1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2012 - 2014 Allwinner Tech
4 * Pan Nan <pannan@allwinnertech.com>
6 * Copyright (C) 2014 Maxime Ripard
7 * Maxime Ripard <maxime.ripard@free-electrons.com>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
21 #define SUN4I_FIFO_DEPTH 64
23 #define SUN4I_RXDATA_REG 0x00
25 #define SUN4I_TXDATA_REG 0x04
27 #define SUN4I_CTL_REG 0x08
28 #define SUN4I_CTL_ENABLE BIT(0)
29 #define SUN4I_CTL_MASTER BIT(1)
30 #define SUN4I_CTL_CPHA BIT(2)
31 #define SUN4I_CTL_CPOL BIT(3)
32 #define SUN4I_CTL_CS_ACTIVE_LOW BIT(4)
33 #define SUN4I_CTL_LMTF BIT(6)
34 #define SUN4I_CTL_TF_RST BIT(8)
35 #define SUN4I_CTL_RF_RST BIT(9)
36 #define SUN4I_CTL_XCH BIT(10)
37 #define SUN4I_CTL_CS_MASK 0x3000
38 #define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK)
39 #define SUN4I_CTL_DHB BIT(15)
40 #define SUN4I_CTL_CS_MANUAL BIT(16)
41 #define SUN4I_CTL_CS_LEVEL BIT(17)
42 #define SUN4I_CTL_TP BIT(18)
44 #define SUN4I_INT_CTL_REG 0x0c
45 #define SUN4I_INT_CTL_RF_F34 BIT(4)
46 #define SUN4I_INT_CTL_TF_E34 BIT(12)
47 #define SUN4I_INT_CTL_TC BIT(16)
49 #define SUN4I_INT_STA_REG 0x10
51 #define SUN4I_DMA_CTL_REG 0x14
53 #define SUN4I_WAIT_REG 0x18
55 #define SUN4I_CLK_CTL_REG 0x1c
56 #define SUN4I_CLK_CTL_CDR2_MASK 0xff
57 #define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK)
58 #define SUN4I_CLK_CTL_CDR1_MASK 0xf
59 #define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
60 #define SUN4I_CLK_CTL_DRS BIT(12)
62 #define SUN4I_MAX_XFER_SIZE 0xffffff
64 #define SUN4I_BURST_CNT_REG 0x20
65 #define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
67 #define SUN4I_XMIT_CNT_REG 0x24
68 #define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
71 #define SUN4I_FIFO_STA_REG 0x28
72 #define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
73 #define SUN4I_FIFO_STA_RF_CNT_BITS 0
74 #define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f
75 #define SUN4I_FIFO_STA_TF_CNT_BITS 16
78 struct spi_master
*master
;
79 void __iomem
*base_addr
;
83 struct completion done
;
90 static inline u32
sun4i_spi_read(struct sun4i_spi
*sspi
, u32 reg
)
92 return readl(sspi
->base_addr
+ reg
);
95 static inline void sun4i_spi_write(struct sun4i_spi
*sspi
, u32 reg
, u32 value
)
97 writel(value
, sspi
->base_addr
+ reg
);
100 static inline u32
sun4i_spi_get_tx_fifo_count(struct sun4i_spi
*sspi
)
102 u32 reg
= sun4i_spi_read(sspi
, SUN4I_FIFO_STA_REG
);
104 reg
>>= SUN4I_FIFO_STA_TF_CNT_BITS
;
106 return reg
& SUN4I_FIFO_STA_TF_CNT_MASK
;
109 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi
*sspi
, u32 mask
)
111 u32 reg
= sun4i_spi_read(sspi
, SUN4I_INT_CTL_REG
);
114 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, reg
);
117 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi
*sspi
, u32 mask
)
119 u32 reg
= sun4i_spi_read(sspi
, SUN4I_INT_CTL_REG
);
122 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, reg
);
125 static inline void sun4i_spi_drain_fifo(struct sun4i_spi
*sspi
, int len
)
130 /* See how much data is available */
131 reg
= sun4i_spi_read(sspi
, SUN4I_FIFO_STA_REG
);
132 reg
&= SUN4I_FIFO_STA_RF_CNT_MASK
;
133 cnt
= reg
>> SUN4I_FIFO_STA_RF_CNT_BITS
;
139 byte
= readb(sspi
->base_addr
+ SUN4I_RXDATA_REG
);
141 *sspi
->rx_buf
++ = byte
;
145 static inline void sun4i_spi_fill_fifo(struct sun4i_spi
*sspi
, int len
)
150 /* See how much data we can fit */
151 cnt
= SUN4I_FIFO_DEPTH
- sun4i_spi_get_tx_fifo_count(sspi
);
153 len
= min3(len
, (int)cnt
, sspi
->len
);
156 byte
= sspi
->tx_buf
? *sspi
->tx_buf
++ : 0;
157 writeb(byte
, sspi
->base_addr
+ SUN4I_TXDATA_REG
);
162 static void sun4i_spi_set_cs(struct spi_device
*spi
, bool enable
)
164 struct sun4i_spi
*sspi
= spi_master_get_devdata(spi
->master
);
167 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
169 reg
&= ~SUN4I_CTL_CS_MASK
;
170 reg
|= SUN4I_CTL_CS(spi
->chip_select
);
172 /* We want to control the chip select manually */
173 reg
|= SUN4I_CTL_CS_MANUAL
;
176 reg
|= SUN4I_CTL_CS_LEVEL
;
178 reg
&= ~SUN4I_CTL_CS_LEVEL
;
181 * Even though this looks irrelevant since we are supposed to
182 * be controlling the chip select manually, this bit also
183 * controls the levels of the chip select for inactive
186 * If we don't set it, the chip select level will go low by
187 * default when the device is idle, which is not really
188 * expected in the common case where the chip select is active
191 if (spi
->mode
& SPI_CS_HIGH
)
192 reg
&= ~SUN4I_CTL_CS_ACTIVE_LOW
;
194 reg
|= SUN4I_CTL_CS_ACTIVE_LOW
;
196 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
);
199 static size_t sun4i_spi_max_transfer_size(struct spi_device
*spi
)
201 return SUN4I_FIFO_DEPTH
- 1;
204 static int sun4i_spi_transfer_one(struct spi_master
*master
,
205 struct spi_device
*spi
,
206 struct spi_transfer
*tfr
)
208 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
209 unsigned int mclk_rate
, div
, timeout
;
210 unsigned int start
, end
, tx_time
;
211 unsigned int tx_len
= 0;
215 /* We don't support transfer larger than the FIFO */
216 if (tfr
->len
> SUN4I_MAX_XFER_SIZE
)
219 if (tfr
->tx_buf
&& tfr
->len
>= SUN4I_MAX_XFER_SIZE
)
222 reinit_completion(&sspi
->done
);
223 sspi
->tx_buf
= tfr
->tx_buf
;
224 sspi
->rx_buf
= tfr
->rx_buf
;
225 sspi
->len
= tfr
->len
;
227 /* Clear pending interrupts */
228 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, ~0);
231 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
234 sun4i_spi_write(sspi
, SUN4I_CTL_REG
,
235 reg
| SUN4I_CTL_RF_RST
| SUN4I_CTL_TF_RST
);
238 * Setup the transfer control register: Chip Select,
241 if (spi
->mode
& SPI_CPOL
)
242 reg
|= SUN4I_CTL_CPOL
;
244 reg
&= ~SUN4I_CTL_CPOL
;
246 if (spi
->mode
& SPI_CPHA
)
247 reg
|= SUN4I_CTL_CPHA
;
249 reg
&= ~SUN4I_CTL_CPHA
;
251 if (spi
->mode
& SPI_LSB_FIRST
)
252 reg
|= SUN4I_CTL_LMTF
;
254 reg
&= ~SUN4I_CTL_LMTF
;
258 * If it's a TX only transfer, we don't want to fill the RX
259 * FIFO with bogus data
262 reg
&= ~SUN4I_CTL_DHB
;
264 reg
|= SUN4I_CTL_DHB
;
266 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
);
268 /* Ensure that we have a parent clock fast enough */
269 mclk_rate
= clk_get_rate(sspi
->mclk
);
270 if (mclk_rate
< (2 * tfr
->speed_hz
)) {
271 clk_set_rate(sspi
->mclk
, 2 * tfr
->speed_hz
);
272 mclk_rate
= clk_get_rate(sspi
->mclk
);
276 * Setup clock divider.
278 * We have two choices there. Either we can use the clock
279 * divide rate 1, which is calculated thanks to this formula:
280 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
281 * Or we can use CDR2, which is calculated with the formula:
282 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
283 * Wether we use the former or the latter is set through the
286 * First try CDR2, and if we can't reach the expected
287 * frequency, fall back to CDR1.
289 div
= mclk_rate
/ (2 * tfr
->speed_hz
);
290 if (div
<= (SUN4I_CLK_CTL_CDR2_MASK
+ 1)) {
294 reg
= SUN4I_CLK_CTL_CDR2(div
) | SUN4I_CLK_CTL_DRS
;
296 div
= ilog2(mclk_rate
) - ilog2(tfr
->speed_hz
);
297 reg
= SUN4I_CLK_CTL_CDR1(div
);
300 sun4i_spi_write(sspi
, SUN4I_CLK_CTL_REG
, reg
);
302 /* Setup the transfer now... */
306 /* Setup the counters */
307 sun4i_spi_write(sspi
, SUN4I_BURST_CNT_REG
, SUN4I_BURST_CNT(tfr
->len
));
308 sun4i_spi_write(sspi
, SUN4I_XMIT_CNT_REG
, SUN4I_XMIT_CNT(tx_len
));
312 * Filling the FIFO fully causes timeout for some reason
313 * at least on spi2 on A10s
315 sun4i_spi_fill_fifo(sspi
, SUN4I_FIFO_DEPTH
- 1);
317 /* Enable the interrupts */
318 sun4i_spi_enable_interrupt(sspi
, SUN4I_INT_CTL_TC
|
319 SUN4I_INT_CTL_RF_F34
);
320 /* Only enable Tx FIFO interrupt if we really need it */
321 if (tx_len
> SUN4I_FIFO_DEPTH
)
322 sun4i_spi_enable_interrupt(sspi
, SUN4I_INT_CTL_TF_E34
);
324 /* Start the transfer */
325 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
326 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
| SUN4I_CTL_XCH
);
328 tx_time
= max(tfr
->len
* 8 * 2 / (tfr
->speed_hz
/ 1000), 100U);
330 timeout
= wait_for_completion_timeout(&sspi
->done
,
331 msecs_to_jiffies(tx_time
));
334 dev_warn(&master
->dev
,
335 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
336 dev_name(&spi
->dev
), tfr
->len
, tfr
->speed_hz
,
337 jiffies_to_msecs(end
- start
), tx_time
);
344 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, 0);
349 static irqreturn_t
sun4i_spi_handler(int irq
, void *dev_id
)
351 struct sun4i_spi
*sspi
= dev_id
;
352 u32 status
= sun4i_spi_read(sspi
, SUN4I_INT_STA_REG
);
354 /* Transfer complete */
355 if (status
& SUN4I_INT_CTL_TC
) {
356 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, SUN4I_INT_CTL_TC
);
357 sun4i_spi_drain_fifo(sspi
, SUN4I_FIFO_DEPTH
);
358 complete(&sspi
->done
);
362 /* Receive FIFO 3/4 full */
363 if (status
& SUN4I_INT_CTL_RF_F34
) {
364 sun4i_spi_drain_fifo(sspi
, SUN4I_FIFO_DEPTH
);
365 /* Only clear the interrupt _after_ draining the FIFO */
366 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, SUN4I_INT_CTL_RF_F34
);
370 /* Transmit FIFO 3/4 empty */
371 if (status
& SUN4I_INT_CTL_TF_E34
) {
372 sun4i_spi_fill_fifo(sspi
, SUN4I_FIFO_DEPTH
);
375 /* nothing left to transmit */
376 sun4i_spi_disable_interrupt(sspi
, SUN4I_INT_CTL_TF_E34
);
378 /* Only clear the interrupt _after_ re-seeding the FIFO */
379 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, SUN4I_INT_CTL_TF_E34
);
387 static int sun4i_spi_runtime_resume(struct device
*dev
)
389 struct spi_master
*master
= dev_get_drvdata(dev
);
390 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
393 ret
= clk_prepare_enable(sspi
->hclk
);
395 dev_err(dev
, "Couldn't enable AHB clock\n");
399 ret
= clk_prepare_enable(sspi
->mclk
);
401 dev_err(dev
, "Couldn't enable module clock\n");
405 sun4i_spi_write(sspi
, SUN4I_CTL_REG
,
406 SUN4I_CTL_ENABLE
| SUN4I_CTL_MASTER
| SUN4I_CTL_TP
);
411 clk_disable_unprepare(sspi
->hclk
);
416 static int sun4i_spi_runtime_suspend(struct device
*dev
)
418 struct spi_master
*master
= dev_get_drvdata(dev
);
419 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
421 clk_disable_unprepare(sspi
->mclk
);
422 clk_disable_unprepare(sspi
->hclk
);
427 static int sun4i_spi_probe(struct platform_device
*pdev
)
429 struct spi_master
*master
;
430 struct sun4i_spi
*sspi
;
433 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sun4i_spi
));
435 dev_err(&pdev
->dev
, "Unable to allocate SPI Master\n");
439 platform_set_drvdata(pdev
, master
);
440 sspi
= spi_master_get_devdata(master
);
442 sspi
->base_addr
= devm_platform_ioremap_resource(pdev
, 0);
443 if (IS_ERR(sspi
->base_addr
)) {
444 ret
= PTR_ERR(sspi
->base_addr
);
445 goto err_free_master
;
448 irq
= platform_get_irq(pdev
, 0);
451 goto err_free_master
;
454 ret
= devm_request_irq(&pdev
->dev
, irq
, sun4i_spi_handler
,
455 0, "sun4i-spi", sspi
);
457 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
458 goto err_free_master
;
461 sspi
->master
= master
;
462 master
->max_speed_hz
= 100 * 1000 * 1000;
463 master
->min_speed_hz
= 3 * 1000;
464 master
->set_cs
= sun4i_spi_set_cs
;
465 master
->transfer_one
= sun4i_spi_transfer_one
;
466 master
->num_chipselect
= 4;
467 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
;
468 master
->bits_per_word_mask
= SPI_BPW_MASK(8);
469 master
->dev
.of_node
= pdev
->dev
.of_node
;
470 master
->auto_runtime_pm
= true;
471 master
->max_transfer_size
= sun4i_spi_max_transfer_size
;
473 sspi
->hclk
= devm_clk_get(&pdev
->dev
, "ahb");
474 if (IS_ERR(sspi
->hclk
)) {
475 dev_err(&pdev
->dev
, "Unable to acquire AHB clock\n");
476 ret
= PTR_ERR(sspi
->hclk
);
477 goto err_free_master
;
480 sspi
->mclk
= devm_clk_get(&pdev
->dev
, "mod");
481 if (IS_ERR(sspi
->mclk
)) {
482 dev_err(&pdev
->dev
, "Unable to acquire module clock\n");
483 ret
= PTR_ERR(sspi
->mclk
);
484 goto err_free_master
;
487 init_completion(&sspi
->done
);
490 * This wake-up/shutdown pattern is to be able to have the
491 * device woken up, even if runtime_pm is disabled
493 ret
= sun4i_spi_runtime_resume(&pdev
->dev
);
495 dev_err(&pdev
->dev
, "Couldn't resume the device\n");
496 goto err_free_master
;
499 pm_runtime_set_active(&pdev
->dev
);
500 pm_runtime_enable(&pdev
->dev
);
501 pm_runtime_idle(&pdev
->dev
);
503 ret
= devm_spi_register_master(&pdev
->dev
, master
);
505 dev_err(&pdev
->dev
, "cannot register SPI master\n");
512 pm_runtime_disable(&pdev
->dev
);
513 sun4i_spi_runtime_suspend(&pdev
->dev
);
515 spi_master_put(master
);
519 static int sun4i_spi_remove(struct platform_device
*pdev
)
521 pm_runtime_force_suspend(&pdev
->dev
);
526 static const struct of_device_id sun4i_spi_match
[] = {
527 { .compatible
= "allwinner,sun4i-a10-spi", },
530 MODULE_DEVICE_TABLE(of
, sun4i_spi_match
);
532 static const struct dev_pm_ops sun4i_spi_pm_ops
= {
533 .runtime_resume
= sun4i_spi_runtime_resume
,
534 .runtime_suspend
= sun4i_spi_runtime_suspend
,
537 static struct platform_driver sun4i_spi_driver
= {
538 .probe
= sun4i_spi_probe
,
539 .remove
= sun4i_spi_remove
,
542 .of_match_table
= sun4i_spi_match
,
543 .pm
= &sun4i_spi_pm_ops
,
546 module_platform_driver(sun4i_spi_driver
);
548 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
549 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
550 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
551 MODULE_LICENSE("GPL");