2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
139 #include <trace/events/sock.h>
142 #include <net/busy_poll.h>
144 static DEFINE_MUTEX(proto_list_mutex
);
145 static LIST_HEAD(proto_list
);
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
157 bool sk_ns_capable(const struct sock
*sk
,
158 struct user_namespace
*user_ns
, int cap
)
160 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
161 ns_capable(user_ns
, cap
);
163 EXPORT_SYMBOL(sk_ns_capable
);
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
174 bool sk_capable(const struct sock
*sk
, int cap
)
176 return sk_ns_capable(sk
, &init_user_ns
, cap
);
178 EXPORT_SYMBOL(sk_capable
);
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
189 bool sk_net_capable(const struct sock
*sk
, int cap
)
191 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
193 EXPORT_SYMBOL(sk_net_capable
);
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family:
199 static struct lock_class_key af_family_keys
[AF_MAX
];
200 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
203 * Make lock validator output more readable. (we pre-construct these
204 * strings build-time, so that runtime initialization of socket
207 static const char *const af_family_key_strings
[AF_MAX
+1] = {
208 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
209 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
210 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
211 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
212 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
213 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
214 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
215 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
216 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
217 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
218 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
219 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
220 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
221 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" ,
222 "sk_lock-AF_QIPCRTR", "sk_lock-AF_MAX"
224 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
225 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
226 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
227 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
228 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
229 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
230 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
231 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
232 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
233 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
234 "slock-27" , "slock-28" , "slock-AF_CAN" ,
235 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
236 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
237 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
238 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" ,
239 "slock-AF_QIPCRTR", "slock-AF_MAX"
241 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
242 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
243 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
244 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
245 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
246 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
247 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
248 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
249 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
250 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
251 "clock-27" , "clock-28" , "clock-AF_CAN" ,
252 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
253 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
254 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
255 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" ,
256 "clock-AF_QIPCRTR", "clock-AF_MAX"
260 * sk_callback_lock locking rules are per-address-family,
261 * so split the lock classes by using a per-AF key:
263 static struct lock_class_key af_callback_keys
[AF_MAX
];
265 /* Take into consideration the size of the struct sk_buff overhead in the
266 * determination of these values, since that is non-constant across
267 * platforms. This makes socket queueing behavior and performance
268 * not depend upon such differences.
270 #define _SK_MEM_PACKETS 256
271 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
272 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
273 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
275 /* Run time adjustable parameters. */
276 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
277 EXPORT_SYMBOL(sysctl_wmem_max
);
278 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
279 EXPORT_SYMBOL(sysctl_rmem_max
);
280 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
281 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
283 /* Maximal space eaten by iovec or ancillary data plus some space */
284 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
285 EXPORT_SYMBOL(sysctl_optmem_max
);
287 int sysctl_tstamp_allow_data __read_mostly
= 1;
289 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
290 EXPORT_SYMBOL_GPL(memalloc_socks
);
293 * sk_set_memalloc - sets %SOCK_MEMALLOC
294 * @sk: socket to set it on
296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
297 * It's the responsibility of the admin to adjust min_free_kbytes
298 * to meet the requirements
300 void sk_set_memalloc(struct sock
*sk
)
302 sock_set_flag(sk
, SOCK_MEMALLOC
);
303 sk
->sk_allocation
|= __GFP_MEMALLOC
;
304 static_key_slow_inc(&memalloc_socks
);
306 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
308 void sk_clear_memalloc(struct sock
*sk
)
310 sock_reset_flag(sk
, SOCK_MEMALLOC
);
311 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
312 static_key_slow_dec(&memalloc_socks
);
315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
316 * progress of swapping. SOCK_MEMALLOC may be cleared while
317 * it has rmem allocations due to the last swapfile being deactivated
318 * but there is a risk that the socket is unusable due to exceeding
319 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
325 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
328 unsigned long pflags
= current
->flags
;
330 /* these should have been dropped before queueing */
331 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
333 current
->flags
|= PF_MEMALLOC
;
334 ret
= sk
->sk_backlog_rcv(sk
, skb
);
335 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
339 EXPORT_SYMBOL(__sk_backlog_rcv
);
341 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
345 if (optlen
< sizeof(tv
))
347 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
349 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
353 static int warned __read_mostly
;
356 if (warned
< 10 && net_ratelimit()) {
358 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
359 __func__
, current
->comm
, task_pid_nr(current
));
363 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
364 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
366 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
367 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
371 static void sock_warn_obsolete_bsdism(const char *name
)
374 static char warncomm
[TASK_COMM_LEN
];
375 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
376 strcpy(warncomm
, current
->comm
);
377 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
383 static bool sock_needs_netstamp(const struct sock
*sk
)
385 switch (sk
->sk_family
) {
394 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
396 if (sk
->sk_flags
& flags
) {
397 sk
->sk_flags
&= ~flags
;
398 if (sock_needs_netstamp(sk
) &&
399 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
400 net_disable_timestamp();
405 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
408 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
410 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
411 atomic_inc(&sk
->sk_drops
);
412 trace_sock_rcvqueue_full(sk
, skb
);
416 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
417 atomic_inc(&sk
->sk_drops
);
422 skb_set_owner_r(skb
, sk
);
424 /* we escape from rcu protected region, make sure we dont leak
429 spin_lock_irqsave(&list
->lock
, flags
);
430 sock_skb_set_dropcount(sk
, skb
);
431 __skb_queue_tail(list
, skb
);
432 spin_unlock_irqrestore(&list
->lock
, flags
);
434 if (!sock_flag(sk
, SOCK_DEAD
))
435 sk
->sk_data_ready(sk
);
438 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
440 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
444 err
= sk_filter(sk
, skb
);
448 return __sock_queue_rcv_skb(sk
, skb
);
450 EXPORT_SYMBOL(sock_queue_rcv_skb
);
452 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
453 const int nested
, unsigned int trim_cap
, bool refcounted
)
455 int rc
= NET_RX_SUCCESS
;
457 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
458 goto discard_and_relse
;
462 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
463 atomic_inc(&sk
->sk_drops
);
464 goto discard_and_relse
;
467 bh_lock_sock_nested(sk
);
470 if (!sock_owned_by_user(sk
)) {
472 * trylock + unlock semantics:
474 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
476 rc
= sk_backlog_rcv(sk
, skb
);
478 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
479 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
481 atomic_inc(&sk
->sk_drops
);
482 goto discard_and_relse
;
494 EXPORT_SYMBOL(__sk_receive_skb
);
496 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
498 struct dst_entry
*dst
= __sk_dst_get(sk
);
500 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
501 sk_tx_queue_clear(sk
);
502 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
509 EXPORT_SYMBOL(__sk_dst_check
);
511 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
513 struct dst_entry
*dst
= sk_dst_get(sk
);
515 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
523 EXPORT_SYMBOL(sk_dst_check
);
525 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
528 int ret
= -ENOPROTOOPT
;
529 #ifdef CONFIG_NETDEVICES
530 struct net
*net
= sock_net(sk
);
531 char devname
[IFNAMSIZ
];
536 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
543 /* Bind this socket to a particular device like "eth0",
544 * as specified in the passed interface name. If the
545 * name is "" or the option length is zero the socket
548 if (optlen
> IFNAMSIZ
- 1)
549 optlen
= IFNAMSIZ
- 1;
550 memset(devname
, 0, sizeof(devname
));
553 if (copy_from_user(devname
, optval
, optlen
))
557 if (devname
[0] != '\0') {
558 struct net_device
*dev
;
561 dev
= dev_get_by_name_rcu(net
, devname
);
563 index
= dev
->ifindex
;
571 sk
->sk_bound_dev_if
= index
;
583 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
584 int __user
*optlen
, int len
)
586 int ret
= -ENOPROTOOPT
;
587 #ifdef CONFIG_NETDEVICES
588 struct net
*net
= sock_net(sk
);
589 char devname
[IFNAMSIZ
];
591 if (sk
->sk_bound_dev_if
== 0) {
600 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
604 len
= strlen(devname
) + 1;
607 if (copy_to_user(optval
, devname
, len
))
612 if (put_user(len
, optlen
))
623 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
626 sock_set_flag(sk
, bit
);
628 sock_reset_flag(sk
, bit
);
631 bool sk_mc_loop(struct sock
*sk
)
633 if (dev_recursion_level())
637 switch (sk
->sk_family
) {
639 return inet_sk(sk
)->mc_loop
;
640 #if IS_ENABLED(CONFIG_IPV6)
642 return inet6_sk(sk
)->mc_loop
;
648 EXPORT_SYMBOL(sk_mc_loop
);
651 * This is meant for all protocols to use and covers goings on
652 * at the socket level. Everything here is generic.
