ARM: mmp: fix potential NULL dereference
[linux/fpc-iii.git] / arch / mips / kernel / traps.c
blob9be3df1fa8a461dc4e1e5563582f483e4ed7c103
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/spinlock.h>
23 #include <linux/kallsyms.h>
24 #include <linux/bootmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/ptrace.h>
27 #include <linux/kgdb.h>
28 #include <linux/kdebug.h>
29 #include <linux/kprobes.h>
30 #include <linux/notifier.h>
31 #include <linux/kdb.h>
32 #include <linux/irq.h>
33 #include <linux/perf_event.h>
35 #include <asm/bootinfo.h>
36 #include <asm/branch.h>
37 #include <asm/break.h>
38 #include <asm/cop2.h>
39 #include <asm/cpu.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/fpu_emulator.h>
43 #include <asm/mipsregs.h>
44 #include <asm/mipsmtregs.h>
45 #include <asm/module.h>
46 #include <asm/pgtable.h>
47 #include <asm/ptrace.h>
48 #include <asm/sections.h>
49 #include <asm/tlbdebug.h>
50 #include <asm/traps.h>
51 #include <asm/uaccess.h>
52 #include <asm/watch.h>
53 #include <asm/mmu_context.h>
54 #include <asm/types.h>
55 #include <asm/stacktrace.h>
56 #include <asm/uasm.h>
58 extern void check_wait(void);
59 extern asmlinkage void r4k_wait(void);
60 extern asmlinkage void rollback_handle_int(void);
61 extern asmlinkage void handle_int(void);
62 extern asmlinkage void handle_tlbm(void);
63 extern asmlinkage void handle_tlbl(void);
64 extern asmlinkage void handle_tlbs(void);
65 extern asmlinkage void handle_adel(void);
66 extern asmlinkage void handle_ades(void);
67 extern asmlinkage void handle_ibe(void);
68 extern asmlinkage void handle_dbe(void);
69 extern asmlinkage void handle_sys(void);
70 extern asmlinkage void handle_bp(void);
71 extern asmlinkage void handle_ri(void);
72 extern asmlinkage void handle_ri_rdhwr_vivt(void);
73 extern asmlinkage void handle_ri_rdhwr(void);
74 extern asmlinkage void handle_cpu(void);
75 extern asmlinkage void handle_ov(void);
76 extern asmlinkage void handle_tr(void);
77 extern asmlinkage void handle_fpe(void);
78 extern asmlinkage void handle_mdmx(void);
79 extern asmlinkage void handle_watch(void);
80 extern asmlinkage void handle_mt(void);
81 extern asmlinkage void handle_dsp(void);
82 extern asmlinkage void handle_mcheck(void);
83 extern asmlinkage void handle_reserved(void);
85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86 struct mips_fpu_struct *ctx, int has_fpu,
87 void *__user *fault_addr);
89 void (*board_be_init)(void);
90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91 void (*board_nmi_handler_setup)(void);
92 void (*board_ejtag_handler_setup)(void);
93 void (*board_bind_eic_interrupt)(int irq, int regset);
94 void (*board_ebase_setup)(void);
95 void __cpuinitdata(*board_cache_error_setup)(void);
97 static void show_raw_backtrace(unsigned long reg29)
99 unsigned long *sp = (unsigned long *)(reg29 & ~3);
100 unsigned long addr;
102 printk("Call Trace:");
103 #ifdef CONFIG_KALLSYMS
104 printk("\n");
105 #endif
106 while (!kstack_end(sp)) {
107 unsigned long __user *p =
108 (unsigned long __user *)(unsigned long)sp++;
109 if (__get_user(addr, p)) {
110 printk(" (Bad stack address)");
111 break;
113 if (__kernel_text_address(addr))
114 print_ip_sym(addr);
116 printk("\n");
119 #ifdef CONFIG_KALLSYMS
120 int raw_show_trace;
121 static int __init set_raw_show_trace(char *str)
123 raw_show_trace = 1;
124 return 1;
126 __setup("raw_show_trace", set_raw_show_trace);
127 #endif
129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
131 unsigned long sp = regs->regs[29];
132 unsigned long ra = regs->regs[31];
133 unsigned long pc = regs->cp0_epc;
135 if (!task)
136 task = current;
138 if (raw_show_trace || !__kernel_text_address(pc)) {
139 show_raw_backtrace(sp);
140 return;
142 printk("Call Trace:\n");
143 do {
144 print_ip_sym(pc);
145 pc = unwind_stack(task, &sp, pc, &ra);
146 } while (pc);
147 printk("\n");
151 * This routine abuses get_user()/put_user() to reference pointers
152 * with at least a bit of error checking ...
