2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head
*l
)
87 list_for_each_entry_safe(page
, page2
, l
, lru
) {
88 if (unlikely(PageHuge(page
))) {
89 putback_active_hugepage(page
);
93 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
94 page_is_file_cache(page
));
95 if (unlikely(isolated_balloon_page(page
)))
96 balloon_page_putback(page
);
98 putback_lru_page(page
);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
106 unsigned long addr
, void *old
)
108 struct mm_struct
*mm
= vma
->vm_mm
;
114 if (unlikely(PageHuge(new))) {
115 ptep
= huge_pte_offset(mm
, addr
);
118 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
120 pmd
= mm_find_pmd(mm
, addr
);
123 if (pmd_trans_huge(*pmd
))
126 ptep
= pte_offset_map(pmd
, addr
);
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
133 ptl
= pte_lockptr(mm
, pmd
);
138 if (!is_swap_pte(pte
))
141 entry
= pte_to_swp_entry(pte
);
143 if (!is_migration_entry(entry
) ||
144 migration_entry_to_page(entry
) != old
)
148 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
149 if (pte_swp_soft_dirty(*ptep
))
150 pte
= pte_mksoft_dirty(pte
);
151 if (is_write_migration_entry(entry
))
152 pte
= pte_mkwrite(pte
);
153 #ifdef CONFIG_HUGETLB_PAGE
155 pte
= pte_mkhuge(pte
);
156 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
159 flush_dcache_page(new);
160 set_pte_at(mm
, addr
, ptep
, pte
);
164 hugepage_add_anon_rmap(new, vma
, addr
);
167 } else if (PageAnon(new))
168 page_add_anon_rmap(new, vma
, addr
);
170 page_add_file_rmap(new);
172 /* No need to invalidate - it was non-present before */
173 update_mmu_cache(vma
, addr
, ptep
);
175 pte_unmap_unlock(ptep
, ptl
);
181 * Congratulations to trinity for discovering this bug.
182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
184 * replace the specified range by file ptes throughout (maybe populated after).
185 * If page migration finds a page within that range, while it's still located
186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
188 * But if the migrating page is in a part of the vma outside the range to be
189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
190 * deal with it. Fortunately, this part of the vma is of course still linear,
191 * so we just need to use linear location on the nonlinear list.
193 static int remove_linear_migration_ptes_from_nonlinear(struct page
*page
,
194 struct address_space
*mapping
, void *arg
)
196 struct vm_area_struct
*vma
;
197 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
198 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
201 list_for_each_entry(vma
,
202 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
204 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
205 if (addr
>= vma
->vm_start
&& addr
< vma
->vm_end
)
206 remove_migration_pte(page
, vma
, addr
, arg
);
212 * Get rid of all migration entries and replace them by
213 * references to the indicated page.
215 static void remove_migration_ptes(struct page
*old
, struct page
*new)
217 struct rmap_walk_control rwc
= {
218 .rmap_one
= remove_migration_pte
,
220 .file_nonlinear
= remove_linear_migration_ptes_from_nonlinear
,
223 rmap_walk(new, &rwc
);
227 * Something used the pte of a page under migration. We need to
228 * get to the page and wait until migration is finished.
229 * When we return from this function the fault will be retried.
231 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
240 if (!is_swap_pte(pte
))
243 entry
= pte_to_swp_entry(pte
);
244 if (!is_migration_entry(entry
))
247 page
= migration_entry_to_page(entry
);
250 * Once radix-tree replacement of page migration started, page_count
251 * *must* be zero. And, we don't want to call wait_on_page_locked()
252 * against a page without get_page().
253 * So, we use get_page_unless_zero(), here. Even failed, page fault
256 if (!get_page_unless_zero(page
))
258 pte_unmap_unlock(ptep
, ptl
);
259 wait_on_page_locked(page
);
263 pte_unmap_unlock(ptep
, ptl
);
266 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
267 unsigned long address
)
269 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
270 pte_t
*ptep
= pte_offset_map(pmd
, address
);
271 __migration_entry_wait(mm
, ptep
, ptl
);
274 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
275 struct mm_struct
*mm
, pte_t
*pte
)
277 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
278 __migration_entry_wait(mm
, pte
, ptl
);
282 /* Returns true if all buffers are successfully locked */
283 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
284 enum migrate_mode mode
)
286 struct buffer_head
*bh
= head
;
288 /* Simple case, sync compaction */
289 if (mode
!= MIGRATE_ASYNC
) {
293 bh
= bh
->b_this_page
;
295 } while (bh
!= head
);
300 /* async case, we cannot block on lock_buffer so use trylock_buffer */
303 if (!trylock_buffer(bh
)) {
305 * We failed to lock the buffer and cannot stall in
306 * async migration. Release the taken locks
308 struct buffer_head
*failed_bh
= bh
;
311 while (bh
!= failed_bh
) {
314 bh
= bh
->b_this_page
;
319 bh
= bh
->b_this_page
;
320 } while (bh
!= head
);
324 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
325 enum migrate_mode mode
)
329 #endif /* CONFIG_BLOCK */
332 * Replace the page in the mapping.
