mtd: no need to check return value of debugfs_create functions
[linux/fpc-iii.git] / drivers / crypto / atmel-aes.c
blob026f193556f9df8b759dc90be596206c556ebcef
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cryptographic API.
5 * Support for ATMEL AES HW acceleration.
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
10 * Some ideas are from omap-aes.c driver.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35 #include <crypto/aes.h>
36 #include <crypto/gcm.h>
37 #include <crypto/xts.h>
38 #include <crypto/internal/aead.h>
39 #include <linux/platform_data/crypto-atmel.h>
40 #include <dt-bindings/dma/at91.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
44 #define ATMEL_AES_PRIORITY 300
46 #define ATMEL_AES_BUFFER_ORDER 2
47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
49 #define CFB8_BLOCK_SIZE 1
50 #define CFB16_BLOCK_SIZE 2
51 #define CFB32_BLOCK_SIZE 4
52 #define CFB64_BLOCK_SIZE 8
54 #define SIZE_IN_WORDS(x) ((x) >> 2)
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
73 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
74 AES_FLAGS_ENCRYPT | \
75 AES_FLAGS_GTAGEN)
77 #define AES_FLAGS_BUSY BIT(3)
78 #define AES_FLAGS_DUMP_REG BIT(4)
79 #define AES_FLAGS_OWN_SHA BIT(5)
81 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
83 #define ATMEL_AES_QUEUE_LENGTH 50
85 #define ATMEL_AES_DMA_THRESHOLD 256
88 struct atmel_aes_caps {
89 bool has_dualbuff;
90 bool has_cfb64;
91 bool has_ctr32;
92 bool has_gcm;
93 bool has_xts;
94 bool has_authenc;
95 u32 max_burst_size;
98 struct atmel_aes_dev;
101 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
104 struct atmel_aes_base_ctx {
105 struct atmel_aes_dev *dd;
106 atmel_aes_fn_t start;
107 int keylen;
108 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
109 u16 block_size;
110 bool is_aead;
113 struct atmel_aes_ctx {
114 struct atmel_aes_base_ctx base;
117 struct atmel_aes_ctr_ctx {
118 struct atmel_aes_base_ctx base;
120 u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
121 size_t offset;
122 struct scatterlist src[2];
123 struct scatterlist dst[2];
126 struct atmel_aes_gcm_ctx {
127 struct atmel_aes_base_ctx base;
129 struct scatterlist src[2];
130 struct scatterlist dst[2];
132 u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
133 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
134 u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 size_t textlen;
137 const u32 *ghash_in;
138 u32 *ghash_out;
139 atmel_aes_fn_t ghash_resume;
142 struct atmel_aes_xts_ctx {
143 struct atmel_aes_base_ctx base;
145 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
148 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
149 struct atmel_aes_authenc_ctx {
150 struct atmel_aes_base_ctx base;
151 struct atmel_sha_authenc_ctx *auth;
153 #endif
155 struct atmel_aes_reqctx {
156 unsigned long mode;
157 u32 lastc[AES_BLOCK_SIZE / sizeof(u32)];
160 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
161 struct atmel_aes_authenc_reqctx {
162 struct atmel_aes_reqctx base;
164 struct scatterlist src[2];
165 struct scatterlist dst[2];
166 size_t textlen;
167 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
169 /* auth_req MUST be place last. */
170 struct ahash_request auth_req;
172 #endif
174 struct atmel_aes_dma {
175 struct dma_chan *chan;
176 struct scatterlist *sg;
177 int nents;
178 unsigned int remainder;
179 unsigned int sg_len;
182 struct atmel_aes_dev {
183 struct list_head list;
184 unsigned long phys_base;
185 void __iomem *io_base;
187 struct crypto_async_request *areq;
188 struct atmel_aes_base_ctx *ctx;
190 bool is_async;
191 atmel_aes_fn_t resume;
192 atmel_aes_fn_t cpu_transfer_complete;
194 struct device *dev;
195 struct clk *iclk;
196 int irq;
198 unsigned long flags;
200 spinlock_t lock;
201 struct crypto_queue queue;
203 struct tasklet_struct done_task;
204 struct tasklet_struct queue_task;
206 size_t total;
207 size_t datalen;
208 u32 *data;
210 struct atmel_aes_dma src;
211 struct atmel_aes_dma dst;
213 size_t buflen;
214 void *buf;
215 struct scatterlist aligned_sg;
216 struct scatterlist *real_dst;
218 struct atmel_aes_caps caps;
220 u32 hw_version;
223 struct atmel_aes_drv {
224 struct list_head dev_list;
225 spinlock_t lock;
228 static struct atmel_aes_drv atmel_aes = {
229 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233 #ifdef VERBOSE_DEBUG
234 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
236 switch (offset) {
237 case AES_CR:
238 return "CR";
240 case AES_MR:
241 return "MR";
243 case AES_ISR:
244 return "ISR";
246 case AES_IMR:
247 return "IMR";
249 case AES_IER:
250 return "IER";
252 case AES_IDR:
253 return "IDR";
255 case AES_KEYWR(0):
256 case AES_KEYWR(1):
257 case AES_KEYWR(2):
258 case AES_KEYWR(3):
259 case AES_KEYWR(4):
260 case AES_KEYWR(5):
261 case AES_KEYWR(6):
262 case AES_KEYWR(7):
263 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264 break;
266 case AES_IDATAR(0):
267 case AES_IDATAR(1):
268 case AES_IDATAR(2):
269 case AES_IDATAR(3):
270 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271 break;
273 case AES_ODATAR(0):
274 case AES_ODATAR(1):
275 case AES_ODATAR(2):
276 case AES_ODATAR(3):
277 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278 break;
280 case AES_IVR(0):
281 case AES_IVR(1):
282 case AES_IVR(2):
283 case AES_IVR(3):
284 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285 break;
287 case AES_AADLENR:
288 return "AADLENR";
290 case AES_CLENR:
291 return "CLENR";
293 case AES_GHASHR(0):
294 case AES_GHASHR(1):
295 case AES_GHASHR(2):
296 case AES_GHASHR(3):
297 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298 break;
300 case AES_TAGR(0):
301 case AES_TAGR(1):
302 case AES_TAGR(2):
303 case AES_TAGR(3):
304 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305 break;
307 case AES_CTRR:
308 return "CTRR";
310 case AES_GCMHR(0):
311 case AES_GCMHR(1):
312 case AES_GCMHR(2):
313 case AES_GCMHR(3):
314 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315 break;
317 case AES_EMR:
318 return "EMR";
320 case AES_TWR(0):
321 case AES_TWR(1):
322 case AES_TWR(2):
323 case AES_TWR(3):
324 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325 break;
327 case AES_ALPHAR(0):
328 case AES_ALPHAR(1):
329 case AES_ALPHAR(2):
330 case AES_ALPHAR(3):
331 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332 break;
334 default:
335 snprintf(tmp, sz, "0x%02x", offset);
336 break;
339 return tmp;
341 #endif /* VERBOSE_DEBUG */
343 /* Shared functions */
345 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
347 u32 value = readl_relaxed(dd->io_base + offset);
349 #ifdef VERBOSE_DEBUG
350 if (dd->flags & AES_FLAGS_DUMP_REG) {
351 char tmp[16];
353 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
356 #endif /* VERBOSE_DEBUG */
358 return value;
361 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362 u32 offset, u32 value)
364 #ifdef VERBOSE_DEBUG
365 if (dd->flags & AES_FLAGS_DUMP_REG) {
366 char tmp[16];
368 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
371 #endif /* VERBOSE_DEBUG */
373 writel_relaxed(value, dd->io_base + offset);
376 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377 u32 *value, int count)
379 for (; count--; value++, offset += 4)
380 *value = atmel_aes_read(dd, offset);
383 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384 const u32 *value, int count)
386 for (; count--; value++, offset += 4)
387 atmel_aes_write(dd, offset, *value);
390 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391 u32 *value)
393 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397 const u32 *value)
399 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403 atmel_aes_fn_t resume)
405 u32 isr = atmel_aes_read(dd, AES_ISR);
407 if (unlikely(isr & AES_INT_DATARDY))
408 return resume(dd);
410 dd->resume = resume;
411 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412 return -EINPROGRESS;
415 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
417 len &= block_size - 1;
418 return len ? block_size - len : 0;
421 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
423 struct atmel_aes_dev *aes_dd = NULL;
424 struct atmel_aes_dev *tmp;
426 spin_lock_bh(&atmel_aes.lock);
427 if (!ctx->dd) {
428 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429 aes_dd = tmp;
430 break;
432 ctx->dd = aes_dd;
433 } else {
434 aes_dd = ctx->dd;