154 static void show_stacktrace(struct task_struct *task,
155 const struct pt_regs *regs)
157 const int field = 2 * sizeof(unsigned long);
158 long stackdata;
159 int i;
160 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
162 printk("Stack :");
163 i = 0;
164 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
165 if (i && ((i % (64 / field)) == 0))
166 printk("\n ");
167 if (i > 39) {
168 printk(" ...");
169 break;
172 if (__get_user(stackdata, sp++)) {
173 printk(" (Bad stack address)");
174 break;
177 printk(" %0*lx", field, stackdata);
178 i++;
180 printk("\n");
181 show_backtrace(task, regs);
184 void show_stack(struct task_struct *task, unsigned long *sp)
186 struct pt_regs regs;
187 if (sp) {
188 regs.regs[29] = (unsigned long)sp;
189 regs.regs[31] = 0;
190 regs.cp0_epc = 0;
191 } else {
192 if (task && task != current) {
193 regs.regs[29] = task->thread.reg29;
194 regs.regs[31] = 0;
195 regs.cp0_epc = task->thread.reg31;
196 #ifdef CONFIG_KGDB_KDB
197 } else if (atomic_read(&kgdb_active) != -1 &&
198 kdb_current_regs) {
199 memcpy(&regs, kdb_current_regs, sizeof(regs));
200 #endif /* CONFIG_KGDB_KDB */
201 } else {
202 prepare_frametrace(&regs);
205 show_stacktrace(task, &regs);
209 * The architecture-independent dump_stack generator
211 void dump_stack(void)
213 struct pt_regs regs;
215 prepare_frametrace(&regs);
216 show_backtrace(current, &regs);
219 EXPORT_SYMBOL(dump_stack);
221 static void show_code(unsigned int __user *pc)
223 long i;
224 unsigned short __user *pc16 = NULL;
226 printk("\nCode:");
228 if ((unsigned long)pc & 1)
229 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
230 for(i = -3 ; i < 6 ; i++) {
231 unsigned int insn;
232 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
233 printk(" (Bad address in epc)\n");
234 break;
236 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
240 static void __show_regs(const struct pt_regs *regs)
242 const int field = 2 * sizeof(unsigned long);
243 unsigned int cause = regs->cp0_cause;
244 int i;
246 printk("Cpu %d\n", smp_processor_id());
249 * Saved main processor registers
251 for (i = 0; i < 32; ) {
252 if ((i % 4) == 0)
253 printk("$%2d :", i);
254 if (i == 0)
255 printk(" %0*lx", field, 0UL);
256 else if (i == 26 || i == 27)
257 printk(" %*s", field, "");
258 else
259 printk(" %0*lx", field, regs->regs[i]);
261 i++;
262 if ((i % 4) == 0)
263 printk("\n");
266 #ifdef CONFIG_CPU_HAS_SMARTMIPS
267 printk("Acx : %0*lx\n", field, regs->acx);
268 #endif
269 printk("Hi : %0*lx\n", field, regs->hi);
270 printk("Lo : %0*lx\n", field, regs->lo);
273 * Saved cp0 registers
275 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
276 (void *) regs->cp0_epc);
277 printk(" %s\n", print_tainted());
278 printk("ra : %0*lx %pS\n", field, regs->regs[31],
279 (void *) regs->regs[31]);
281 printk("Status: %08x ", (uint32_t) regs->cp0_status);
283 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
284 if (regs->cp0_status & ST0_KUO)
285 printk("KUo ");
286 if (regs->cp0_status & ST0_IEO)
287 printk("IEo ");
288 if (regs->cp0_status & ST0_KUP)
289 printk("KUp ");
290 if (regs->cp0_status & ST0_IEP)
291 printk("IEp ");
292 if (regs->cp0_status & ST0_KUC)
293 printk("KUc ");
294 if (regs->cp0_status & ST0_IEC)
295 printk("IEc ");
296 } else {
297 if (regs->cp0_status & ST0_KX)
298 printk("KX ");
299 if (regs->cp0_status & ST0_SX)
300 printk("SX ");
301 if (regs->cp0_status & ST0_UX)
302 printk("UX ");
303 switch (regs->cp0_status & ST0_KSU) {
304 case KSU_USER:
305 printk("USER ");
306 break;
307 case KSU_SUPERVISOR:
308 printk("SUPERVISOR ");
309 break;
310 case KSU_KERNEL:
311 printk("KERNEL ");
312 break;
313 default:
314 printk("BAD_MODE ");
315 break;
317 if (regs->cp0_status & ST0_ERL)
318 printk("ERL ");
319 if (regs->cp0_status & ST0_EXL)
320 printk("EXL ");
321 if (regs->cp0_status & ST0_IE)
322 printk("IE ");
324 printk("\n");
326 printk("Cause : %08x\n", cause);
328 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329 if (1 <= cause && cause <= 5)
330 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
332 printk("PrId : %08x (%s)\n", read_c0_prid(),
333 cpu_name_string());
337 * FIXME: really the generic show_regs should take a const pointer argument.
339 void show_regs(struct pt_regs *regs)
341 __show_regs((struct pt_regs *)regs);
344 void show_registers(struct pt_regs *regs)
346 const int field = 2 * sizeof(unsigned long);
348 __show_regs(regs);
349 print_modules();
350 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
351 current->comm, current->pid, current_thread_info(), current,
352 field, current_thread_info()->tp_value);
353 if (cpu_has_userlocal) {
354 unsigned long tls;
356 tls = read_c0_userlocal();
357 if (tls != current_thread_info()->tp_value)
358 printk("*HwTLS: %0*lx\n", field, tls);
361 show_stacktrace(current, regs);
362 show_code((unsigned int __user *) regs->cp0_epc);
363 printk("\n");
366 static int regs_to_trapnr(struct pt_regs *regs)
368 return (regs->cp0_cause >> 2) & 0x1f;
371 static DEFINE_RAW_SPINLOCK(die_lock);
373 void __noreturn die(const char *str, struct pt_regs *regs)
375 static int die_counter;
376 int sig = SIGSEGV;
377 #ifdef CONFIG_MIPS_MT_SMTC
378 unsigned long dvpret;
379 #endif /* CONFIG_MIPS_MT_SMTC */
381 oops_enter();
383 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
384 sig = 0;
386 console_verbose();
387 raw_spin_lock_irq(&die_lock);
388 #ifdef CONFIG_MIPS_MT_SMTC
389 dvpret = dvpe();
390 #endif /* CONFIG_MIPS_MT_SMTC */
391 bust_spinlocks(1);
392 #ifdef CONFIG_MIPS_MT_SMTC
393 mips_mt_regdump(dvpret);
394 #endif /* CONFIG_MIPS_MT_SMTC */
396 printk("%s[#%d]:\n", str, ++die_counter);
397 show_registers(regs);
398 add_taint(TAINT_DIE);
399 raw_spin_unlock_irq(&die_lock);
401 oops_exit();
403 if (in_interrupt())
404 panic("Fatal exception in interrupt");
406 if (panic_on_oops) {
407 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
408 ssleep(5);
409 panic("Fatal exception");
412 do_exit(sig);
415 extern struct exception_table_entry __start___dbe_table[];
416 extern struct exception_table_entry __stop___dbe_table[];
418 __asm__(
419 " .section __dbe_table, \"a\"\n"
420 " .previous \n");
422 /* Given an address, look for it in the exception tables. */
423 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425 const struct exception_table_entry *e;
427 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
428 if (!e)
429 e = search_module_dbetables(addr);
430 return e;
433 asmlinkage void do_be(struct pt_regs *regs)
435 const int field = 2 * sizeof(unsigned long);
436 const struct exception_table_entry *fixup = NULL;
437 int data = regs->cp0_cause & 4;
438 int action = MIPS_BE_FATAL;
440 /* XXX For now. Fixme, this searches the wrong table ... */
441 if (data && !user_mode(regs))
442 fixup = search_dbe_tables(exception_epc(regs));
444 if (fixup)
445 action = MIPS_BE_FIXUP;
447 if (board_be_handler)
448 action = board_be_handler(regs, fixup != NULL);
450 switch (action) {
451 case MIPS_BE_DISCARD:
452 return;
453 case MIPS_BE_FIXUP:
454 if (fixup) {
455 regs->cp0_epc = fixup->nextinsn;
456 return;
458 break;
459 default:
460 break;
464 * Assume it would be too dangerous to continue ...