655 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
656 char __user
*optval
, unsigned int optlen
)
658 struct sock
*sk
= sock
->sk
;
665 * Options without arguments
668 if (optname
== SO_BINDTODEVICE
)
669 return sock_setbindtodevice(sk
, optval
, optlen
);
671 if (optlen
< sizeof(int))
674 if (get_user(val
, (int __user
*)optval
))
677 valbool
= val
? 1 : 0;
683 if (val
&& !capable(CAP_NET_ADMIN
))
686 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
689 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
692 sk
->sk_reuseport
= valbool
;
701 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
705 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
708 /* Don't error on this BSD doesn't and if you think
709 * about it this is right. Otherwise apps have to
710 * play 'guess the biggest size' games. RCVBUF/SNDBUF
711 * are treated in BSD as hints
713 val
= min_t(u32
, val
, sysctl_wmem_max
);
715 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
716 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
717 /* Wake up sending tasks if we upped the value. */
718 sk
->sk_write_space(sk
);
722 if (!capable(CAP_NET_ADMIN
)) {
729 /* Don't error on this BSD doesn't and if you think
730 * about it this is right. Otherwise apps have to
731 * play 'guess the biggest size' games. RCVBUF/SNDBUF
732 * are treated in BSD as hints
734 val
= min_t(u32
, val
, sysctl_rmem_max
);
736 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
738 * We double it on the way in to account for
739 * "struct sk_buff" etc. overhead. Applications
740 * assume that the SO_RCVBUF setting they make will
741 * allow that much actual data to be received on that
744 * Applications are unaware that "struct sk_buff" and
745 * other overheads allocate from the receive buffer
746 * during socket buffer allocation.
748 * And after considering the possible alternatives,
749 * returning the value we actually used in getsockopt
750 * is the most desirable behavior.
752 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
756 if (!capable(CAP_NET_ADMIN
)) {
764 if (sk
->sk_protocol
== IPPROTO_TCP
&&
765 sk
->sk_type
== SOCK_STREAM
)
766 tcp_set_keepalive(sk
, valbool
);
768 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
772 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
776 sk
->sk_no_check_tx
= valbool
;
780 if ((val
>= 0 && val
<= 6) ||
781 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
782 sk
->sk_priority
= val
;
788 if (optlen
< sizeof(ling
)) {
789 ret
= -EINVAL
; /* 1003.1g */
792 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
797 sock_reset_flag(sk
, SOCK_LINGER
);
799 #if (BITS_PER_LONG == 32)
800 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
801 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
804 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
805 sock_set_flag(sk
, SOCK_LINGER
);
810 sock_warn_obsolete_bsdism("setsockopt");
815 set_bit(SOCK_PASSCRED
, &sock
->flags
);
817 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
823 if (optname
== SO_TIMESTAMP
)
824 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
826 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
827 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
828 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
830 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
831 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
835 case SO_TIMESTAMPING
:
836 if (val
& ~SOF_TIMESTAMPING_MASK
) {
841 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
842 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
843 if (sk
->sk_protocol
== IPPROTO_TCP
&&
844 sk
->sk_type
== SOCK_STREAM
) {
845 if ((1 << sk
->sk_state
) &
846 (TCPF_CLOSE
| TCPF_LISTEN
)) {
850 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
855 sk
->sk_tsflags
= val
;
856 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
857 sock_enable_timestamp(sk
,
858 SOCK_TIMESTAMPING_RX_SOFTWARE
);
860 sock_disable_timestamp(sk
,
861 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
867 sk
->sk_rcvlowat
= val
? : 1;
871 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
875 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
878 case SO_ATTACH_FILTER
:
880 if (optlen
== sizeof(struct sock_fprog
)) {
881 struct sock_fprog fprog
;
884 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
887 ret
= sk_attach_filter(&fprog
, sk
);
893 if (optlen
== sizeof(u32
)) {
897 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
900 ret
= sk_attach_bpf(ufd
, sk
);
904 case SO_ATTACH_REUSEPORT_CBPF
:
906 if (optlen
== sizeof(struct sock_fprog
)) {
907 struct sock_fprog fprog
;
910 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
913 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
917 case SO_ATTACH_REUSEPORT_EBPF
:
919 if (optlen
== sizeof(u32
)) {
923 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
926 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
930 case SO_DETACH_FILTER
:
931 ret
= sk_detach_filter(sk
);
935 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
938 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
943 set_bit(SOCK_PASSSEC
, &sock
->flags
);
945 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
948 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
955 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
959 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
963 if (sock
->ops
->set_peek_off
)
964 ret
= sock
->ops
->set_peek_off(sk
, val
);
970 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
973 case SO_SELECT_ERR_QUEUE
:
974 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
977 #ifdef CONFIG_NET_RX_BUSY_POLL
979 /* allow unprivileged users to decrease the value */
980 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
986 sk
->sk_ll_usec
= val
;
991 case SO_MAX_PACING_RATE
:
992 sk
->sk_max_pacing_rate
= val
;
993 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
994 sk
->sk_max_pacing_rate
);
997 case SO_INCOMING_CPU
:
998 sk
->sk_incoming_cpu
= val
;
1003 dst_negative_advice(sk
);
1012 EXPORT_SYMBOL(sock_setsockopt
);
1015 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1016 struct ucred
*ucred
)
1018 ucred
->pid
= pid_vnr(pid
);
1019 ucred
->uid
= ucred
->gid
= -1;
1021 struct user_namespace
*current_ns
= current_user_ns();
1023 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1024 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1028 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1029 char __user
*optval
, int __user
*optlen
)
1031 struct sock
*sk
= sock
->sk
;
1039 int lv
= sizeof(int);
1042 if (get_user(len
, optlen
))
1047 memset(&v
, 0, sizeof(v
));
1051 v
.val
= sock_flag(sk
, SOCK_DBG
);
1055 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1059 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1063 v
.val
= sk
->sk_sndbuf
;
1067 v
.val
= sk
->sk_rcvbuf
;
1071 v
.val
= sk
->sk_reuse
;
1075 v
.val
= sk
->sk_reuseport
;
1079 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1083 v
.val
= sk
->sk_type
;
1087 v
.val
= sk
->sk_protocol
;
1091 v
.val
= sk
->sk_family
;
1095 v
.val
= -sock_error(sk
);
1097 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1101 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1105 v
