn = ARCH_PFN_OFFSET;
317 * Determine low and high memory ranges
319 max_pfn = max_low_pfn;
320 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
321 #ifdef CONFIG_HIGHMEM
322 highstart_pfn = PFN_DOWN(HIGHMEM_START);
323 highend_pfn = max_low_pfn;
324 #endif
325 max_low_pfn = PFN_DOWN(HIGHMEM_START);
329 * Initialize the boot-time allocator with low memory only.
331 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
332 min_low_pfn, max_low_pfn);
335 for (i = 0; i < boot_mem_map.nr_map; i++) {
336 unsigned long start, end;
338 start = PFN_UP(boot_mem_map.map[i].addr);
339 end = PFN_DOWN(boot_mem_map.map[i].addr
340 + boot_mem_map.map[i].size);
342 if (start <= min_low_pfn)
343 start = min_low_pfn;
344 if (start >= end)
345 continue;
347 #ifndef CONFIG_HIGHMEM
348 if (end > max_low_pfn)
349 end = max_low_pfn;
352 * ... finally, is the area going away?
354 if (end <= start)
355 continue;
356 #endif
358 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
362 * Register fully available low RAM pages with the bootmem allocator.
364 for (i = 0; i < boot_mem_map.nr_map; i++) {
365 unsigned long start, end, size;
367 start = PFN_UP(boot_mem_map.map[i].addr);
368 end = PFN_DOWN(boot_mem_map.map[i].addr
369 + boot_mem_map.map[i].size);
372 * Reserve usable memory.
374 switch (boot_mem_map.map[i].type) {
375 case BOOT_MEM_RAM:
376 break;
377 case BOOT_MEM_INIT_RAM:
378 memory_present(0, start, end);
379 continue;
380 default:
381 /* Not usable memory */
382 continue;
386 * We are rounding up the start address of usable memory
387 * and at the end of the usable range downwards.
389 if (start >= max_low_pfn)
390 continue;
391 if (start < reserved_end)
392 start = reserved_end;
393 if (end > max_low_pfn)
394 end = max_low_pfn;
397 * ... finally, is the area going away?
399 if (end <= start)
400 continue;
401 size = end - start;
403 /* Register lowmem ranges */
404 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
405 memory_present(0, start, end);
409 * Reserve the bootmap memory.
411 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
414 * Reserve initrd memory if needed.
416 finalize_initrd();
419 #endif /* CONFIG_SGI_IP27 */
422 * arch_mem_init - initialize memory management subsystem
424 * o plat_mem_setup() detects the memory configuration and will record detected
425 * memory areas using add_memory_region.
427 * At this stage the memory configuration of the system is known to the
428 * kernel but generic memory management system is still entirely uninitialized.
430 * o bootmem_init()
431 * o sparse_init()
432 * o paging_init()
434 * At this stage the bootmem allocator is ready to use.
436 * NOTE: historically plat_mem_setup did the entire platform initialization.
437 * This was rather impractical because it meant plat_mem_setup had to
438 * get away without any kind of memory allocator. To keep old code from
439 * breaking plat_setup was just renamed to plat_setup and a second platform
440 * initialization hook for anything else was introduced.
443 static int usermem __initdata;
445 static int __init early_parse_mem(char *p)
447 unsigned long start, size;
450 * If a user specifies memory size, we
451 * blow away any automatically generated
452 * size.
454 if (usermem == 0) {
455 boot_mem_map.nr_map = 0;
456 usermem = 1;
458 start = 0;
459 size = memparse(p, &p);
460 if (*p == '@')
461 start = memparse(p + 1, &p);
463 add_memory_region(start, size, BOOT_MEM_RAM);
464 return 0;
466 early_param("mem", early_parse_mem);
468 static void __init arch_mem_init(char **cmdline_p)
470 phys_t init_mem, init_end, init_size;
472 extern void plat_mem_setup(void);
474 /* call board setup routine */
475 plat_mem_setup();
477 init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT;
478 init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT;
479 init_size = init_end - init_mem;
480 if (init_size) {
481 /* Make sure it is in the boot_mem_map */
482 int i, found;
483 found = 0;
484 for (i = 0; i < boot_mem_map.nr_map; i++) {
485 if (init_mem >= boot_mem_map.map[i].addr &&
486 init_mem < (boot_mem_map.map[i].addr +
487 boot_mem_map.map[i].size)) {
488 found = 1;
489 break;
492 if (!found)
493 add_memory_region(init_mem, init_size,
494 BOOT_MEM_INIT_RAM);
497 pr_info("Determined physical RAM map:\n");
498 print_memory_map();
500 #ifdef CONFIG_CMDLINE_BOOL
501 #ifdef CONFIG_CMDLINE_OVERRIDE
502 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
503 #else
504 if (builtin_cmdline[0]) {
505 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
506 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
508 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
509 #endif
510 #else
511 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
512 #endif
513 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
515 *cmdline_p = command_line;
517 parse_early_param();
519 if (usermem) {
520 pr_info("User-defined physical RAM map:\n");
521 print_memory_map();
524 bootmem_init();
525 device_tree_init();
526 sparse_init();
527 plat_swiotlb_setup();
528 paging_init();
531 static void __init resource_init(void)
533 int i;
535 if (UNCAC_BASE != IO_BASE)
536 return;
538 code_resource.start = __pa_symbol(&_text);
539 code_resource.end = __pa_symbol(&_etext) - 1;
540 data_resource.start = __pa_symbol(&_etext);
541 data_resource.end = __pa_symbol(&_edata) - 1;
544 * Request address space for all standard RAM.
546 for (i = 0; i < boot_mem_map.nr_map; i++) {
547 struct resource *res;
548 unsigned long start, end;
550 start = boot_mem_map.map[i].addr;
551 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
552 if (start >= HIGHMEM_START)
553 continue;
554 if (end >= HIGHMEM_START)
555 end = HIGHMEM_START - 1;
557 res = alloc_bootmem(sizeof(struct resource));
558 switch (boot_mem_map.map[i].type) {
559 case BOOT_MEM_RAM:
560 case BOOT_MEM_INIT_RAM:
561 case BOOT_MEM_ROM_DATA:
562 res->name = "System RAM";
563 break;
564 case BOOT_MEM_RESERVED:
565 default:
566 res->name = "reserved";
569 res->start = start;
570 res->end = end;
572 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
573 request_resource(&iomem_resource, res);
576 * We don't know which RAM region contains kernel data,
577 * so we try it repeatedly and let the resource manager
578 * test it.
580 request_resource(res, &code_resource);
581 request_resource(res, &data_resource);
585 void __init setup_arch(char **cmdline_p)
587 cpu_probe();
588 prom_init();
590 #ifdef CONFIG_EARLY_PRINTK
591 setup_early_printk();
592 #endif
593 cpu_report();
594 check_bugs_early();
596 #if defined(CONFIG_VT)
597 #if defined(CONFIG_VGA_CONSOLE)
598 conswitchp = &vga_con;
599 #elif defined(CONFIG_DUMMY_CONSOLE)
600 conswitchp = &dummy_con;
601 #endif
602 #endif
604 arch_mem_init(cmdline_p);
606 resource_init();
607 plat_smp_setup();
609 cpu_cache_init();
612 unsigned long kernelsp[NR_CPUS];
613 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
615 #ifdef CONFIG_DEBUG_FS
616 struct dentry *mips_debugfs_dir;
617 static int __init debugfs_mips(void)
619 struct dentry *d;
621 d = debugfs_create_dir("mips", NULL);
622 if (!d)
623 return -ENOMEM;
624 mips_debugfs_dir = d;
625 return 0;
627 arch_initcall(debugfs_mips);
628 #endif