466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
467 data ? "Data" : "Instruction",
468 field, regs->cp0_epc, field, regs->regs[31]);
469 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
470 == NOTIFY_STOP)
471 return;
473 die_if_kernel("Oops", regs);
474 force_sig(SIGBUS, current);
478 * ll/sc, rdhwr, sync emulation
481 #define OPCODE 0xfc000000
482 #define BASE 0x03e00000
483 #define RT 0x001f0000
484 #define OFFSET 0x0000ffff
485 #define LL 0xc0000000
486 #define SC 0xe0000000
487 #define SPEC0 0x00000000
488 #define SPEC3 0x7c000000
489 #define RD 0x0000f800
490 #define FUNC 0x0000003f
491 #define SYNC 0x0000000f
492 #define RDHWR 0x0000003b
495 * The ll_bit is cleared by r*_switch.S
498 unsigned int ll_bit;
499 struct task_struct *ll_task;
501 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
503 unsigned long value, __user *vaddr;
504 long offset;
507 * analyse the ll instruction that just caused a ri exception
508 * and put the referenced address to addr.
511 /* sign extend offset */
512 offset = opcode & OFFSET;
513 offset <<= 16;
514 offset >>= 16;
516 vaddr = (unsigned long __user *)
517 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
519 if ((unsigned long)vaddr & 3)
520 return SIGBUS;
521 if (get_user(value, vaddr))
522 return SIGSEGV;
524 preempt_disable();
526 if (ll_task == NULL || ll_task == current) {
527 ll_bit = 1;
528 } else {
529 ll_bit = 0;
531 ll_task = current;
533 preempt_enable();
535 regs->regs[(opcode & RT) >> 16] = value;
537 return 0;
540 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
542 unsigned long __user *vaddr;
543 unsigned long reg;
544 long offset;
547 * analyse the sc instruction that just caused a ri exception
548 * and put the referenced address to addr.
551 /* sign extend offset */
552 offset = opcode & OFFSET;
553 offset <<= 16;
554 offset >>= 16;
556 vaddr = (unsigned long __user *)
557 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
558 reg = (opcode & RT) >> 16;
560 if ((unsigned long)vaddr & 3)
561 return SIGBUS;
563 preempt_disable();
565 if (ll_bit == 0 || ll_task != current) {
566 regs->regs[reg] = 0;
567 preempt_enable();
568 return 0;
571 preempt_enable();
573 if (put_user(regs->regs[reg], vaddr))
574 return SIGSEGV;
576 regs->regs[reg] = 1;
578 return 0;
582 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
583 * opcodes are supposed to result in coprocessor unusable exceptions if
584 * executed on ll/sc-less processors. That's the theory. In practice a
585 * few processors such as NEC's VR4100 throw reserved instruction exceptions
586 * instead, so we're doing the emulation thing in both exception handlers.
588 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
590 if ((opcode & OPCODE) == LL) {
591 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
592 1, regs, 0);
593 return simulate_ll(regs, opcode);
595 if ((opcode & OPCODE) == SC) {
596 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
597 1, regs, 0);
598 return simulate_sc(regs, opcode);
601 return -1; /* Must be something else ... */
605 * Simulate trapping 'rdhwr' instructions to provide user accessible
606 * registers not implemented in hardware.
608 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
610 struct thread_info *ti = task_thread_info(current);
612 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
613 int rd = (opcode & RD) >> 11;
614 int rt = (opcode & RT) >> 16;
615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
616 1, regs, 0);
617 switch (rd) {
618 case 0: /* CPU number */
619 regs->regs[rt] = smp_processor_id();
620 return 0;
621 case 1: /* SYNCI length */
622 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
623 current_cpu_data.icache.linesz);
624 return 0;
625 case 2: /* Read count register */
626 regs->regs[rt] = read_c0_count();
627 return 0;
628 case 3: /* Count register resolution */
629 switch (current_cpu_data.cputype) {
630 case CPU_20KC:
631 case CPU_25KF:
632 regs->regs[rt] = 1;
633 break;
634 default:
635 regs->regs[rt] = 2;
637 return 0;
638 case 29:
639 regs->regs[rt] = ti->tp_value;
640 return 0;
641 default:
642 return -1;
646 /* Not ours. */
647 return -1;
650 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
652 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
653 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
654 1, regs, 0);
655 return 0;
658 return -1; /* Must be something else ... */
661 asmlinkage void do_ov(struct pt_regs *regs)
663 siginfo_t info;
665 die_if_kernel("Integer overflow", regs);
667 info.si_code = FPE_INTOVF;
668 info.si_signo = SIGFPE;
669 info.si_errno = 0;
670 info.si_addr = (void __user *) regs->cp0_epc;
671 force_sig_info(SIGFPE, &info, current);
674 static int process_fpemu_return(int sig, void __user *fault_addr)
676 if (sig == SIGSEGV || sig == SIGBUS) {
677 struct siginfo si = {0};
678 si.si_addr = fault_addr;
679 si.si_signo = sig;
680 if (sig == SIGSEGV) {
681 if (find_vma(current->mm, (unsigned long)fault_addr))
682 si.si_code = SEGV_ACCERR;
683 else
684 si.si_code = SEGV_MAPERR;
685 } else {
686 si.si_code = BUS_ADRERR;
688 force_sig_info(sig, &si, current);
689 return 1;
690 } else if (sig) {
691 force_sig(sig, current);
692 return 1;
693 } else {
694 return 0;
699 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
701 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
703 siginfo_t info = {0};
705 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
706 == NOTIFY_STOP)
707 return;
708 die_if_kernel("FP exception in kernel code", regs);
710 if (fcr31 & FPU_CSR_UNI_X) {
711 int sig;
712 void __user *fault_addr = NULL;
715 * Unimplemented operation exception. If we've got the full
716 * software emulator on-board, let's use it...