.val
= sk
->sk_no_check_tx
;
1109 v
.val
= sk
->sk_priority
;
1113 lv
= sizeof(v
.ling
);
1114 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1115 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1119 sock_warn_obsolete_bsdism("getsockopt");
1123 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1124 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1127 case SO_TIMESTAMPNS
:
1128 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1131 case SO_TIMESTAMPING
:
1132 v
.val
= sk
->sk_tsflags
;
1136 lv
= sizeof(struct timeval
);
1137 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1141 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1142 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
1147 lv
= sizeof(struct timeval
);
1148 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1152 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1153 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
1158 v
.val
= sk
->sk_rcvlowat
;
1166 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1171 struct ucred peercred
;
1172 if (len
> sizeof(peercred
))
1173 len
= sizeof(peercred
);
1174 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1175 if (copy_to_user(optval
, &peercred
, len
))
1184 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1188 if (copy_to_user(optval
, address
, len
))
1193 /* Dubious BSD thing... Probably nobody even uses it, but
1194 * the UNIX standard wants it for whatever reason... -DaveM
1197 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1201 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1205 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1208 v
.val
= sk
->sk_mark
;
1212 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1215 case SO_WIFI_STATUS
:
1216 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1220 if (!sock
->ops
->set_peek_off
)
1223 v
.val
= sk
->sk_peek_off
;
1226 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1229 case SO_BINDTODEVICE
:
1230 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1233 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1239 case SO_LOCK_FILTER
:
1240 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1243 case SO_BPF_EXTENSIONS
:
1244 v
.val
= bpf_tell_extensions();
1247 case SO_SELECT_ERR_QUEUE
:
1248 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1251 #ifdef CONFIG_NET_RX_BUSY_POLL
1253 v
.val
= sk
->sk_ll_usec
;
1257 case SO_MAX_PACING_RATE
:
1258 v
.val
= sk
->sk_max_pacing_rate
;
1261 case SO_INCOMING_CPU
:
1262 v
.val
= sk
->sk_incoming_cpu
;
1266 /* We implement the SO_SNDLOWAT etc to not be settable
1269 return -ENOPROTOOPT
;
1274 if (copy_to_user(optval
, &v
, len
))
1277 if (put_user(len
, optlen
))
1283 * Initialize an sk_lock.
1285 * (We also register the sk_lock with the lock validator.)
1287 static inline void sock_lock_init(struct sock
*sk
)
1289 sock_lock_init_class_and_name(sk
,
1290 af_family_slock_key_strings
[sk
->sk_family
],
1291 af_family_slock_keys
+ sk
->sk_family
,
1292 af_family_key_strings
[sk
->sk_family
],
1293 af_family_keys
+ sk
->sk_family
);
1297 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1298 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1299 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1301 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1303 #ifdef CONFIG_SECURITY_NETWORK
1304 void *sptr
= nsk
->sk_security
;
1306 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1308 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1309 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1311 #ifdef CONFIG_SECURITY_NETWORK
1312 nsk
->sk_security
= sptr
;
1313 security_sk_clone(osk
, nsk
);
1317 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1321 struct kmem_cache
*slab
;
1325 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1328 if (priority
& __GFP_ZERO
)
1329 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1331 sk
= kmalloc(prot
->obj_size
, priority
);
1334 kmemcheck_annotate_bitfield(sk
, flags
);
1336 if (security_sk_alloc(sk
, family
, priority
))
1339 if (!try_module_get(prot
->owner
))
1341 sk_tx_queue_clear(sk
);
1347 security_sk_free(sk
);
1350 kmem_cache_free(slab
, sk
);
1356 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1358 struct kmem_cache
*slab
;
1359 struct module
*owner
;
1361 owner
= prot
->owner
;
1364 cgroup_sk_free(&sk
->sk_cgrp_data
);
1365 mem_cgroup_sk_free(sk
);
1366 security_sk_free(sk
);
1368 kmem_cache_free(slab
, sk
);
1375 * sk_alloc - All socket objects are allocated here
1376 * @net: the applicable net namespace
1377 * @family: protocol family
1378 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1379 * @prot: struct proto associated with this new sock instance
1380 * @kern: is this to be a kernel socket?
1382 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1383 struct proto
*prot
, int kern
)
1387 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1389 sk
->sk_family
= family
;
1391 * See comment in struct sock definition to understand
1392 * why we need sk_prot_creator -acme
1394 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1396 sk
->sk_net_refcnt
= kern
? 0 : 1;
1397 if (likely(sk
->sk_net_refcnt
))
1399 sock_net_set(sk
, net
);
1400 atomic_set(&sk
->sk_wmem_alloc
, 1);
1402 mem_cgroup_sk_alloc(sk
);
1403 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1404 sock_update_classid(&sk
->sk_cgrp_data
);
1405 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1406 sk_tx_queue_clear(sk
);
1411 EXPORT_SYMBOL(sk_alloc
);
1413 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1414 * grace period. This is the case for UDP sockets and TCP listeners.
1416 static void __sk_destruct(struct rcu_head
*head
)
1418 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1419 struct sk_filter
*filter
;
1421 if (sk
->sk_destruct
)
1422 sk
->sk_destruct(sk
);
1424 filter
= rcu_dereference_check(sk
->sk_filter
,
1425 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1427 sk_filter_uncharge(sk
, filter
);
1428 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1431 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1433 if (atomic_read(&sk
->sk_omem_alloc
))
1434 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1435 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1437 if (sk
->sk_frag
.page
) {
1438 put_page(sk
->sk_frag
.page
);
1439 sk
->sk_frag
.page
= NULL
;
1442 if (sk
->sk_peer_cred
)
1443 put_cred(sk
->sk_peer_cred
);
1444 put_pid(sk
->sk_peer_pid
);
1445 if (likely(sk
->sk_net_refcnt
))
1446 put_net(sock_net(sk
));
1447 sk_prot_free(sk
->sk_prot_creator
, sk
);
1450 void sk_destruct(struct sock
*sk
)
1452 bool use_call_rcu
= sock_flag(sk
, SOCK_RCU_FREE
);
1454 if (rcu_access_pointer(sk
->sk_reuseport_cb
)) {
1455 reuseport_detach_sock(sk
);
1456 use_call_rcu
= true;
1460 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1462 __sk_destruct(&sk
->sk_rcu
);
1465 static void __sk_free(struct sock
*sk
)
1467 if (unlikely(sk
->sk_net_refcnt
&& sock_diag_has_destroy_listeners(sk
)))
1468 sock_diag_broadcast_destroy(sk
);
1473 void sk_free(struct sock
*sk
)
1476 * We subtract one from sk_wmem_alloc and can know if
1477 * some packets are still in some tx queue.