334 * The number of remaining references must be:
335 * 1 for anonymous pages without a mapping
336 * 2 for pages with a mapping
337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
339 int migrate_page_move_mapping(struct address_space
*mapping
,
340 struct page
*newpage
, struct page
*page
,
341 struct buffer_head
*head
, enum migrate_mode mode
,
344 int expected_count
= 1 + extra_count
;
348 /* Anonymous page without mapping */
349 if (page_count(page
) != expected_count
)
351 return MIGRATEPAGE_SUCCESS
;
354 spin_lock_irq(&mapping
->tree_lock
);
356 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
359 expected_count
+= 1 + page_has_private(page
);
360 if (page_count(page
) != expected_count
||
361 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
362 spin_unlock_irq(&mapping
->tree_lock
);
366 if (!page_freeze_refs(page
, expected_count
)) {
367 spin_unlock_irq(&mapping
->tree_lock
);
372 * In the async migration case of moving a page with buffers, lock the
373 * buffers using trylock before the mapping is moved. If the mapping
374 * was moved, we later failed to lock the buffers and could not move
375 * the mapping back due to an elevated page count, we would have to
376 * block waiting on other references to be dropped.
378 if (mode
== MIGRATE_ASYNC
&& head
&&
379 !buffer_migrate_lock_buffers(head
, mode
)) {
380 page_unfreeze_refs(page
, expected_count
);
381 spin_unlock_irq(&mapping
->tree_lock
);
386 * Now we know that no one else is looking at the page.
388 get_page(newpage
); /* add cache reference */
389 if (PageSwapCache(page
)) {
390 SetPageSwapCache(newpage
);
391 set_page_private(newpage
, page_private(page
));
394 radix_tree_replace_slot(pslot
, newpage
);
397 * Drop cache reference from old page by unfreezing
398 * to one less reference.
399 * We know this isn't the last reference.
401 page_unfreeze_refs(page
, expected_count
- 1);
404 * If moved to a different zone then also account
405 * the page for that zone. Other VM counters will be
406 * taken care of when we establish references to the
407 * new page and drop references to the old page.
409 * Note that anonymous pages are accounted for
410 * via NR_FILE_PAGES and NR_ANON_PAGES if they
411 * are mapped to swap space.
413 __dec_zone_page_state(page
, NR_FILE_PAGES
);
414 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
415 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
416 __dec_zone_page_state(page
, NR_SHMEM
);
417 __inc_zone_page_state(newpage
, NR_SHMEM
);
419 spin_unlock_irq(&mapping
->tree_lock
);
421 return MIGRATEPAGE_SUCCESS
;
425 * The expected number of remaining references is the same as that
426 * of migrate_page_move_mapping().
428 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
429 struct page
*newpage
, struct page
*page
)
435 if (page_count(page
) != 1)
437 return MIGRATEPAGE_SUCCESS
;
440 spin_lock_irq(&mapping
->tree_lock
);
442 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
445 expected_count
= 2 + page_has_private(page
);
446 if (page_count(page
) != expected_count
||
447 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
448 spin_unlock_irq(&mapping
->tree_lock
);
452 if (!page_freeze_refs(page
, expected_count
)) {
453 spin_unlock_irq(&mapping
->tree_lock
);
459 radix_tree_replace_slot(pslot
, newpage
);
461 page_unfreeze_refs(page
, expected_count
- 1);
463 spin_unlock_irq(&mapping
->tree_lock
);
464 return MIGRATEPAGE_SUCCESS
;
468 * Gigantic pages are so large that we do not guarantee that page++ pointer
469 * arithmetic will work across the entire page. We need something more
472 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
476 struct page
*dst_base
= dst
;
477 struct page
*src_base
= src
;
479 for (i
= 0; i
< nr_pages
; ) {
481 copy_highpage(dst
, src
);
484 dst
= mem_map_next(dst
, dst_base
, i
);
485 src
= mem_map_next(src
, src_base
, i
);
489 static void copy_huge_page(struct page
*dst
, struct page
*src
)
496 struct hstate
*h
= page_hstate(src
);
497 nr_pages
= pages_per_huge_page(h
);
499 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
500 __copy_gigantic_page(dst
, src
, nr_pages
);
505 BUG_ON(!PageTransHuge(src
));
506 nr_pages
= hpage_nr_pages(src
);
509 for (i
= 0; i
< nr_pages
; i
++) {
511 copy_highpage(dst
+ i
, src
+ i
);
516 * Copy the page to its new location
518 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
522 if (PageHuge(page
) || PageTransHuge(page
))
523 copy_huge_page(newpage
, page
);
525 copy_highpage(newpage
, page
);
528 SetPageError(newpage
);
529 if (PageReferenced(page
))
530 SetPageReferenced(newpage
);
531 if (PageUptodate(page
))
532 SetPageUptodate(newpage
);
533 if (TestClearPageActive(page
)) {
534 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
535 SetPageActive(newpage
);
536 } else if (TestClearPageUnevictable(page
))
537 SetPageUnevictable(newpage
);
538 if (PageChecked(page
))
539 SetPageChecked(newpage
);
540 if (PageMappedToDisk(page
))
541 SetPageMappedToDisk(newpage
);
543 if (PageDirty(page
)) {
544 clear_page_dirty_for_io(page
);
546 * Want to mark the page and the radix tree as dirty, and
547 * redo the accounting that clear_page_dirty_for_io undid,
548 * but we can't use set_page_dirty because that function
549 * is actually a signal that all of the page has become dirty.
550 * Whereas only part of our page may be dirty.
552 if (PageSwapBacked(page
))
553 SetPageDirty(newpage
);
555 __set_page_dirty_nobuffers(newpage
);
559 * Copy NUMA information to the new page, to prevent over-eager
560 * future migrations of this same page.
562 cpupid
= page_cpupid_xchg_last(page
, -1);
563 page_cpupid_xchg_last(newpage
, cpupid
);
565 mlock_migrate_page(newpage
, page
);
566 ksm_migrate_page(newpage
, page
);
568 * Please do not reorder this without considering how mm/ksm.c's
569 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
571 ClearPageSwapCache(page
);
572 ClearPagePrivate(page
);
573 set_page_private(page
, 0);
576 * If any waiters have accumulated on the new page then
579 if (PageWriteback(newpage
))
580 end_page_writeback(newpage
);
583 /************************************************************
584 * Migration functions
585 ***********************************************************/
588 * Common logic to directly migrate a single page suitable for
589 * pages that do not use PagePrivate/PagePrivate2.
591 * Pages are locked upon entry and exit.
593 int migrate_page(struct address_space
*mapping
,
594 struct page
*newpage
, struct page
*page
,
595 enum migrate_mode mode
)
599 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
601 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
603 if (rc
!= MIGRATEPAGE_SUCCESS
)
606 migrate_page_copy(newpage
, page
);
607 return MIGRATEPAGE_SUCCESS
;
609 EXPORT_SYMBOL(migrate_page
);
613 * Migration function for pages with buffers. This function can only be used
614 * if the underlying filesystem guarantees that no other references to "page"
617 int buffer_migrate_page(struct address_space
*mapping
,
618 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
620 struct buffer_head
*bh
, *head
;
623 if (!page_has_buffers(page
))
624 return migrate_page(mapping
, newpage
, page
, mode
);
626 head
= page_buffers(page
);
628 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
630 if (rc
!= MIGRATEPAGE_SUCCESS
)
634 * In the async case, migrate_page_move_mapping locked the buffers
635 * with an IRQ-safe spinlock held. In the sync case, the buffers
636 * need to be locked now
638 if (mode
!= MIGRATE_ASYNC
)
639 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
641 ClearPagePrivate(page
);
642 set_page_private(newpage
, page_private(page
));
643 set_page_private(page
, 0);
649 set_bh_page(bh
, newpage
, bh_offset(bh
));
650 bh
= bh
->b_this_page
;
652 } while (bh
!= head
);
654 SetPagePrivate(newpage
);
656 migrate_page_copy(newpage
, page
);
662 bh
= bh
->b_this_page
;
664 } while (bh
!= head
);
666 return MIGRATEPAGE_SUCCESS
;
668 EXPORT_SYMBOL(buffer_migrate_page
);
672 * Writeback a page to clean the dirty state
674 static int writeout(struct address_space
*mapping
, struct page
*page
)
676 struct writeback_control wbc
= {
677 .sync_mode
= WB_SYNC_NONE
,
680 .range_end
= LLONG_MAX
,
685 if (!mapping
->a_ops
->writepage
)
686 /* No write method for the address space */
689 if (!clear_page_dirty_for_io(page
))
690 /* Someone else already triggered a write */
694 * A dirty page may imply that the underlying filesystem has
695 * the page on some queue. So the page must be clean for
696 * migration. Writeout may mean we loose the lock and the
697 * page state is no longer what we checked for earlier.
698 * At this point we know that the migration attempt cannot
701 remove_migration_ptes(page
, page
);
703 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
705 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
706 /* unlocked. Relock */
709 return (rc
< 0) ? -EIO
: -EAGAIN
;
713 * Default handling if a filesystem does not provide a migration function.
715 static int fallback_migrate_page(struct address_space
*mapping
,
716 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
718 if (PageDirty(page
)) {
719 /* Only writeback pages in full synchronous migration */
720 if (mode
!= MIGRATE_SYNC
)
722 return writeout(mapping
, page
);
726 * Buffers may be managed in a filesystem specific way.
727 * We must have no buffers or drop them.
729 if (page_has_private(page
) &&
730 !try_to_release_page(page
, GFP_KERNEL
))
733 return migrate_page(mapping
, newpage
, page
, mode
);
737 * Move a page to a newly allocated page
738 * The page is locked and all ptes have been successfully removed.
740 * The new page will have replaced the old page if this function
745 * MIGRATEPAGE_SUCCESS - success
747 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
748 int remap_swapcache
, enum migrate_mode mode
)
750 struct address_space
*mapping
;
754 * Block others from accessing the page when we get around to
755 * establishing additional references. We are the only one
756 * holding a reference to the new page at this point.
758 if (!trylock_page(newpage
))
761 /* Prepare mapping for the new page.*/
762 newpage
->index
= page
->index
;
763 newpage
->mapping
= page
->mapping
;
764 if (PageSwapBacked(page
))
765 SetPageSwapBacked(newpage
);
767 mapping
= page_mapping(page
);
769 rc
= migrate_page(mapping
, newpage
, page
, mode
);
770 else if (mapping
->a_ops
->migratepage
)
772 * Most pages have a mapping and most filesystems provide a
773 * migratepage callback. Anonymous pages are part of swap
774 * space which also has its own migratepage callback. This
775 * is the most common path for page migration.
777 rc
= mapping
->a_ops
->migratepage(mapping
,
778 newpage
, page
, mode
);
780 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
782 if (rc
!= MIGRATEPAGE_SUCCESS
) {
783 newpage
->mapping
= NULL
;
786 remove_migration_ptes(page
, newpage
);
787 page
->mapping
= NULL
;
790 unlock_page(newpage
);
795 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
796 int force
, enum migrate_mode mode
)
799 int remap_swapcache
= 1;
800 struct mem_cgroup
*mem
;
801 struct anon_vma
*anon_vma
= NULL
;
803 if (!trylock_page(page
)) {
804 if (!force
|| mode
== MIGRATE_ASYNC
)
808 * It's not safe for direct compaction to call lock_page.
809 * For example, during page readahead pages are added locked
810 * to the LRU. Later, when the IO completes the pages are
811 * marked uptodate and unlocked. However, the queueing
812 * could be merging multiple pages for one bio (e.g.
813 * mpage_readpages). If an allocation happens for the
814 * second or third page, the process can end up locking
815 * the same page twice and deadlocking. Rather than
816 * trying to be clever about what pages can be locked,
817 * avoid the use of lock_page for direct compaction
820 if (current
->flags
& PF_MEMALLOC
)
826 /* charge against new page */
827 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
829 if (PageWriteback(page
)) {
831 * Only in the case of a full synchronous migration is it
832 * necessary to wait for PageWriteback. In the async case,
833 * the retry loop is too short and in the sync-light case,
834 * the overhead of stalling is too much
836 if (mode
!= MIGRATE_SYNC
) {
842 wait_on_page_writeback(page
);
845 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
846 * we cannot notice that anon_vma is freed while we migrates a page.
847 * This get_anon_vma() delays freeing anon_vma pointer until the end
848 * of migration. File cache pages are no problem because of page_lock()
849 * File Caches may use write_page() or lock_page() in migration, then,
850 * just care Anon page here.
852 if (PageAnon(page
) && !PageKsm(page
)) {
854 * Only page_lock_anon_vma_read() understands the subtleties of
855 * getting a hold on an anon_vma from outside one of its mms.
857 anon_vma
= page_get_anon_vma(page
);
862 } else if (PageSwapCache(page
)) {
864 * We cannot be sure that the anon_vma of an unmapped
865 * swapcache page is safe to use because we don't
866 * know in advance if the VMA that this page belonged
867 * to still exists. If the VMA and others sharing the
868 * data have been freed, then the anon_vma could
869 * already be invalid.
871 * To avoid this possibility, swapcache pages get
872 * migrated but are not remapped when migration
881 if (unlikely(balloon_page_movable(page
))) {
883 * A ballooned page does not need any special attention from
884 * physical to virtual reverse mapping procedures.
885 * Skip any attempt to unmap PTEs or to remap swap cache,
886 * in order to avoid burning cycles at rmap level, and perform
887 * the page migration right away (proteced by page lock).
889 rc
= balloon_page_migrate(newpage
, page
, mode
);
894 * Corner case handling:
895 * 1. When a new swap-cache page is read into, it is added to the LRU
896 * and treated as swapcache but it has no rmap yet.
897 * Calling try_to_unmap() against a page->mapping==NULL page will
898 * trigger a BUG. So handle it here.
899 * 2. An orphaned page (see truncate_complete_page) might have
900 * fs-private metadata. The page can be picked up due to memory
901 * offlining. Everywhere else except page reclaim, the page is
902 * invisible to the vm, so the page can not be migrated. So try to
903 * free the metadata, so the page can be freed.
905 if (!page
->mapping
) {
906 VM_BUG_ON_PAGE(PageAnon(page
), page
);
907 if (page_has_private(page
)) {
908 try_to_free_buffers(page
);
914 /* Establish migration ptes or remove ptes */
915 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
918 if (!page_mapped(page
))
919 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
921 if (rc
&& remap_swapcache
)
922 remove_migration_ptes(page
, page
);
924 /* Drop an anon_vma reference if we took one */
926 put_anon_vma(anon_vma
);
929 mem_cgroup_end_migration(mem
, page
, newpage
,
930 (rc
== MIGRATEPAGE_SUCCESS
||
931 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
938 * Obtain the lock on page, remove all ptes and migrate the page
939 * to the newly allocated page in newpage.
941 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
942 struct page
*page
, int force
, enum migrate_mode mode
)
946 struct page
*newpage
= get_new_page(page
, private, &result
);
951 if (page_count(page
) == 1) {
952 /* page was freed from under us. So we are done. */
956 if (unlikely(PageTransHuge(page
)))
957 if (unlikely(split_huge_page(page
)))
960 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
962 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
964 * A ballooned page has been migrated already.
965 * Now, it's the time to wrap-up counters,
966 * handle the page back to Buddy and return.
968 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
969 page_is_file_cache(page
));
970 balloon_page_free(page
);
971 return MIGRATEPAGE_SUCCESS
;
976 * A page that has been migrated has all references
977 * removed and will be freed. A page that has not been
978 * migrated will have kepts its references and be
981 list_del(&page
->lru
);
982 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
983 page_is_file_cache(page
));
984 putback_lru_page(page
);
987 * Move the new page to the LRU. If migration was not successful
988 * then this will free the page.
990 putback_lru_page(newpage
);
995 *result
= page_to_nid(newpage
);
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1018 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1019 unsigned long private, struct page
*hpage
,
1020 int force
, enum migrate_mode mode
)
1024 struct page
*new_hpage
;
1025 struct anon_vma
*anon_vma
= NULL
;
1028 * Movability of hugepages depends on architectures and hugepage size.
1029 * This check is necessary because some callers of hugepage migration
1030 * like soft offline and memory hotremove don't walk through page
1031 * tables or check whether the hugepage is pmd-based or not before
1032 * kicking migration.
1034 if (!hugepage_migration_support(page_hstate(hpage
))) {
1035 putback_active_hugepage(hpage
);
1039 new_hpage
= get_new_page(hpage
, private, &result
);
1045 if (!trylock_page(hpage
)) {
1046 if (!force
|| mode
!= MIGRATE_SYNC
)
1051 if (PageAnon(hpage
))
1052 anon_vma
= page_get_anon_vma(hpage
);
1054 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1056 if (!page_mapped(hpage
))
1057 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
1060 remove_migration_ptes(hpage
, hpage
);
1063 put_anon_vma(anon_vma
);
1066 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1071 putback_active_hugepage(hpage
);
1072 put_page(new_hpage
);
1077 *result
= page_to_nid(new_hpage
);
1083 * migrate_pages - migrate the pages specified in a list, to the free pages
1084 * supplied as the target for the page migration
1086 * @from: The list of pages to be migrated.
1087 * @get_new_page: The function used to allocate free pages to be used
1088 * as the target of the page migration.
1089 * @private: Private data to be passed on to get_new_page()
1090 * @mode: The migration mode that specifies the constraints for
1091 * page migration, if any.
1092 * @reason: The reason for page migration.
1094 * The function returns after 10 attempts or if no pages are movable any more
1095 * because the list has become empty or no retryable pages exist any more.
1096 * The caller should call putback_lru_pages() to return pages to the LRU
1097 * or free list only if ret != 0.
1099 * Returns the number of pages that were not migrated, or an error code.
1101 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1102 unsigned long private, enum migrate_mode mode
, int reason
)
1106 int nr_succeeded
= 0;
1110 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1114 current
->flags
|= PF_SWAPWRITE
;
1116 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1119 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1123 rc
= unmap_and_move_huge_page(get_new_page
,
1124 private, page
, pass
> 2, mode
);
1126 rc
= unmap_and_move(get_new_page
, private,
1127 page
, pass
> 2, mode
);
1135 case MIGRATEPAGE_SUCCESS
:
1140 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1141 * unlike -EAGAIN case, the failed page is
1142 * removed from migration page list and not
1143 * retried in the next outer loop.
1150 rc
= nr_failed
+ retry
;
1153 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1155 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1156 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1159 current
->flags
&= ~PF_SWAPWRITE
;
1166 * Move a list of individual pages
1168 struct page_to_node
{
1175 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1178 struct page_to_node
*pm
= (struct page_to_node
*)private;
1180 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1183 if (pm
->node
== MAX_NUMNODES
)
1186 *result
= &pm
->status
;
1189 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1192 return alloc_pages_exact_node(pm
->node
,
1193 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1197 * Move a set of pages as indicated in the pm array. The addr
1198 * field must be set to the virtual address of the page to be moved
1199 * and the node number must contain a valid target node.
1200 * The pm array ends with node = MAX_NUMNODES.
1202 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1203 struct page_to_node
*pm
,
1207 struct page_to_node
*pp
;
1208 LIST_HEAD(pagelist
);
1210 down_read(&mm
->mmap_sem
);
1213 * Build a list of pages to migrate
1215 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1216 struct vm_area_struct
*vma
;
1220 vma
= find_vma(mm
, pp
->addr
);
1221 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1224 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1226 err
= PTR_ERR(page
);
1234 /* Use PageReserved to check for zero page */
1235 if (PageReserved(page
))
1239 err
= page_to_nid(page
);
1241 if (err
== pp
->node
)
1243 * Node already in the right place
1248 if (page_mapcount(page
) > 1 &&
1252 if (PageHuge(page
)) {
1253 isolate_huge_page(page
, &pagelist
);
1257 err
= isolate_lru_page(page
);
1259 list_add_tail(&page
->lru
, &pagelist
);
1260 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1261 page_is_file_cache(page
));
1265 * Either remove the duplicate refcount from
1266 * isolate_lru_page() or drop the page ref if it was
1275 if (!list_empty(&pagelist
)) {
1276 err
= migrate_pages(&pagelist
, new_page_node
,
1277 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1279 putback_movable_pages(&pagelist
);
1282 up_read(&mm
->mmap_sem
);
1287 * Migrate an array of page address onto an array of nodes and fill
1288 * the corresponding array of status.
1290 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1291 unsigned long nr_pages
,
1292 const void __user
* __user
*pages
,
1293 const int __user
*nodes
,
1294 int __user
*status
, int flags
)
1296 struct page_to_node
*pm
;
1297 unsigned long chunk_nr_pages
;
1298 unsigned long chunk_start
;
1302 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1309 * Store a chunk of page_to_node array in a page,
1310 * but keep the last one as a marker
1312 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1314 for (chunk_start
= 0;
1315 chunk_start
< nr_pages
;
1316 chunk_start
+= chunk_nr_pages
) {
1319 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1320 chunk_nr_pages
= nr_pages
- chunk_start
;
1322 /* fill the chunk pm with addrs and nodes from user-space */
1323 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1324 const void __user
*p
;
1328 if (get_user(p
, pages
+ j
+ chunk_start
))
1330 pm
[j
].addr
= (unsigned long) p
;
1332 if (get_user(node
, nodes
+ j
+ chunk_start
))
1336 if (node
< 0 || node
>= MAX_NUMNODES
)
1339 if (!node_state(node
, N_MEMORY
))
1343 if (!node_isset(node
, task_nodes
))
1349 /* End marker for this chunk */
1350 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1352 /* Migrate this chunk */
1353 err
= do_move_page_to_node_array(mm
, pm
,
1354 flags
& MPOL_MF_MOVE_ALL
);
1358 /* Return status information */
1359 for (j
= 0; j
< chunk_nr_pages
; j
++)
1360 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1368 free_page((unsigned long)pm
);
1374 * Determine the nodes of an array of pages and store it in an array of status.
1376 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1377 const void __user
**pages
, int *status
)
1381 down_read(&mm
->mmap_sem
);
1383 for (i
= 0; i
< nr_pages
; i
++) {
1384 unsigned long addr
= (unsigned long)(*pages
);
1385 struct vm_area_struct
*vma
;
1389 vma
= find_vma(mm
, addr
);
1390 if (!vma
|| addr
< vma
->vm_start
)
1393 page
= follow_page(vma
, addr
, 0);
1395 err
= PTR_ERR(page
);
1400 /* Use PageReserved to check for zero page */
1401 if (!page
|| PageReserved(page
))
1404 err
= page_to_nid(page
);
1412 up_read(&mm
->mmap_sem
);
1416 * Determine the nodes of a user array of pages and store it in
1417 * a user array of status.
1419 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1420 const void __user
* __user
*pages
,
1423 #define DO_PAGES_STAT_CHUNK_NR 16
1424 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1425 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1428 unsigned long chunk_nr
;
1430 chunk_nr
= nr_pages
;
1431 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1432 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1434 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1437 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1439 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1444 nr_pages
-= chunk_nr
;
1446 return nr_pages
? -EFAULT
: 0;
1450 * Move a list of pages in the address space of the currently executing
1453 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1454 const void __user
* __user
*, pages
,
1455 const int __user
*, nodes
,
1456 int __user
*, status
, int, flags
)
1458 const struct cred
*cred
= current_cred(), *tcred
;
1459 struct task_struct
*task
;
1460 struct mm_struct
*mm
;
1462 nodemask_t task_nodes
;
1465 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1468 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1471 /* Find the mm_struct */
1473 task
= pid
? find_task_by_vpid(pid
) : current
;
1478 get_task_struct(task
);
1481 * Check if this process has the right to modify the specified
1482 * process. The right exists if the process has administrative
1483 * capabilities, superuser privileges or the same
1484 * userid as the target process.
1486 tcred
= __task_cred(task
);
1487 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1488 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1489 !capable(CAP_SYS_NICE
)) {
1496 err
= security_task_movememory(task
);
1500 task_nodes
= cpuset_mems_allowed(task
);
1501 mm
= get_task_mm(task
);
1502 put_task_struct(task
);
1508 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1509 nodes
, status
, flags
);
1511 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1517 put_task_struct(task
);
1522 * Call migration functions in the vma_ops that may prepare
1523 * memory in a vm for migration. migration functions may perform
1524 * the migration for vmas that do not have an underlying page struct.
1526 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1527 const nodemask_t
*from
, unsigned long flags
)
1529 struct vm_area_struct
*vma
;
1532 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1533 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1534 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1542 #ifdef CONFIG_NUMA_BALANCING
1544 * Returns true if this is a safe migration target node for misplaced NUMA
1545 * pages. Currently it only checks the watermarks which crude
1547 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1548 unsigned long nr_migrate_pages
)
1551 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1552 struct zone
*zone
= pgdat
->node_zones
+ z
;
1554 if (!populated_zone(zone
))
1557 if (!zone_reclaimable(zone
))
1560 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1561 if (!zone_watermark_ok(zone
, 0,
1562 high_wmark_pages(zone
) +
1571 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1575 int nid
= (int) data
;
1576 struct page
*newpage
;
1578 newpage
= alloc_pages_exact_node(nid
,
1579 (GFP_HIGHUSER_MOVABLE
|
1580 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1581 __GFP_NORETRY
| __GFP_NOWARN
) &
1588 * page migration rate limiting control.
1589 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1590 * window of time. Default here says do not migrate more than 1280M per second.
1591 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1592 * as it is faults that reset the window, pte updates will happen unconditionally
1593 * if there has not been a fault since @pteupdate_interval_millisecs after the
1594 * throttle window closed.
1596 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1597 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1598 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1600 /* Returns true if NUMA migration is currently rate limited */
1601 bool migrate_ratelimited(int node
)
1603 pg_data_t
*pgdat
= NODE_DATA(node
);
1605 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1606 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1609 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1615 /* Returns true if the node is migrate rate-limited after the update */
1616 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1617 unsigned long nr_pages
)
1620 * Rate-limit the amount of data that is being migrated to a node.
1621 * Optimal placement is no good if the memory bus is saturated and
1622 * all the time is being spent migrating!
1624 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1625 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1626 pgdat
->numabalancing_migrate_nr_pages
= 0;
1627 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1628 msecs_to_jiffies(migrate_interval_millisecs
);
1629 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1631 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1632 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1638 * This is an unlocked non-atomic update so errors are possible.
1639 * The consequences are failing to migrate when we potentiall should
1640 * have which is not severe enough to warrant locking. If it is ever
1641 * a problem, it can be converted to a per-cpu counter.
1643 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1647 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1651 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1653 /* Avoid migrating to a node that is nearly full */
1654 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1657 if (isolate_lru_page(page
))
1661 * migrate_misplaced_transhuge_page() skips page migration's usual
1662 * check on page_count(), so we must do it here, now that the page
1663 * has been isolated: a GUP pin, or any other pin, prevents migration.
1664 * The expected page count is 3: 1 for page's mapcount and 1 for the
1665 * caller's pin and 1 for the reference taken by isolate_lru_page().
1667 if (PageTransHuge(page
) && page_count(page
) != 3) {
1668 putback_lru_page(page
);
1672 page_lru
= page_is_file_cache(page
);
1673 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1674 hpage_nr_pages(page
));
1677 * Isolating the page has taken another reference, so the
1678 * caller's reference can be safely dropped without the page
1679 * disappearing underneath us during migration.
1685 bool pmd_trans_migrating(pmd_t pmd
)
1687 struct page
*page
= pmd_page(pmd
);
1688 return PageLocked(page
);
1691 void wait_migrate_huge_page(struct anon_vma
*anon_vma
, pmd_t
*pmd
)
1693 struct page
*page
= pmd_page(*pmd
);
1694 wait_on_page_locked(page
);
1698 * Attempt to migrate a misplaced page to the specified destination
1699 * node. Caller is expected to have an elevated reference count on
1700 * the page that will be dropped by this function before returning.
1702 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1705 pg_data_t
*pgdat
= NODE_DATA(node
);
1708 LIST_HEAD(migratepages
);
1711 * Don't migrate file pages that are mapped in multiple processes
1712 * with execute permissions as they are probably shared libraries.
1714 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1715 (vma
->vm_flags
& VM_EXEC
))
1719 * Rate-limit the amount of data that is being migrated to a node.
1720 * Optimal placement is no good if the memory bus is saturated and
1721 * all the time is being spent migrating!
1723 if (numamigrate_update_ratelimit(pgdat
, 1))
1726 isolated
= numamigrate_isolate_page(pgdat
, page
);
1730 list_add(&page
->lru
, &migratepages
);
1731 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1732 node
, MIGRATE_ASYNC
, MR_NUMA_MISPLACED
);
1734 if (!list_empty(&migratepages
)) {
1735 list_del(&page
->lru
);
1736 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1737 page_is_file_cache(page
));
1738 putback_lru_page(page
);
1742 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1743 BUG_ON(!list_empty(&migratepages
));
1750 #endif /* CONFIG_NUMA_BALANCING */
1752 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1754 * Migrates a THP to a given target node. page must be locked and is unlocked
1757 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1758 struct vm_area_struct
*vma
,
1759 pmd_t
*pmd
, pmd_t entry
,
1760 unsigned long address
,
1761 struct page
*page
, int node
)
1764 pg_data_t
*pgdat
= NODE_DATA(node
);
1766 struct page
*new_page
= NULL
;
1767 struct mem_cgroup
*memcg
= NULL
;
1768 int page_lru
= page_is_file_cache(page
);
1769 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1770 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1774 * Rate-limit the amount of data that is being migrated to a node.
1775 * Optimal placement is no good if the memory bus is saturated and
1776 * all the time is being spent migrating!
1778 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1781 new_page
= alloc_pages_node(node
,
1782 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_WAIT
,
1787 isolated
= numamigrate_isolate_page(pgdat
, page
);
1793 if (mm_tlb_flush_pending(mm
))
1794 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1796 /* Prepare a page as a migration target */
1797 __set_page_locked(new_page
);
1798 SetPageSwapBacked(new_page
);
1800 /* anon mapping, we can simply copy page->mapping to the new page: */
1801 new_page
->mapping
= page
->mapping
;
1802 new_page
->index
= page
->index
;
1803 migrate_page_copy(new_page
, page
);
1804 WARN_ON(PageLRU(new_page
));
1806 /* Recheck the target PMD */
1807 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1808 ptl
= pmd_lock(mm
, pmd
);
1809 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1812 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1814 /* Reverse changes made by migrate_page_copy() */
1815 if (TestClearPageActive(new_page
))
1816 SetPageActive(page
);
1817 if (TestClearPageUnevictable(new_page
))
1818 SetPageUnevictable(page
);
1819 mlock_migrate_page(page
, new_page
);
1821 unlock_page(new_page
);
1822 put_page(new_page
); /* Free it */
1824 /* Retake the callers reference and putback on LRU */
1826 putback_lru_page(page
);
1827 mod_zone_page_state(page_zone(page
),
1828 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1834 * Traditional migration needs to prepare the memcg charge
1835 * transaction early to prevent the old page from being
1836 * uncharged when installing migration entries. Here we can
1837 * save the potential rollback and start the charge transfer
1838 * only when migration is already known to end successfully.
1840 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1843 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1844 entry
= pmd_mkhuge(entry
);
1845 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1848 * Clear the old entry under pagetable lock and establish the new PTE.
1849 * Any parallel GUP will either observe the old page blocking on the
1850 * page lock, block on the page table lock or observe the new page.
1851 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1852 * guarantee the copy is visible before the pagetable update.
1854 flush_cache_range(vma
, mmun_start
, mmun_end
);
1855 page_add_new_anon_rmap(new_page
, vma
, mmun_start
);
1856 pmdp_clear_flush(vma
, mmun_start
, pmd
);
1857 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1858 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1859 update_mmu_cache_pmd(vma
, address
, &entry
);
1861 if (page_count(page
) != 2) {
1862 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1863 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1864 update_mmu_cache_pmd(vma
, address
, &entry
);
1865 page_remove_rmap(new_page
);
1869 page_remove_rmap(page
);
1872 * Finish the charge transaction under the page table lock to
1873 * prevent split_huge_page() from dividing up the charge
1874 * before it's fully transferred to the new page.
1876 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1878 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1880 unlock_page(new_page
);
1882 put_page(page
); /* Drop the rmap reference */
1883 put_page(page
); /* Drop the LRU isolation reference */
1885 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1886 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1888 mod_zone_page_state(page_zone(page
),
1889 NR_ISOLATED_ANON
+ page_lru
,
1894 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1896 ptl
= pmd_lock(mm
, pmd
);
1897 if (pmd_same(*pmd
, entry
)) {
1898 entry
= pmd_mknonnuma(entry
);
1899 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1900 update_mmu_cache_pmd(vma
, address
, &entry
);
1909 #endif /* CONFIG_NUMA_BALANCING */
1911 #endif /* CONFIG_NUMA */