718 * Force FPU to dump state into task/thread context. We're
719 * moving a lot of data here for what is probably a single
720 * instruction, but the alternative is to pre-decode the FP
721 * register operands before invoking the emulator, which seems
722 * a bit extreme for what should be an infrequent event.
724 /* Ensure 'resume' not overwrite saved fp context again. */
725 lose_fpu(1);
727 /* Run the emulator */
728 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
729 &fault_addr);
732 * We can't allow the emulated instruction to leave any of
733 * the cause bit set in $fcr31.
735 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
737 /* Restore the hardware register state */
738 own_fpu(1); /* Using the FPU again. */
740 /* If something went wrong, signal */
741 process_fpemu_return(sig, fault_addr);
743 return;
744 } else if (fcr31 & FPU_CSR_INV_X)
745 info.si_code = FPE_FLTINV;
746 else if (fcr31 & FPU_CSR_DIV_X)
747 info.si_code = FPE_FLTDIV;
748 else if (fcr31 & FPU_CSR_OVF_X)
749 info.si_code = FPE_FLTOVF;
750 else if (fcr31 & FPU_CSR_UDF_X)
751 info.si_code = FPE_FLTUND;
752 else if (fcr31 & FPU_CSR_INE_X)
753 info.si_code = FPE_FLTRES;
754 else
755 info.si_code = __SI_FAULT;
756 info.si_signo = SIGFPE;
757 info.si_errno = 0;
758 info.si_addr = (void __user *) regs->cp0_epc;
759 force_sig_info(SIGFPE, &info, current);
762 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
763 const char *str)
765 siginfo_t info;
766 char b[40];
768 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
769 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
770 return;
771 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
773 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
774 return;
777 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
778 * insns, even for trap and break codes that indicate arithmetic
779 * failures. Weird ...
780 * But should we continue the brokenness??? --macro
782 switch (code) {
783 case BRK_OVERFLOW:
784 case BRK_DIVZERO:
785 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
786 die_if_kernel(b, regs);
787 if (code == BRK_DIVZERO)
788 info.si_code = FPE_INTDIV;
789 else
790 info.si_code = FPE_INTOVF;
791 info.si_signo = SIGFPE;
792 info.si_errno = 0;
793 info.si_addr = (void __user *) regs->cp0_epc;
794 force_sig_info(SIGFPE, &info, current);
795 break;
796 case BRK_BUG:
797 die_if_kernel("Kernel bug detected", regs);
798 force_sig(SIGTRAP, current);
799 break;
800 case BRK_MEMU:
802 * Address errors may be deliberately induced by the FPU
803 * emulator to retake control of the CPU after executing the
804 * instruction in the delay slot of an emulated branch.
806 * Terminate if exception was recognized as a delay slot return
807 * otherwise handle as normal.
809 if (do_dsemulret(regs))
810 return;
812 die_if_kernel("Math emu break/trap", regs);
813 force_sig(SIGTRAP, current);
814 break;
815 default:
816 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
817 die_if_kernel(b, regs);
818 force_sig(SIGTRAP, current);
822 asmlinkage void do_bp(struct pt_regs *regs)
824 unsigned int opcode, bcode;
826 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
827 goto out_sigsegv;
830 * There is the ancient bug in the MIPS assemblers that the break
831 * code starts left to bit 16 instead to bit 6 in the opcode.
832 * Gas is bug-compatible, but not always, grrr...
833 * We handle both cases with a simple heuristics. --macro
835 bcode = ((opcode >> 6) & ((1 << 20) - 1));
836 if (bcode >= (1 << 10))
837 bcode >>= 10;
840 * notify the kprobe handlers, if instruction is likely to
841 * pertain to them.
843 switch (bcode) {
844 case BRK_KPROBE_BP:
845 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
846 return;
847 else
848 break;
849 case BRK_KPROBE_SSTEPBP:
850 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
851 return;
852 else
853 break;
854 default:
855 break;
858 do_trap_or_bp(regs, bcode, "Break");
859 return;
861 out_sigsegv:
862 force_sig(SIGSEGV, current);
865 asmlinkage void do_tr(struct pt_regs *regs)
867 unsigned int opcode, tcode = 0;
869 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
870 goto out_sigsegv;
872 /* Immediate versions don't provide a code. */
873 if (!(opcode & OPCODE))
874 tcode = ((opcode >> 6) & ((1 << 10) - 1));
876 do_trap_or_bp(regs, tcode, "Trap");
877 return;
879 out_sigsegv:
880 force_sig(SIGSEGV, current);
883 asmlinkage void do_ri(struct pt_regs *regs)
885 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
886 unsigned long old_epc = regs->cp0_epc;
887 unsigned int opcode = 0;
888 int status = -1;
890 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
891 == NOTIFY_STOP)
892 return;
894 die_if_kernel("Reserved instruction in kernel code", regs);
896 if (unlikely(compute_return_epc(regs) < 0))
897 return;
899 if (unlikely(get_user(opcode, epc) < 0))
900 status = SIGSEGV;
902 if (!cpu_has_llsc && status < 0)
903 status = simulate_llsc(regs, opcode);
905 if (status < 0)
906 status = simulate_rdhwr(regs, opcode);
908 if (status < 0)
909 status = simulate_sync(regs, opcode);
911 if (status < 0)
912 status = SIGILL;
914 if (unlikely(status > 0)) {
915 regs->cp0_epc = old_epc; /* Undo skip-over. */
916 force_sig(status, current);
921 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
922 * emulated more than some threshold number of instructions, force migration to
923 * a "CPU" that has FP support.
925 static void mt_ase_fp_affinity(void)
927 #ifdef CONFIG_MIPS_MT_FPAFF
928 if (mt_fpemul_threshold > 0 &&
929 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
931 * If there's no FPU present, or if the application has already
932 * restricted the allowed set to exclude any CPUs with FPUs,
933 * we'll skip the procedure.
935 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
936 cpumask_t tmask;
938 current->thread.user_cpus_allowed
939 = current->cpus_allowed;
940 cpus_and(tmask, current->cpus_allowed,
941 mt_fpu_cpumask);
942 set_cpus_allowed_ptr(current, &tmask);
943 set_thread_flag(TIF_FPUBOUND);
946 #endif /* CONFIG_MIPS_MT_FPAFF */
950 * No lock; only written during early bootup by CPU 0.