1478 * If not null, sock_wfree() will call __sk_free(sk) later
1480 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1483 EXPORT_SYMBOL(sk_free
);
1486 * sk_clone_lock - clone a socket, and lock its clone
1487 * @sk: the socket to clone
1488 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1490 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1492 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1495 bool is_charged
= true;
1497 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1498 if (newsk
!= NULL
) {
1499 struct sk_filter
*filter
;
1501 sock_copy(newsk
, sk
);
1503 newsk
->sk_prot_creator
= sk
->sk_prot
;
1506 if (likely(newsk
->sk_net_refcnt
))
1507 get_net(sock_net(newsk
));
1508 sk_node_init(&newsk
->sk_node
);
1509 sock_lock_init(newsk
);
1510 bh_lock_sock(newsk
);
1511 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1512 newsk
->sk_backlog
.len
= 0;
1514 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1516 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1518 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1519 atomic_set(&newsk
->sk_omem_alloc
, 0);
1520 skb_queue_head_init(&newsk
->sk_receive_queue
);
1521 skb_queue_head_init(&newsk
->sk_write_queue
);
1523 rwlock_init(&newsk
->sk_callback_lock
);
1524 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1525 af_callback_keys
+ newsk
->sk_family
,
1526 af_family_clock_key_strings
[newsk
->sk_family
]);
1528 newsk
->sk_dst_cache
= NULL
;
1529 newsk
->sk_wmem_queued
= 0;
1530 newsk
->sk_forward_alloc
= 0;
1531 atomic_set(&newsk
->sk_drops
, 0);
1532 newsk
->sk_send_head
= NULL
;
1533 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1535 sock_reset_flag(newsk
, SOCK_DONE
);
1536 cgroup_sk_clone(&newsk
->sk_cgrp_data
);
1537 skb_queue_head_init(&newsk
->sk_error_queue
);
1539 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1541 /* though it's an empty new sock, the charging may fail
1542 * if sysctl_optmem_max was changed between creation of
1543 * original socket and cloning
1545 is_charged
= sk_filter_charge(newsk
, filter
);
1547 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1548 /* We need to make sure that we don't uncharge the new
1549 * socket if we couldn't charge it in the first place
1550 * as otherwise we uncharge the parent's filter.
1553 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1554 /* It is still raw copy of parent, so invalidate
1555 * destructor and make plain sk_free() */
1556 newsk
->sk_destruct
= NULL
;
1557 bh_unlock_sock(newsk
);
1562 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1565 newsk
->sk_err_soft
= 0;
1566 newsk
->sk_priority
= 0;
1567 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1568 atomic64_set(&newsk
->sk_cookie
, 0);
1570 mem_cgroup_sk_alloc(newsk
);
1572 * Before updating sk_refcnt, we must commit prior changes to memory
1573 * (Documentation/RCU/rculist_nulls.txt for details)
1576 atomic_set(&newsk
->sk_refcnt
, 2);
1579 * Increment the counter in the same struct proto as the master
1580 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1581 * is the same as sk->sk_prot->socks, as this field was copied
1584 * This _changes_ the previous behaviour, where
1585 * tcp_create_openreq_child always was incrementing the
1586 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1587 * to be taken into account in all callers. -acme
1589 sk_refcnt_debug_inc(newsk
);
1590 sk_set_socket(newsk
, NULL
);
1591 sk_tx_queue_clear(newsk
);
1592 newsk
->sk_wq
= NULL
;
1594 if (newsk
->sk_prot
->sockets_allocated
)
1595 sk_sockets_allocated_inc(newsk
);
1597 if (sock_needs_netstamp(sk
) &&
1598 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1599 net_enable_timestamp();
1604 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1606 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1610 sk_dst_set(sk
, dst
);
1611 sk
->sk_route_caps
= dst
->dev
->features
;
1612 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1613 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1614 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1615 if (sk_can_gso(sk
)) {
1616 if (dst
->header_len
) {
1617 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1619 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1620 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1621 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1624 sk
->sk_gso_max_segs
= max_segs
;
1626 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1629 * Simple resource managers for sockets.
1634 * Write buffer destructor automatically called from kfree_skb.
1636 void sock_wfree(struct sk_buff
*skb
)
1638 struct sock
*sk
= skb
->sk
;
1639 unsigned int len
= skb
->truesize
;
1641 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1643 * Keep a reference on sk_wmem_alloc, this will be released
1644 * after sk_write_space() call
1646 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1647 sk
->sk_write_space(sk
);
1651 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1652 * could not do because of in-flight packets
1654 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1657 EXPORT_SYMBOL(sock_wfree
);
1659 /* This variant of sock_wfree() is used by TCP,
1660 * since it sets SOCK_USE_WRITE_QUEUE.
1662 void __sock_wfree(struct sk_buff
*skb
)
1664 struct sock
*sk
= skb
->sk
;
1666 if (atomic_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1670 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1675 if (unlikely(!sk_fullsock(sk
))) {
1676 skb
->destructor
= sock_edemux
;
1681 skb
->destructor
= sock_wfree
;
1682 skb_set_hash_from_sk(skb
, sk
);
1684 * We used to take a refcount on sk, but following operation
1685 * is enough to guarantee sk_free() wont free this sock until
1686 * all in-flight packets are completed
1688 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1690 EXPORT_SYMBOL(skb_set_owner_w
);
1692 /* This helper is used by netem, as it can hold packets in its
1693 * delay queue. We want to allow the owner socket to send more
1694 * packets, as if they were already TX completed by a typical driver.
1695 * But we also want to keep skb->sk set because some packet schedulers
1696 * rely on it (sch_fq for example).
1698 void skb_orphan_partial(struct sk_buff
*skb
)
1700 if (skb_is_tcp_pure_ack(skb
))
1703 if (skb
->destructor
== sock_wfree
1705 || skb
->destructor
== tcp_wfree
1708 struct sock
*sk
= skb
->sk
;
1710 if (atomic_inc_not_zero(&sk
->sk_refcnt
)) {
1711 atomic_sub(skb
->truesize
, &sk
->sk_wmem_alloc
);
1712 skb
->destructor
= sock_efree
;
1718 EXPORT_SYMBOL(skb_orphan_partial
);
1721 * Read buffer destructor automatically called from kfree_skb.
1723 void sock_rfree(struct sk_buff
*skb
)
1725 struct sock
*sk
= skb
->sk
;
1726 unsigned int len
= skb
->truesize
;
1728 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1729 sk_mem_uncharge(sk
, len
);
1731 EXPORT_SYMBOL(sock_rfree
);
1734 * Buffer destructor for skbs that are not used directly in read or write
1735 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1737 void sock_efree(struct sk_buff
*skb
)
1741 EXPORT_SYMBOL(sock_efree
);
1743 kuid_t
sock_i_uid(struct sock
*sk
)
1747 read_lock_bh(&sk
->sk_callback_lock
);
1748 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1749 read_unlock_bh(&sk
->sk_callback_lock
);
1752 EXPORT_SYMBOL(sock_i_uid
);
1754 unsigned long sock_i_ino(struct sock
*sk
)
1758 read_lock_bh(&sk
->sk_callback_lock
);
1759 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1760 read_unlock_bh(&sk
->sk_callback_lock
);
1763 EXPORT_SYMBOL(sock_i_ino
);
1766 * Allocate a skb from the socket's send buffer.
1768 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1771 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1772 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1774 skb_set_owner_w(skb
, sk
);
1780 EXPORT_SYMBOL(sock_wmalloc
);
1783 * Allocate a memory block from the socket's option memory buffer.
1785 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1787 if ((unsigned int)size
<= sysctl_optmem_max
&&
1788 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1790 /* First do the add, to avoid the race if kmalloc
1793 atomic_add(size
, &sk
->sk_omem_alloc
);
1794 mem
= kmalloc(size
, priority
);
1797 atomic_sub(size
, &sk
->sk_omem_alloc
);
1801 EXPORT_SYMBOL(sock_kmalloc
);
1803 /* Free an option memory block. Note, we actually want the inline
1804 * here as this allows gcc to detect the nullify and fold away the
1805 * condition entirely.
1807 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
1810 if (WARN_ON_ONCE(!mem
))
1816 atomic_sub(size
, &sk
->sk_omem_alloc
);
1819 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1821 __sock_kfree_s(sk
, mem
, size
, false);
1823 EXPORT_SYMBOL(sock_kfree_s
);
1825 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
1827 __sock_kfree_s(sk
, mem
, size
, true);
1829 EXPORT_SYMBOL(sock_kzfree_s
);
1831 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1832 I think, these locks should be removed for datagram sockets.
1834 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1838 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1842 if (signal_pending(current
))
1844 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1845 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1846 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1848 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1852 timeo
= schedule_timeout(timeo
);
1854 finish_wait(sk_sleep(sk
), &wait
);
1860 * Generic send/receive buffer handlers
1863 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1864 unsigned long data_len
, int noblock
,
1865 int *errcode
, int max_page_order
)
1867 struct sk_buff
*skb
;
1871 timeo
= sock_sndtimeo(sk
, noblock
);
1873 err
= sock_error(sk
);
1878 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1881 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
1884 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1885 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1889 if (signal_pending(current
))
1891 timeo
= sock_wait_for_wmem(sk
, timeo
);
1893 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
1894 errcode
, sk
->sk_allocation
);
1896 skb_set_owner_w(skb
, sk
);
1900 err
= sock_intr_errno(timeo
);
1905 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1907 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1908 int noblock
, int *errcode
)
1910 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
1912 EXPORT_SYMBOL(sock_alloc_send_skb
);
1914 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
1915 struct sockcm_cookie
*sockc
)
1919 switch (cmsg
->cmsg_type
) {
1921 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
1923 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
1925 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
1927 case SO_TIMESTAMPING
:
1928 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
1931 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
1932 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
1935 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
1936 sockc
->tsflags
|= tsflags
;
1938 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1940 case SCM_CREDENTIALS
:
1947 EXPORT_SYMBOL(__sock_cmsg_send
);
1949 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
1950 struct sockcm_cookie
*sockc
)
1952 struct cmsghdr
*cmsg
;
1955 for_each_cmsghdr(cmsg
, msg
) {
1956 if (!CMSG_OK(msg
, cmsg
))
1958 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
1960 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
1966 EXPORT_SYMBOL(sock_cmsg_send
);
1968 /* On 32bit arches, an skb frag is limited to 2^15 */
1969 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1972 * skb_page_frag_refill - check that a page_frag contains enough room
1973 * @sz: minimum size of the fragment we want to get
1974 * @pfrag: pointer to page_frag
1975 * @gfp: priority for memory allocation
1977 * Note: While this allocator tries to use high order pages, there is
1978 * no guarantee that allocations succeed. Therefore, @sz MUST be
1979 * less or equal than PAGE_SIZE.
1981 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
1984 if (page_ref_count(pfrag
->page
) == 1) {
1988 if (pfrag
->offset
+ sz
<= pfrag
->size
)
1990 put_page(pfrag
->page
);
1994 if (SKB_FRAG_PAGE_ORDER
) {
1995 /* Avoid direct reclaim but allow kswapd to wake */
1996 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
1997 __GFP_COMP
| __GFP_NOWARN
|
1999 SKB_FRAG_PAGE_ORDER
);
2000 if (likely(pfrag
->page
)) {
2001 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
2005 pfrag
->page
= alloc_page(gfp
);
2006 if (likely(pfrag
->page
)) {
2007 pfrag
->size
= PAGE_SIZE
;
2012 EXPORT_SYMBOL(skb_page_frag_refill
);
2014 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2016 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2019 sk_enter_memory_pressure(sk
);
2020 sk_stream_moderate_sndbuf(sk
);
2023 EXPORT_SYMBOL(sk_page_frag_refill
);
2025 static void __lock_sock(struct sock
*sk
)
2026 __releases(&sk
->sk_lock
.slock
)
2027 __acquires(&sk
->sk_lock
.slock
)
2032 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2033 TASK_UNINTERRUPTIBLE
);
2034 spin_unlock_bh(&sk
->sk_lock
.slock
);
2036 spin_lock_bh(&sk
->sk_lock
.slock
);
2037 if (!sock_owned_by_user(sk
))
2040 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2043 static void __release_sock(struct sock
*sk
)
2044 __releases(&sk
->sk_lock
.slock
)
2045 __acquires(&sk
->sk_lock
.slock
)
2047 struct sk_buff
*skb
, *next
;
2049 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2050 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2052 spin_unlock_bh(&sk
->sk_lock
.slock
);
2057 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2059 sk_backlog_rcv(sk
, skb
);
2064 } while (skb
!= NULL
);
2066 spin_lock_bh(&sk
->sk_lock
.slock
);
2070 * Doing the zeroing here guarantee we can not loop forever
2071 * while a wild producer attempts to flood us.
2073 sk
->sk_backlog
.len
= 0;
2076 void __sk_flush_backlog(struct sock
*sk
)
2078 spin_lock_bh(&sk
->sk_lock
.slock
);
2080 spin_unlock_bh(&sk
->sk_lock
.slock
);
2084 * sk_wait_data - wait for data to arrive at sk_receive_queue
2085 * @sk: sock to wait on
2086 * @timeo: for how long
2087 * @skb: last skb seen on sk_receive_queue
2089 * Now socket state including sk->sk_err is changed only under lock,
2090 * hence we may omit checks after joining wait queue.
2091 * We check receive queue before schedule() only as optimization;
2092 * it is very likely that release_sock() added new data.
2094 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2099 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2100 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2101 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
);
2102 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2103 finish_wait(sk_sleep(sk
), &wait
);
2106 EXPORT_SYMBOL(sk_wait_data
);
2109 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2111 * @size: memory size to allocate
2112 * @kind: allocation type
2114 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2115 * rmem allocation. This function assumes that protocols which have
2116 * memory_pressure use sk_wmem_queued as write buffer accounting.
2118 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2120 struct proto
*prot
= sk
->sk_prot
;
2121 int amt
= sk_mem_pages(size
);
2124 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2126 allocated
= sk_memory_allocated_add(sk
, amt
);
2128 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2129 !mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
))
2130 goto suppress_allocation
;
2133 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2134 sk_leave_memory_pressure(sk
);
2138 /* Under pressure. */
2139 if (allocated
> sk_prot_mem_limits(sk
, 1))
2140 sk_enter_memory_pressure(sk
);
2142 /* Over hard limit. */
2143 if (allocated
> sk_prot_mem_limits(sk
, 2))
2144 goto suppress_allocation
;
2146 /* guarantee minimum buffer size under pressure */
2147 if (kind
== SK_MEM_RECV
) {
2148 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
2151 } else { /* SK_MEM_SEND */
2152 if (sk
->sk_type
== SOCK_STREAM
) {
2153 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
2155 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
2156 prot
->sysctl_wmem
[0])
2160 if (sk_has_memory_pressure(sk
)) {
2163 if (!sk_under_memory_pressure(sk
))
2165 alloc
= sk_sockets_allocated_read_positive(sk
);
2166 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2167 sk_mem_pages(sk
->sk_wmem_queued
+
2168 atomic_read(&sk
->sk_rmem_alloc
) +
2169 sk
->sk_forward_alloc
))
2173 suppress_allocation
:
2175 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2176 sk_stream_moderate_sndbuf(sk
);
2178 /* Fail only if socket is _under_ its sndbuf.
2179 * In this case we cannot block, so that we have to fail.
2181 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2185 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2187 /* Alas. Undo changes. */
2188 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
2190 sk_memory_allocated_sub(sk
, amt
);
2192 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2193 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2197 EXPORT_SYMBOL(__sk_mem_schedule
);
2200 * __sk_mem_reclaim - reclaim memory_allocated
2202 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2204 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2206 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2207 sk_memory_allocated_sub(sk
, amount
);
2208 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2210 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2211 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2213 if (sk_under_memory_pressure(sk
) &&
2214 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2215 sk_leave_memory_pressure(sk
);
2217 EXPORT_SYMBOL(__sk_mem_reclaim
);
2219 int sk_set_peek_off(struct sock
*sk
, int val
)
2224 sk
->sk_peek_off
= val
;
2227 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2230 * Set of default routines for initialising struct proto_ops when
2231 * the protocol does not support a particular function. In certain
2232 * cases where it makes no sense for a protocol to have a "do nothing"
2233 * function, some default processing is provided.
2236 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2240 EXPORT_SYMBOL(sock_no_bind
);
2242 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2247 EXPORT_SYMBOL(sock_no_connect
);
2249 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2253 EXPORT_SYMBOL(sock_no_socketpair
);
2255 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
2259 EXPORT_SYMBOL(sock_no_accept
);
2261 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2266 EXPORT_SYMBOL(sock_no_getname
);
2268 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2272 EXPORT_SYMBOL(sock_no_poll
);
2274 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2278 EXPORT_SYMBOL(sock_no_ioctl
);
2280 int sock_no_listen(struct socket
*sock
, int backlog
)
2284 EXPORT_SYMBOL(sock_no_listen
);
2286 int sock_no_shutdown(struct socket
*sock
, int how
)
2290 EXPORT_SYMBOL(sock_no_shutdown
);
2292 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2293 char __user
*optval
, unsigned int optlen
)
2297 EXPORT_SYMBOL(sock_no_setsockopt
);
2299 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2300 char __user
*optval
, int __user
*optlen
)
2304 EXPORT_SYMBOL(sock_no_getsockopt
);
2306 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2310 EXPORT_SYMBOL(sock_no_sendmsg
);
2312 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2317 EXPORT_SYMBOL(sock_no_recvmsg
);
2319 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2321 /* Mirror missing mmap method error code */
2324 EXPORT_SYMBOL(sock_no_mmap
);
2327 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2328 * various sock-based usage counts.
2330 void __receive_sock(struct file
*file
)
2332 struct socket
*sock
;
2336 * The resulting value of "error" is ignored here since we only
2337 * need to take action when the file is a socket and testing
2338 * "sock" for NULL is sufficient.
2340 sock
= sock_from_file(file
, &error
);
2342 sock_update_netprioidx(&sock
->sk
->sk_cgrp_data
);
2343 sock_update_classid(&sock
->sk
->sk_cgrp_data
);
2347 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2350 struct msghdr msg
= {.msg_flags
= flags
};
2352 char *kaddr
= kmap(page
);
2353 iov
.iov_base
= kaddr
+ offset
;
2355 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2359 EXPORT_SYMBOL(sock_no_sendpage
);
2362 * Default Socket Callbacks
2365 static void sock_def_wakeup(struct sock
*sk
)
2367 struct socket_wq
*wq
;
2370 wq
= rcu_dereference(sk
->sk_wq
);
2371 if (skwq_has_sleeper(wq
))
2372 wake_up_interruptible_all(&wq
->wait
);
2376 static void sock_def_error_report(struct sock
*sk
)
2378 struct socket_wq
*wq
;
2381 wq
= rcu_dereference(sk
->sk_wq
);
2382 if (skwq_has_sleeper(wq
))
2383 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2384 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2388 static void sock_def_readable(struct sock
*sk
)
2390 struct socket_wq
*wq
;
2393 wq
= rcu_dereference(sk
->sk_wq
);
2394 if (skwq_has_sleeper(wq
))
2395 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2396 POLLRDNORM
| POLLRDBAND
);
2397 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2401 static void sock_def_write_space(struct sock
*sk
)
2403 struct socket_wq
*wq
;
2407 /* Do not wake up a writer until he can make "significant"
2410 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2411 wq
= rcu_dereference(sk
->sk_wq
);
2412 if (skwq_has_sleeper(wq
))
2413 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2414 POLLWRNORM
| POLLWRBAND
);
2416 /* Should agree with poll, otherwise some programs break */
2417 if (sock_writeable(sk
))
2418 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2424 static void sock_def_destruct(struct sock
*sk
)
2428 void sk_send_sigurg(struct sock
*sk
)
2430 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2431 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2432 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2434 EXPORT_SYMBOL(sk_send_sigurg
);
2436 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2437 unsigned long expires
)
2439 if (!mod_timer(timer
, expires
))
2442 EXPORT_SYMBOL(sk_reset_timer
);
2444 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2446 if (del_timer(timer
))
2449 EXPORT_SYMBOL(sk_stop_timer
);
2451 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2453 skb_queue_head_init(&sk
->sk_receive_queue
);
2454 skb_queue_head_init(&sk
->sk_write_queue
);
2455 skb_queue_head_init(&sk
->sk_error_queue
);
2457 sk
->sk_send_head
= NULL
;
2459 init_timer(&sk
->sk_timer
);
2461 sk
->sk_allocation
= GFP_KERNEL
;
2462 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2463 sk
->sk_sndbuf
= sysctl_wmem_default
;
2464 sk
->sk_state
= TCP_CLOSE
;
2465 sk_set_socket(sk
, sock
);
2467 sock_set_flag(sk
, SOCK_ZAPPED
);
2470 sk
->sk_type
= sock
->type
;
2471 sk
->sk_wq
= sock
->wq
;
2476 rwlock_init(&sk
->sk_callback_lock
);
2477 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2478 af_callback_keys
+ sk
->sk_family
,
2479 af_family_clock_key_strings
[sk
->sk_family
]);
2481 sk
->sk_state_change
= sock_def_wakeup
;
2482 sk
->sk_data_ready
= sock_def_readable
;
2483 sk
->sk_write_space
= sock_def_write_space
;
2484 sk
->sk_error_report
= sock_def_error_report
;
2485 sk
->sk_destruct
= sock_def_destruct
;
2487 sk
->sk_frag
.page
= NULL
;
2488 sk
->sk_frag
.offset
= 0;
2489 sk
->sk_peek_off
= -1;
2491 sk
->sk_peer_pid
= NULL
;
2492 sk
->sk_peer_cred
= NULL
;
2493 sk
->sk_write_pending
= 0;
2494 sk
->sk_rcvlowat
= 1;
2495 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2496 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2498 sk
->sk_stamp
= ktime_set(-1L, 0);
2499 #if BITS_PER_LONG==32
2500 seqlock_init(&sk
->sk_stamp_seq
);
2503 #ifdef CONFIG_NET_RX_BUSY_POLL
2505 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2508 sk
->sk_max_pacing_rate
= ~0U;
2509 sk
->sk_pacing_rate
= ~0U;
2510 sk
->sk_incoming_cpu
= -1;
2512 * Before updating sk_refcnt, we must commit prior changes to memory
2513 * (Documentation/RCU/rculist_nulls.txt for details)
2516 atomic_set(&sk
->sk_refcnt
, 1);
2517 atomic_set(&sk
->sk_drops
, 0);
2519 EXPORT_SYMBOL(sock_init_data
);
2521 void lock_sock_nested(struct sock
*sk
, int subclass
)
2524 spin_lock_bh(&sk
->sk_lock
.slock
);
2525 if (sk
->sk_lock
.owned
)
2527 sk
->sk_lock
.owned
= 1;
2528 spin_unlock(&sk
->sk_lock
.slock
);
2530 * The sk_lock has mutex_lock() semantics here:
2532 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2535 EXPORT_SYMBOL(lock_sock_nested
);
2537 void release_sock(struct sock
*sk
)
2539 spin_lock_bh(&sk
->sk_lock
.slock
);
2540 if (sk
->sk_backlog
.tail
)
2543 /* Warning : release_cb() might need to release sk ownership,
2544 * ie call sock_release_ownership(sk) before us.
2546 if (sk
->sk_prot
->release_cb
)
2547 sk
->sk_prot
->release_cb(sk
);
2549 sock_release_ownership(sk
);
2550 if (waitqueue_active(&sk
->sk_lock
.wq
))
2551 wake_up(&sk
->sk_lock
.wq
);
2552 spin_unlock_bh(&sk
->sk_lock
.slock
);
2554 EXPORT_SYMBOL(release_sock
);
2557 * lock_sock_fast - fast version of lock_sock
2560 * This version should be used for very small section, where process wont block
2561 * return false if fast path is taken
2562 * sk_lock.slock locked, owned = 0, BH disabled
2563 * return true if slow path is taken
2564 * sk_lock.slock unlocked, owned = 1, BH enabled
2566 bool lock_sock_fast(struct sock
*sk
)
2569 spin_lock_bh(&sk
->sk_lock
.slock
);
2571 if (!sk
->sk_lock
.owned
)
2573 * Note : We must disable BH
2578 sk
->sk_lock
.owned
= 1;
2579 spin_unlock(&sk
->sk_lock
.slock
);
2581 * The sk_lock has mutex_lock() semantics here:
2583 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2587 EXPORT_SYMBOL(lock_sock_fast
);
2589 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2592 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2593 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2594 tv
= ktime_to_timeval(sk
->sk_stamp
);
2595 if (tv
.tv_sec
== -1)
2597 if (tv
.tv_sec
== 0) {
2598 sk
->sk_stamp
= ktime_get_real();
2599 tv
= ktime_to_timeval(sk
->sk_stamp
);
2601 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2603 EXPORT_SYMBOL(sock_get_timestamp
);
2605 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2608 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2609 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2610 ts
= ktime_to_timespec(sk
->sk_stamp
);
2611 if (ts
.tv_sec
== -1)
2613 if (ts
.tv_sec
== 0) {
2614 sk
->sk_stamp
= ktime_get_real();
2615 ts
= ktime_to_timespec(sk
->sk_stamp
);
2617 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2619 EXPORT_SYMBOL(sock_get_timestampns
);
2621 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2623 if (!sock_flag(sk
, flag
)) {
2624 unsigned long previous_flags
= sk
->sk_flags
;
2626 sock_set_flag(sk
, flag
);
2628 * we just set one of the two flags which require net
2629 * time stamping, but time stamping might have been on
2630 * already because of the other one
2632 if (sock_needs_netstamp(sk
) &&
2633 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2634 net_enable_timestamp();
2638 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2639 int level
, int type
)
2641 struct sock_exterr_skb
*serr
;
2642 struct sk_buff
*skb
;
2646 skb
= sock_dequeue_err_skb(sk
);
2652 msg
->msg_flags
|= MSG_TRUNC
;
2655 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2659 sock_recv_timestamp(msg
, sk
, skb
);
2661 serr
= SKB_EXT_ERR(skb
);
2662 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2664 msg
->msg_flags
|= MSG_ERRQUEUE
;
2672 EXPORT_SYMBOL(sock_recv_errqueue
);
2675 * Get a socket option on an socket.
2677 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2678 * asynchronous errors should be reported by getsockopt. We assume
2679 * this means if you specify SO_ERROR (otherwise whats the point of it).
2681 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2682 char __user
*optval
, int __user
*optlen
)
2684 struct sock
*sk
= sock
->sk
;
2686 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2688 EXPORT_SYMBOL(sock_common_getsockopt
);
2690 #ifdef CONFIG_COMPAT
2691 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2692 char __user
*optval
, int __user
*optlen
)
2694 struct sock
*sk
= sock
->sk
;
2696 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2697 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2699 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2701 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2704 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
2707 struct sock
*sk
= sock
->sk
;
2711 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2712 flags
& ~MSG_DONTWAIT
, &addr_len
);
2714 msg
->msg_namelen
= addr_len
;
2717 EXPORT_SYMBOL(sock_common_recvmsg
);
2720 * Set socket options on an inet socket.
2722 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2723 char __user
*optval
, unsigned int optlen
)
2725 struct sock
*sk
= sock
->sk
;
2727 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2729 EXPORT_SYMBOL(sock_common_setsockopt
);
2731 #ifdef CONFIG_COMPAT
2732 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2733 char __user
*optval
, unsigned int optlen
)
2735 struct sock
*sk
= sock
->sk
;
2737 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2738 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2740 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2742 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2745 void sk_common_release(struct sock
*sk
)
2747 if (sk
->sk_prot
->destroy
)
2748 sk
->sk_prot
->destroy(sk
);
2751 * Observation: when sock_common_release is called, processes have
2752 * no access to socket. But net still has.
2753 * Step one, detach it from networking:
2755 * A. Remove from hash tables.
2758 sk
->sk_prot
->unhash(sk
);
2761 * In this point socket cannot receive new packets, but it is possible
2762 * that some packets are in flight because some CPU runs receiver and
2763 * did hash table lookup before we unhashed socket. They will achieve
2764 * receive queue and will be purged by socket destructor.
2766 * Also we still have packets pending on receive queue and probably,
2767 * our own packets waiting in device queues. sock_destroy will drain
2768 * receive queue, but transmitted packets will delay socket destruction
2769 * until the last reference will be released.
2774 xfrm_sk_free_policy(sk
);
2776 sk_refcnt_debug_release(sk
);
2780 EXPORT_SYMBOL(sk_common_release
);
2782 #ifdef CONFIG_PROC_FS
2783 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2785 int val
[PROTO_INUSE_NR
];
2788 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2790 #ifdef CONFIG_NET_NS
2791 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2793 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2795 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2797 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2799 int cpu
, idx
= prot
->inuse_idx
;
2802 for_each_possible_cpu(cpu
)
2803 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2805 return res
>= 0 ? res
: 0;
2807 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2809 static int __net_init
sock_inuse_init_net(struct net
*net
)
2811 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2812 return net
->core
.inuse
? 0 : -ENOMEM
;
2815 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2817 free_percpu(net
->core
.inuse
);
2820 static struct pernet_operations net_inuse_ops
= {
2821 .init
= sock_inuse_init_net
,
2822 .exit
= sock_inuse_exit_net
,
2825 static __init
int net_inuse_init(void)
2827 if (register_pernet_subsys(&net_inuse_ops
))
2828 panic("Cannot initialize net inuse counters");
2833 core_initcall(net_inuse_init
);
2835 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2837 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2839 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2841 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2843 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2845 int cpu
, idx
= prot
->inuse_idx
;
2848 for_each_possible_cpu(cpu
)
2849 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2851 return res
>= 0 ? res
: 0;
2853 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2856 static void assign_proto_idx(struct proto
*prot
)
2858 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2860 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2861 pr_err("PROTO_INUSE_NR exhausted\n");
2865 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2868 static void release_proto_idx(struct proto
*prot
)
2870 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2871 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2874 static inline void assign_proto_idx(struct proto
*prot
)
2878 static inline void release_proto_idx(struct proto
*prot
)
2883 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
2887 kfree(rsk_prot
->slab_name
);
2888 rsk_prot
->slab_name
= NULL
;
2889 kmem_cache_destroy(rsk_prot
->slab
);
2890 rsk_prot
->slab
= NULL
;
2893 static int req_prot_init(const struct proto
*prot
)
2895 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
2900 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
2902 if (!rsk_prot
->slab_name
)
2905 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
2906 rsk_prot
->obj_size
, 0,
2907 prot
->slab_flags
, NULL
);
2909 if (!rsk_prot
->slab
) {
2910 pr_crit("%s: Can't create request sock SLAB cache!\n",
2917 int proto_register(struct proto
*prot
, int alloc_slab
)
2920 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2921 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2924 if (prot
->slab
== NULL
) {
2925 pr_crit("%s: Can't create sock SLAB cache!\n",
2930 if (req_prot_init(prot
))
2931 goto out_free_request_sock_slab
;
2933 if (prot
->twsk_prot
!= NULL
) {
2934 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2936 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2937 goto out_free_request_sock_slab
;
2939 prot
->twsk_prot
->twsk_slab
=
2940 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2941 prot
->twsk_prot
->twsk_obj_size
,
2945 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2946 goto out_free_timewait_sock_slab_name
;
2950 mutex_lock(&proto_list_mutex
);
2951 list_add(&prot
->node
, &proto_list
);
2952 assign_proto_idx(prot
);
2953 mutex_unlock(&proto_list_mutex
);
2956 out_free_timewait_sock_slab_name
:
2957 kfree(prot
->twsk_prot
->twsk_slab_name
);
2958 out_free_request_sock_slab
:
2959 req_prot_cleanup(prot
->rsk_prot
);
2961 kmem_cache_destroy(prot
->slab
);
2966 EXPORT_SYMBOL(proto_register
);
2968 void proto_unregister(struct proto
*prot
)
2970 mutex_lock(&proto_list_mutex
);
2971 release_proto_idx(prot
);
2972 list_del(&prot
->node
);
2973 mutex_unlock(&proto_list_mutex
);
2975 kmem_cache_destroy(prot
->slab
);
2978 req_prot_cleanup(prot
->rsk_prot
);
2980 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2981 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2982 kfree(prot
->twsk_prot
->twsk_slab_name
);
2983 prot
->twsk_prot
->twsk_slab
= NULL
;
2986 EXPORT_SYMBOL(proto_unregister
);
2988 #ifdef CONFIG_PROC_FS
2989 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2990 __acquires(proto_list_mutex
)
2992 mutex_lock(&proto_list_mutex
);
2993 return seq_list_start_head(&proto_list
, *pos
);
2996 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2998 return seq_list_next(v
, &proto_list
, pos
);
3001 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
3002 __releases(proto_list_mutex
)
3004 mutex_unlock(&proto_list_mutex
);
3007 static char proto_method_implemented(const void *method
)
3009 return method
== NULL
? 'n' : 'y';
3011 static long sock_prot_memory_allocated(struct proto
*proto
)
3013 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
3016 static char *sock_prot_memory_pressure(struct proto
*proto
)
3018 return proto
->memory_pressure
!= NULL
?
3019 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
3022 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
3025 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3026 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3029 sock_prot_inuse_get(seq_file_net(seq
), proto
),
3030 sock_prot_memory_allocated(proto
),
3031 sock_prot_memory_pressure(proto
),
3033 proto
->slab
== NULL
? "no" : "yes",
3034 module_name(proto
->owner
),
3035 proto_method_implemented(proto
->close
),
3036 proto_method_implemented(proto
->connect
),
3037 proto_method_implemented(proto
->disconnect
),
3038 proto_method_implemented(proto
->accept
),
3039 proto_method_implemented(proto
->ioctl
),
3040 proto_method_implemented(proto
->init
),
3041 proto_method_implemented(proto
->destroy
),
3042 proto_method_implemented(proto
->shutdown
),
3043 proto_method_implemented(proto
->setsockopt
),
3044 proto_method_implemented(proto
->getsockopt
),
3045 proto_method_implemented(proto
->sendmsg
),
3046 proto_method_implemented(proto
->recvmsg
),
3047 proto_method_implemented(proto
->sendpage
),
3048 proto_method_implemented(proto
->bind
),
3049 proto_method_implemented(proto
->backlog_rcv
),
3050 proto_method_implemented(proto
->hash
),
3051 proto_method_implemented(proto
->unhash
),
3052 proto_method_implemented(proto
->get_port
),
3053 proto_method_implemented(proto
->enter_memory_pressure
));
3056 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3058 if (v
== &proto_list
)
3059 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3068 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3070 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3074 static const struct seq_operations proto_seq_ops
= {
3075 .start
= proto_seq_start
,
3076 .next
= proto_seq_next
,
3077 .stop
= proto_seq_stop
,
3078 .show
= proto_seq_show
,
3081 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
3083 return seq_open_net(inode
, file
, &proto_seq_ops
,
3084 sizeof(struct seq_net_private
));
3087 static const struct file_operations proto_seq_fops
= {
3088 .owner
= THIS_MODULE
,
3089 .open
= proto_seq_open
,
3091 .llseek
= seq_lseek
,
3092 .release
= seq_release_net
,
3095 static __net_init
int proto_init_net(struct net
*net
)
3097 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
3103 static __net_exit
void proto_exit_net(struct net
*net
)
3105 remove_proc_entry("protocols", net
->proc_net
);
3109 static __net_initdata
struct pernet_operations proto_net_ops
= {
3110 .init
= proto_init_net
,
3111 .exit
= proto_exit_net
,
3114 static int __init
proto_init(void)
3116 return register_pernet_subsys(&proto_net_ops
);
3119 subsys_initcall(proto_init
);
3121 #endif /* PROC_FS */