2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/buffer_head.h>
24 #include <linux/slab.h>
25 #include <linux/swap.h>
26 #include <linux/bio.h>
39 * map_mft_record_page - map the page in which a specific mft record resides
40 * @ni: ntfs inode whose mft record page to map
42 * This maps the page in which the mft record of the ntfs inode @ni is situated
43 * and returns a pointer to the mft record within the mapped page.
45 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
46 * contains the negative error code returned.
48 static inline MFT_RECORD
*map_mft_record_page(ntfs_inode
*ni
)
51 ntfs_volume
*vol
= ni
->vol
;
52 struct inode
*mft_vi
= vol
->mft_ino
;
54 unsigned long index
, end_index
;
59 * The index into the page cache and the offset within the page cache
60 * page of the wanted mft record. FIXME: We need to check for
61 * overflowing the unsigned long, but I don't think we would ever get
62 * here if the volume was that big...
64 index
= (u64
)ni
->mft_no
<< vol
->mft_record_size_bits
>>
66 ofs
= (ni
->mft_no
<< vol
->mft_record_size_bits
) & ~PAGE_MASK
;
68 i_size
= i_size_read(mft_vi
);
69 /* The maximum valid index into the page cache for $MFT's data. */
70 end_index
= i_size
>> PAGE_SHIFT
;
72 /* If the wanted index is out of bounds the mft record doesn't exist. */
73 if (unlikely(index
>= end_index
)) {
74 if (index
> end_index
|| (i_size
& ~PAGE_MASK
) < ofs
+
75 vol
->mft_record_size
) {
76 page
= ERR_PTR(-ENOENT
);
77 ntfs_error(vol
->sb
, "Attempt to read mft record 0x%lx, "
78 "which is beyond the end of the mft. "
79 "This is probably a bug in the ntfs "
80 "driver.", ni
->mft_no
);
84 /* Read, map, and pin the page. */
85 page
= ntfs_map_page(mft_vi
->i_mapping
, index
);
86 if (likely(!IS_ERR(page
))) {
87 /* Catch multi sector transfer fixup errors. */
88 if (likely(ntfs_is_mft_recordp((le32
*)(page_address(page
) +
92 return page_address(page
) + ofs
;
94 ntfs_error(vol
->sb
, "Mft record 0x%lx is corrupt. "
95 "Run chkdsk.", ni
->mft_no
);
96 ntfs_unmap_page(page
);
107 * map_mft_record - map, pin and lock an mft record
108 * @ni: ntfs inode whose MFT record to map
110 * First, take the mrec_lock mutex. We might now be sleeping, while waiting
111 * for the mutex if it was already locked by someone else.
113 * The page of the record is mapped using map_mft_record_page() before being
114 * returned to the caller.
116 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
117 * record (it in turn calls read_cache_page() which reads it in from disk if
118 * necessary, increments the use count on the page so that it cannot disappear
119 * under us and returns a reference to the page cache page).
121 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
122 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
123 * and the post-read mst fixups on each mft record in the page have been
124 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
125 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
126 * ntfs_map_page() waits for PG_locked to become clear and checks if
127 * PG_uptodate is set and returns an error code if not. This provides
128 * sufficient protection against races when reading/using the page.
130 * However there is the write mapping to think about. Doing the above described
131 * checking here will be fine, because when initiating the write we will set
132 * PG_locked and clear PG_uptodate making sure nobody is touching the page
133 * contents. Doing the locking this way means that the commit to disk code in
134 * the page cache code paths is automatically sufficiently locked with us as
135 * we will not touch a page that has been locked or is not uptodate. The only
136 * locking problem then is them locking the page while we are accessing it.
138 * So that code will end up having to own the mrec_lock of all mft
139 * records/inodes present in the page before I/O can proceed. In that case we
140 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
141 * accessing anything without owning the mrec_lock mutex. But we do need to
142 * use them because of the read_cache_page() invocation and the code becomes so
143 * much simpler this way that it is well worth it.
145 * The mft record is now ours and we return a pointer to it. You need to check
146 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
149 * NOTE: Caller is responsible for setting the mft record dirty before calling
150 * unmap_mft_record(). This is obviously only necessary if the caller really
151 * modified the mft record...
152 * Q: Do we want to recycle one of the VFS inode state bits instead?
153 * A: No, the inode ones mean we want to change the mft record, not we want to
156 MFT_RECORD
*map_mft_record(ntfs_inode
*ni
)
160 ntfs_debug("Entering for mft_no 0x%lx.", ni
->mft_no
);
162 /* Make sure the ntfs inode doesn't go away. */
163 atomic_inc(&ni
->count
);
165 /* Serialize access to this mft record. */
166 mutex_lock(&ni
->mrec_lock
);
168 m
= map_mft_record_page(ni
);
169 if (likely(!IS_ERR(m
)))
172 mutex_unlock(&ni
->mrec_lock
);
173 atomic_dec(&ni
->count
);
174 ntfs_error(ni
->vol
->sb
, "Failed with error code %lu.", -PTR_ERR(m
));
179 * unmap_mft_record_page - unmap the page in which a specific mft record resides
180 * @ni: ntfs inode whose mft record page to unmap
182 * This unmaps the page in which the mft record of the ntfs inode @ni is
183 * situated and returns. This is a NOOP if highmem is not configured.
185 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
186 * count on the page thus releasing it from the pinned state.
188 * We do not actually unmap the page from memory of course, as that will be
189 * done by the page cache code itself when memory pressure increases or
192 static inline void unmap_mft_record_page(ntfs_inode
*ni
)
196 // TODO: If dirty, blah...
197 ntfs_unmap_page(ni
->page
);
204 * unmap_mft_record - release a mapped mft record
205 * @ni: ntfs inode whose MFT record to unmap
207 * We release the page mapping and the mrec_lock mutex which unmaps the mft
208 * record and releases it for others to get hold of. We also release the ntfs
209 * inode by decrementing the ntfs inode reference count.
211 * NOTE: If caller has modified the mft record, it is imperative to set the mft
212 * record dirty BEFORE calling unmap_mft_record().
214 void unmap_mft_record(ntfs_inode
*ni
)
216 struct page
*page
= ni
->page
;
220 ntfs_debug("Entering for mft_no 0x%lx.", ni
->mft_no
);
222 unmap_mft_record_page(ni
);
223 mutex_unlock(&ni
->mrec_lock
);
224 atomic_dec(&ni
->count
);
226 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
227 * ntfs_clear_extent_inode() in the extent inode case, and to the
228 * caller in the non-extent, yet pure ntfs inode case, to do the actual
229 * tear down of all structures and freeing of all allocated memory.
235 * map_extent_mft_record - load an extent inode and attach it to its base
236 * @base_ni: base ntfs inode
237 * @mref: mft reference of the extent inode to load
238 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure
240 * Load the extent mft record @mref and attach it to its base inode @base_ni.
241 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise
242 * PTR_ERR(result) gives the negative error code.
244 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
245 * structure of the mapped extent inode.
247 MFT_RECORD
*map_extent_mft_record(ntfs_inode
*base_ni
, MFT_REF mref
,
248 ntfs_inode
**ntfs_ino
)
251 ntfs_inode
*ni
= NULL
;
252 ntfs_inode
**extent_nis
= NULL
;
254 unsigned long mft_no
= MREF(mref
);
255 u16 seq_no
= MSEQNO(mref
);
256 bool destroy_ni
= false;
258 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
259 mft_no
, base_ni
->mft_no
);
260 /* Make sure the base ntfs inode doesn't go away. */
261 atomic_inc(&base_ni
->count
);
263 * Check if this extent inode has already been added to the base inode,
264 * in which case just return it. If not found, add it to the base
265 * inode before returning it.
267 mutex_lock(&base_ni
->extent_lock
);
268 if (base_ni
->nr_extents
> 0) {
269 extent_nis
= base_ni
->ext
.extent_ntfs_inos
;
270 for (i
= 0; i
< base_ni
->nr_extents
; i
++) {
271 if (mft_no
!= extent_nis
[i
]->mft_no
)
274 /* Make sure the ntfs inode doesn't go away. */
275 atomic_inc(&ni
->count
);
279 if (likely(ni
!= NULL
)) {
280 mutex_unlock(&base_ni
->extent_lock
);
281 atomic_dec(&base_ni
->count
);
282 /* We found the record; just have to map and return it. */
283 m
= map_mft_record(ni
);
284 /* map_mft_record() has incremented this on success. */
285 atomic_dec(&ni
->count
);
286 if (likely(!IS_ERR(m
))) {
287 /* Verify the sequence number. */
288 if (likely(le16_to_cpu(m
->sequence_number
) == seq_no
)) {
289 ntfs_debug("Done 1.");
293 unmap_mft_record(ni
);
294 ntfs_error(base_ni
->vol
->sb
, "Found stale extent mft "
295 "reference! Corrupt filesystem. "
297 return ERR_PTR(-EIO
);
300 ntfs_error(base_ni
->vol
->sb
, "Failed to map extent "
301 "mft record, error code %ld.", -PTR_ERR(m
));
304 /* Record wasn't there. Get a new ntfs inode and initialize it. */
305 ni
= ntfs_new_extent_inode(base_ni
->vol
->sb
, mft_no
);
307 mutex_unlock(&base_ni
->extent_lock
);
308 atomic_dec(&base_ni
->count
);
309 return ERR_PTR(-ENOMEM
);
311 ni
->vol
= base_ni
->vol
;
314 ni
->ext
.base_ntfs_ino
= base_ni
;
315 /* Now map the record. */
316 m
= map_mft_record(ni
);
318 mutex_unlock(&base_ni
->extent_lock
);
319 atomic_dec(&base_ni
->count
);
320 ntfs_clear_extent_inode(ni
);
323 /* Verify the sequence number if it is present. */
324 if (seq_no
&& (le16_to_cpu(m
->sequence_number
) != seq_no
)) {
325 ntfs_error(base_ni
->vol
->sb
, "Found stale extent mft "
326 "reference! Corrupt filesystem. Run chkdsk.");
331 /* Attach extent inode to base inode, reallocating memory if needed. */
332 if (!(base_ni
->nr_extents
& 3)) {
334 int new_size
= (base_ni
->nr_extents
+ 4) * sizeof(ntfs_inode
*);
336 tmp
= kmalloc(new_size
, GFP_NOFS
);
337 if (unlikely(!tmp
)) {
338 ntfs_error(base_ni
->vol
->sb
, "Failed to allocate "
341 m
= ERR_PTR(-ENOMEM
);
344 if (base_ni
->nr_extents
) {
345 BUG_ON(!base_ni
->ext
.extent_ntfs_inos
);
346 memcpy(tmp
, base_ni
->ext
.extent_ntfs_inos
, new_size
-
347 4 * sizeof(ntfs_inode
*));
348 kfree(base_ni
->ext
.extent_ntfs_inos
);
350 base_ni
->ext
.extent_ntfs_inos
= tmp
;
352 base_ni
->ext
.extent_ntfs_inos
[base_ni
->nr_extents
++] = ni
;
353 mutex_unlock(&base_ni
->extent_lock
);
354 atomic_dec(&base_ni
->count
);
355 ntfs_debug("Done 2.");
359 unmap_mft_record(ni
);
360 mutex_unlock(&base_ni
->extent_lock
);
361 atomic_dec(&base_ni
->count
);
363 * If the extent inode was not attached to the base inode we need to
364 * release it or we will leak memory.
367 ntfs_clear_extent_inode(ni
);
374 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
375 * @ni: ntfs inode describing the mapped mft record
377 * Internal function. Users should call mark_mft_record_dirty() instead.
379 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
380 * as well as the page containing the mft record, dirty. Also, mark the base
381 * vfs inode dirty. This ensures that any changes to the mft record are
382 * written out to disk.
384 * NOTE: We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
385 * on the base vfs inode, because even though file data may have been modified,
386 * it is dirty in the inode meta data rather than the data page cache of the
387 * inode, and thus there are no data pages that need writing out. Therefore, a
388 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the
389 * other hand, is not sufficient, because ->write_inode needs to be called even
390 * in case of fdatasync. This needs to happen or the file data would not
391 * necessarily hit the device synchronously, even though the vfs inode has the
392 * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just
393 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
394 * which is not what I_DIRTY_SYNC on its own would suggest.
396 void __mark_mft_record_dirty(ntfs_inode
*ni
)
400 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
401 BUG_ON(NInoAttr(ni
));
402 mark_ntfs_record_dirty(ni
->page
, ni
->page_ofs
);
403 /* Determine the base vfs inode and mark it dirty, too. */
404 mutex_lock(&ni
->extent_lock
);
405 if (likely(ni
->nr_extents
>= 0))
408 base_ni
= ni
->ext
.base_ntfs_ino
;
409 mutex_unlock(&ni
->extent_lock
);
410 __mark_inode_dirty(VFS_I(base_ni
), I_DIRTY_DATASYNC
);
413 static const char *ntfs_please_email
= "Please email "
414 "linux-ntfs-dev@lists.sourceforge.net and say that you saw "
415 "this message. Thank you.";
418 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
419 * @vol: ntfs volume on which the mft record to synchronize resides
420 * @mft_no: mft record number of mft record to synchronize
421 * @m: mapped, mst protected (extent) mft record to synchronize
423 * Write the mapped, mst protected (extent) mft record @m with mft record
424 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
425 * bypassing the page cache and the $MFTMirr inode itself.