952 static RAW_NOTIFIER_HEAD(cu2_chain);
954 int __ref register_cu2_notifier(struct notifier_block *nb)
956 return raw_notifier_chain_register(&cu2_chain, nb);
959 int cu2_notifier_call_chain(unsigned long val, void *v)
961 return raw_notifier_call_chain(&cu2_chain, val, v);
964 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
965 void *data)
967 struct pt_regs *regs = data;
969 switch (action) {
970 default:
971 die_if_kernel("Unhandled kernel unaligned access or invalid "
972 "instruction", regs);
973 /* Fall through */
975 case CU2_EXCEPTION:
976 force_sig(SIGILL, current);
979 return NOTIFY_OK;
982 asmlinkage void do_cpu(struct pt_regs *regs)
984 unsigned int __user *epc;
985 unsigned long old_epc;
986 unsigned int opcode;
987 unsigned int cpid;
988 int status;
989 unsigned long __maybe_unused flags;
991 die_if_kernel("do_cpu invoked from kernel context!", regs);
993 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
995 switch (cpid) {
996 case 0:
997 epc = (unsigned int __user *)exception_epc(regs);
998 old_epc = regs->cp0_epc;
999 opcode = 0;
1000 status = -1;
1002 if (unlikely(compute_return_epc(regs) < 0))
1003 return;
1005 if (unlikely(get_user(opcode, epc) < 0))
1006 status = SIGSEGV;
1008 if (!cpu_has_llsc && status < 0)
1009 status = simulate_llsc(regs, opcode);
1011 if (status < 0)
1012 status = simulate_rdhwr(regs, opcode);
1014 if (status < 0)
1015 status = SIGILL;
1017 if (unlikely(status > 0)) {
1018 regs->cp0_epc = old_epc; /* Undo skip-over. */
1019 force_sig(status, current);
1022 return;
1024 case 1:
1025 if (used_math()) /* Using the FPU again. */
1026 own_fpu(1);
1027 else { /* First time FPU user. */
1028 init_fpu();
1029 set_used_math();
1032 if (!raw_cpu_has_fpu) {
1033 int sig;
1034 void __user *fault_addr = NULL;
1035 sig = fpu_emulator_cop1Handler(regs,
1036 &current->thread.fpu,
1037 0, &fault_addr);
1038 if (!process_fpemu_return(sig, fault_addr))
1039 mt_ase_fp_affinity();
1042 return;
1044 case 2:
1045 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1046 return;
1048 case 3:
1049 break;
1052 force_sig(SIGILL, current);
1055 asmlinkage void do_mdmx(struct pt_regs *regs)
1057 force_sig(SIGILL, current);
1061 * Called with interrupts disabled.
1063 asmlinkage void do_watch(struct pt_regs *regs)
1065 u32 cause;
1068 * Clear WP (bit 22) bit of cause register so we don't loop
1069 * forever.
1071 cause = read_c0_cause();
1072 cause &= ~(1 << 22);
1073 write_c0_cause(cause);
1076 * If the current thread has the watch registers loaded, save
1077 * their values and send SIGTRAP. Otherwise another thread
1078 * left the registers set, clear them and continue.
1080 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1081 mips_read_watch_registers();
1082 local_irq_enable();
1083 force_sig(SIGTRAP, current);
1084 } else {
1085 mips_clear_watch_registers();
1086 local_irq_enable();
1090 asmlinkage void do_mcheck(struct pt_regs *regs)
1092 const int field = 2 * sizeof(unsigned long);
1093 int multi_match = regs->cp0_status & ST0_TS;
1095 show_regs(regs);
1097 if (multi_match) {
1098 printk("Index : %0x\n", read_c0_index());
1099 printk("Pagemask: %0x\n", read_c0_pagemask());
1100 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1101 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1102 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1103 printk("\n");
1104 dump_tlb_all();
1107 show_code((unsigned int __user *) regs->cp0_epc);
1110 * Some chips may have other causes of machine check (e.g. SB1
1111 * graduation timer)
1113 panic("Caught Machine Check exception - %scaused by multiple "
1114 "matching entries in the TLB.",
1115 (multi_match) ? "" : "not ");
1118 asmlinkage void do_mt(struct pt_regs *regs)
1120 int subcode;
1122 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1123 >> VPECONTROL_EXCPT_SHIFT;
1124 switch (subcode) {
1125 case 0:
1126 printk(KERN_DEBUG "Thread Underflow\n");
1127 break;
1128 case 1:
1129 printk(KERN_DEBUG "Thread Overflow\n");
1130 break;
1131 case 2:
1132 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1133 break;
1134 case 3:
1135 printk(KERN_DEBUG "Gating Storage Exception\n");
1136 break;
1137 case 4:
1138 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1139 break;
1140 case 5:
1141 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1142 break;
1143 default:
1144 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1145 subcode);
1146 break;
1148 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1150 force_sig(SIGILL, current);
1154 asmlinkage void do_dsp(struct pt_regs *regs)
1156 if (cpu_has_dsp)
1157 panic("Unexpected DSP exception");
1159 force_sig(SIGILL, current);
1162 asmlinkage void do_reserved(struct pt_regs *regs)
1165 * Game over - no way to handle this if it ever occurs. Most probably
1166 * caused by a new unknown cpu type or after another deadly
1167 * hard/software error.
1169 show_regs(regs);
1170 panic("Caught reserved exception %ld - should not happen.",
1171 (regs->cp0_cause & 0x7f) >> 2);
1174 static int __initdata l1parity = 1;
1175 static int __init nol1parity(char *s)
1177 l1parity = 0;
1178 return 1;
1180 __setup("nol1par", nol1parity);
1181 static int __initdata l2parity = 1;
1182 static int __init nol2parity(char *s)
1184 l2parity = 0;
1185 return 1;
1187 __setup("nol2par", nol2parity);
1190 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1191 * it different ways.