437 spin_unlock_bh(&atmel_aes.lock);
439 return aes_dd;
442 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
444 int err;
446 err = clk_enable(dd->iclk);
447 if (err)
448 return err;
450 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
451 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
453 return 0;
456 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
458 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
461 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
463 int err;
465 err = atmel_aes_hw_init(dd);
466 if (err)
467 return err;
469 dd->hw_version = atmel_aes_get_version(dd);
471 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
473 clk_disable(dd->iclk);
474 return 0;
477 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
478 const struct atmel_aes_reqctx *rctx)
480 /* Clear all but persistent flags and set request flags. */
481 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
484 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
486 return (dd->flags & AES_FLAGS_ENCRYPT);
489 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
490 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
491 #endif
493 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
495 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
496 if (dd->ctx->is_aead)
497 atmel_aes_authenc_complete(dd, err);
498 #endif
500 clk_disable(dd->iclk);
501 dd->flags &= ~AES_FLAGS_BUSY;
503 if (!dd->ctx->is_aead) {
504 struct ablkcipher_request *req =
505 ablkcipher_request_cast(dd->areq);
506 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
507 struct crypto_ablkcipher *ablkcipher =
508 crypto_ablkcipher_reqtfm(req);
509 int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
511 if (rctx->mode & AES_FLAGS_ENCRYPT) {
512 scatterwalk_map_and_copy(req->info, req->dst,
513 req->nbytes - ivsize, ivsize, 0);
514 } else {
515 if (req->src == req->dst) {
516 memcpy(req->info, rctx->lastc, ivsize);
517 } else {
518 scatterwalk_map_and_copy(req->info, req->src,
519 req->nbytes - ivsize, ivsize, 0);
524 if (dd->is_async)
525 dd->areq->complete(dd->areq, err);
527 tasklet_schedule(&dd->queue_task);
529 return err;
532 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
533 const u32 *iv, const u32 *key, int keylen)
535 u32 valmr = 0;
537 /* MR register must be set before IV registers */
538 if (keylen == AES_KEYSIZE_128)
539 valmr |= AES_MR_KEYSIZE_128;
540 else if (keylen == AES_KEYSIZE_192)
541 valmr |= AES_MR_KEYSIZE_192;
542 else
543 valmr |= AES_MR_KEYSIZE_256;
545 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
547 if (use_dma) {
548 valmr |= AES_MR_SMOD_IDATAR0;
549 if (dd->caps.has_dualbuff)
550 valmr |= AES_MR_DUALBUFF;
551 } else {
552 valmr |= AES_MR_SMOD_AUTO;
555 atmel_aes_write(dd, AES_MR, valmr);
557 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
559 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
560 atmel_aes_write_block(dd, AES_IVR(0), iv);
563 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
564 const u32 *iv)
567 atmel_aes_write_ctrl_key(dd, use_dma, iv,
568 dd->ctx->key, dd->ctx->keylen);
571 /* CPU transfer */
573 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
575 int err = 0;
576 u32 isr;
578 for (;;) {
579 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
580 dd->data += 4;
581 dd->datalen -= AES_BLOCK_SIZE;
583 if (dd->datalen < AES_BLOCK_SIZE)
584 break;
586 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
588 isr = atmel_aes_read(dd, AES_ISR);
589 if (!(isr & AES_INT_DATARDY)) {
590 dd->resume = atmel_aes_cpu_transfer;
591 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
592 return -EINPROGRESS;
596 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
597 dd->buf, dd->total))
598 err = -EINVAL;
600 if (err)
601 return atmel_aes_complete(dd, err);
603 return dd->cpu_transfer_complete(dd);
606 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
607 struct scatterlist *src,
608 struct scatterlist *dst,
609 size_t len,
610 atmel_aes_fn_t resume)
612 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
614 if (unlikely(len == 0))
615 return -EINVAL;
617 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
619 dd->total = len;
620 dd->real_dst = dst;
621 dd->cpu_transfer_complete = resume;
622 dd->datalen = len + padlen;
623 dd->data = (u32 *)dd->buf;
624 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
625 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
629 /* DMA transfer */
631 static void atmel_aes_dma_callback(void *data);
633 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
634 struct scatterlist *sg,
635 size_t len,
636 struct atmel_aes_dma *dma)
638 int nents;
640 if (!IS_ALIGNED(len, dd->ctx->block_size))
641 return false;
643 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
644 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
645 return false;
647 if (len <= sg->length) {
648 if (!IS_ALIGNED(len, dd->ctx->block_size))
649 return false;
651 dma->nents = nents+1;
652 dma->remainder = sg->length - len;
653 sg->length = len;
654 return true;
657 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
658 return false;
660 len -= sg->length;
663 return false;
666 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
668 struct scatterlist *sg = dma->sg;
669 int nents = dma->nents;
671 if (!dma->remainder)
672 return;
674 while (--nents > 0 && sg)
675 sg = sg_next(sg);
677 if (!sg)
678 return;
680 sg->length += dma->remainder;
683 static int atmel_aes_map(struct atmel_aes_dev *dd,
684 struct scatterlist *src,
685 struct scatterlist *dst,
686 size_t len)
688 bool src_aligned, dst_aligned;
689 size_t padlen;
691 dd->total = len;
692 dd->src.sg = src;
693 dd->dst.sg = dst;
694 dd->real_dst = dst;
696 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
697 if (src == dst)
698 dst_aligned = src_aligned;
699 else
700 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
701 if (!src_aligned || !dst_aligned) {
702 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
704 if (dd->buflen < len + padlen)
705 return -ENOMEM;
707 if (!src_aligned) {
708 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
709 dd->src.sg = &dd->aligned_sg;
710 dd->src.nents = 1;
711 dd->src.remainder = 0;
714 if (!dst_aligned) {
715 dd->dst.sg = &dd->aligned_sg;
716 dd->dst.nents = 1;
717 dd->dst.remainder = 0;
720 sg_init_table(&dd->aligned_sg, 1);
721 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
724 if (dd->src.sg == dd->dst.sg) {
725 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
726 DMA_BIDIRECTIONAL);
727 dd->dst.sg_len = dd->src.sg_len;
728 if (!dd->src.sg_len)
729 return -EFAULT;
730 } else {
731 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
732 DMA_TO_DEVICE);
733 if (!dd->src.sg_len)
734 return -EFAULT;
736 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
737 DMA_FROM_DEVICE);
738 if (!dd->dst.sg_len) {
739 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
740 DMA_TO_DEVICE);
741 return -EFAULT;
745 return 0;
748 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
750 if (dd->src.sg == dd->dst.sg) {
751 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
752 DMA_BIDIRECTIONAL);
754 if (dd->src.sg != &dd->aligned_sg)
755 atmel_aes_restore_sg(&dd->src);
756 } else {
757 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
758 DMA_FROM_DEVICE);
760 if (dd->dst.sg != &dd->aligned_sg)
761 atmel_aes_restore_sg(&dd->dst);
763 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
764 DMA_TO_DEVICE);
766 if (dd->src.sg != &dd->aligned_sg)
767 atmel_aes_restore_sg(&dd->src);
770 if (dd->dst.sg == &dd->aligned_sg)
771 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
772 dd->buf, dd->total);
775 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
776 enum dma_slave_buswidth addr_width,
777 enum dma_transfer_direction dir,
778 u32 maxburst)
780 struct dma_async_tx_descriptor *desc;
781 struct dma_slave_config config;
782 dma_async_tx_callback callback;
783 struct atmel_aes_dma *dma;
784 int err;
786 memset(&config, 0, sizeof(config));
787 config.direction = dir;
788 config.src_addr_width = addr_width;
789 config.dst_addr_width = addr_width;
790 config.src_maxburst = maxburst;
791 config.dst_maxburst = maxburst;
793 switch (dir) {
794 case DMA_MEM_TO_DEV:
795 dma = &dd->src;
796 callback = NULL;
797 config.dst_addr = dd->phys_base + AES_IDATAR(0);
798 break;
800 case DMA_DEV_TO_MEM:
801 dma = &dd->dst;
802 callback = atmel_aes_dma_callback;
803 config.src_addr = dd->phys_base + AES_ODATAR(0);
804 break;
806 default:
807 return -EINVAL;
810 err = dmaengine_slave_config(dma->chan, &config);
811 if (err)
812 return err;
814 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
815 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
816 if (!desc)
817 return -ENOMEM;
819 desc->callback = callback;
820 desc->callback_param = dd;
821 dmaengine_submit(desc);
822 dma_async_issue_pending(dma->chan);
824 return 0;
827 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
828 enum dma_transfer_direction dir)
830 struct atmel_aes_dma *dma;
832 switch (dir) {
833 case DMA_MEM_TO_DEV:
834 dma = &dd->src;
835 break;
837 case DMA_DEV_TO_MEM:
838 dma = &dd->dst;
839 break;
841 default:
842 return;
845 dmaengine_terminate_all(dma->chan);
848 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
849 struct scatterlist *src,
850 struct scatterlist *dst,
851 size_t len,
852 atmel_aes_fn_t resume)
854 enum dma_slave_buswidth addr_width;
855 u32 maxburst;
856 int err;
858 switch (dd->ctx->block_size) {
859 case CFB8_BLOCK_SIZE:
860 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
861 maxburst = 1;
862 break;
864 case CFB16_BLOCK_SIZE:
865 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
866 maxburst = 1;
867 break;
869 case CFB32_BLOCK_SIZE:
870 case CFB64_BLOCK_SIZE:
871 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
872 maxburst = 1;
873 break;
875 case AES_BLOCK_SIZE:
876 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
877 maxburst = dd->caps.max_burst_size;
878 break;
880 default:
881 err = -EINVAL;
882 goto exit;
885 err = atmel_aes_map(dd, src, dst, len);
886 if (err)
887 goto exit;
889 dd->resume = resume;
891 /* Set output DMA transfer first */
892 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
893 maxburst);
894 if (err)
895 goto unmap;
897 /* Then set input DMA transfer */
898 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
899 maxburst);
900 if (err)
901 goto output_transfer_stop;
903 return -EINPROGRESS;
905 output_transfer_stop:
906 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
907 unmap:
908 atmel_aes_unmap(dd);
909 exit:
910 return atmel_aes_complete(dd, err);
913 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
915 atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
916 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
917 atmel_aes_unmap(dd);
920 static void atmel_aes_dma_callback(void *data)
922 struct atmel_aes_dev *dd = data;
924 atmel_aes_dma_stop(dd);
925 dd->is_async = true;
926 (void)dd->resume(dd);
929 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
930 struct crypto_async_request *new_areq)
932 struct crypto_async_request *areq, *backlog;
933 struct atmel_aes_base_ctx *ctx;
934 unsigned long flags;
935 bool start_async;
936 int err, ret = 0;
938 spin_lock_irqsave(&dd->lock, flags);
939 if (new_areq)
940 ret = crypto_enqueue_request(&dd->queue, new_areq);
941 if (dd->flags & AES_FLAGS_BUSY) {
942 spin_unlock_irqrestore(&dd->lock, flags);
943 return ret;
945 backlog = crypto_get_backlog(&dd->queue);
946 areq = crypto_dequeue_request(&dd->queue);
947 if (areq)
948 dd->flags |= AES_FLAGS_BUSY;
949 spin_unlock_irqrestore(&dd->lock, flags);
951 if (!areq)
952 return ret;
954 if (backlog)
955 backlog->complete(backlog, -EINPROGRESS);
957 ctx = crypto_tfm_ctx(areq->tfm);
959 dd->areq = areq;
960 dd->ctx = ctx;
961 start_async = (areq != new_areq);
962 dd->is_async = start_async;
964 /* WARNING: ctx->start() MAY change dd->is_async. */
965 err = ctx->start(dd);
966 return (start_async) ? ret : err;
970 /* AES async block ciphers */
972 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
974 return atmel_aes_complete(dd, 0);
977 static int atmel_aes_start(struct atmel_aes_dev *dd)
979 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
980 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
981 bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
982 dd->ctx->block_size != AES_BLOCK_SIZE);
983 int err;
985 atmel_aes_set_mode(dd, rctx);
987 err = atmel_aes_hw_init(dd);
988 if (err)
989 return atmel_aes_complete(dd, err);
991 atmel_aes_write_ctrl(dd, use_dma, req->info);
992 if (use_dma)
993 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
994 atmel_aes_transfer_complete);
996 return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
997 atmel_aes_transfer_complete);
1000 static inline struct atmel_aes_ctr_ctx *
1001 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1003 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1006 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1008 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1009 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1010 struct scatterlist *src, *dst;
1011 u32 ctr, blocks;
1012 size_t datalen;
1013 bool use_dma, fragmented = false;
1015 /* Check for transfer completion. */
1016 ctx->offset += dd->total;
1017 if (ctx->offset >= req->nbytes)
1018 return atmel_aes_transfer_complete(dd);
1020 /* Compute data length. */
1021 datalen = req->nbytes - ctx->offset;
1022 blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1023 ctr = be32_to_cpu(ctx->iv[3]);
1024 if (dd->caps.has_ctr32) {
1025 /* Check 32bit counter overflow. */
1026 u32 start = ctr;
1027 u32 end = start + blocks - 1;
1029 if (end < start) {
1030 ctr |= 0xffffffff;
1031 datalen = AES_BLOCK_SIZE * -start;
1032 fragmented = true;
1034 } else {
1035 /* Check 16bit counter overflow. */
1036 u16 start = ctr & 0xffff;
1037 u16 end = start + (u16)blocks - 1;
1039 if (blocks >> 16 || end < start) {
1040 ctr |= 0xffff;
1041 datalen = AES_BLOCK_SIZE * (0x10000-start);
1042 fragmented = true;
1045 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1047 /* Jump to offset. */
1048 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1049 dst = ((req->src == req->dst) ? src :
1050 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1052 /* Configure hardware. */
1053 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1054 if (unlikely(fragmented)) {
1056 * Increment the counter manually to cope with the hardware
1057 * counter overflow.
1059 ctx->iv[3] = cpu_to_be32(ctr);
1060 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1063 if (use_dma)
1064 return atmel_aes_dma_start(dd, src, dst, datalen,
1065 atmel_aes_ctr_transfer);
1067 return atmel_aes_cpu_start(dd, src, dst, datalen,
1068 atmel_aes_ctr_transfer);
1071 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1073 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1074 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1075 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1076 int err;
1078 atmel_aes_set_mode(dd, rctx);
1080 err = atmel_aes_hw_init(dd);
1081 if (err)
1082 return atmel_aes_complete(dd, err);
1084 memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1085 ctx->offset = 0;
1086 dd->total = 0;
1087 return atmel_aes_ctr_transfer(dd);
1090 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1092 struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1093 struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1094 struct atmel_aes_reqctx *rctx;
1095 struct atmel_aes_dev *dd;
1097 switch (mode & AES_FLAGS_OPMODE_MASK) {
1098 case AES_FLAGS_CFB8:
1099 ctx->block_size = CFB8_BLOCK_SIZE;
1100 break;
1102 case AES_FLAGS_CFB16:
1103 ctx->block_size = CFB16_BLOCK_SIZE;
1104 break;
1106 case AES_FLAGS_CFB32:
1107 ctx->block_size = CFB32_BLOCK_SIZE;
1108 break;
1110 case AES_FLAGS_CFB64:
1111 ctx->block_size = CFB64_BLOCK_SIZE;
1112 break;
1114 default:
1115 ctx->block_size = AES_BLOCK_SIZE;
1116 break;
1118 ctx->is_aead = false;
1120 dd = atmel_aes_find_dev(ctx);
1121 if (!dd)
1122 return -ENODEV;
1124 rctx = ablkcipher_request_ctx(req);
1125 rctx->mode = mode;
1127 if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1128 int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1130 scatterwalk_map_and_copy(rctx->lastc, req->src,
1131 (req->nbytes - ivsize), ivsize, 0);
1134 return atmel_aes_handle_queue(dd, &req->base);
1137 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1138 unsigned int keylen)
1140 struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1142 if (keylen != AES_KEYSIZE_128 &&
1143 keylen != AES_KEYSIZE_192 &&
1144 keylen != AES_KEYSIZE_256) {
1145 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1146 return -EINVAL;
1149 memcpy(ctx->key, key, keylen);
1150 ctx->keylen = keylen;
1152 return 0;
1155 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1157 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1160 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1162 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1165 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1167 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1170 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1172 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1175 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1177 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1180 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1182 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1185 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1187 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1190 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1192 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1195 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1197 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1200 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1202 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1205 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1207 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1210 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1212 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1215 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1217 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1220 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1222 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1225 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1227 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1230 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1232 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1235 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1237 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1240 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1242 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1245 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1247 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1249 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1250 ctx->base.start = atmel_aes_start;
1252 return 0;
1255 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1257 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1259 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1260 ctx->base.start = atmel_aes_ctr_start;
1262 return 0;
1265 static struct crypto_alg aes_algs[] = {
1267 .cra_name = "ecb(aes)",
1268 .cra_driver_name = "atmel-ecb-aes",
1269 .cra_priority = ATMEL_AES_PRIORITY,
1270 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1271 .cra_blocksize = AES_BLOCK_SIZE,
1272 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1273 .cra_alignmask = 0xf,
1274 .cra_type = &crypto_ablkcipher_type,
1275 .cra_module = THIS_MODULE,
1276 .cra_init = atmel_aes_cra_init,
1277 .cra_u.ablkcipher = {
1278 .min_keysize = AES_MIN_KEY_SIZE,
1279 .max_keysize = AES_MAX_KEY_SIZE,
1280 .setkey = atmel_aes_setkey,
1281 .encrypt = atmel_aes_ecb_encrypt,
1282 .decrypt = atmel_aes_ecb_decrypt,
1286 .cra_name = "cbc(aes)",
1287 .cra_driver_name = "atmel-cbc-aes",
1288 .cra_priority = ATMEL_AES_PRIORITY,
1289 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1290 .cra_blocksize = AES_BLOCK_SIZE,
1291 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1292 .cra_alignmask = 0xf,
1293 .cra_type = &crypto_ablkcipher_type,
1294 .cra_module = THIS_MODULE,
1295 .cra_init = atmel_aes_cra_init,
1296 .cra_u.ablkcipher = {
1297 .min_keysize = AES_MIN_KEY_SIZE,
1298 .max_keysize = AES_MAX_KEY_SIZE,
1299 .ivsize = AES_BLOCK_SIZE,
1300 .setkey = atmel_aes_setkey,
1301 .encrypt = atmel_aes_cbc_encrypt,
1302 .decrypt = atmel_aes_cbc_decrypt,
1306 .cra_name = "ofb(aes)",
1307 .cra_driver_name = "atmel-ofb-aes",
1308 .cra_priority = ATMEL_AES_PRIORITY,
1309 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1310 .cra_blocksize = AES_BLOCK_SIZE,
1311 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1312 .cra_alignmask = 0xf,
1313 .cra_type = &crypto_ablkcipher_type,
1314 .cra_module = THIS_MODULE,
1315 .cra_init = atmel_aes_cra_init,
1316 .cra_u.ablkcipher = {
1317 .min_keysize = AES_MIN_KEY_SIZE,
1318 .max_keysize = AES_MAX_KEY_SIZE,
1319 .ivsize = AES_BLOCK_SIZE,
1320 .setkey = atmel_aes_setkey,
1321 .encrypt = atmel_aes_ofb_encrypt,
1322 .decrypt = atmel_aes_ofb_decrypt,
1326 .cra_name = "cfb(aes)",
1327 .cra_driver_name = "atmel-cfb-aes",
1328 .cra_priority = ATMEL_AES_PRIORITY,
1329 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1330 .cra_blocksize = AES_BLOCK_SIZE,
1331 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1332 .cra_alignmask = 0xf,
1333 .cra_type = &crypto_ablkcipher_type,
1334 .cra_module = THIS_MODULE,
1335 .cra_init = atmel_aes_cra_init,
1336 .cra_u.ablkcipher = {
1337 .min_keysize = AES_MIN_KEY_SIZE,
1338 .max_keysize = AES_MAX_KEY_SIZE,
1339 .ivsize = AES_BLOCK_SIZE,
1340 .setkey = atmel_aes_setkey,
1341 .encrypt = atmel_aes_cfb_encrypt,
1342 .decrypt = atmel_aes_cfb_decrypt,
1346 .cra_name = "cfb32(aes)",
1347 .cra_driver_name = "atmel-cfb32-aes",
1348 .cra_priority = ATMEL_AES_PRIORITY,
1349 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1350 .cra_blocksize = CFB32_BLOCK_SIZE,
1351 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1352 .cra_alignmask = 0x3,
1353 .cra_type = &crypto_ablkcipher_type,
1354 .cra_module = THIS_MODULE,
1355 .cra_init = atmel_aes_cra_init,
1356 .cra_u.ablkcipher = {
1357 .min_keysize = AES_MIN_KEY_SIZE,
1358 .max_keysize = AES_MAX_KEY_SIZE,
1359 .ivsize = AES_BLOCK_SIZE,
1360 .setkey = atmel_aes_setkey,
1361 .encrypt = atmel_aes_cfb32_encrypt,
1362 .decrypt = atmel_aes_cfb32_decrypt,
1366 .cra_name = "cfb16(aes)",
1367 .cra_driver_name = "atmel-cfb16-aes",
1368 .cra_priority = ATMEL_AES_PRIORITY,
1369 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1370 .cra_blocksize = CFB16_BLOCK_SIZE,
1371 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1372 .cra_alignmask = 0x1,
1373 .cra_type = &crypto_ablkcipher_type,
1374 .cra_module = THIS_MODULE,
1375 .cra_init = atmel_aes_cra_init,
1376 .cra_u.ablkcipher = {
1377 .min_keysize = AES_MIN_KEY_SIZE,
1378 .max_keysize = AES_MAX_KEY_SIZE,
1379 .ivsize = AES_BLOCK_SIZE,
1380 .setkey = atmel_aes_setkey,
1381 .encrypt = atmel_aes_cfb16_encrypt,
1382 .decrypt = atmel_aes_cfb16_decrypt,
1386 .cra_name = "cfb8(aes)",
1387 .cra_driver_name = "atmel-cfb8-aes",
1388 .cra_priority = ATMEL_AES_PRIORITY,
1389 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1390 .cra_blocksize = CFB8_BLOCK_SIZE,
1391 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1392 .cra_alignmask = 0x0,
1393 .cra_type = &crypto_ablkcipher_type,
1394 .cra_module = THIS_MODULE,
1395 .cra_init = atmel_aes_cra_init,
1396 .cra_u.ablkcipher = {
1397 .min_keysize = AES_MIN_KEY_SIZE,
1398 .max_keysize = AES_MAX_KEY_SIZE,
1399 .ivsize = AES_BLOCK_SIZE,
1400 .setkey = atmel_aes_setkey,
1401 .encrypt = atmel_aes_cfb8_encrypt,
1402 .decrypt = atmel_aes_cfb8_decrypt,
1406 .cra_name = "ctr(aes)",
1407 .cra_driver_name = "atmel-ctr-aes",
1408 .cra_priority = ATMEL_AES_PRIORITY,
1409 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1410 .cra_blocksize = 1,
1411 .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1412 .cra_alignmask = 0xf,
1413 .cra_type = &crypto_ablkcipher_type,
1414 .cra_module = THIS_MODULE,
1415 .cra_init = atmel_aes_ctr_cra_init,
1416 .cra_u.ablkcipher = {
1417 .min_keysize = AES_MIN_KEY_SIZE,
1418 .max_keysize = AES_MAX_KEY_SIZE,
1419 .ivsize = AES_BLOCK_SIZE,
1420 .setkey = atmel_aes_setkey,
1421 .encrypt = atmel_aes_ctr_encrypt,
1422 .decrypt = atmel_aes_ctr_decrypt,
1427 static struct crypto_alg aes_cfb64_alg = {
1428 .cra_name = "cfb64(aes)",
1429 .cra_driver_name = "atmel-cfb64-aes",
1430 .cra_priority = ATMEL_AES_PRIORITY,
1431 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1432 .cra_blocksize = CFB64_BLOCK_SIZE,
1433 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1434 .cra_alignmask = 0x7,
1435 .cra_type = &crypto_ablkcipher_type,
1436 .cra_module = THIS_MODULE,
1437 .cra_init = atmel_aes_cra_init,
1438 .cra_u.ablkcipher = {
1439 .min_keysize = AES_MIN_KEY_SIZE,
1440 .max_keysize = AES_MAX_KEY_SIZE,
1441 .ivsize = AES_BLOCK_SIZE,
1442 .setkey = atmel_aes_setkey,
1443 .encrypt = atmel_aes_cfb64_encrypt,
1444 .decrypt = atmel_aes_cfb64_decrypt,
1449 /* gcm aead functions */
1451 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1452 const u32 *data, size_t datalen,
1453 const u32 *ghash_in, u32 *ghash_out,
1454 atmel_aes_fn_t resume);
1455 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1456 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1458 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1459 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1460 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1461 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1462 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1463 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1464 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1466 static inline struct atmel_aes_gcm_ctx *
1467 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1469 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1472 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1473 const u32 *data, size_t datalen,
1474 const u32 *ghash_in, u32 *ghash_out,
1475 atmel_aes_fn_t resume)
1477 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1479 dd->data = (u32 *)data;
1480 dd->datalen = datalen;
1481 ctx->ghash_in = ghash_in;
1482 ctx->ghash_out = ghash_out;
1483 ctx->ghash_resume = resume;
1485 atmel_aes_write_ctrl(dd, false, NULL);
1486 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1489 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1491 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1493 /* Set the data length. */
1494 atmel_aes_write(dd, AES_AADLENR, dd->total);
1495 atmel_aes_write(dd, AES_CLENR, 0);
1497 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1498 if (ctx->ghash_in)
1499 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1501 return atmel_aes_gcm_ghash_finalize(dd);
1504 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1506 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507 u32 isr;
1509 /* Write data into the Input Data Registers. */
1510 while (dd->datalen > 0) {
1511 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1512 dd->data += 4;
1513 dd->datalen -= AES_BLOCK_SIZE;
1515 isr = atmel_aes_read(dd, AES_ISR);
1516 if (!(isr & AES_INT_DATARDY)) {
1517 dd->resume = atmel_aes_gcm_ghash_finalize;
1518 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1519 return -EINPROGRESS;
1523 /* Read the computed hash from GHASHRx. */
1524 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1526 return ctx->ghash_resume(dd);
1530 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1532 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1533 struct aead_request *req = aead_request_cast(dd->areq);
1534 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1535 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1536 size_t ivsize = crypto_aead_ivsize(tfm);
1537 size_t datalen, padlen;
1538 const void *iv = req->iv;
1539 u8 *data = dd->buf;
1540 int err;
1542 atmel_aes_set_mode(dd, rctx);
1544 err = atmel_aes_hw_init(dd);
1545 if (err)
1546 return atmel_aes_complete(dd, err);
1548 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1549 memcpy(ctx->j0, iv, ivsize);
1550 ctx->j0[3] = cpu_to_be32(1);
1551 return atmel_aes_gcm_process(dd);
1554 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1555 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1556 if (datalen > dd->buflen)
1557 return atmel_aes_complete(dd, -EINVAL);
1559 memcpy(data, iv, ivsize);
1560 memset(data + ivsize, 0, padlen + sizeof(u64));
1561 ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1563 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1564 NULL, ctx->j0, atmel_aes_gcm_process);
1567 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1569 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1570 struct aead_request *req = aead_request_cast(dd->areq);
1571 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1572 bool enc = atmel_aes_is_encrypt(dd);
1573 u32 authsize;
1575 /* Compute text length. */
1576 authsize = crypto_aead_authsize(tfm);
1577 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1580 * According to tcrypt test suite, the GCM Automatic Tag Generation
1581 * fails when both the message and its associated data are empty.
1583 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1584 dd->flags |= AES_FLAGS_GTAGEN;
1586 atmel_aes_write_ctrl(dd, false, NULL);
1587 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1590 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1592 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1593 struct aead_request *req = aead_request_cast(dd->areq);
1594 u32 j0_lsw, *j0 = ctx->j0;
1595 size_t padlen;
1597 /* Write incr32(J0) into IV. */
1598 j0_lsw = j0[3];
1599 j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1600 atmel_aes_write_block(dd, AES_IVR(0), j0);
1601 j0[3] = j0_lsw;
1603 /* Set aad and text lengths. */
1604 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1605 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1607 /* Check whether AAD are present. */
1608 if (unlikely(req->assoclen == 0)) {
1609 dd->datalen = 0;
1610 return atmel_aes_gcm_data(dd);
1613 /* Copy assoc data and add padding. */
1614 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1615 if (unlikely(req->assoclen + padlen > dd->buflen))
1616 return atmel_aes_complete(dd, -EINVAL);
1617 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1619 /* Write assoc data into the Input Data register. */
1620 dd->data = (u32 *)dd->buf;
1621 dd->datalen = req->assoclen + padlen;
1622 return atmel_aes_gcm_data(dd);
1625 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1627 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1628 struct aead_request *req = aead_request_cast(dd->areq);
1629 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1630 struct scatterlist *src, *dst;
1631 u32 isr, mr;
1633 /* Write AAD first. */
1634 while (dd->datalen > 0) {
1635 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1636 dd->data += 4;
1637 dd->datalen -= AES_BLOCK_SIZE;
1639 isr = atmel_aes_read(dd, AES_ISR);
1640 if (!(isr & AES_INT_DATARDY)) {
1641 dd->resume = atmel_aes_gcm_data;
1642 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1643 return -EINPROGRESS;
1647 /* GMAC only. */
1648 if (unlikely(ctx->textlen == 0))
1649 return atmel_aes_gcm_tag_init(dd);
1651 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1652 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1653 dst = ((req->src == req->dst) ? src :
1654 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1656 if (use_dma) {
1657 /* Update the Mode Register for DMA transfers. */
1658 mr = atmel_aes_read(dd, AES_MR);
1659 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1660 mr |= AES_MR_SMOD_IDATAR0;
1661 if (dd->caps.has_dualbuff)
1662 mr |= AES_MR_DUALBUFF;
1663 atmel_aes_write(dd, AES_MR, mr);
1665 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1666 atmel_aes_gcm_tag_init);
1669 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1670 atmel_aes_gcm_tag_init);
1673 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1675 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676 struct aead_request *req = aead_request_cast(dd->areq);
1677 u64 *data = dd->buf;
1679 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1680 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1681 dd->resume = atmel_aes_gcm_tag_init;
1682 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1683 return -EINPROGRESS;
1686 return atmel_aes_gcm_finalize(dd);
1689 /* Read the GCM Intermediate Hash Word Registers. */
1690 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1692 data[0] = cpu_to_be64(req->assoclen * 8);
1693 data[1] = cpu_to_be64(ctx->textlen * 8);
1695 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1696 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1699 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1701 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1702 unsigned long flags;
1705 * Change mode to CTR to complete the tag generation.
1706 * Use J0 as Initialization Vector.
1708 flags = dd->flags;
1709 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1710 dd->flags |= AES_FLAGS_CTR;
1711 atmel_aes_write_ctrl(dd, false, ctx->j0);
1712 dd->flags = flags;
1714 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1715 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1718 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1720 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1721 struct aead_request *req = aead_request_cast(dd->areq);
1722 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1723 bool enc = atmel_aes_is_encrypt(dd);
1724 u32 offset, authsize, itag[4], *otag = ctx->tag;
1725 int err;
1727 /* Read the computed tag. */
1728 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1729 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1730 else
1731 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1733 offset = req->assoclen + ctx->textlen;
1734 authsize = crypto_aead_authsize(tfm);
1735 if (enc) {
1736 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1737 err = 0;
1738 } else {
1739 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1740 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1743 return atmel_aes_complete(dd, err);
1746 static int atmel_aes_gcm_crypt(struct aead_request *req,
1747 unsigned long mode)
1749 struct atmel_aes_base_ctx *ctx;
1750 struct atmel_aes_reqctx *rctx;
1751 struct atmel_aes_dev *dd;
1753 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1754 ctx->block_size = AES_BLOCK_SIZE;
1755 ctx->is_aead = true;
1757 dd = atmel_aes_find_dev(ctx);
1758 if (!dd)
1759 return -ENODEV;
1761 rctx = aead_request_ctx(req);
1762 rctx->mode = AES_FLAGS_GCM | mode;
1764 return atmel_aes_handle_queue(dd, &req->base);
1767 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1768 unsigned int keylen)
1770 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1772 if (keylen != AES_KEYSIZE_256 &&
1773 keylen != AES_KEYSIZE_192 &&
1774 keylen != AES_KEYSIZE_128) {
1775 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1776 return -EINVAL;
1779 memcpy(ctx->key, key, keylen);
1780 ctx->keylen = keylen;
1782 return 0;
1785 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1786 unsigned int authsize)
1788 /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1789 switch (authsize) {
1790 case 4:
1791 case 8:
1792 case 12:
1793 case 13:
1794 case 14:
1795 case 15:
1796 case 16:
1797 break;
1798 default:
1799 return -EINVAL;
1802 return 0;
1805 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1807 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1810 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1812 return atmel_aes_gcm_crypt(req, 0);
1815 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1817 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1819 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1820 ctx->base.start = atmel_aes_gcm_start;
1822 return 0;
1825 static struct aead_alg aes_gcm_alg = {
1826 .setkey = atmel_aes_gcm_setkey,
1827 .setauthsize = atmel_aes_gcm_setauthsize,
1828 .encrypt = atmel_aes_gcm_encrypt,
1829 .decrypt = atmel_aes_gcm_decrypt,
1830 .init = atmel_aes_gcm_init,
1831 .ivsize = GCM_AES_IV_SIZE,
1832 .maxauthsize = AES_BLOCK_SIZE,
1834 .base = {
1835 .cra_name = "gcm(aes)",
1836 .cra_driver_name = "atmel-gcm-aes",
1837 .cra_priority = ATMEL_AES_PRIORITY,
1838 .cra_flags = CRYPTO_ALG_ASYNC,
1839 .cra_blocksize = 1,
1840 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1841 .cra_alignmask = 0xf,
1842 .cra_module = THIS_MODULE,
1847 /* xts functions */
1849 static inline struct atmel_aes_xts_ctx *
1850 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1852 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1855 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1857 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1859 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1860 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1861 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1862 unsigned long flags;
1863 int err;
1865 atmel_aes_set_mode(dd, rctx);
1867 err = atmel_aes_hw_init(dd);
1868 if (err)
1869 return atmel_aes_complete(dd, err);
1871 /* Compute the tweak value from req->info with ecb(aes). */
1872 flags = dd->flags;
1873 dd->flags &= ~AES_FLAGS_MODE_MASK;
1874 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1875 atmel_aes_write_ctrl_key(dd, false, NULL,
1876 ctx->key2, ctx->base.keylen);
1877 dd->flags = flags;
1879 atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1880 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1883 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1885 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1886 bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1887 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1888 static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1889 u8 *tweak_bytes = (u8 *)tweak;
1890 int i;
1892 /* Read the computed ciphered tweak value. */
1893 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1895 * Hardware quirk:
1896 * the order of the ciphered tweak bytes need to be reversed before
1897 * writing them into the ODATARx registers.
1899 for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1900 u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1902 tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1903 tweak_bytes[i] = tmp;
1906 /* Process the data. */
1907 atmel_aes_write_ctrl(dd, use_dma, NULL);
1908 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1909 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1910 if (use_dma)
1911 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1912 atmel_aes_transfer_complete);
1914 return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1915 atmel_aes_transfer_complete);
1918 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1919 unsigned int keylen)
1921 struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1922 int err;
1924 err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1925 if (err)
1926 return err;
1928 memcpy(ctx->base.key, key, keylen/2);
1929 memcpy(ctx->key2, key + keylen/2, keylen/2);
1930 ctx->base.keylen = keylen/2;
1932 return 0;
1935 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1937 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1940 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1942 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1945 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1947 struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1949 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1950 ctx->base.start = atmel_aes_xts_start;
1952 return 0;
1955 static struct crypto_alg aes_xts_alg = {
1956 .cra_name = "xts(aes)",
1957 .cra_driver_name = "atmel-xts-aes",
1958 .cra_priority = ATMEL_AES_PRIORITY,
1959 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1960 .cra_blocksize = AES_BLOCK_SIZE,
1961 .cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1962 .cra_alignmask = 0xf,
1963 .cra_type = &crypto_ablkcipher_type,
1964 .cra_module = THIS_MODULE,
1965 .cra_init = atmel_aes_xts_cra_init,
1966 .cra_u.ablkcipher = {
1967 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1968 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1969 .ivsize = AES_BLOCK_SIZE,
1970 .setkey = atmel_aes_xts_setkey,
1971 .encrypt = atmel_aes_xts_encrypt,
1972 .decrypt = atmel_aes_xts_decrypt,
1976 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1977 /* authenc aead functions */
1979 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1980 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1981 bool is_async);
1982 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1983 bool is_async);
1984 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1985 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1986 bool is_async);
1988 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1990 struct aead_request *req = aead_request_cast(dd->areq);
1991 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1993 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1994 atmel_sha_authenc_abort(&rctx->auth_req);
1995 dd->flags &= ~AES_FLAGS_OWN_SHA;
1998 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
2000 struct aead_request *req = aead_request_cast(dd->areq);
2001 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2003 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2004 int err;
2006 atmel_aes_set_mode(dd, &rctx->base);
2008 err = atmel_aes_hw_init(dd);
2009 if (err)
2010 return atmel_aes_complete(dd, err);
2012 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2013 atmel_aes_authenc_init, dd);
2016 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2017 bool is_async)
2019 struct aead_request *req = aead_request_cast(dd->areq);
2020 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2022 if (is_async)
2023 dd->is_async = true;
2024 if (err)
2025 return atmel_aes_complete(dd, err);
2027 /* If here, we've got the ownership of the SHA device. */
2028 dd->flags |= AES_FLAGS_OWN_SHA;
2030 /* Configure the SHA device. */
2031 return atmel_sha_authenc_init(&rctx->auth_req,
2032 req->src, req->assoclen,
2033 rctx->textlen,
2034 atmel_aes_authenc_transfer, dd);
2037 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2038 bool is_async)
2040 struct aead_request *req = aead_request_cast(dd->areq);
2041 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2042 bool enc = atmel_aes_is_encrypt(dd);
2043 struct scatterlist *src, *dst;
2044 u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2045 u32 emr;
2047 if (is_async)
2048 dd->is_async = true;
2049 if (err)
2050 return atmel_aes_complete(dd, err);
2052 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2053 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2054 dst = src;
2056 if (req->src != req->dst)
2057 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2059 /* Configure the AES device. */
2060 memcpy(iv, req->iv, sizeof(iv));
2063 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2064 * 'true' even if the data transfer is actually performed by the CPU (so
2065 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2066 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2067 * must be set to *_MR_SMOD_IDATAR0.
2069 atmel_aes_write_ctrl(dd, true, iv);
2070 emr = AES_EMR_PLIPEN;
2071 if (!enc)
2072 emr |= AES_EMR_PLIPD;
2073 atmel_aes_write(dd, AES_EMR, emr);
2075 /* Transfer data. */
2076 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2077 atmel_aes_authenc_digest);
2080 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2082 struct aead_request *req = aead_request_cast(dd->areq);
2083 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2085 /* atmel_sha_authenc_final() releases the SHA device. */
2086 dd->flags &= ~AES_FLAGS_OWN_SHA;
2087 return atmel_sha_authenc_final(&rctx->auth_req,
2088 rctx->digest, sizeof(rctx->digest),
2089 atmel_aes_authenc_final, dd);
2092 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2093 bool is_async)
2095 struct aead_request *req = aead_request_cast(dd->areq);
2096 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2097 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2098 bool enc = atmel_aes_is_encrypt(dd);
2099 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2100 u32 offs, authsize;
2102 if (is_async)
2103 dd->is_async = true;
2104 if (err)
2105 goto complete;
2107 offs = req->assoclen + rctx->textlen;
2108 authsize = crypto_aead_authsize(tfm);
2109 if (enc) {
2110 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2111 } else {
2112 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2113 if (crypto_memneq(idigest, odigest, authsize))
2114 err = -EBADMSG;
2117 complete:
2118 return atmel_aes_complete(dd, err);
2121 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2122 unsigned int keylen)
2124 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2125 struct crypto_authenc_keys keys;
2126 u32 flags;
2127 int err;
2129 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2130 goto badkey;
2132 if (keys.enckeylen > sizeof(ctx->base.key))
2133 goto badkey;
2135 /* Save auth key. */
2136 flags = crypto_aead_get_flags(tfm);
2137 err = atmel_sha_authenc_setkey(ctx->auth,
2138 keys.authkey, keys.authkeylen,
2139 &flags);
2140 crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2141 if (err) {
2142 memzero_explicit(&keys, sizeof(keys));
2143 return err;
2146 /* Save enc key. */
2147 ctx->base.keylen = keys.enckeylen;
2148 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2150 memzero_explicit(&keys, sizeof(keys));
2151 return 0;
2153 badkey:
2154 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2155 memzero_explicit(&keys, sizeof(keys));
2156 return -EINVAL;
2159 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2160 unsigned long auth_mode)
2162 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2163 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2165 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2166 if (IS_ERR(ctx->auth))
2167 return PTR_ERR(ctx->auth);
2169 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2170 auth_reqsize));
2171 ctx->base.start = atmel_aes_authenc_start;
2173 return 0;
2176 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2178 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2181 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2183 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2186 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2188 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2191 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2193 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2196 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2198 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2201 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2203 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2205 atmel_sha_authenc_free(ctx->auth);
2208 static int atmel_aes_authenc_crypt(struct aead_request *req,
2209 unsigned long mode)
2211 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2212 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2213 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2214 u32 authsize = crypto_aead_authsize(tfm);
2215 bool enc = (mode & AES_FLAGS_ENCRYPT);
2216 struct atmel_aes_dev *dd;
2218 /* Compute text length. */
2219 if (!enc && req->cryptlen < authsize)
2220 return -EINVAL;
2221 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2224 * Currently, empty messages are not supported yet:
2225 * the SHA auto-padding can be used only on non-empty messages.
2226 * Hence a special case needs to be implemented for empty message.
2228 if (!rctx->textlen && !req->assoclen)
2229 return -EINVAL;
2231 rctx->base.mode = mode;
2232 ctx->block_size = AES_BLOCK_SIZE;
2233 ctx->is_aead = true;
2235 dd = atmel_aes_find_dev(ctx);
2236 if (!dd)
2237 return -ENODEV;
2239 return atmel_aes_handle_queue(dd, &req->base);
2242 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2244 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2247 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2249 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2252 static struct aead_alg aes_authenc_algs[] = {
2254 .setkey = atmel_aes_authenc_setkey,
2255 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2256 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2257 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2258 .exit = atmel_aes_authenc_exit_tfm,
2259 .ivsize = AES_BLOCK_SIZE,
2260 .maxauthsize = SHA1_DIGEST_SIZE,
2262 .base = {
2263 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2264 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2265 .cra_priority = ATMEL_AES_PRIORITY,
2266 .cra_flags = CRYPTO_ALG_ASYNC,
2267 .cra_blocksize = AES_BLOCK_SIZE,
2268 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2269 .cra_alignmask = 0xf,
2270 .cra_module = THIS_MODULE,
2274 .setkey = atmel_aes_authenc_setkey,
2275 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2276 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2277 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2278 .exit = atmel_aes_authenc_exit_tfm,
2279 .ivsize = AES_BLOCK_SIZE,
2280 .maxauthsize = SHA224_DIGEST_SIZE,
2282 .base = {
2283 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2284 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2285 .cra_priority = ATMEL_AES_PRIORITY,
2286 .cra_flags = CRYPTO_ALG_ASYNC,
2287 .cra_blocksize = AES_BLOCK_SIZE,
2288 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2289 .cra_alignmask = 0xf,
2290 .cra_module = THIS_MODULE,
2294 .setkey = atmel_aes_authenc_setkey,
2295 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2296 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2297 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2298 .exit = atmel_aes_authenc_exit_tfm,
2299 .ivsize = AES_BLOCK_SIZE,
2300 .maxauthsize = SHA256_DIGEST_SIZE,
2302 .base = {
2303 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2304 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2305 .cra_priority = ATMEL_AES_PRIORITY,
2306 .cra_flags = CRYPTO_ALG_ASYNC,
2307 .cra_blocksize = AES_BLOCK_SIZE,
2308 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2309 .cra_alignmask = 0xf,
2310 .cra_module = THIS_MODULE,
2314 .setkey = atmel_aes_authenc_setkey,
2315 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2316 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2317 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2318 .exit = atmel_aes_authenc_exit_tfm,
2319 .ivsize = AES_BLOCK_SIZE,
2320 .maxauthsize = SHA384_DIGEST_SIZE,
2322 .base = {
2323 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2324 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2325 .cra_priority = ATMEL_AES_PRIORITY,
2326 .cra_flags = CRYPTO_ALG_ASYNC,
2327 .cra_blocksize = AES_BLOCK_SIZE,
2328 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2329 .cra_alignmask = 0xf,
2330 .cra_module = THIS_MODULE,
2334 .setkey = atmel_aes_authenc_setkey,
2335 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2336 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2337 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2338 .exit = atmel_aes_authenc_exit_tfm,
2339 .ivsize = AES_BLOCK_SIZE,
2340 .maxauthsize = SHA512_DIGEST_SIZE,
2342 .base = {
2343 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2344 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2345 .cra_priority = ATMEL_AES_PRIORITY,
2346 .cra_flags = CRYPTO_ALG_ASYNC,
2347 .cra_blocksize = AES_BLOCK_SIZE,
2348 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2349 .cra_alignmask = 0xf,
2350 .cra_module = THIS_MODULE,
2354 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2356 /* Probe functions */
2358 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2360 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2361 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2362 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2364 if (!dd->buf) {
2365 dev_err(dd->dev, "unable to alloc pages.\n");
2366 return -ENOMEM;
2369 return 0;
2372 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2374 free_page((unsigned long)dd->buf);
2377 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2379 struct at_dma_slave *sl = slave;
2381 if (sl && sl->dma_dev == chan->device->dev) {
2382 chan->private = sl;
2383 return true;
2384 } else {
2385 return false;
2389 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2390 struct crypto_platform_data *pdata)
2392 struct at_dma_slave *slave;
2393 dma_cap_mask_t mask;
2395 dma_cap_zero(mask);
2396 dma_cap_set(DMA_SLAVE, mask);
2398 /* Try to grab 2 DMA channels */
2399 slave = &pdata->dma_slave->rxdata;
2400 dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2401 slave, dd->dev, "tx");
2402 if (!dd->src.chan)
2403 goto err_dma_in;
2405 slave = &pdata->dma_slave->txdata;
2406 dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2407 slave, dd->dev, "rx");
2408 if (!dd->dst.chan)
2409 goto err_dma_out;
2411 return 0;
2413 err_dma_out:
2414 dma_release_channel(dd->src.chan);
2415 err_dma_in:
2416 dev_warn(dd->dev, "no DMA channel available\n");
2417 return -ENODEV;
2420 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2422 dma_release_channel(dd->dst.chan);
2423 dma_release_channel(dd->src.chan);
2426 static void atmel_aes_queue_task(unsigned long data)
2428 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2430 atmel_aes_handle_queue(dd, NULL);
2433 static void atmel_aes_done_task(unsigned long data)
2435 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2437 dd->is_async = true;
2438 (void)dd->resume(dd);
2441 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2443 struct atmel_aes_dev *aes_dd = dev_id;
2444 u32 reg;
2446 reg = atmel_aes_read(aes_dd, AES_ISR);
2447 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2448 atmel_aes_write(aes_dd, AES_IDR, reg);
2449 if (AES_FLAGS_BUSY & aes_dd->flags)
2450 tasklet_schedule(&aes_dd->done_task);
2451 else
2452 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2453 return IRQ_HANDLED;
2456 return IRQ_NONE;
2459 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2461 int i;
2463 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2464 if (dd->caps.has_authenc)
2465 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2466 crypto_unregister_aead(&aes_authenc_algs[i]);
2467 #endif
2469 if (dd->caps.has_xts)
2470 crypto_unregister_alg(&aes_xts_alg);
2472 if (dd->caps.has_gcm)
2473 crypto_unregister_aead(&aes_gcm_alg);
2475 if (dd->caps.has_cfb64)
2476 crypto_unregister_alg(&aes_cfb64_alg);
2478 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2479 crypto_unregister_alg(&aes_algs[i]);
2482 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2484 int err, i, j;
2486 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2487 err = crypto_register_alg(&aes_algs[i]);
2488 if (err)
2489 goto err_aes_algs;
2492 if (dd->caps.has_cfb64) {
2493 err = crypto_register_alg(&aes_cfb64_alg);
2494 if (err)
2495 goto err_aes_cfb64_alg;
2498 if (dd->caps.has_gcm) {
2499 err = crypto_register_aead(&aes_gcm_alg);
2500 if (err)
2501 goto err_aes_gcm_alg;
2504 if (dd->caps.has_xts) {
2505 err = crypto_register_alg(&aes_xts_alg);
2506 if (err)
2507 goto err_aes_xts_alg;
2510 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2511 if (dd->caps.has_authenc) {
2512 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2513 err = crypto_register_aead(&aes_authenc_algs[i]);
2514 if (err)
2515 goto err_aes_authenc_alg;
2518 #endif
2520 return 0;
2522 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2523 /* i = ARRAY_SIZE(aes_authenc_algs); */
2524 err_aes_authenc_alg:
2525 for (j = 0; j < i; j++)
2526 crypto_unregister_aead(&aes_authenc_algs[j]);
2527 crypto_unregister_alg(&aes_xts_alg);
2528 #endif
2529 err_aes_xts_alg:
2530 crypto_unregister_aead(&aes_gcm_alg);
2531 err_aes_gcm_alg:
2532 crypto_unregister_alg(&aes_cfb64_alg);
2533 err_aes_cfb64_alg:
2534 i = ARRAY_SIZE(aes_algs);
2535 err_aes_algs:
2536 for (j = 0; j < i; j++)
2537 crypto_unregister_alg(&aes_algs[j]);
2539 return err;
2542 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2544 dd->caps.has_dualbuff = 0;
2545 dd->caps.has_cfb64 = 0;
2546 dd->caps.has_ctr32 = 0;
2547 dd->caps.has_gcm = 0;
2548 dd->caps.has_xts = 0;
2549 dd->caps.has_authenc = 0;
2550 dd->caps.max_burst_size = 1;
2552 /* keep only major version number */
2553 switch (dd->hw_version & 0xff0) {
2554 case 0x500:
2555 dd->caps.has_dualbuff = 1;
2556 dd->caps.has_cfb64 = 1;
2557 dd->caps.has_ctr32 = 1;
2558 dd->caps.has_gcm = 1;
2559 dd->caps.has_xts = 1;
2560 dd->caps.has_authenc = 1;
2561 dd->caps.max_burst_size = 4;
2562 break;
2563 case 0x200:
2564 dd->caps.has_dualbuff = 1;
2565 dd->caps.has_cfb64 = 1;
2566 dd->caps.has_ctr32 = 1;
2567 dd->caps.has_gcm = 1;
2568 dd->caps.max_burst_size = 4;
2569 break;
2570 case 0x130:
2571 dd->caps.has_dualbuff = 1;
2572 dd->caps.has_cfb64 = 1;
2573 dd->caps.max_burst_size = 4;
2574 break;
2575 case 0x120:
2576 break;
2577 default:
2578 dev_warn(dd->dev,
2579 "Unmanaged aes version, set minimum capabilities\n");
2580 break;
2584 #if defined(CONFIG_OF)
2585 static const struct of_device_id atmel_aes_dt_ids[] = {
2586 { .compatible = "atmel,at91sam9g46-aes" },
2587 { /* sentinel */ }
2589 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2591 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2593 struct device_node *np = pdev->dev.of_node;
2594 struct crypto_platform_data *pdata;
2596 if (!np) {
2597 dev_err(&pdev->dev, "device node not found\n");
2598 return ERR_PTR(-EINVAL);
2601 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2602 if (!pdata)
2603 return ERR_PTR(-ENOMEM);
2605 pdata->dma_slave = devm_kzalloc(&pdev->dev,
2606 sizeof(*(pdata->dma_slave)),
2607 GFP_KERNEL);
2608 if (!pdata->dma_slave) {
2609 devm_kfree(&pdev->dev, pdata);
2610 return ERR_PTR(-ENOMEM);
2613 return pdata;
2615 #else
2616 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2618 return ERR_PTR(-EINVAL);
2620 #endif
2622 static int atmel_aes_probe(struct platform_device *pdev)
2624 struct atmel_aes_dev *aes_dd;
2625 struct crypto_platform_data *pdata;
2626 struct device *dev = &pdev->dev;
2627 struct resource *aes_res;
2628 int err;
2630 pdata = pdev->dev.platform_data;
2631 if (!pdata) {
2632 pdata = atmel_aes_of_init(pdev);
2633 if (IS_ERR(pdata)) {
2634 err = PTR_ERR(pdata);
2635 goto aes_dd_err;
2639 if (!pdata->dma_slave) {
2640 err = -ENXIO;
2641 goto aes_dd_err;
2644 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2645 if (aes_dd == NULL) {
2646 err = -ENOMEM;
2647 goto aes_dd_err;
2650 aes_dd->dev = dev;
2652 platform_set_drvdata(pdev, aes_dd);
2654 INIT_LIST_HEAD(&aes_dd->list);
2655 spin_lock_init(&aes_dd->lock);
2657 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2658 (unsigned long)aes_dd);
2659 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2660 (unsigned long)aes_dd);
2662 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2664 /* Get the base address */
2665 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2666 if (!aes_res) {
2667 dev_err(dev, "no MEM resource info\n");
2668 err = -ENODEV;
2669 goto res_err;
2671 aes_dd->phys_base = aes_res->start;
2673 /* Get the IRQ */
2674 aes_dd->irq = platform_get_irq(pdev, 0);
2675 if (aes_dd->irq < 0) {
2676 err = aes_dd->irq;
2677 goto res_err;
2680 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2681 IRQF_SHARED, "atmel-aes", aes_dd);
2682 if (err) {
2683 dev_err(dev, "unable to request aes irq.\n");
2684 goto res_err;
2687 /* Initializing the clock */
2688 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2689 if (IS_ERR(aes_dd->iclk)) {
2690 dev_err(dev, "clock initialization failed.\n");
2691 err = PTR_ERR(aes_dd->iclk);
2692 goto res_err;
2695 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2696 if (IS_ERR(aes_dd->io_base)) {
2697 dev_err(dev, "can't ioremap\n");
2698 err = PTR_ERR(aes_dd->io_base);
2699 goto res_err;
2702 err = clk_prepare(aes_dd->iclk);
2703 if (err)
2704 goto res_err;
2706 err = atmel_aes_hw_version_init(aes_dd);
2707 if (err)
2708 goto iclk_unprepare;
2710 atmel_aes_get_cap(aes_dd);
2712 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2713 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2714 err = -EPROBE_DEFER;
2715 goto iclk_unprepare;
2717 #endif
2719 err = atmel_aes_buff_init(aes_dd);
2720 if (err)
2721 goto err_aes_buff;
2723 err = atmel_aes_dma_init(aes_dd, pdata);
2724 if (err)
2725 goto err_aes_dma;
2727 spin_lock(&atmel_aes.lock);
2728 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2729 spin_unlock(&atmel_aes.lock);
2731 err = atmel_aes_register_algs(aes_dd);
2732 if (err)
2733 goto err_algs;
2735 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2736 dma_chan_name(aes_dd->src.chan),
2737 dma_chan_name(aes_dd->dst.chan));
2739 return 0;
2741 err_algs:
2742 spin_lock(&atmel_aes.lock);
2743 list_del(&aes_dd->list);
2744 spin_unlock(&atmel_aes.lock);
2745 atmel_aes_dma_cleanup(aes_dd);
2746 err_aes_dma:
2747 atmel_aes_buff_cleanup(aes_dd);
2748 err_aes_buff:
2749 iclk_unprepare:
2750 clk_unprepare(aes_dd->iclk);
2751 res_err:
2752 tasklet_kill(&aes_dd->done_task);
2753 tasklet_kill(&aes_dd->queue_task);
2754 aes_dd_err:
2755 if (err != -EPROBE_DEFER)
2756 dev_err(dev, "initialization failed.\n");
2758 return err;
2761 static int atmel_aes_remove(struct platform_device *pdev)
2763 struct atmel_aes_dev *aes_dd;
2765 aes_dd = platform_get_drvdata(pdev);
2766 if (!aes_dd)
2767 return -ENODEV;
2768 spin_lock(&atmel_aes.lock);
2769 list_del(&aes_dd->list);
2770 spin_unlock(&atmel_aes.lock);
2772 atmel_aes_unregister_algs(aes_dd);
2774 tasklet_kill(&aes_dd->done_task);
2775 tasklet_kill(&aes_dd->queue_task);
2777 atmel_aes_dma_cleanup(aes_dd);
2778 atmel_aes_buff_cleanup(aes_dd);
2780 clk_unprepare(aes_dd->iclk);
2782 return 0;
2785 static struct platform_driver atmel_aes_driver = {
2786 .probe = atmel_aes_probe,
2787 .remove = atmel_aes_remove,
2788 .driver = {
2789 .name = "atmel_aes",
2790 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2794 module_platform_driver(atmel_aes_driver);
2796 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2797 MODULE_LICENSE("GPL v2");
2798 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");