427 * This function is only for use at umount time when the mft mirror inode has
428 * already been disposed off. We BUG() if we are called while the mft mirror
429 * inode is still attached to the volume.
431 * On success return 0. On error return -errno.
433 * NOTE: This function is not implemented yet as I am not convinced it can
434 * actually be triggered considering the sequence of commits we do in super.c::
435 * ntfs_put_super(). But just in case we provide this place holder as the
436 * alternative would be either to BUG() or to get a NULL pointer dereference
439 static int ntfs_sync_mft_mirror_umount(ntfs_volume
*vol
,
440 const unsigned long mft_no
, MFT_RECORD
*m
)
442 BUG_ON(vol
->mftmirr_ino
);
443 ntfs_error(vol
->sb
, "Umount time mft mirror syncing is not "
444 "implemented yet. %s", ntfs_please_email
);
449 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
450 * @vol: ntfs volume on which the mft record to synchronize resides
451 * @mft_no: mft record number of mft record to synchronize
452 * @m: mapped, mst protected (extent) mft record to synchronize
453 * @sync: if true, wait for i/o completion
455 * Write the mapped, mst protected (extent) mft record @m with mft record
456 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
458 * On success return 0. On error return -errno and set the volume errors flag
459 * in the ntfs volume @vol.
461 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
463 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
464 * schedule i/o via ->writepage or do it via kntfsd or whatever.
466 int ntfs_sync_mft_mirror(ntfs_volume
*vol
, const unsigned long mft_no
,
467 MFT_RECORD
*m
, int sync
)
470 unsigned int blocksize
= vol
->sb
->s_blocksize
;
471 int max_bhs
= vol
->mft_record_size
/ blocksize
;
472 struct buffer_head
*bhs
[max_bhs
];
473 struct buffer_head
*bh
, *head
;
476 unsigned int block_start
, block_end
, m_start
, m_end
, page_ofs
;
477 int i_bhs
, nr_bhs
, err
= 0;
478 unsigned char blocksize_bits
= vol
->sb
->s_blocksize_bits
;
480 ntfs_debug("Entering for inode 0x%lx.", mft_no
);
482 if (unlikely(!vol
->mftmirr_ino
)) {
483 /* This could happen during umount... */
484 err
= ntfs_sync_mft_mirror_umount(vol
, mft_no
, m
);
489 /* Get the page containing the mirror copy of the mft record @m. */
490 page
= ntfs_map_page(vol
->mftmirr_ino
->i_mapping
, mft_no
>>
491 (PAGE_SHIFT
- vol
->mft_record_size_bits
));
493 ntfs_error(vol
->sb
, "Failed to map mft mirror page.");
498 BUG_ON(!PageUptodate(page
));
499 ClearPageUptodate(page
);
500 /* Offset of the mft mirror record inside the page. */
501 page_ofs
= (mft_no
<< vol
->mft_record_size_bits
) & ~PAGE_MASK
;
502 /* The address in the page of the mirror copy of the mft record @m. */
503 kmirr
= page_address(page
) + page_ofs
;
504 /* Copy the mst protected mft record to the mirror. */
505 memcpy(kmirr
, m
, vol
->mft_record_size
);
506 /* Create uptodate buffers if not present. */
507 if (unlikely(!page_has_buffers(page
))) {
508 struct buffer_head
*tail
;
510 bh
= head
= alloc_page_buffers(page
, blocksize
, true);
512 set_buffer_uptodate(bh
);
514 bh
= bh
->b_this_page
;
516 tail
->b_this_page
= head
;
517 attach_page_buffers(page
, head
);
519 bh
= head
= page_buffers(page
);
524 m_start
= kmirr
- (u8
*)page_address(page
);
525 m_end
= m_start
+ vol
->mft_record_size
;
527 block_end
= block_start
+ blocksize
;
528 /* If the buffer is outside the mft record, skip it. */
529 if (block_end
<= m_start
)
531 if (unlikely(block_start
>= m_end
))
533 /* Need to map the buffer if it is not mapped already. */
534 if (unlikely(!buffer_mapped(bh
))) {
537 unsigned int vcn_ofs
;
539 bh
->b_bdev
= vol
->sb
->s_bdev
;
540 /* Obtain the vcn and offset of the current block. */
541 vcn
= ((VCN
)mft_no
<< vol
->mft_record_size_bits
) +
542 (block_start
- m_start
);
543 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
544 vcn
>>= vol
->cluster_size_bits
;
546 down_read(&NTFS_I(vol
->mftmirr_ino
)->
548 rl
= NTFS_I(vol
->mftmirr_ino
)->runlist
.rl
;
550 * $MFTMirr always has the whole of its runlist
555 /* Seek to element containing target vcn. */
556 while (rl
->length
&& rl
[1].vcn
<= vcn
)
558 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
559 /* For $MFTMirr, only lcn >= 0 is a successful remap. */
560 if (likely(lcn
>= 0)) {
561 /* Setup buffer head to correct block. */
562 bh
->b_blocknr
= ((lcn
<<
563 vol
->cluster_size_bits
) +
564 vcn_ofs
) >> blocksize_bits
;
565 set_buffer_mapped(bh
);
568 ntfs_error(vol
->sb
, "Cannot write mft mirror "
569 "record 0x%lx because its "
570 "location on disk could not "
571 "be determined (error code "
577 BUG_ON(!buffer_uptodate(bh
));
578 BUG_ON(!nr_bhs
&& (m_start
!= block_start
));
579 BUG_ON(nr_bhs
>= max_bhs
);
581 BUG_ON((nr_bhs
>= max_bhs
) && (m_end
!= block_end
));
582 } while (block_start
= block_end
, (bh
= bh
->b_this_page
) != head
);
584 up_read(&NTFS_I(vol
->mftmirr_ino
)->runlist
.lock
);
586 /* Lock buffers and start synchronous write i/o on them. */
587 for (i_bhs
= 0; i_bhs
< nr_bhs
; i_bhs
++) {
588 struct buffer_head
*tbh
= bhs
[i_bhs
];
590 if (!trylock_buffer(tbh
))
592 BUG_ON(!buffer_uptodate(tbh
));
593 clear_buffer_dirty(tbh
);
595 tbh
->b_end_io
= end_buffer_write_sync
;
596 submit_bh(REQ_OP_WRITE
, 0, tbh
);
598 /* Wait on i/o completion of buffers. */
599 for (i_bhs
= 0; i_bhs
< nr_bhs
; i_bhs
++) {
600 struct buffer_head
*tbh
= bhs
[i_bhs
];
603 if (unlikely(!buffer_uptodate(tbh
))) {
606 * Set the buffer uptodate so the page and
607 * buffer states do not become out of sync.
609 set_buffer_uptodate(tbh
);
612 } else /* if (unlikely(err)) */ {
613 /* Clean the buffers. */
614 for (i_bhs
= 0; i_bhs
< nr_bhs
; i_bhs
++)
615 clear_buffer_dirty(bhs
[i_bhs
]);
617 /* Current state: all buffers are clean, unlocked, and uptodate. */
618 /* Remove the mst protection fixups again. */
619 post_write_mst_fixup((NTFS_RECORD
*)kmirr
);
620 flush_dcache_page(page
);
621 SetPageUptodate(page
);
623 ntfs_unmap_page(page
);
627 ntfs_error(vol
->sb
, "I/O error while writing mft mirror "
628 "record 0x%lx!", mft_no
);
630 ntfs_error(vol
->sb
, "Failed to synchronize $MFTMirr (error "
631 "code %i). Volume will be left marked dirty "
632 "on umount. Run ntfsfix on the partition "
633 "after umounting to correct this.", -err
);
640 * write_mft_record_nolock - write out a mapped (extent) mft record
641 * @ni: ntfs inode describing the mapped (extent) mft record
642 * @m: mapped (extent) mft record to write
643 * @sync: if true, wait for i/o completion
645 * Write the mapped (extent) mft record @m described by the (regular or extent)
646 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in
647 * the mft mirror, that is also updated.
649 * We only write the mft record if the ntfs inode @ni is dirty and the first
650 * buffer belonging to its mft record is dirty, too. We ignore the dirty state
651 * of subsequent buffers because we could have raced with
652 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
654 * On success, clean the mft record and return 0. On error, leave the mft
655 * record dirty and return -errno.
657 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
658 * However, if the mft record has a counterpart in the mft mirror and @sync is
659 * true, we write the mft record, wait for i/o completion, and only then write
660 * the mft mirror copy. This ensures that if the system crashes either the mft
661 * or the mft mirror will contain a self-consistent mft record @m. If @sync is
662 * false on the other hand, we start i/o on both and then wait for completion
663 * on them. This provides a speedup but no longer guarantees that you will end
664 * up with a self-consistent mft record in the case of a crash but if you asked
665 * for asynchronous writing you probably do not care about that anyway.
667 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
668 * schedule i/o via ->writepage or do it via kntfsd or whatever.
670 int write_mft_record_nolock(ntfs_inode
*ni
, MFT_RECORD
*m
, int sync
)
672 ntfs_volume
*vol
= ni
->vol
;
673 struct page
*page
= ni
->page
;
674 unsigned int blocksize
= vol
->sb
->s_blocksize
;
675 unsigned char blocksize_bits
= vol
->sb
->s_blocksize_bits
;
676 int max_bhs
= vol
->mft_record_size
/ blocksize
;
677 struct buffer_head
*bhs
[max_bhs
];
678 struct buffer_head
*bh
, *head
;
680 unsigned int block_start
, block_end
, m_start
, m_end
;
681 int i_bhs
, nr_bhs
, err
= 0;
683 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
684 BUG_ON(NInoAttr(ni
));
686 BUG_ON(!PageLocked(page
));
688 * If the ntfs_inode is clean no need to do anything. If it is dirty,
689 * mark it as clean now so that it can be redirtied later on if needed.
690 * There is no danger of races since the caller is holding the locks
691 * for the mft record @m and the page it is in.
693 if (!NInoTestClearDirty(ni
))
695 bh
= head
= page_buffers(page
);
700 m_start
= ni
->page_ofs
;
701 m_end
= m_start
+ vol
->mft_record_size
;
703 block_end
= block_start
+ blocksize
;
704 /* If the buffer is outside the mft record, skip it. */
705 if (block_end
<= m_start
)
707 if (unlikely(block_start
>= m_end
))
710 * If this block is not the first one in the record, we ignore
711 * the buffer's dirty state because we could have raced with a
712 * parallel mark_ntfs_record_dirty().
714 if (block_start
== m_start
) {
715 /* This block is the first one in the record. */
716 if (!buffer_dirty(bh
)) {
718 /* Clean records are not written out. */
722 /* Need to map the buffer if it is not mapped already. */
723 if (unlikely(!buffer_mapped(bh
))) {
726 unsigned int vcn_ofs
;
728 bh
->b_bdev
= vol
->sb
->s_bdev
;
729 /* Obtain the vcn and offset of the current block. */
730 vcn
= ((VCN
)ni
->mft_no
<< vol
->mft_record_size_bits
) +
731 (block_start
- m_start
);
732 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
733 vcn
>>= vol
->cluster_size_bits
;
735 down_read(&NTFS_I(vol
->mft_ino
)->runlist
.lock
);
736 rl
= NTFS_I(vol
->mft_ino
)->runlist
.rl
;
739 /* Seek to element containing target vcn. */
740 while (rl
->length
&& rl
[1].vcn
<= vcn
)
742 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
743 /* For $MFT, only lcn >= 0 is a successful remap. */
744 if (likely(lcn
>= 0)) {
745 /* Setup buffer head to correct block. */
746 bh
->b_blocknr
= ((lcn
<<
747 vol
->cluster_size_bits
) +
748 vcn_ofs
) >> blocksize_bits
;
749 set_buffer_mapped(bh
);
752 ntfs_error(vol
->sb
, "Cannot write mft record "
753 "0x%lx because its location "
754 "on disk could not be "
755 "determined (error code %lli).",
756 ni
->mft_no
, (long long)lcn
);
760 BUG_ON(!buffer_uptodate(bh
));
761 BUG_ON(!nr_bhs
&& (m_start
!= block_start
));
762 BUG_ON(nr_bhs
>= max_bhs
);
764 BUG_ON((nr_bhs
>= max_bhs
) && (m_end
!= block_end
));
765 } while (block_start
= block_end
, (bh
= bh
->b_this_page
) != head
);
767 up_read(&NTFS_I(vol
->mft_ino
)->runlist
.lock
);
772 /* Apply the mst protection fixups. */
773 err
= pre_write_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
);
775 ntfs_error(vol
->sb
, "Failed to apply mst fixups!");
778 flush_dcache_mft_record_page(ni
);
779 /* Lock buffers and start synchronous write i/o on them. */
780 for (i_bhs
= 0; i_bhs
< nr_bhs
; i_bhs
++) {
781 struct buffer_head
*tbh
= bhs
[i_bhs
];
783 if (!trylock_buffer(tbh
))
785 BUG_ON(!buffer_uptodate(tbh
));
786 clear_buffer_dirty(tbh
);
788 tbh
->b_end_io
= end_buffer_write_sync
;
789 submit_bh(REQ_OP_WRITE
, 0, tbh
);
791 /* Synchronize the mft mirror now if not @sync. */
792 if (!sync
&& ni
->mft_no
< vol
->mftmirr_size
)
793 ntfs_sync_mft_mirror(vol
, ni
->mft_no
, m
, sync
);
794 /* Wait on i/o completion of buffers. */
795 for (i_bhs
= 0; i_bhs
< nr_bhs
; i_bhs
++) {
796 struct buffer_head
*tbh
= bhs
[i_bhs
];
799 if (unlikely(!buffer_uptodate(tbh
))) {
802 * Set the buffer uptodate so the page and buffer
803 * states do not become out of sync.
805 if (PageUptodate(page
))
806 set_buffer_uptodate(tbh
);
809 /* If @sync, now synchronize the mft mirror. */
810 if (sync
&& ni
->mft_no
< vol
->mftmirr_size
)
811 ntfs_sync_mft_mirror(vol
, ni
->mft_no
, m
, sync
);
812 /* Remove the mst protection fixups again. */
813 post_write_mst_fixup((NTFS_RECORD
*)m
);
814 flush_dcache_mft_record_page(ni
);
816 /* I/O error during writing. This is really bad! */
817 ntfs_error(vol
->sb
, "I/O error while writing mft record "
818 "0x%lx! Marking base inode as bad. You "
819 "should unmount the volume and run chkdsk.",
827 /* Clean the buffers. */
828 for (i_bhs
= 0; i_bhs
< nr_bhs
; i_bhs
++)
829 clear_buffer_dirty(bhs
[i_bhs
]);
832 * Current state: all buffers are clean, unlocked, and uptodate.
833 * The caller should mark the base inode as bad so that no more i/o
834 * happens. ->clear_inode() will still be invoked so all extent inodes
835 * and other allocated memory will be freed.
837 if (err
== -ENOMEM
) {
838 ntfs_error(vol
->sb
, "Not enough memory to write mft record. "
839 "Redirtying so the write is retried later.");
840 mark_mft_record_dirty(ni
);
848 * ntfs_may_write_mft_record - check if an mft record may be written out
849 * @vol: [IN] ntfs volume on which the mft record to check resides
850 * @mft_no: [IN] mft record number of the mft record to check
851 * @m: [IN] mapped mft record to check
852 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned
854 * Check if the mapped (base or extent) mft record @m with mft record number
855 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary
856 * and possible the ntfs inode of the mft record is locked and the base vfs
857 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The
858 * caller is responsible for unlocking the ntfs inode and unpinning the base
861 * Return 'true' if the mft record may be written out and 'false' if not.
863 * The caller has locked the page and cleared the uptodate flag on it which
864 * means that we can safely write out any dirty mft records that do not have
865 * their inodes in icache as determined by ilookup5() as anyone
866 * opening/creating such an inode would block when attempting to map the mft
867 * record in read_cache_page() until we are finished with the write out.
869 * Here is a description of the tests we perform:
871 * If the inode is found in icache we know the mft record must be a base mft
872 * record. If it is dirty, we do not write it and return 'false' as the vfs
873 * inode write paths will result in the access times being updated which would
874 * cause the base mft record to be redirtied and written out again. (We know
875 * the access time update will modify the base mft record because Windows
876 * chkdsk complains if the standard information attribute is not in the base
879 * If the inode is in icache and not dirty, we attempt to lock the mft record
880 * and if we find the lock was already taken, it is not safe to write the mft
881 * record and we return 'false'.
883 * If we manage to obtain the lock we have exclusive access to the mft record,
884 * which also allows us safe writeout of the mft record. We then set
885 * @locked_ni to the locked ntfs inode and return 'true'.
887 * Note we cannot just lock the mft record and sleep while waiting for the lock
888 * because this would deadlock due to lock reversal (normally the mft record is
889 * locked before the page is locked but we already have the page locked here
890 * when we try to lock the mft record).
892 * If the inode is not in icache we need to perform further checks.
894 * If the mft record is not a FILE record or it is a base mft record, we can
895 * safely write it and return 'true'.
897 * We now know the mft record is an extent mft record. We check if the inode
898 * corresponding to its base mft record is in icache and obtain a reference to
899 * it if it is. If it is not, we can safely write it and return 'true'.
901 * We now have the base inode for the extent mft record. We check if it has an
902 * ntfs inode for the extent mft record attached and if not it is safe to write
903 * the extent mft record and we return 'true'.
905 * The ntfs inode for the extent mft record is attached to the base inode so we
906 * attempt to lock the extent mft record and if we find the lock was already
907 * taken, it is not safe to write the extent mft record and we return 'false'.
909 * If we manage to obtain the lock we have exclusive access to the extent mft
910 * record, which also allows us safe writeout of the extent mft record. We
911 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
912 * the now locked ntfs inode and return 'true'.
914 * Note, the reason for actually writing dirty mft records here and not just
915 * relying on the vfs inode dirty code paths is that we can have mft records
916 * modified without them ever having actual inodes in memory. Also we can have
917 * dirty mft records with clean ntfs inodes in memory. None of the described
918 * cases would result in the dirty mft records being written out if we only
919 * relied on the vfs inode dirty code paths. And these cases can really occur
920 * during allocation of new mft records and in particular when the
921 * initialized_size of the $MFT/$DATA attribute is extended and the new space
922 * is initialized using ntfs_mft_record_format(). The clean inode can then
923 * appear if the mft record is reused for a new inode before it got written
926 bool ntfs_may_write_mft_record(ntfs_volume
*vol
, const unsigned long mft_no
,
927 const MFT_RECORD
*m
, ntfs_inode
**locked_ni
)
929 struct super_block
*sb
= vol
->sb
;
930 struct inode
*mft_vi
= vol
->mft_ino
;
932 ntfs_inode
*ni
, *eni
, **extent_nis
;
936 ntfs_debug("Entering for inode 0x%lx.", mft_no
);
938 * Normally we do not return a locked inode so set @locked_ni to NULL.
943 * Check if the inode corresponding to this mft record is in the VFS
944 * inode cache and obtain a reference to it if it is.
946 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no
);
952 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
953 * we get here for it rather often.
956 /* Balance the below iput(). */
958 BUG_ON(vi
!= mft_vi
);
961 * Have to use ilookup5_nowait() since ilookup5() waits for the
962 * inode lock which causes ntfs to deadlock when a concurrent
963 * inode write via the inode dirty code paths and the page
964 * dirty code path of the inode dirty code path when writing
967 vi
= ilookup5_nowait(sb
, mft_no
, (test_t
)ntfs_test_inode
, &na
);
970 ntfs_debug("Base inode 0x%lx is in icache.", mft_no
);
971 /* The inode is in icache. */
973 /* Take a reference to the ntfs inode. */
974 atomic_inc(&ni
->count
);
975 /* If the inode is dirty, do not write this record. */
977 ntfs_debug("Inode 0x%lx is dirty, do not write it.",
979 atomic_dec(&ni
->count
);
983 ntfs_debug("Inode 0x%lx is not dirty.", mft_no
);
984 /* The inode is not dirty, try to take the mft record lock. */
985 if (unlikely(!mutex_trylock(&ni
->mrec_lock
))) {
986 ntfs_debug("Mft record 0x%lx is already locked, do "
987 "not write it.", mft_no
);
988 atomic_dec(&ni
->count
);
992 ntfs_debug("Managed to lock mft record 0x%lx, write it.",
995 * The write has to occur while we hold the mft record lock so
996 * return the locked ntfs inode.
1001 ntfs_debug("Inode 0x%lx is not in icache.", mft_no
);
1002 /* The inode is not in icache. */
1003 /* Write the record if it is not a mft record (type "FILE"). */
1004 if (!ntfs_is_mft_record(m
->magic
)) {
1005 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1009 /* Write the mft record if it is a base inode. */
1010 if (!m
->base_mft_record
) {
1011 ntfs_debug("Mft record 0x%lx is a base record, write it.",
1016 * This is an extent mft record. Check if the inode corresponding to
1017 * its base mft record is in icache and obtain a reference to it if it
1020 na
.mft_no
= MREF_LE(m
->base_mft_record
);
1021 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base "
1022 "inode 0x%lx in icache.", mft_no
, na
.mft_no
);
1024 /* Balance the below iput(). */
1026 BUG_ON(vi
!= mft_vi
);
1028 vi
= ilookup5_nowait(sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
1032 * The base inode is not in icache, write this extent mft
1035 ntfs_debug("Base inode 0x%lx is not in icache, write the "
1036 "extent record.", na
.mft_no
);
1039 ntfs_debug("Base inode 0x%lx is in icache.", na
.mft_no
);
1041 * The base inode is in icache. Check if it has the extent inode
1042 * corresponding to this extent mft record attached.
1045 mutex_lock(&ni
->extent_lock
);
1046 if (ni
->nr_extents
<= 0) {
1048 * The base inode has no attached extent inodes, write this
1049 * extent mft record.
1051 mutex_unlock(&ni
->extent_lock
);
1053 ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1054 "write the extent record.", na
.mft_no
);
1057 /* Iterate over the attached extent inodes. */
1058 extent_nis
= ni
->ext
.extent_ntfs_inos
;
1059 for (eni
= NULL
, i
= 0; i
< ni
->nr_extents
; ++i
) {
1060 if (mft_no
== extent_nis
[i
]->mft_no
) {
1062 * Found the extent inode corresponding to this extent
1065 eni
= extent_nis
[i
];
1070 * If the extent inode was not attached to the base inode, write this
1071 * extent mft record.
1074 mutex_unlock(&ni
->extent_lock
);
1076 ntfs_debug("Extent inode 0x%lx is not attached to its base "
1077 "inode 0x%lx, write the extent record.",
1081 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1083 /* Take a reference to the extent ntfs inode. */
1084 atomic_inc(&eni
->count
);
1085 mutex_unlock(&ni
->extent_lock
);
1087 * Found the extent inode coresponding to this extent mft record.
1088 * Try to take the mft record lock.
1090 if (unlikely(!mutex_trylock(&eni
->mrec_lock
))) {
1091 atomic_dec(&eni
->count
);
1093 ntfs_debug("Extent mft record 0x%lx is already locked, do "
1094 "not write it.", mft_no
);
1097 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1099 if (NInoTestClearDirty(eni
))
1100 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1103 * The write has to occur while we hold the mft record lock so return
1104 * the locked extent ntfs inode.
1110 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
1114 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1115 * @vol: volume on which to search for a free mft record
1116 * @base_ni: open base inode if allocating an extent mft record or NULL
1118 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1121 * If @base_ni is NULL start the search at the default allocator position.
1123 * If @base_ni is not NULL start the search at the mft record after the base
1124 * mft record @base_ni.
1126 * Return the free mft record on success and -errno on error. An error code of
1127 * -ENOSPC means that there are no free mft records in the currently
1128 * initialized mft bitmap.
1130 * Locking: Caller must hold vol->mftbmp_lock for writing.
1132 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume
*vol
,
1133 ntfs_inode
*base_ni
)
1135 s64 pass_end
, ll
, data_pos
, pass_start
, ofs
, bit
;
1136 unsigned long flags
;
1137 struct address_space
*mftbmp_mapping
;
1140 unsigned int page_ofs
, size
;
1143 ntfs_debug("Searching for free mft record in the currently "
1144 "initialized mft bitmap.");
1145 mftbmp_mapping
= vol
->mftbmp_ino
->i_mapping
;
1147 * Set the end of the pass making sure we do not overflow the mft
1150 read_lock_irqsave(&NTFS_I(vol
->mft_ino
)->size_lock
, flags
);
1151 pass_end
= NTFS_I(vol
->mft_ino
)->allocated_size
>>
1152 vol
->mft_record_size_bits
;
1153 read_unlock_irqrestore(&NTFS_I(vol
->mft_ino
)->size_lock
, flags
);
1154 read_lock_irqsave(&NTFS_I(vol
->mftbmp_ino
)->size_lock
, flags
);
1155 ll
= NTFS_I(vol
->mftbmp_ino
)->initialized_size
<< 3;
1156 read_unlock_irqrestore(&NTFS_I(vol
->mftbmp_ino
)->size_lock
, flags
);
1161 data_pos
= vol
->mft_data_pos
;
1163 data_pos
= base_ni
->mft_no
+ 1;
1166 if (data_pos
>= pass_end
) {
1169 /* This happens on a freshly formatted volume. */
1170 if (data_pos
>= pass_end
)
1173 pass_start
= data_pos
;
1174 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1175 "pass_end 0x%llx, data_pos 0x%llx.", pass
,
1176 (long long)pass_start
, (long long)pass_end
,
1177 (long long)data_pos
);
1178 /* Loop until a free mft record is found. */
1179 for (; pass
<= 2;) {
1180 /* Cap size to pass_end. */
1181 ofs
= data_pos
>> 3;
1182 page_ofs
= ofs
& ~PAGE_MASK
;
1183 size
= PAGE_SIZE
- page_ofs
;
1184 ll
= ((pass_end
+ 7) >> 3) - ofs
;
1189 * If we are still within the active pass, search the next page
1193 page
= ntfs_map_page(mftbmp_mapping
,
1196 ntfs_error(vol
->sb
, "Failed to read mft "
1197 "bitmap, aborting.");
1198 return PTR_ERR(page
);
1200 buf
= (u8
*)page_address(page
) + page_ofs
;
1203 ntfs_debug("Before inner for loop: size 0x%x, "
1204 "data_pos 0x%llx, bit 0x%llx", size
,
1205 (long long)data_pos
, (long long)bit
);
1206 for (; bit
< size
&& data_pos
+ bit
< pass_end
;
1207 bit
&= ~7ull, bit
+= 8) {
1208 byte
= buf
+ (bit
>> 3);
1211 b
= ffz((unsigned long)*byte
);
1212 if (b
< 8 && b
>= (bit
& 7)) {
1213 ll
= data_pos
+ (bit
& ~7ull) + b
;
1214 if (unlikely(ll
> (1ll << 32))) {
1215 ntfs_unmap_page(page
);
1219 flush_dcache_page(page
);
1220 set_page_dirty(page
);
1221 ntfs_unmap_page(page
);
1222 ntfs_debug("Done. (Found and "
1223 "allocated mft record "
1229 ntfs_debug("After inner for loop: size 0x%x, "
1230 "data_pos 0x%llx, bit 0x%llx", size
,
1231 (long long)data_pos
, (long long)bit
);
1233 ntfs_unmap_page(page
);
1235 * If the end of the pass has not been reached yet,
1236 * continue searching the mft bitmap for a zero bit.
1238 if (data_pos
< pass_end
)
1241 /* Do the next pass. */
1244 * Starting the second pass, in which we scan the first
1245 * part of the zone which we omitted earlier.
1247 pass_end
= pass_start
;
1248 data_pos
= pass_start
= 24;
1249 ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1250 "0x%llx.", pass
, (long long)pass_start
,
1251 (long long)pass_end
);
1252 if (data_pos
>= pass_end
)
1256 /* No free mft records in currently initialized mft bitmap. */
1257 ntfs_debug("Done. (No free mft records left in currently initialized "
1263 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1264 * @vol: volume on which to extend the mft bitmap attribute
1266 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1268 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1271 * Return 0 on success and -errno on error.
1273 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1274 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1275 * writing and releases it before returning.
1276 * - This function takes vol->lcnbmp_lock for writing and releases it
1279 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume
*vol
)
1283 unsigned long flags
;
1285 ntfs_inode
*mft_ni
, *mftbmp_ni
;
1286 runlist_element
*rl
, *rl2
= NULL
;
1287 ntfs_attr_search_ctx
*ctx
= NULL
;
1289 ATTR_RECORD
*a
= NULL
;
1297 } status
= { 0, 0, 0 };
1299 ntfs_debug("Extending mft bitmap allocation.");
1300 mft_ni
= NTFS_I(vol
->mft_ino
);
1301 mftbmp_ni
= NTFS_I(vol
->mftbmp_ino
);
1303 * Determine the last lcn of the mft bitmap. The allocated size of the
1304 * mft bitmap cannot be zero so we are ok to do this.
1306 down_write(&mftbmp_ni
->runlist
.lock
);
1307 read_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
1308 ll
= mftbmp_ni
->allocated_size
;
1309 read_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
1310 rl
= ntfs_attr_find_vcn_nolock(mftbmp_ni
,
1311 (ll
- 1) >> vol
->cluster_size_bits
, NULL
);
1312 if (unlikely(IS_ERR(rl
) || !rl
->length
|| rl
->lcn
< 0)) {
1313 up_write(&mftbmp_ni
->runlist
.lock
);
1314 ntfs_error(vol
->sb
, "Failed to determine last allocated "
1315 "cluster of mft bitmap attribute.");
1322 lcn
= rl
->lcn
+ rl
->length
;
1323 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1326 * Attempt to get the cluster following the last allocated cluster by
1327 * hand as it may be in the MFT zone so the allocator would not give it
1331 page
= ntfs_map_page(vol
->lcnbmp_ino
->i_mapping
,
1334 up_write(&mftbmp_ni
->runlist
.lock
);
1335 ntfs_error(vol
->sb
, "Failed to read from lcn bitmap.");
1336 return PTR_ERR(page
);
1338 b
= (u8
*)page_address(page
) + (ll
& ~PAGE_MASK
);
1339 tb
= 1 << (lcn
& 7ull);
1340 down_write(&vol
->lcnbmp_lock
);
1341 if (*b
!= 0xff && !(*b
& tb
)) {
1342 /* Next cluster is free, allocate it. */
1344 flush_dcache_page(page
);
1345 set_page_dirty(page
);
1346 up_write(&vol
->lcnbmp_lock
);
1347 ntfs_unmap_page(page
);
1348 /* Update the mft bitmap runlist. */
1351 status
.added_cluster
= 1;
1352 ntfs_debug("Appending one cluster to mft bitmap.");
1354 up_write(&vol
->lcnbmp_lock
);
1355 ntfs_unmap_page(page
);
1356 /* Allocate a cluster from the DATA_ZONE. */
1357 rl2
= ntfs_cluster_alloc(vol
, rl
[1].vcn
, 1, lcn
, DATA_ZONE
,
1360 up_write(&mftbmp_ni
->runlist
.lock
);
1361 ntfs_error(vol
->sb
, "Failed to allocate a cluster for "
1363 return PTR_ERR(rl2
);
1365 rl
= ntfs_runlists_merge(mftbmp_ni
->runlist
.rl
, rl2
);
1367 up_write(&mftbmp_ni
->runlist
.lock
);
1368 ntfs_error(vol
->sb
, "Failed to merge runlists for mft "
1370 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
1371 ntfs_error(vol
->sb
, "Failed to deallocate "
1372 "allocated cluster.%s", es
);
1378 mftbmp_ni
->runlist
.rl
= rl
;
1379 status
.added_run
= 1;
1380 ntfs_debug("Adding one run to mft bitmap.");
1381 /* Find the last run in the new runlist. */
1382 for (; rl
[1].length
; rl
++)
1386 * Update the attribute record as well. Note: @rl is the last
1387 * (non-terminator) runlist element of mft bitmap.
1389 mrec
= map_mft_record(mft_ni
);
1391 ntfs_error(vol
->sb
, "Failed to map mft record.");
1392 ret
= PTR_ERR(mrec
);
1395 ctx
= ntfs_attr_get_search_ctx(mft_ni
, mrec
);
1396 if (unlikely(!ctx
)) {
1397 ntfs_error(vol
->sb
, "Failed to get search context.");
1401 ret
= ntfs_attr_lookup(mftbmp_ni
->type
, mftbmp_ni
->name
,
1402 mftbmp_ni
->name_len
, CASE_SENSITIVE
, rl
[1].vcn
, NULL
,
1404 if (unlikely(ret
)) {
1405 ntfs_error(vol
->sb
, "Failed to find last attribute extent of "
1406 "mft bitmap attribute.");
1412 ll
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
1413 /* Search back for the previous last allocated cluster of mft bitmap. */
1414 for (rl2
= rl
; rl2
> mftbmp_ni
->runlist
.rl
; rl2
--) {
1418 BUG_ON(ll
< rl2
->vcn
);
1419 BUG_ON(ll
>= rl2
->vcn
+ rl2
->length
);
1420 /* Get the size for the new mapping pairs array for this extent. */
1421 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, ll
, -1);
1422 if (unlikely(mp_size
<= 0)) {
1423 ntfs_error(vol
->sb
, "Get size for mapping pairs failed for "
1424 "mft bitmap attribute extent.");
1430 /* Expand the attribute record if necessary. */
1431 old_alen
= le32_to_cpu(a
->length
);
1432 ret
= ntfs_attr_record_resize(ctx
->mrec
, a
, mp_size
+
1433 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
1434 if (unlikely(ret
)) {
1435 if (ret
!= -ENOSPC
) {
1436 ntfs_error(vol
->sb
, "Failed to resize attribute "
1437 "record for mft bitmap attribute.");
1440 // TODO: Deal with this by moving this extent to a new mft
1441 // record or by starting a new extent in a new mft record or by
1442 // moving other attributes out of this mft record.
1443 // Note: It will need to be a special mft record and if none of
1444 // those are available it gets rather complicated...
1445 ntfs_error(vol
->sb
, "Not enough space in this mft record to "
1446 "accommodate extended mft bitmap attribute "
1447 "extent. Cannot handle this yet.");
1451 status
.mp_rebuilt
= 1;
1452 /* Generate the mapping pairs array directly into the attr record. */
1453 ret
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1454 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
1455 mp_size
, rl2
, ll
, -1, NULL
);
1456 if (unlikely(ret
)) {
1457 ntfs_error(vol
->sb
, "Failed to build mapping pairs array for "
1458 "mft bitmap attribute.");
1461 /* Update the highest_vcn. */
1462 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64(rl
[1].vcn
- 1);
1464 * We now have extended the mft bitmap allocated_size by one cluster.
1465 * Reflect this in the ntfs_inode structure and the attribute record.
1467 if (a
->data
.non_resident
.lowest_vcn
) {
1469 * We are not in the first attribute extent, switch to it, but
1470 * first ensure the changes will make it to disk later.
1472 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1473 mark_mft_record_dirty(ctx
->ntfs_ino
);
1474 ntfs_attr_reinit_search_ctx(ctx
);
1475 ret
= ntfs_attr_lookup(mftbmp_ni
->type
, mftbmp_ni
->name
,
1476 mftbmp_ni
->name_len
, CASE_SENSITIVE
, 0, NULL
,
1478 if (unlikely(ret
)) {
1479 ntfs_error(vol
->sb
, "Failed to find first attribute "
1480 "extent of mft bitmap attribute.");
1481 goto restore_undo_alloc
;
1485 write_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
1486 mftbmp_ni
->allocated_size
+= vol
->cluster_size
;
1487 a
->data
.non_resident
.allocated_size
=
1488 cpu_to_sle64(mftbmp_ni
->allocated_size
);
1489 write_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
1490 /* Ensure the changes make it to disk. */
1491 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1492 mark_mft_record_dirty(ctx
->ntfs_ino
);
1493 ntfs_attr_put_search_ctx(ctx
);
1494 unmap_mft_record(mft_ni
);
1495 up_write(&mftbmp_ni
->runlist
.lock
);
1496 ntfs_debug("Done.");
1499 ntfs_attr_reinit_search_ctx(ctx
);
1500 if (ntfs_attr_lookup(mftbmp_ni
->type
, mftbmp_ni
->name
,
1501 mftbmp_ni
->name_len
, CASE_SENSITIVE
, rl
[1].vcn
, NULL
,
1503 ntfs_error(vol
->sb
, "Failed to find last attribute extent of "
1504 "mft bitmap attribute.%s", es
);
1505 write_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
1506 mftbmp_ni
->allocated_size
+= vol
->cluster_size
;
1507 write_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
1508 ntfs_attr_put_search_ctx(ctx
);
1509 unmap_mft_record(mft_ni
);
1510 up_write(&mftbmp_ni
->runlist
.lock
);
1512 * The only thing that is now wrong is ->allocated_size of the
1513 * base attribute extent which chkdsk should be able to fix.
1519 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64(rl
[1].vcn
- 2);
1521 if (status
.added_cluster
) {
1522 /* Truncate the last run in the runlist by one cluster. */
1525 } else if (status
.added_run
) {
1527 /* Remove the last run from the runlist. */
1528 rl
->lcn
= rl
[1].lcn
;
1531 /* Deallocate the cluster. */
1532 down_write(&vol
->lcnbmp_lock
);
1533 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1534 ntfs_error(vol
->sb
, "Failed to free allocated cluster.%s", es
);
1537 up_write(&vol
->lcnbmp_lock
);
1538 if (status
.mp_rebuilt
) {
1539 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1540 a
->data
.non_resident
.mapping_pairs_offset
),
1541 old_alen
- le16_to_cpu(
1542 a
->data
.non_resident
.mapping_pairs_offset
),
1543 rl2
, ll
, -1, NULL
)) {
1544 ntfs_error(vol
->sb
, "Failed to restore mapping pairs "
1548 if (ntfs_attr_record_resize(ctx
->mrec
, a
, old_alen
)) {
1549 ntfs_error(vol
->sb
, "Failed to restore attribute "
1553 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1554 mark_mft_record_dirty(ctx
->ntfs_ino
);
1557 ntfs_attr_put_search_ctx(ctx
);
1559 unmap_mft_record(mft_ni
);
1560 up_write(&mftbmp_ni
->runlist
.lock
);
1565 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1566 * @vol: volume on which to extend the mft bitmap attribute
1568 * Extend the initialized portion of the mft bitmap attribute on the ntfs
1569 * volume @vol by 8 bytes.
1571 * Note: Only changes initialized_size and data_size, i.e. requires that
1572 * allocated_size is big enough to fit the new initialized_size.
1574 * Return 0 on success and -error on error.
1576 * Locking: Caller must hold vol->mftbmp_lock for writing.
1578 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume
*vol
)
1580 s64 old_data_size
, old_initialized_size
;
1581 unsigned long flags
;
1582 struct inode
*mftbmp_vi
;
1583 ntfs_inode
*mft_ni
, *mftbmp_ni
;
1584 ntfs_attr_search_ctx
*ctx
;
1589 ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1590 mft_ni
= NTFS_I(vol
->mft_ino
);
1591 mftbmp_vi
= vol
->mftbmp_ino
;
1592 mftbmp_ni
= NTFS_I(mftbmp_vi
);
1593 /* Get the attribute record. */
1594 mrec
= map_mft_record(mft_ni
);
1596 ntfs_error(vol
->sb
, "Failed to map mft record.");
1597 return PTR_ERR(mrec
);
1599 ctx
= ntfs_attr_get_search_ctx(mft_ni
, mrec
);
1600 if (unlikely(!ctx
)) {
1601 ntfs_error(vol
->sb
, "Failed to get search context.");
1605 ret
= ntfs_attr_lookup(mftbmp_ni
->type
, mftbmp_ni
->name
,
1606 mftbmp_ni
->name_len
, CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1607 if (unlikely(ret
)) {
1608 ntfs_error(vol
->sb
, "Failed to find first attribute extent of "
1609 "mft bitmap attribute.");
1615 write_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
1616 old_data_size
= i_size_read(mftbmp_vi
);
1617 old_initialized_size
= mftbmp_ni
->initialized_size
;
1619 * We can simply update the initialized_size before filling the space
1620 * with zeroes because the caller is holding the mft bitmap lock for
1621 * writing which ensures that no one else is trying to access the data.
1623 mftbmp_ni
->initialized_size
+= 8;
1624 a
->data
.non_resident
.initialized_size
=
1625 cpu_to_sle64(mftbmp_ni
->initialized_size
);
1626 if (mftbmp_ni
->initialized_size
> old_data_size
) {
1627 i_size_write(mftbmp_vi
, mftbmp_ni
->initialized_size
);
1628 a
->data
.non_resident
.data_size
=
1629 cpu_to_sle64(mftbmp_ni
->initialized_size
);
1631 write_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
1632 /* Ensure the changes make it to disk. */
1633 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1634 mark_mft_record_dirty(ctx
->ntfs_ino
);
1635 ntfs_attr_put_search_ctx(ctx
);
1636 unmap_mft_record(mft_ni
);
1637 /* Initialize the mft bitmap attribute value with zeroes. */
1638 ret
= ntfs_attr_set(mftbmp_ni
, old_initialized_size
, 8, 0);
1640 ntfs_debug("Done. (Wrote eight initialized bytes to mft "
1644 ntfs_error(vol
->sb
, "Failed to write to mft bitmap.");
1645 /* Try to recover from the error. */
1646 mrec
= map_mft_record(mft_ni
);
1648 ntfs_error(vol
->sb
, "Failed to map mft record.%s", es
);
1652 ctx
= ntfs_attr_get_search_ctx(mft_ni
, mrec
);
1653 if (unlikely(!ctx
)) {
1654 ntfs_error(vol
->sb
, "Failed to get search context.%s", es
);
1658 if (ntfs_attr_lookup(mftbmp_ni
->type
, mftbmp_ni
->name
,
1659 mftbmp_ni
->name_len
, CASE_SENSITIVE
, 0, NULL
, 0, ctx
)) {
1660 ntfs_error(vol
->sb
, "Failed to find first attribute extent of "
1661 "mft bitmap attribute.%s", es
);
1664 ntfs_attr_put_search_ctx(ctx
);
1666 unmap_mft_record(mft_ni
);
1670 write_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
1671 mftbmp_ni
->initialized_size
= old_initialized_size
;
1672 a
->data
.non_resident
.initialized_size
=
1673 cpu_to_sle64(old_initialized_size
);
1674 if (i_size_read(mftbmp_vi
) != old_data_size
) {
1675 i_size_write(mftbmp_vi
, old_data_size
);
1676 a
->data
.non_resident
.data_size
= cpu_to_sle64(old_data_size
);
1678 write_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
1679 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1680 mark_mft_record_dirty(ctx
->ntfs_ino
);
1681 ntfs_attr_put_search_ctx(ctx
);
1682 unmap_mft_record(mft_ni
);
1684 read_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
1685 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1686 "data_size 0x%llx, initialized_size 0x%llx.",
1687 (long long)mftbmp_ni
->allocated_size
,
1688 (long long)i_size_read(mftbmp_vi
),
1689 (long long)mftbmp_ni
->initialized_size
);
1690 read_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
1697 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1698 * @vol: volume on which to extend the mft data attribute
1700 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1701 * worth of clusters or if not enough space for this by one mft record worth
1704 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1707 * Return 0 on success and -errno on error.
1709 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1710 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1711 * writing and releases it before returning.
1712 * - This function calls functions which take vol->lcnbmp_lock for
1713 * writing and release it before returning.
1715 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume
*vol
)
1720 unsigned long flags
;
1722 runlist_element
*rl
, *rl2
;
1723 ntfs_attr_search_ctx
*ctx
= NULL
;
1725 ATTR_RECORD
*a
= NULL
;
1728 bool mp_rebuilt
= false;
1730 ntfs_debug("Extending mft data allocation.");
1731 mft_ni
= NTFS_I(vol
->mft_ino
);
1733 * Determine the preferred allocation location, i.e. the last lcn of
1734 * the mft data attribute. The allocated size of the mft data
1735 * attribute cannot be zero so we are ok to do this.
1737 down_write(&mft_ni
->runlist
.lock
);
1738 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
1739 ll
= mft_ni
->allocated_size
;
1740 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
1741 rl
= ntfs_attr_find_vcn_nolock(mft_ni
,
1742 (ll
- 1) >> vol
->cluster_size_bits
, NULL
);
1743 if (unlikely(IS_ERR(rl
) || !rl
->length
|| rl
->lcn
< 0)) {
1744 up_write(&mft_ni
->runlist
.lock
);
1745 ntfs_error(vol
->sb
, "Failed to determine last allocated "
1746 "cluster of mft data attribute.");
1753 lcn
= rl
->lcn
+ rl
->length
;
1754 ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn
);
1755 /* Minimum allocation is one mft record worth of clusters. */
1756 min_nr
= vol
->mft_record_size
>> vol
->cluster_size_bits
;
1759 /* Want to allocate 16 mft records worth of clusters. */
1760 nr
= vol
->mft_record_size
<< 4 >> vol
->cluster_size_bits
;
1763 /* Ensure we do not go above 2^32-1 mft records. */
1764 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
1765 ll
= mft_ni
->allocated_size
;
1766 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
1767 if (unlikely((ll
+ (nr
<< vol
->cluster_size_bits
)) >>
1768 vol
->mft_record_size_bits
>= (1ll << 32))) {
1770 if (unlikely((ll
+ (nr
<< vol
->cluster_size_bits
)) >>
1771 vol
->mft_record_size_bits
>= (1ll << 32))) {
1772 ntfs_warning(vol
->sb
, "Cannot allocate mft record "
1773 "because the maximum number of inodes "
1774 "(2^32) has already been reached.");
1775 up_write(&mft_ni
->runlist
.lock
);
1779 ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1780 nr
> min_nr
? "default" : "minimal", (long long)nr
);
1781 old_last_vcn
= rl
[1].vcn
;
1783 rl2
= ntfs_cluster_alloc(vol
, old_last_vcn
, nr
, lcn
, MFT_ZONE
,
1785 if (likely(!IS_ERR(rl2
)))
1787 if (PTR_ERR(rl2
) != -ENOSPC
|| nr
== min_nr
) {
1788 ntfs_error(vol
->sb
, "Failed to allocate the minimal "
1789 "number of clusters (%lli) for the "
1790 "mft data attribute.", (long long)nr
);
1791 up_write(&mft_ni
->runlist
.lock
);
1792 return PTR_ERR(rl2
);
1795 * There is not enough space to do the allocation, but there
1796 * might be enough space to do a minimal allocation so try that
1800 ntfs_debug("Retrying mft data allocation with minimal cluster "
1801 "count %lli.", (long long)nr
);
1803 rl
= ntfs_runlists_merge(mft_ni
->runlist
.rl
, rl2
);
1805 up_write(&mft_ni
->runlist
.lock
);
1806 ntfs_error(vol
->sb
, "Failed to merge runlists for mft data "
1808 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
1809 ntfs_error(vol
->sb
, "Failed to deallocate clusters "
1810 "from the mft data attribute.%s", es
);
1816 mft_ni
->runlist
.rl
= rl
;
1817 ntfs_debug("Allocated %lli clusters.", (long long)nr
);
1818 /* Find the last run in the new runlist. */
1819 for (; rl
[1].length
; rl
++)
1821 /* Update the attribute record as well. */
1822 mrec
= map_mft_record(mft_ni
);
1824 ntfs_error(vol
->sb
, "Failed to map mft record.");
1825 ret
= PTR_ERR(mrec
);
1828 ctx
= ntfs_attr_get_search_ctx(mft_ni
, mrec
);
1829 if (unlikely(!ctx
)) {
1830 ntfs_error(vol
->sb
, "Failed to get search context.");
1834 ret
= ntfs_attr_lookup(mft_ni
->type
, mft_ni
->name
, mft_ni
->name_len
,
1835 CASE_SENSITIVE
, rl
[1].vcn
, NULL
, 0, ctx
);
1836 if (unlikely(ret
)) {
1837 ntfs_error(vol
->sb
, "Failed to find last attribute extent of "
1838 "mft data attribute.");
1844 ll
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
1845 /* Search back for the previous last allocated cluster of mft bitmap. */
1846 for (rl2
= rl
; rl2
> mft_ni
->runlist
.rl
; rl2
--) {
1850 BUG_ON(ll
< rl2
->vcn
);
1851 BUG_ON(ll
>= rl2
->vcn
+ rl2
->length
);
1852 /* Get the size for the new mapping pairs array for this extent. */
1853 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, ll
, -1);
1854 if (unlikely(mp_size
<= 0)) {
1855 ntfs_error(vol
->sb
, "Get size for mapping pairs failed for "
1856 "mft data attribute extent.");
1862 /* Expand the attribute record if necessary. */
1863 old_alen
= le32_to_cpu(a
->length
);
1864 ret
= ntfs_attr_record_resize(ctx
->mrec
, a
, mp_size
+
1865 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
1866 if (unlikely(ret
)) {
1867 if (ret
!= -ENOSPC
) {
1868 ntfs_error(vol
->sb
, "Failed to resize attribute "
1869 "record for mft data attribute.");
1872 // TODO: Deal with this by moving this extent to a new mft
1873 // record or by starting a new extent in a new mft record or by
1874 // moving other attributes out of this mft record.
1875 // Note: Use the special reserved mft records and ensure that
1876 // this extent is not required to find the mft record in
1877 // question. If no free special records left we would need to
1878 // move an existing record away, insert ours in its place, and
1879 // then place the moved record into the newly allocated space
1880 // and we would then need to update all references to this mft
1881 // record appropriately. This is rather complicated...
1882 ntfs_error(vol
->sb
, "Not enough space in this mft record to "
1883 "accommodate extended mft data attribute "
1884 "extent. Cannot handle this yet.");
1889 /* Generate the mapping pairs array directly into the attr record. */
1890 ret
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1891 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
1892 mp_size
, rl2
, ll
, -1, NULL
);
1893 if (unlikely(ret
)) {
1894 ntfs_error(vol
->sb
, "Failed to build mapping pairs array of "
1895 "mft data attribute.");
1898 /* Update the highest_vcn. */
1899 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64(rl
[1].vcn
- 1);
1901 * We now have extended the mft data allocated_size by nr clusters.
1902 * Reflect this in the ntfs_inode structure and the attribute record.
1903 * @rl is the last (non-terminator) runlist element of mft data
1906 if (a
->data
.non_resident
.lowest_vcn
) {
1908 * We are not in the first attribute extent, switch to it, but
1909 * first ensure the changes will make it to disk later.
1911 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1912 mark_mft_record_dirty(ctx
->ntfs_ino
);
1913 ntfs_attr_reinit_search_ctx(ctx
);
1914 ret
= ntfs_attr_lookup(mft_ni
->type
, mft_ni
->name
,
1915 mft_ni
->name_len
, CASE_SENSITIVE
, 0, NULL
, 0,
1917 if (unlikely(ret
)) {
1918 ntfs_error(vol
->sb
, "Failed to find first attribute "
1919 "extent of mft data attribute.");
1920 goto restore_undo_alloc
;
1924 write_lock_irqsave(&mft_ni
->size_lock
, flags
);
1925 mft_ni
->allocated_size
+= nr
<< vol
->cluster_size_bits
;
1926 a
->data
.non_resident
.allocated_size
=
1927 cpu_to_sle64(mft_ni
->allocated_size
);
1928 write_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
1929 /* Ensure the changes make it to disk. */
1930 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1931 mark_mft_record_dirty(ctx
->ntfs_ino
);
1932 ntfs_attr_put_search_ctx(ctx
);
1933 unmap_mft_record(mft_ni
);
1934 up_write(&mft_ni
->runlist
.lock
);
1935 ntfs_debug("Done.");
1938 ntfs_attr_reinit_search_ctx(ctx
);
1939 if (ntfs_attr_lookup(mft_ni
->type
, mft_ni
->name
, mft_ni
->name_len
,
1940 CASE_SENSITIVE
, rl
[1].vcn
, NULL
, 0, ctx
)) {
1941 ntfs_error(vol
->sb
, "Failed to find last attribute extent of "
1942 "mft data attribute.%s", es
);
1943 write_lock_irqsave(&mft_ni
->size_lock
, flags
);
1944 mft_ni
->allocated_size
+= nr
<< vol
->cluster_size_bits
;
1945 write_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
1946 ntfs_attr_put_search_ctx(ctx
);
1947 unmap_mft_record(mft_ni
);
1948 up_write(&mft_ni
->runlist
.lock
);
1950 * The only thing that is now wrong is ->allocated_size of the
1951 * base attribute extent which chkdsk should be able to fix.
1956 ctx
->attr
->data
.non_resident
.highest_vcn
=
1957 cpu_to_sle64(old_last_vcn
- 1);
1959 if (ntfs_cluster_free(mft_ni
, old_last_vcn
, -1, ctx
) < 0) {
1960 ntfs_error(vol
->sb
, "Failed to free clusters from mft data "
1961 "attribute.%s", es
);
1965 if (ntfs_rl_truncate_nolock(vol
, &mft_ni
->runlist
, old_last_vcn
)) {
1966 ntfs_error(vol
->sb
, "Failed to truncate mft data attribute "
1970 if (mp_rebuilt
&& !IS_ERR(ctx
->mrec
)) {
1971 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1972 a
->data
.non_resident
.mapping_pairs_offset
),
1973 old_alen
- le16_to_cpu(
1974 a
->data
.non_resident
.mapping_pairs_offset
),
1975 rl2
, ll
, -1, NULL
)) {
1976 ntfs_error(vol
->sb
, "Failed to restore mapping pairs "
1980 if (ntfs_attr_record_resize(ctx
->mrec
, a
, old_alen
)) {
1981 ntfs_error(vol
->sb
, "Failed to restore attribute "
1985 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1986 mark_mft_record_dirty(ctx
->ntfs_ino
);
1987 } else if (IS_ERR(ctx
->mrec
)) {
1988 ntfs_error(vol
->sb
, "Failed to restore attribute search "
1993 ntfs_attr_put_search_ctx(ctx
);
1995 unmap_mft_record(mft_ni
);
1996 up_write(&mft_ni
->runlist
.lock
);
2001 * ntfs_mft_record_layout - layout an mft record into a memory buffer
2002 * @vol: volume to which the mft record will belong
2003 * @mft_no: mft reference specifying the mft record number
2004 * @m: destination buffer of size >= @vol->mft_record_size bytes
2006 * Layout an empty, unused mft record with the mft record number @mft_no into
2007 * the buffer @m. The volume @vol is needed because the mft record structure
2008 * was modified in NTFS 3.1 so we need to know which volume version this mft
2009 * record will be used on.
2011 * Return 0 on success and -errno on error.
2013 static int ntfs_mft_record_layout(const ntfs_volume
*vol
, const s64 mft_no
,
2018 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no
);
2019 if (mft_no
>= (1ll << 32)) {
2020 ntfs_error(vol
->sb
, "Mft record number 0x%llx exceeds "
2021 "maximum of 2^32.", (long long)mft_no
);
2024 /* Start by clearing the whole mft record to gives us a clean slate. */
2025 memset(m
, 0, vol
->mft_record_size
);
2026 /* Aligned to 2-byte boundary. */
2027 if (vol
->major_ver
< 3 || (vol
->major_ver
== 3 && !vol
->minor_ver
))
2028 m
->usa_ofs
= cpu_to_le16((sizeof(MFT_RECORD_OLD
) + 1) & ~1);
2030 m
->usa_ofs
= cpu_to_le16((sizeof(MFT_RECORD
) + 1) & ~1);
2032 * Set the NTFS 3.1+ specific fields while we know that the
2033 * volume version is 3.1+.
2036 m
->mft_record_number
= cpu_to_le32((u32
)mft_no
);
2038 m
->magic
= magic_FILE
;
2039 if (vol
->mft_record_size
>= NTFS_BLOCK_SIZE
)
2040 m
->usa_count
= cpu_to_le16(vol
->mft_record_size
/
2041 NTFS_BLOCK_SIZE
+ 1);
2043 m
->usa_count
= cpu_to_le16(1);
2044 ntfs_warning(vol
->sb
, "Sector size is bigger than mft record "
2045 "size. Setting usa_count to 1. If chkdsk "
2046 "reports this as corruption, please email "
2047 "linux-ntfs-dev@lists.sourceforge.net stating "
2048 "that you saw this message and that the "
2049 "modified filesystem created was corrupt. "
2052 /* Set the update sequence number to 1. */
2053 *(le16
*)((u8
*)m
+ le16_to_cpu(m
->usa_ofs
)) = cpu_to_le16(1);
2055 m
->sequence_number
= cpu_to_le16(1);
2058 * Place the attributes straight after the update sequence array,
2059 * aligned to 8-byte boundary.
2061 m
->attrs_offset
= cpu_to_le16((le16_to_cpu(m
->usa_ofs
) +
2062 (le16_to_cpu(m
->usa_count
) << 1) + 7) & ~7);
2065 * Using attrs_offset plus eight bytes (for the termination attribute).
2066 * attrs_offset is already aligned to 8-byte boundary, so no need to
2069 m
->bytes_in_use
= cpu_to_le32(le16_to_cpu(m
->attrs_offset
) + 8);
2070 m
->bytes_allocated
= cpu_to_le32(vol
->mft_record_size
);
2071 m
->base_mft_record
= 0;
2072 m
->next_attr_instance
= 0;
2073 /* Add the termination attribute. */
2074 a
= (ATTR_RECORD
*)((u8
*)m
+ le16_to_cpu(m
->attrs_offset
));
2077 ntfs_debug("Done.");
2082 * ntfs_mft_record_format - format an mft record on an ntfs volume
2083 * @vol: volume on which to format the mft record
2084 * @mft_no: mft record number to format
2086 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2087 * mft record into the appropriate place of the mft data attribute. This is
2088 * used when extending the mft data attribute.
2090 * Return 0 on success and -errno on error.
2092 static int ntfs_mft_record_format(const ntfs_volume
*vol
, const s64 mft_no
)
2095 struct inode
*mft_vi
= vol
->mft_ino
;
2098 pgoff_t index
, end_index
;
2102 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no
);
2104 * The index into the page cache and the offset within the page cache
2105 * page of the wanted mft record.
2107 index
= mft_no
<< vol
->mft_record_size_bits
>> PAGE_SHIFT
;
2108 ofs
= (mft_no
<< vol
->mft_record_size_bits
) & ~PAGE_MASK
;
2109 /* The maximum valid index into the page cache for $MFT's data. */
2110 i_size
= i_size_read(mft_vi
);
2111 end_index
= i_size
>> PAGE_SHIFT
;
2112 if (unlikely(index
>= end_index
)) {
2113 if (unlikely(index
> end_index
|| ofs
+ vol
->mft_record_size
>=
2114 (i_size
& ~PAGE_MASK
))) {
2115 ntfs_error(vol
->sb
, "Tried to format non-existing mft "
2116 "record 0x%llx.", (long long)mft_no
);
2120 /* Read, map, and pin the page containing the mft record. */
2121 page
= ntfs_map_page(mft_vi
->i_mapping
, index
);
2123 ntfs_error(vol
->sb
, "Failed to map page containing mft record "
2124 "to format 0x%llx.", (long long)mft_no
);
2125 return PTR_ERR(page
);
2128 BUG_ON(!PageUptodate(page
));
2129 ClearPageUptodate(page
);
2130 m
= (MFT_RECORD
*)((u8
*)page_address(page
) + ofs
);
2131 err
= ntfs_mft_record_layout(vol
, mft_no
, m
);
2132 if (unlikely(err
)) {
2133 ntfs_error(vol
->sb
, "Failed to layout mft record 0x%llx.",
2135 SetPageUptodate(page
);
2137 ntfs_unmap_page(page
);
2140 flush_dcache_page(page
);
2141 SetPageUptodate(page
);
2144 * Make sure the mft record is written out to disk. We could use
2145 * ilookup5() to check if an inode is in icache and so on but this is
2146 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2148 mark_ntfs_record_dirty(page
, ofs
);
2149 ntfs_unmap_page(page
);
2150 ntfs_debug("Done.");
2155 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2156 * @vol: [IN] volume on which to allocate the mft record
2157 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0
2158 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL
2159 * @mrec: [OUT] on successful return this is the mapped mft record
2161 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2163 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2164 * direvctory inode, and allocate it at the default allocator position. In
2165 * this case @mode is the file mode as given to us by the caller. We in
2166 * particular use @mode to distinguish whether a file or a directory is being
2167 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2169 * If @base_ni is not NULL make the allocated mft record an extent record,
2170 * allocate it starting at the mft record after the base mft record and attach
2171 * the allocated and opened ntfs inode to the base inode @base_ni. In this
2172 * case @mode must be 0 as it is meaningless for extent inodes.
2174 * You need to check the return value with IS_ERR(). If false, the function
2175 * was successful and the return value is the now opened ntfs inode of the
2176 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned,
2177 * and locked mft record. If IS_ERR() is true, the function failed and the
2178 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in
2181 * Allocation strategy:
2183 * To find a free mft record, we scan the mft bitmap for a zero bit. To
2184 * optimize this we start scanning at the place specified by @base_ni or if
2185 * @base_ni is NULL we start where we last stopped and we perform wrap around
2186 * when we reach the end. Note, we do not try to allocate mft records below
2187 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2188 * to 24 are special in that they are used for storing extension mft records
2189 * for the $DATA attribute of $MFT. This is required to avoid the possibility
2190 * of creating a runlist with a circular dependency which once written to disk
2191 * can never be read in again. Windows will only use records 16 to 24 for
2192 * normal files if the volume is completely out of space. We never use them
2193 * which means that when the volume is really out of space we cannot create any
2194 * more files while Windows can still create up to 8 small files. We can start
2195 * doing this at some later time, it does not matter much for now.
2197 * When scanning the mft bitmap, we only search up to the last allocated mft
2198 * record. If there are no free records left in the range 24 to number of
2199 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2200 * create free mft records. We extend the allocated size of $MFT/$DATA by 16
2201 * records at a time or one cluster, if cluster size is above 16kiB. If there
2202 * is not sufficient space to do this, we try to extend by a single mft record
2203 * or one cluster, if cluster size is above the mft record size.
2205 * No matter how many mft records we allocate, we initialize only the first
2206 * allocated mft record, incrementing mft data size and initialized size
2207 * accordingly, open an ntfs_inode for it and return it to the caller, unless
2208 * there are less than 24 mft records, in which case we allocate and initialize
2209 * mft records until we reach record 24 which we consider as the first free mft
2210 * record for use by normal files.
2212 * If during any stage we overflow the initialized data in the mft bitmap, we
2213 * extend the initialized size (and data size) by 8 bytes, allocating another
2214 * cluster if required. The bitmap data size has to be at least equal to the
2215 * number of mft records in the mft, but it can be bigger, in which case the
2216 * superflous bits are padded with zeroes.
2218 * Thus, when we return successfully (IS_ERR() is false), we will have:
2219 * - initialized / extended the mft bitmap if necessary,
2220 * - initialized / extended the mft data if necessary,
2221 * - set the bit corresponding to the mft record being allocated in the
2223 * - opened an ntfs_inode for the allocated mft record, and we will have
2224 * - returned the ntfs_inode as well as the allocated mapped, pinned, and
2225 * locked mft record.
2227 * On error, the volume will be left in a consistent state and no record will
2228 * be allocated. If rolling back a partial operation fails, we may leave some
2229 * inconsistent metadata in which case we set NVolErrors() so the volume is
2230 * left dirty when unmounted.
2232 * Note, this function cannot make use of most of the normal functions, like
2233 * for example for attribute resizing, etc, because when the run list overflows
2234 * the base mft record and an attribute list is used, it is very important that
2235 * the extension mft records used to store the $DATA attribute of $MFT can be
2236 * reached without having to read the information contained inside them, as
2237 * this would make it impossible to find them in the first place after the
2238 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this
2239 * rule because the bitmap is not essential for finding the mft records, but on
2240 * the other hand, handling the bitmap in this special way would make life
2241 * easier because otherwise there might be circular invocations of functions
2242 * when reading the bitmap.
2244 ntfs_inode
*ntfs_mft_record_alloc(ntfs_volume
*vol
, const int mode
,
2245 ntfs_inode
*base_ni
, MFT_RECORD
**mrec
)
2247 s64 ll
, bit
, old_data_initialized
, old_data_size
;
2248 unsigned long flags
;
2251 ntfs_inode
*mft_ni
, *mftbmp_ni
, *ni
;
2252 ntfs_attr_search_ctx
*ctx
;
2259 bool record_formatted
= false;
2262 ntfs_debug("Entering (allocating an extent mft record for "
2263 "base mft record 0x%llx).",
2264 (long long)base_ni
->mft_no
);
2265 /* @mode and @base_ni are mutually exclusive. */
2268 ntfs_debug("Entering (allocating a base mft record).");
2270 /* @mode and @base_ni are mutually exclusive. */
2272 /* We only support creation of normal files and directories. */
2273 if (!S_ISREG(mode
) && !S_ISDIR(mode
))
2274 return ERR_PTR(-EOPNOTSUPP
);
2277 mft_ni
= NTFS_I(vol
->mft_ino
);
2278 mftbmp_ni
= NTFS_I(vol
->mftbmp_ino
);
2279 down_write(&vol
->mftbmp_lock
);
2280 bit
= ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol
, base_ni
);
2282 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2284 goto have_alloc_rec
;
2286 if (bit
!= -ENOSPC
) {
2287 up_write(&vol
->mftbmp_lock
);
2288 return ERR_PTR(bit
);
2291 * No free mft records left. If the mft bitmap already covers more
2292 * than the currently used mft records, the next records are all free,
2293 * so we can simply allocate the first unused mft record.
2294 * Note: We also have to make sure that the mft bitmap at least covers
2295 * the first 24 mft records as they are special and whilst they may not
2296 * be in use, we do not allocate from them.
2298 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2299 ll
= mft_ni
->initialized_size
>> vol
->mft_record_size_bits
;
2300 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2301 read_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
2302 old_data_initialized
= mftbmp_ni
->initialized_size
;
2303 read_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
2304 if (old_data_initialized
<< 3 > ll
&& old_data_initialized
> 3) {
2308 if (unlikely(bit
>= (1ll << 32)))
2310 ntfs_debug("Found free record (#2), bit 0x%llx.",
2312 goto found_free_rec
;
2315 * The mft bitmap needs to be expanded until it covers the first unused
2316 * mft record that we can allocate.
2317 * Note: The smallest mft record we allocate is mft record 24.
2319 bit
= old_data_initialized
<< 3;
2320 if (unlikely(bit
>= (1ll << 32)))
2322 read_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
2323 old_data_size
= mftbmp_ni
->allocated_size
;
2324 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2325 "data_size 0x%llx, initialized_size 0x%llx.",
2326 (long long)old_data_size
,
2327 (long long)i_size_read(vol
->mftbmp_ino
),
2328 (long long)old_data_initialized
);
2329 read_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
2330 if (old_data_initialized
+ 8 > old_data_size
) {
2331 /* Need to extend bitmap by one more cluster. */
2332 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2333 err
= ntfs_mft_bitmap_extend_allocation_nolock(vol
);
2334 if (unlikely(err
)) {
2335 up_write(&vol
->mftbmp_lock
);
2339 read_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
2340 ntfs_debug("Status of mftbmp after allocation extension: "
2341 "allocated_size 0x%llx, data_size 0x%llx, "
2342 "initialized_size 0x%llx.",
2343 (long long)mftbmp_ni
->allocated_size
,
2344 (long long)i_size_read(vol
->mftbmp_ino
),
2345 (long long)mftbmp_ni
->initialized_size
);
2346 read_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
2350 * We now have sufficient allocated space, extend the initialized_size
2351 * as well as the data_size if necessary and fill the new space with
2354 err
= ntfs_mft_bitmap_extend_initialized_nolock(vol
);
2355 if (unlikely(err
)) {
2356 up_write(&vol
->mftbmp_lock
);
2360 read_lock_irqsave(&mftbmp_ni
->size_lock
, flags
);
2361 ntfs_debug("Status of mftbmp after initialized extension: "
2362 "allocated_size 0x%llx, data_size 0x%llx, "
2363 "initialized_size 0x%llx.",
2364 (long long)mftbmp_ni
->allocated_size
,
2365 (long long)i_size_read(vol
->mftbmp_ino
),
2366 (long long)mftbmp_ni
->initialized_size
);
2367 read_unlock_irqrestore(&mftbmp_ni
->size_lock
, flags
);
2369 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit
);
2371 /* @bit is the found free mft record, allocate it in the mft bitmap. */
2372 ntfs_debug("At found_free_rec.");
2373 err
= ntfs_bitmap_set_bit(vol
->mftbmp_ino
, bit
);
2374 if (unlikely(err
)) {
2375 ntfs_error(vol
->sb
, "Failed to allocate bit in mft bitmap.");
2376 up_write(&vol
->mftbmp_lock
);
2379 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit
);
2382 * The mft bitmap is now uptodate. Deal with mft data attribute now.
2383 * Note, we keep hold of the mft bitmap lock for writing until all
2384 * modifications to the mft data attribute are complete, too, as they
2385 * will impact decisions for mft bitmap and mft record allocation done
2386 * by a parallel allocation and if the lock is not maintained a
2387 * parallel allocation could allocate the same mft record as this one.
2389 ll
= (bit
+ 1) << vol
->mft_record_size_bits
;
2390 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2391 old_data_initialized
= mft_ni
->initialized_size
;
2392 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2393 if (ll
<= old_data_initialized
) {
2394 ntfs_debug("Allocated mft record already initialized.");
2395 goto mft_rec_already_initialized
;
2397 ntfs_debug("Initializing allocated mft record.");
2399 * The mft record is outside the initialized data. Extend the mft data
2400 * attribute until it covers the allocated record. The loop is only
2401 * actually traversed more than once when a freshly formatted volume is
2402 * first written to so it optimizes away nicely in the common case.
2404 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2405 ntfs_debug("Status of mft data before extension: "
2406 "allocated_size 0x%llx, data_size 0x%llx, "
2407 "initialized_size 0x%llx.",
2408 (long long)mft_ni
->allocated_size
,
2409 (long long)i_size_read(vol
->mft_ino
),
2410 (long long)mft_ni
->initialized_size
);
2411 while (ll
> mft_ni
->allocated_size
) {
2412 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2413 err
= ntfs_mft_data_extend_allocation_nolock(vol
);
2414 if (unlikely(err
)) {
2415 ntfs_error(vol
->sb
, "Failed to extend mft data "
2417 goto undo_mftbmp_alloc_nolock
;
2419 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2420 ntfs_debug("Status of mft data after allocation extension: "
2421 "allocated_size 0x%llx, data_size 0x%llx, "
2422 "initialized_size 0x%llx.",
2423 (long long)mft_ni
->allocated_size
,
2424 (long long)i_size_read(vol
->mft_ino
),
2425 (long long)mft_ni
->initialized_size
);
2427 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2429 * Extend mft data initialized size (and data size of course) to reach
2430 * the allocated mft record, formatting the mft records allong the way.
2431 * Note: We only modify the ntfs_inode structure as that is all that is
2432 * needed by ntfs_mft_record_format(). We will update the attribute
2433 * record itself in one fell swoop later on.
2435 write_lock_irqsave(&mft_ni
->size_lock
, flags
);
2436 old_data_initialized
= mft_ni
->initialized_size
;
2437 old_data_size
= vol
->mft_ino
->i_size
;
2438 while (ll
> mft_ni
->initialized_size
) {
2439 s64 new_initialized_size
, mft_no
;
2441 new_initialized_size
= mft_ni
->initialized_size
+
2442 vol
->mft_record_size
;
2443 mft_no
= mft_ni
->initialized_size
>> vol
->mft_record_size_bits
;
2444 if (new_initialized_size
> i_size_read(vol
->mft_ino
))
2445 i_size_write(vol
->mft_ino
, new_initialized_size
);
2446 write_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2447 ntfs_debug("Initializing mft record 0x%llx.",
2449 err
= ntfs_mft_record_format(vol
, mft_no
);
2450 if (unlikely(err
)) {
2451 ntfs_error(vol
->sb
, "Failed to format mft record.");
2452 goto undo_data_init
;
2454 write_lock_irqsave(&mft_ni
->size_lock
, flags
);
2455 mft_ni
->initialized_size
= new_initialized_size
;
2457 write_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2458 record_formatted
= true;
2459 /* Update the mft data attribute record to reflect the new sizes. */
2460 m
= map_mft_record(mft_ni
);
2462 ntfs_error(vol
->sb
, "Failed to map mft record.");
2464 goto undo_data_init
;
2466 ctx
= ntfs_attr_get_search_ctx(mft_ni
, m
);
2467 if (unlikely(!ctx
)) {
2468 ntfs_error(vol
->sb
, "Failed to get search context.");
2470 unmap_mft_record(mft_ni
);
2471 goto undo_data_init
;
2473 err
= ntfs_attr_lookup(mft_ni
->type
, mft_ni
->name
, mft_ni
->name_len
,
2474 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2475 if (unlikely(err
)) {
2476 ntfs_error(vol
->sb
, "Failed to find first attribute extent of "
2477 "mft data attribute.");
2478 ntfs_attr_put_search_ctx(ctx
);
2479 unmap_mft_record(mft_ni
);
2480 goto undo_data_init
;
2483 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2484 a
->data
.non_resident
.initialized_size
=
2485 cpu_to_sle64(mft_ni
->initialized_size
);
2486 a
->data
.non_resident
.data_size
=
2487 cpu_to_sle64(i_size_read(vol
->mft_ino
));
2488 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2489 /* Ensure the changes make it to disk. */
2490 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2491 mark_mft_record_dirty(ctx
->ntfs_ino
);
2492 ntfs_attr_put_search_ctx(ctx
);
2493 unmap_mft_record(mft_ni
);
2494 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2495 ntfs_debug("Status of mft data after mft record initialization: "
2496 "allocated_size 0x%llx, data_size 0x%llx, "
2497 "initialized_size 0x%llx.",
2498 (long long)mft_ni
->allocated_size
,
2499 (long long)i_size_read(vol
->mft_ino
),
2500 (long long)mft_ni
->initialized_size
);
2501 BUG_ON(i_size_read(vol
->mft_ino
) > mft_ni
->allocated_size
);
2502 BUG_ON(mft_ni
->initialized_size
> i_size_read(vol
->mft_ino
));
2503 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2504 mft_rec_already_initialized
:
2506 * We can finally drop the mft bitmap lock as the mft data attribute
2507 * has been fully updated. The only disparity left is that the
2508 * allocated mft record still needs to be marked as in use to match the
2509 * set bit in the mft bitmap but this is actually not a problem since
2510 * this mft record is not referenced from anywhere yet and the fact
2511 * that it is allocated in the mft bitmap means that no-one will try to
2512 * allocate it either.
2514 up_write(&vol
->mftbmp_lock
);
2516 * We now have allocated and initialized the mft record. Calculate the
2517 * index of and the offset within the page cache page the record is in.
2519 index
= bit
<< vol
->mft_record_size_bits
>> PAGE_SHIFT
;
2520 ofs
= (bit
<< vol
->mft_record_size_bits
) & ~PAGE_MASK
;
2521 /* Read, map, and pin the page containing the mft record. */
2522 page
= ntfs_map_page(vol
->mft_ino
->i_mapping
, index
);
2524 ntfs_error(vol
->sb
, "Failed to map page containing allocated "
2525 "mft record 0x%llx.", (long long)bit
);
2526 err
= PTR_ERR(page
);
2527 goto undo_mftbmp_alloc
;
2530 BUG_ON(!PageUptodate(page
));
2531 ClearPageUptodate(page
);
2532 m
= (MFT_RECORD
*)((u8
*)page_address(page
) + ofs
);
2533 /* If we just formatted the mft record no need to do it again. */
2534 if (!record_formatted
) {
2535 /* Sanity check that the mft record is really not in use. */
2536 if (ntfs_is_file_record(m
->magic
) &&
2537 (m
->flags
& MFT_RECORD_IN_USE
)) {
2538 ntfs_error(vol
->sb
, "Mft record 0x%llx was marked "
2539 "free in mft bitmap but is marked "
2540 "used itself. Corrupt filesystem. "
2541 "Unmount and run chkdsk.",
2544 SetPageUptodate(page
);
2546 ntfs_unmap_page(page
);
2548 goto undo_mftbmp_alloc
;
2551 * We need to (re-)format the mft record, preserving the
2552 * sequence number if it is not zero as well as the update
2553 * sequence number if it is not zero or -1 (0xffff). This
2554 * means we do not need to care whether or not something went
2555 * wrong with the previous mft record.
2557 seq_no
= m
->sequence_number
;
2558 usn
= *(le16
*)((u8
*)m
+ le16_to_cpu(m
->usa_ofs
));
2559 err
= ntfs_mft_record_layout(vol
, bit
, m
);
2560 if (unlikely(err
)) {
2561 ntfs_error(vol
->sb
, "Failed to layout allocated mft "
2562 "record 0x%llx.", (long long)bit
);
2563 SetPageUptodate(page
);
2565 ntfs_unmap_page(page
);
2566 goto undo_mftbmp_alloc
;
2569 m
->sequence_number
= seq_no
;
2570 if (usn
&& le16_to_cpu(usn
) != 0xffff)
2571 *(le16
*)((u8
*)m
+ le16_to_cpu(m
->usa_ofs
)) = usn
;
2573 /* Set the mft record itself in use. */
2574 m
->flags
|= MFT_RECORD_IN_USE
;
2576 m
->flags
|= MFT_RECORD_IS_DIRECTORY
;
2577 flush_dcache_page(page
);
2578 SetPageUptodate(page
);
2583 * Setup the base mft record in the extent mft record. This
2584 * completes initialization of the allocated extent mft record
2585 * and we can simply use it with map_extent_mft_record().
2587 m
->base_mft_record
= MK_LE_MREF(base_ni
->mft_no
,
2590 * Allocate an extent inode structure for the new mft record,
2591 * attach it to the base inode @base_ni and map, pin, and lock
2592 * its, i.e. the allocated, mft record.
2594 m_tmp
= map_extent_mft_record(base_ni
, bit
, &ni
);
2595 if (IS_ERR(m_tmp
)) {
2596 ntfs_error(vol
->sb
, "Failed to map allocated extent "
2597 "mft record 0x%llx.", (long long)bit
);
2598 err
= PTR_ERR(m_tmp
);
2599 /* Set the mft record itself not in use. */
2600 m
->flags
&= cpu_to_le16(
2601 ~le16_to_cpu(MFT_RECORD_IN_USE
));
2602 flush_dcache_page(page
);
2603 /* Make sure the mft record is written out to disk. */
2604 mark_ntfs_record_dirty(page
, ofs
);
2606 ntfs_unmap_page(page
);
2607 goto undo_mftbmp_alloc
;
2611 * Make sure the allocated mft record is written out to disk.
2612 * No need to set the inode dirty because the caller is going
2613 * to do that anyway after finishing with the new extent mft
2614 * record (e.g. at a minimum a new attribute will be added to
2617 mark_ntfs_record_dirty(page
, ofs
);
2620 * Need to unmap the page since map_extent_mft_record() mapped
2621 * it as well so we have it mapped twice at the moment.
2623 ntfs_unmap_page(page
);
2626 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink
2627 * is set to 1 but the mft record->link_count is 0. The caller
2628 * needs to bear this in mind.
2630 vi
= new_inode(vol
->sb
);
2631 if (unlikely(!vi
)) {
2633 /* Set the mft record itself not in use. */
2634 m
->flags
&= cpu_to_le16(
2635 ~le16_to_cpu(MFT_RECORD_IN_USE
));
2636 flush_dcache_page(page
);
2637 /* Make sure the mft record is written out to disk. */
2638 mark_ntfs_record_dirty(page
, ofs
);
2640 ntfs_unmap_page(page
);
2641 goto undo_mftbmp_alloc
;
2645 /* The owner and group come from the ntfs volume. */
2646 vi
->i_uid
= vol
->uid
;
2647 vi
->i_gid
= vol
->gid
;
2649 /* Initialize the ntfs specific part of @vi. */
2650 ntfs_init_big_inode(vi
);
2653 * Set the appropriate mode, attribute type, and name. For
2654 * directories, also setup the index values to the defaults.
2656 if (S_ISDIR(mode
)) {
2657 vi
->i_mode
= S_IFDIR
| S_IRWXUGO
;
2658 vi
->i_mode
&= ~vol
->dmask
;
2660 NInoSetMstProtected(ni
);
2661 ni
->type
= AT_INDEX_ALLOCATION
;
2665 ni
->itype
.index
.block_size
= 4096;
2666 ni
->itype
.index
.block_size_bits
= ntfs_ffs(4096) - 1;
2667 ni
->itype
.index
.collation_rule
= COLLATION_FILE_NAME
;
2668 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
2669 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
2670 ni
->itype
.index
.vcn_size_bits
=
2671 vol
->cluster_size_bits
;
2673 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
2674 ni
->itype
.index
.vcn_size_bits
=
2675 vol
->sector_size_bits
;
2678 vi
->i_mode
= S_IFREG
| S_IRWXUGO
;
2679 vi
->i_mode
&= ~vol
->fmask
;
2686 vi
->i_mode
&= ~S_IWUGO
;
2688 /* Set the inode times to the current time. */
2689 vi
->i_atime
= vi
->i_mtime
= vi
->i_ctime
=
2692 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2693 * the call to ntfs_init_big_inode() below.
2698 /* Set the sequence number. */
2699 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
2701 * Manually map, pin, and lock the mft record as we already
2702 * have its page mapped and it is very easy to do.
2704 atomic_inc(&ni
->count
);
2705 mutex_lock(&ni
->mrec_lock
);
2709 * Make sure the allocated mft record is written out to disk.
2710 * NOTE: We do not set the ntfs inode dirty because this would
2711 * fail in ntfs_write_inode() because the inode does not have a
2712 * standard information attribute yet. Also, there is no need
2713 * to set the inode dirty because the caller is going to do
2714 * that anyway after finishing with the new mft record (e.g. at
2715 * a minimum some new attributes will be added to the mft
2718 mark_ntfs_record_dirty(page
, ofs
);
2721 /* Add the inode to the inode hash for the superblock. */
2722 insert_inode_hash(vi
);
2724 /* Update the default mft allocation position. */
2725 vol
->mft_data_pos
= bit
+ 1;
2728 * Return the opened, allocated inode of the allocated mft record as
2729 * well as the mapped, pinned, and locked mft record.
2731 ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2732 base_ni
? "extent " : "", (long long)bit
);
2736 write_lock_irqsave(&mft_ni
->size_lock
, flags
);
2737 mft_ni
->initialized_size
= old_data_initialized
;
2738 i_size_write(vol
->mft_ino
, old_data_size
);
2739 write_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2740 goto undo_mftbmp_alloc_nolock
;
2742 down_write(&vol
->mftbmp_lock
);
2743 undo_mftbmp_alloc_nolock
:
2744 if (ntfs_bitmap_clear_bit(vol
->mftbmp_ino
, bit
)) {
2745 ntfs_error(vol
->sb
, "Failed to clear bit in mft bitmap.%s", es
);
2748 up_write(&vol
->mftbmp_lock
);
2750 return ERR_PTR(err
);
2752 ntfs_warning(vol
->sb
, "Cannot allocate mft record because the maximum "
2753 "number of inodes (2^32) has already been reached.");
2754 up_write(&vol
->mftbmp_lock
);
2755 return ERR_PTR(-ENOSPC
);
2759 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2760 * @ni: ntfs inode of the mapped extent mft record to free
2761 * @m: mapped extent mft record of the ntfs inode @ni
2763 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2765 * Note that this function unmaps the mft record and closes and destroys @ni
2766 * internally and hence you cannot use either @ni nor @m any more after this
2767 * function returns success.
2769 * On success return 0 and on error return -errno. @ni and @m are still valid
2770 * in this case and have not been freed.
2772 * For some errors an error message is displayed and the success code 0 is
2773 * returned and the volume is then left dirty on umount. This makes sense in
2774 * case we could not rollback the changes that were already done since the
2775 * caller no longer wants to reference this mft record so it does not matter to
2776 * the caller if something is wrong with it as long as it is properly detached
2777 * from the base inode.
2779 int ntfs_extent_mft_record_free(ntfs_inode
*ni
, MFT_RECORD
*m
)
2781 unsigned long mft_no
= ni
->mft_no
;
2782 ntfs_volume
*vol
= ni
->vol
;
2783 ntfs_inode
*base_ni
;
2784 ntfs_inode
**extent_nis
;
2789 BUG_ON(NInoAttr(ni
));
2790 BUG_ON(ni
->nr_extents
!= -1);
2792 mutex_lock(&ni
->extent_lock
);
2793 base_ni
= ni
->ext
.base_ntfs_ino
;
2794 mutex_unlock(&ni
->extent_lock
);
2796 BUG_ON(base_ni
->nr_extents
<= 0);
2798 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2799 mft_no
, base_ni
->mft_no
);
2801 mutex_lock(&base_ni
->extent_lock
);
2803 /* Make sure we are holding the only reference to the extent inode. */
2804 if (atomic_read(&ni
->count
) > 2) {
2805 ntfs_error(vol
->sb
, "Tried to free busy extent inode 0x%lx, "
2806 "not freeing.", base_ni
->mft_no
);
2807 mutex_unlock(&base_ni
->extent_lock
);
2811 /* Dissociate the ntfs inode from the base inode. */
2812 extent_nis
= base_ni
->ext
.extent_ntfs_inos
;
2814 for (i
= 0; i
< base_ni
->nr_extents
; i
++) {
2815 if (ni
!= extent_nis
[i
])
2818 base_ni
->nr_extents
--;
2819 memmove(extent_nis
, extent_nis
+ 1, (base_ni
->nr_extents
- i
) *
2820 sizeof(ntfs_inode
*));
2825 mutex_unlock(&base_ni
->extent_lock
);
2827 if (unlikely(err
)) {
2828 ntfs_error(vol
->sb
, "Extent inode 0x%lx is not attached to "
2829 "its base inode 0x%lx.", mft_no
,
2835 * The extent inode is no longer attached to the base inode so no one
2836 * can get a reference to it any more.
2839 /* Mark the mft record as not in use. */
2840 m
->flags
&= ~MFT_RECORD_IN_USE
;
2842 /* Increment the sequence number, skipping zero, if it is not zero. */
2843 old_seq_no
= m
->sequence_number
;
2844 seq_no
= le16_to_cpu(old_seq_no
);
2845 if (seq_no
== 0xffff)
2849 m
->sequence_number
= cpu_to_le16(seq_no
);
2852 * Set the ntfs inode dirty and write it out. We do not need to worry
2853 * about the base inode here since whatever caused the extent mft
2854 * record to be freed is guaranteed to do it already.
2857 err
= write_mft_record(ni
, m
, 0);
2858 if (unlikely(err
)) {
2859 ntfs_error(vol
->sb
, "Failed to write mft record 0x%lx, not "
2860 "freeing.", mft_no
);
2864 /* Unmap and throw away the now freed extent inode. */
2865 unmap_extent_mft_record(ni
);
2866 ntfs_clear_extent_inode(ni
);
2868 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2869 down_write(&vol
->mftbmp_lock
);
2870 err
= ntfs_bitmap_clear_bit(vol
->mftbmp_ino
, mft_no
);
2871 up_write(&vol
->mftbmp_lock
);
2872 if (unlikely(err
)) {
2874 * The extent inode is gone but we failed to deallocate it in
2875 * the mft bitmap. Just emit a warning and leave the volume
2878 ntfs_error(vol
->sb
, "Failed to clear bit in mft bitmap.%s", es
);
2883 /* Rollback what we did... */
2884 mutex_lock(&base_ni
->extent_lock
);
2885 extent_nis
= base_ni
->ext
.extent_ntfs_inos
;
2886 if (!(base_ni
->nr_extents
& 3)) {
2887 int new_size
= (base_ni
->nr_extents
+ 4) * sizeof(ntfs_inode
*);
2889 extent_nis
= kmalloc(new_size
, GFP_NOFS
);
2890 if (unlikely(!extent_nis
)) {
2891 ntfs_error(vol
->sb
, "Failed to allocate internal "
2892 "buffer during rollback.%s", es
);
2893 mutex_unlock(&base_ni
->extent_lock
);
2895 goto rollback_error
;
2897 if (base_ni
->nr_extents
) {
2898 BUG_ON(!base_ni
->ext
.extent_ntfs_inos
);
2899 memcpy(extent_nis
, base_ni
->ext
.extent_ntfs_inos
,
2900 new_size
- 4 * sizeof(ntfs_inode
*));
2901 kfree(base_ni
->ext
.extent_ntfs_inos
);
2903 base_ni
->ext
.extent_ntfs_inos
= extent_nis
;
2905 m
->flags
|= MFT_RECORD_IN_USE
;
2906 m
->sequence_number
= old_seq_no
;
2907 extent_nis
[base_ni
->nr_extents
++] = ni
;
2908 mutex_unlock(&base_ni
->extent_lock
);
2909 mark_mft_record_dirty(ni
);
2912 #endif /* NTFS_RW */