1193 static inline void parity_protection_init(void)
1195 switch (current_cpu_type()) {
1196 case CPU_24K:
1197 case CPU_34K:
1198 case CPU_74K:
1199 case CPU_1004K:
1201 #define ERRCTL_PE 0x80000000
1202 #define ERRCTL_L2P 0x00800000
1203 unsigned long errctl;
1204 unsigned int l1parity_present, l2parity_present;
1206 errctl = read_c0_ecc();
1207 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1209 /* probe L1 parity support */
1210 write_c0_ecc(errctl | ERRCTL_PE);
1211 back_to_back_c0_hazard();
1212 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1214 /* probe L2 parity support */
1215 write_c0_ecc(errctl|ERRCTL_L2P);
1216 back_to_back_c0_hazard();
1217 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1219 if (l1parity_present && l2parity_present) {
1220 if (l1parity)
1221 errctl |= ERRCTL_PE;
1222 if (l1parity ^ l2parity)
1223 errctl |= ERRCTL_L2P;
1224 } else if (l1parity_present) {
1225 if (l1parity)
1226 errctl |= ERRCTL_PE;
1227 } else if (l2parity_present) {
1228 if (l2parity)
1229 errctl |= ERRCTL_L2P;
1230 } else {
1231 /* No parity available */
1234 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1236 write_c0_ecc(errctl);
1237 back_to_back_c0_hazard();
1238 errctl = read_c0_ecc();
1239 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1241 if (l1parity_present)
1242 printk(KERN_INFO "Cache parity protection %sabled\n",
1243 (errctl & ERRCTL_PE) ? "en" : "dis");
1245 if (l2parity_present) {
1246 if (l1parity_present && l1parity)
1247 errctl ^= ERRCTL_L2P;
1248 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1249 (errctl & ERRCTL_L2P) ? "en" : "dis");
1252 break;
1254 case CPU_5KC:
1255 case CPU_5KE:
1256 case CPU_LOONGSON1:
1257 write_c0_ecc(0x80000000);
1258 back_to_back_c0_hazard();
1259 /* Set the PE bit (bit 31) in the c0_errctl register. */
1260 printk(KERN_INFO "Cache parity protection %sabled\n",
1261 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1262 break;
1263 case CPU_20KC:
1264 case CPU_25KF:
1265 /* Clear the DE bit (bit 16) in the c0_status register. */
1266 printk(KERN_INFO "Enable cache parity protection for "
1267 "MIPS 20KC/25KF CPUs.\n");
1268 clear_c0_status(ST0_DE);
1269 break;
1270 default:
1271 break;
1275 asmlinkage void cache_parity_error(void)
1277 const int field = 2 * sizeof(unsigned long);
1278 unsigned int reg_val;
1280 /* For the moment, report the problem and hang. */
1281 printk("Cache error exception:\n");
1282 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1283 reg_val = read_c0_cacheerr();
1284 printk("c0_cacheerr == %08x\n", reg_val);
1286 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1287 reg_val & (1<<30) ? "secondary" : "primary",
1288 reg_val & (1<<31) ? "data" : "insn");
1289 printk("Error bits: %s%s%s%s%s%s%s\n",
1290 reg_val & (1<<29) ? "ED " : "",
1291 reg_val & (1<<28) ? "ET " : "",
1292 reg_val & (1<<26) ? "EE " : "",
1293 reg_val & (1<<25) ? "EB " : "",
1294 reg_val & (1<<24) ? "EI " : "",
1295 reg_val & (1<<23) ? "E1 " : "",
1296 reg_val & (1<<22) ? "E0 " : "");
1297 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1299 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1300 if (reg_val & (1<<22))
1301 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1303 if (reg_val & (1<<23))
1304 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1305 #endif
1307 panic("Can't handle the cache error!");
1311 * SDBBP EJTAG debug exception handler.
1312 * We skip the instruction and return to the next instruction.
1314 void ejtag_exception_handler(struct pt_regs *regs)
1316 const int field = 2 * sizeof(unsigned long);
1317 unsigned long depc, old_epc;
1318 unsigned int debug;
1320 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1321 depc = read_c0_depc();
1322 debug = read_c0_debug();
1323 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1324 if (debug & 0x80000000) {
1326 * In branch delay slot.
1327 * We cheat a little bit here and use EPC to calculate the
1328 * debug return address (DEPC). EPC is restored after the
1329 * calculation.
1331 old_epc = regs->cp0_epc;
1332 regs->cp0_epc = depc;
1333 __compute_return_epc(regs);
1334 depc = regs->cp0_epc;
1335 regs->cp0_epc = old_epc;
1336 } else
1337 depc += 4;
1338 write_c0_depc(depc);
1340 #if 0
1341 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1342 write_c0_debug(debug | 0x100);
1343 #endif
1347 * NMI exception handler.
1348 * No lock; only written during early bootup by CPU 0.
1350 static RAW_NOTIFIER_HEAD(nmi_chain);
1352 int register_nmi_notifier(struct notifier_block *nb)
1354 return raw_notifier_chain_register(&nmi_chain, nb);
1357 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1359 raw_notifier_call_chain(&nmi_chain, 0, regs);
1360 bust_spinlocks(1);
1361 printk("NMI taken!!!!\n");
1362 die("NMI", regs);
1365 #define VECTORSPACING 0x100 /* for EI/VI mode */
1367 unsigned long ebase;
1368 unsigned long exception_handlers[32];
1369 unsigned long vi_handlers[64];
1371 void __init *set_except_vector(int n, void *addr)
1373 unsigned long handler = (unsigned long) addr;
1374 unsigned long old_handler = exception_handlers[n];
1376 exception_handlers[n] = handler;
1377 if (n == 0 && cpu_has_divec) {
1378 unsigned long jump_mask = ~((1 << 28) - 1);
1379 u32 *buf = (u32 *)(ebase + 0x200);
1380 unsigned int k0 = 26;
1381 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1382 uasm_i_j(&buf, handler & ~jump_mask);
1383 uasm_i_nop(&buf);
1384 } else {
1385 UASM_i_LA(&buf, k0, handler);
1386 uasm_i_jr(&buf, k0);
1387 uasm_i_nop(&buf);
1389 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1391 return (void *)old_handler;
1394 static asmlinkage void do_default_vi(void)
1396 show_regs(get_irq_regs());
1397 panic("Caught unexpected vectored interrupt.");
1400 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1402 unsigned long handler;
1403 unsigned long old_handler = vi_handlers[n];
1404 int srssets = current_cpu_data.srsets;
1405 u32 *w;
1406 unsigned char *b;
1408 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1410 if (addr == NULL) {
1411 handler = (unsigned long) do_default_vi;
1412 srs = 0;
1413 } else
1414 handler = (unsigned long) addr;
1415 vi_handlers[n] = (unsigned long) addr;
1417 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1419 if (srs >= srssets)
1420 panic("Shadow register set %d not supported", srs);
1422 if (cpu_has_veic) {
1423 if (board_bind_eic_interrupt)
1424 board_bind_eic_interrupt(n, srs);
1425 } else if (cpu_has_vint) {
1426 /* SRSMap is only defined if shadow sets are implemented */
1427 if (srssets > 1)
1428 change_c0_srsmap(0xf << n*4, srs << n*4);
1431 if (srs == 0) {
1433 * If no shadow set is selected then use the default handler
1434 * that does normal register saving and a standard interrupt exit
1437 extern char except_vec_vi, except_vec_vi_lui;
1438 extern char except_vec_vi_ori, except_vec_vi_end;
1439 extern char rollback_except_vec_vi;
1440 char *vec_start = (cpu_wait == r4k_wait) ?
1441 &rollback_except_vec_vi : &except_vec_vi;
1442 #ifdef CONFIG_MIPS_MT_SMTC
1444 * We need to provide the SMTC vectored interrupt handler
1445 * not only with the address of the handler, but with the
1446 * Status.IM bit to be masked before going there.
1448 extern char except_vec_vi_mori;
1449 const int mori_offset = &except_vec_vi_mori - vec_start;
1450 #endif /* CONFIG_MIPS_MT_SMTC */
1451 const int handler_len = &except_vec_vi_end - vec_start;
1452 const int lui_offset = &except_vec_vi_lui - vec_start;
1453 const int ori_offset = &except_vec_vi_ori - vec_start;
1455 if (handler_len > VECTORSPACING) {
1457 * Sigh... panicing won't help as the console
1458 * is probably not configured :(
1460 panic("VECTORSPACING too small");
1463 memcpy(b, vec_start, handler_len);
1464 #ifdef CONFIG_MIPS_MT_SMTC
1465 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1467 w = (u32 *)(b + mori_offset);
1468 *w = (*w & 0xffff0000) | (0x100 << n);
1469 #endif /* CONFIG_MIPS_MT_SMTC */
1470 w = (u32 *)(b + lui_offset);
1471 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1472 w = (u32 *)(b + ori_offset);
1473 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1474 local_flush_icache_range((unsigned long)b,
1475 (unsigned long)(b+handler_len));
1477 else {
1479 * In other cases jump directly to the interrupt handler
1481 * It is the handlers responsibility to save registers if required
1482 * (eg hi/lo) and return from the exception using "eret"
1484 w = (u32 *)b;
1485 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1486 *w = 0;
1487 local_flush_icache_range((unsigned long)b,
1488 (unsigned long)(b+8));
1491 return (void *)old_handler;
1494 void *set_vi_handler(int n, vi_handler_t addr)
1496 return set_vi_srs_handler(n, addr, 0);
1499 extern void tlb_init(void);
1500 extern void flush_tlb_handlers(void);
1503 * Timer interrupt
1505 int cp0_compare_irq;
1506 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1507 int cp0_compare_irq_shift;
1510 * Performance counter IRQ or -1 if shared with timer
1512 int cp0_perfcount_irq;
1513 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1515 static int __cpuinitdata noulri;
1517 static int __init ulri_disable(char *s)
1519 pr_info("Disabling ulri\n");
1520 noulri = 1;
1522 return 1;
1524 __setup("noulri", ulri_disable);
1526 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1528 unsigned int cpu = smp_processor_id();
1529 unsigned int status_set = ST0_CU0;
1530 unsigned int hwrena = cpu_hwrena_impl_bits;
1531 #ifdef CONFIG_MIPS_MT_SMTC
1532 int secondaryTC = 0;
1533 int bootTC = (cpu == 0);
1536 * Only do per_cpu_trap_init() for first TC of Each VPE.
1537 * Note that this hack assumes that the SMTC init code
1538 * assigns TCs consecutively and in ascending order.
1541 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1542 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1543 secondaryTC = 1;
1544 #endif /* CONFIG_MIPS_MT_SMTC */
1547 * Disable coprocessors and select 32-bit or 64-bit addressing
1548 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1549 * flag that some firmware may have left set and the TS bit (for
1550 * IP27). Set XX for ISA IV code to work.
1552 #ifdef CONFIG_64BIT
1553 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1554 #endif
1555 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1556 status_set |= ST0_XX;
1557 if (cpu_has_dsp)
1558 status_set |= ST0_MX;
1560 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1561 status_set);
1563 if (cpu_has_mips_r2)
1564 hwrena |= 0x0000000f;
1566 if (!noulri && cpu_has_userlocal)
1567 hwrena |= (1 << 29);
1569 if (hwrena)
1570 write_c0_hwrena(hwrena);
1572 #ifdef CONFIG_MIPS_MT_SMTC
1573 if (!secondaryTC) {
1574 #endif /* CONFIG_MIPS_MT_SMTC */
1576 if (cpu_has_veic || cpu_has_vint) {
1577 unsigned long sr = set_c0_status(ST0_BEV);
1578 write_c0_ebase(ebase);
1579 write_c0_status(sr);
1580 /* Setting vector spacing enables EI/VI mode */
1581 change_c0_intctl(0x3e0, VECTORSPACING);
1583 if (cpu_has_divec) {
1584 if (cpu_has_mipsmt) {
1585 unsigned int vpflags = dvpe();
1586 set_c0_cause(CAUSEF_IV);
1587 evpe(vpflags);
1588 } else
1589 set_c0_cause(CAUSEF_IV);
1593 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1595 * o read IntCtl.IPTI to determine the timer interrupt
1596 * o read IntCtl.IPPCI to determine the performance counter interrupt
1598 if (cpu_has_mips_r2) {
1599 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1600 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1601 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1602 if (cp0_perfcount_irq == cp0_compare_irq)
1603 cp0_perfcount_irq = -1;
1604 } else {
1605 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1606 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1607 cp0_perfcount_irq = -1;
1610 #ifdef CONFIG_MIPS_MT_SMTC
1612 #endif /* CONFIG_MIPS_MT_SMTC */
1614 if (!cpu_data[cpu].asid_cache)
1615 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1617 atomic_inc(&init_mm.mm_count);
1618 current->active_mm = &init_mm;
1619 BUG_ON(current->mm);
1620 enter_lazy_tlb(&init_mm, current);
1622 #ifdef CONFIG_MIPS_MT_SMTC
1623 if (bootTC) {
1624 #endif /* CONFIG_MIPS_MT_SMTC */
1625 /* Boot CPU's cache setup in setup_arch(). */
1626 if (!is_boot_cpu)
1627 cpu_cache_init();
1628 tlb_init();
1629 #ifdef CONFIG_MIPS_MT_SMTC
1630 } else if (!secondaryTC) {
1632 * First TC in non-boot VPE must do subset of tlb_init()
1633 * for MMU countrol registers.
1635 write_c0_pagemask(PM_DEFAULT_MASK);
1636 write_c0_wired(0);
1638 #endif /* CONFIG_MIPS_MT_SMTC */
1639 TLBMISS_HANDLER_SETUP();
1642 /* Install CPU exception handler */
1643 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1645 memcpy((void *)(ebase + offset), addr, size);
1646 local_flush_icache_range(ebase + offset, ebase + offset + size);
1649 static char panic_null_cerr[] __cpuinitdata =
1650 "Trying to set NULL cache error exception handler";
1653 * Install uncached CPU exception handler.
1654 * This is suitable only for the cache error exception which is the only
1655 * exception handler that is being run uncached.
1657 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1658 unsigned long size)
1660 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1662 if (!addr)
1663 panic(panic_null_cerr);
1665 memcpy((void *)(uncached_ebase + offset), addr, size);
1668 static int __initdata rdhwr_noopt;
1669 static int __init set_rdhwr_noopt(char *str)
1671 rdhwr_noopt = 1;
1672 return 1;
1675 __setup("rdhwr_noopt", set_rdhwr_noopt);
1677 void __init trap_init(void)
1679 extern char except_vec3_generic, except_vec3_r4000;
1680 extern char except_vec4;
1681 unsigned long i;
1682 int rollback;
1684 check_wait();
1685 rollback = (cpu_wait == r4k_wait);
1687 #if defined(CONFIG_KGDB)
1688 if (kgdb_early_setup)
1689 return; /* Already done */
1690 #endif
1692 if (cpu_has_veic || cpu_has_vint) {
1693 unsigned long size = 0x200 + VECTORSPACING*64;
1694 ebase = (unsigned long)
1695 __alloc_bootmem(size, 1 << fls(size), 0);
1696 } else {
1697 ebase = CKSEG0;
1698 if (cpu_has_mips_r2)
1699 ebase += (read_c0_ebase() & 0x3ffff000);
1702 if (board_ebase_setup)
1703 board_ebase_setup();
1704 per_cpu_trap_init(true);
1707 * Copy the generic exception handlers to their final destination.
1708 * This will be overriden later as suitable for a particular
1709 * configuration.
1711 set_handler(0x180, &except_vec3_generic, 0x80);
1714 * Setup default vectors
1716 for (i = 0; i <= 31; i++)
1717 set_except_vector(i, handle_reserved);
1720 * Copy the EJTAG debug exception vector handler code to it's final
1721 * destination.
1723 if (cpu_has_ejtag && board_ejtag_handler_setup)
1724 board_ejtag_handler_setup();
1727 * Only some CPUs have the watch exceptions.
1729 if (cpu_has_watch)
1730 set_except_vector(23, handle_watch);
1733 * Initialise interrupt handlers
1735 if (cpu_has_veic || cpu_has_vint) {
1736 int nvec = cpu_has_veic ? 64 : 8;
1737 for (i = 0; i < nvec; i++)
1738 set_vi_handler(i, NULL);
1740 else if (cpu_has_divec)
1741 set_handler(0x200, &except_vec4, 0x8);
1744 * Some CPUs can enable/disable for cache parity detection, but does
1745 * it different ways.
1747 parity_protection_init();
1750 * The Data Bus Errors / Instruction Bus Errors are signaled
1751 * by external hardware. Therefore these two exceptions
1752 * may have board specific handlers.
1754 if (board_be_init)
1755 board_be_init();
1757 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1758 set_except_vector(1, handle_tlbm);
1759 set_except_vector(2, handle_tlbl);
1760 set_except_vector(3, handle_tlbs);
1762 set_except_vector(4, handle_adel);
1763 set_except_vector(5, handle_ades);
1765 set_except_vector(6, handle_ibe);
1766 set_except_vector(7, handle_dbe);
1768 set_except_vector(8, handle_sys);
1769 set_except_vector(9, handle_bp);
1770 set_except_vector(10, rdhwr_noopt ? handle_ri :
1771 (cpu_has_vtag_icache ?
1772 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1773 set_except_vector(11, handle_cpu);
1774 set_except_vector(12, handle_ov);
1775 set_except_vector(13, handle_tr);
1777 if (current_cpu_type() == CPU_R6000 ||
1778 current_cpu_type() == CPU_R6000A) {
1780 * The R6000 is the only R-series CPU that features a machine
1781 * check exception (similar to the R4000 cache error) and
1782 * unaligned ldc1/sdc1 exception. The handlers have not been
1783 * written yet. Well, anyway there is no R6000 machine on the
1784 * current list of targets for Linux/MIPS.
1785 * (Duh, crap, there is someone with a triple R6k machine)
1787 //set_except_vector(14, handle_mc);
1788 //set_except_vector(15, handle_ndc);
1792 if (board_nmi_handler_setup)
1793 board_nmi_handler_setup();
1795 if (cpu_has_fpu && !cpu_has_nofpuex)
1796 set_except_vector(15, handle_fpe);
1798 set_except_vector(22, handle_mdmx);
1800 if (cpu_has_mcheck)
1801 set_except_vector(24, handle_mcheck);
1803 if (cpu_has_mipsmt)
1804 set_except_vector(25, handle_mt);
1806 set_except_vector(26, handle_dsp);
1808 if (board_cache_error_setup)
1809 board_cache_error_setup();
1811 if (cpu_has_vce)
1812 /* Special exception: R4[04]00 uses also the divec space. */
1813 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1814 else if (cpu_has_4kex)
1815 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1816 else
1817 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1819 local_flush_icache_range(ebase, ebase + 0x400);
1820 flush_tlb_handlers();
1822 sort_extable(__start___dbe_table, __stop___dbe_table);
1824 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */