staging: rtl8188eu: remove unused code
[linux/fpc-iii.git] / drivers / edac / edac_mc_sysfs.c
blob46417468558945921e52cba2c997229bb87694aa
1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
22 #include "edac_mc.h"
23 #include "edac_module.h"
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
34 return edac_mc_log_ue;
37 int edac_mc_get_log_ce(void)
39 return edac_mc_log_ce;
42 int edac_mc_get_panic_on_ue(void)
44 return edac_mc_panic_on_ue;
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
50 return edac_mc_poll_msec;
53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
55 unsigned long l;
56 int ret;
58 if (!val)
59 return -EINVAL;
61 ret = kstrtoul(val, 0, &l);
62 if (ret)
63 return ret;
65 if (l < 1000)
66 return -EINVAL;
68 *((unsigned long *)kp->arg) = l;
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(l);
73 return 0;
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
89 static struct device *mci_pdev;
92 * various constants for Memory Controllers
94 static const char * const dev_types[] = {
95 [DEV_UNKNOWN] = "Unknown",
96 [DEV_X1] = "x1",
97 [DEV_X2] = "x2",
98 [DEV_X4] = "x4",
99 [DEV_X8] = "x8",
100 [DEV_X16] = "x16",
101 [DEV_X32] = "x32",
102 [DEV_X64] = "x64"
105 static const char * const edac_caps[] = {
106 [EDAC_UNKNOWN] = "Unknown",
107 [EDAC_NONE] = "None",
108 [EDAC_RESERVED] = "Reserved",
109 [EDAC_PARITY] = "PARITY",
110 [EDAC_EC] = "EC",
111 [EDAC_SECDED] = "SECDED",
112 [EDAC_S2ECD2ED] = "S2ECD2ED",
113 [EDAC_S4ECD4ED] = "S4ECD4ED",
114 [EDAC_S8ECD8ED] = "S8ECD8ED",
115 [EDAC_S16ECD16ED] = "S16ECD16ED"
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
120 * EDAC sysfs CSROW data structures and methods
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
126 * We need it to avoid namespace conflicts between the legacy API
127 * and the per-dimm/per-rank one
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
132 struct dev_ch_attribute {
133 struct device_attribute attr;
134 int channel;
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 { __ATTR(_name, _mode, _show, _store), (_var) }
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
143 /* Set of more default csrow<id> attribute show/store functions */
144 static ssize_t csrow_ue_count_show(struct device *dev,
145 struct device_attribute *mattr, char *data)
147 struct csrow_info *csrow = to_csrow(dev);
149 return sprintf(data, "%u\n", csrow->ue_count);
152 static ssize_t csrow_ce_count_show(struct device *dev,
153 struct device_attribute *mattr, char *data)
155 struct csrow_info *csrow = to_csrow(dev);
157 return sprintf(data, "%u\n", csrow->ce_count);
160 static ssize_t csrow_size_show(struct device *dev,
161 struct device_attribute *mattr, char *data)
163 struct csrow_info *csrow = to_csrow(dev);
164 int i;
165 u32 nr_pages = 0;
167 for (i = 0; i < csrow->nr_channels; i++)
168 nr_pages += csrow->channels[i]->dimm->nr_pages;
169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
172 static ssize_t csrow_mem_type_show(struct device *dev,
173 struct device_attribute *mattr, char *data)
175 struct csrow_info *csrow = to_csrow(dev);
177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
180 static ssize_t csrow_dev_type_show(struct device *dev,
181 struct device_attribute *mattr, char *data)
183 struct csrow_info *csrow = to_csrow(dev);
185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 struct device_attribute *mattr,
190 char *data)
192 struct csrow_info *csrow = to_csrow(dev);
194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
197 /* show/store functions for DIMM Label attributes */
198 static ssize_t channel_dimm_label_show(struct device *dev,
199 struct device_attribute *mattr,
200 char *data)
202 struct csrow_info *csrow = to_csrow(dev);
203 unsigned chan = to_channel(mattr);
204 struct rank_info *rank = csrow->channels[chan];
206 /* if field has not been initialized, there is nothing to send */
207 if (!rank->dimm->label[0])
208 return 0;
210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 rank->dimm->label);
214 static ssize_t channel_dimm_label_store(struct device *dev,
215 struct device_attribute *mattr,
216 const char *data, size_t count)
218 struct csrow_info *csrow = to_csrow(dev);
219 unsigned chan = to_channel(mattr);
220 struct rank_info *rank = csrow->channels[chan];
221 size_t copy_count = count;
223 if (count == 0)
224 return -EINVAL;
226 if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 copy_count -= 1;
229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 return -EINVAL;
232 strncpy(rank->dimm->label, data, copy_count);
233 rank->dimm->label[copy_count] = '\0';
235 return count;
238 /* show function for dynamic chX_ce_count attribute */
239 static ssize_t channel_ce_count_show(struct device *dev,
240 struct device_attribute *mattr, char *data)
242 struct csrow_info *csrow = to_csrow(dev);
243 unsigned chan = to_channel(mattr);
244 struct rank_info *rank = csrow->channels[chan];
246 return sprintf(data, "%u\n", rank->ce_count);
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259 &dev_attr_legacy_dev_type.attr,
260 &dev_attr_legacy_mem_type.attr,
261 &dev_attr_legacy_edac_mode.attr,
262 &dev_attr_legacy_size_mb.attr,
263 &dev_attr_legacy_ue_count.attr,
264 &dev_attr_legacy_ce_count.attr,
265 NULL,
268 static const struct attribute_group csrow_attr_grp = {
269 .attrs = csrow_attrs,
272 static const struct attribute_group *csrow_attr_groups[] = {
273 &csrow_attr_grp,
274 NULL
277 static void csrow_attr_release(struct device *dev)
279 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
281 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
282 kfree(csrow);
285 static const struct device_type csrow_attr_type = {
286 .groups = csrow_attr_groups,
287 .release = csrow_attr_release,
291 * possible dynamic channel DIMM Label attribute files
294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
295 channel_dimm_label_show, channel_dimm_label_store, 0);
296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
297 channel_dimm_label_show, channel_dimm_label_store, 1);
298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
299 channel_dimm_label_show, channel_dimm_label_store, 2);
300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
301 channel_dimm_label_show, channel_dimm_label_store, 3);
302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
303 channel_dimm_label_show, channel_dimm_label_store, 4);
304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
305 channel_dimm_label_show, channel_dimm_label_store, 5);
306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
307 channel_dimm_label_show, channel_dimm_label_store, 6);
308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
309 channel_dimm_label_show, channel_dimm_label_store, 7);
311 /* Total possible dynamic DIMM Label attribute file table */
312 static struct attribute *dynamic_csrow_dimm_attr[] = {
313 &dev_attr_legacy_ch0_dimm_label.attr.attr,
314 &dev_attr_legacy_ch1_dimm_label.attr.attr,
315 &dev_attr_legacy_ch2_dimm_label.attr.attr,
316 &dev_attr_legacy_ch3_dimm_label.attr.attr,
317 &dev_attr_legacy_ch4_dimm_label.attr.attr,
318 &dev_attr_legacy_ch5_dimm_label.attr.attr,
319 &dev_attr_legacy_ch6_dimm_label.attr.attr,
320 &dev_attr_legacy_ch7_dimm_label.attr.attr,
321 NULL
324 /* possible dynamic channel ce_count attribute files */
325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
326 channel_ce_count_show, NULL, 0);
327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
328 channel_ce_count_show, NULL, 1);
329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
330 channel_ce_count_show, NULL, 2);
331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
332 channel_ce_count_show, NULL, 3);
333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
334 channel_ce_count_show, NULL, 4);
335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
336 channel_ce_count_show, NULL, 5);
337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
338 channel_ce_count_show, NULL, 6);
339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
340 channel_ce_count_show, NULL, 7);
342 /* Total possible dynamic ce_count attribute file table */
343 static struct attribute *dynamic_csrow_ce_count_attr[] = {
344 &dev_attr_legacy_ch0_ce_count.attr.attr,
345 &dev_attr_legacy_ch1_ce_count.attr.attr,
346 &dev_attr_legacy_ch2_ce_count.attr.attr,
347 &dev_attr_legacy_ch3_ce_count.attr.attr,
348 &dev_attr_legacy_ch4_ce_count.attr.attr,
349 &dev_attr_legacy_ch5_ce_count.attr.attr,
350 &dev_attr_legacy_ch6_ce_count.attr.attr,
351 &dev_attr_legacy_ch7_ce_count.attr.attr,
352 NULL
355 static umode_t csrow_dev_is_visible(struct kobject *kobj,
356 struct attribute *attr, int idx)
358 struct device *dev = kobj_to_dev(kobj);
359 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
361 if (idx >= csrow->nr_channels)
362 return 0;
364 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
365 WARN_ONCE(1, "idx: %d\n", idx);
366 return 0;
369 /* Only expose populated DIMMs */
370 if (!csrow->channels[idx]->dimm->nr_pages)
371 return 0;
373 return attr->mode;
377 static const struct attribute_group csrow_dev_dimm_group = {
378 .attrs = dynamic_csrow_dimm_attr,
379 .is_visible = csrow_dev_is_visible,
382 static const struct attribute_group csrow_dev_ce_count_group = {
383 .attrs = dynamic_csrow_ce_count_attr,
384 .is_visible = csrow_dev_is_visible,
387 static const struct attribute_group *csrow_dev_groups[] = {
388 &csrow_dev_dimm_group,
389 &csrow_dev_ce_count_group,
390 NULL
393 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
395 int chan, nr_pages = 0;
397 for (chan = 0; chan < csrow->nr_channels; chan++)
398 nr_pages += csrow->channels[chan]->dimm->nr_pages;
400 return nr_pages;
403 /* Create a CSROW object under specifed edac_mc_device */
404 static int edac_create_csrow_object(struct mem_ctl_info *mci,
405 struct csrow_info *csrow, int index)
407 csrow->dev.type = &csrow_attr_type;
408 csrow->dev.groups = csrow_dev_groups;
409 device_initialize(&csrow->dev);
410 csrow->dev.parent = &mci->dev;
411 csrow->mci = mci;
412 dev_set_name(&csrow->dev, "csrow%d", index);
413 dev_set_drvdata(&csrow->dev, csrow);
415 edac_dbg(0, "creating (virtual) csrow node %s\n",
416 dev_name(&csrow->dev));
418 return device_add(&csrow->dev);
421 /* Create a CSROW object under specifed edac_mc_device */
422 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
424 int err, i;
425 struct csrow_info *csrow;
427 for (i = 0; i < mci->nr_csrows; i++) {
428 csrow = mci->csrows[i];
429 if (!nr_pages_per_csrow(csrow))
430 continue;
431 err = edac_create_csrow_object(mci, mci->csrows[i], i);
432 if (err < 0) {
433 edac_dbg(1,
434 "failure: create csrow objects for csrow %d\n",
436 goto error;
439 return 0;
441 error:
442 for (--i; i >= 0; i--) {
443 csrow = mci->csrows[i];
444 if (!nr_pages_per_csrow(csrow))
445 continue;
446 put_device(&mci->csrows[i]->dev);
449 return err;
452 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
454 int i;
455 struct csrow_info *csrow;
457 for (i = mci->nr_csrows - 1; i >= 0; i--) {
458 csrow = mci->csrows[i];
459 if (!nr_pages_per_csrow(csrow))
460 continue;
461 device_unregister(&mci->csrows[i]->dev);
464 #endif
467 * Per-dimm (or per-rank) devices
470 #define to_dimm(k) container_of(k, struct dimm_info, dev)
472 /* show/store functions for DIMM Label attributes */
473 static ssize_t dimmdev_location_show(struct device *dev,
474 struct device_attribute *mattr, char *data)
476 struct dimm_info *dimm = to_dimm(dev);
478 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
481 static ssize_t dimmdev_label_show(struct device *dev,
482 struct device_attribute *mattr, char *data)
484 struct dimm_info *dimm = to_dimm(dev);
486 /* if field has not been initialized, there is nothing to send */
487 if (!dimm->label[0])
488 return 0;
490 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
493 static ssize_t dimmdev_label_store(struct device *dev,
494 struct device_attribute *mattr,
495 const char *data,
496 size_t count)
498 struct dimm_info *dimm = to_dimm(dev);
499 size_t copy_count = count;
501 if (count == 0)
502 return -EINVAL;
504 if (data[count - 1] == '\0' || data[count - 1] == '\n')
505 copy_count -= 1;
507 if (copy_count == 0 || copy_count >= sizeof(dimm->label))
508 return -EINVAL;
510 strncpy(dimm->label, data, copy_count);
511 dimm->label[copy_count] = '\0';
513 return count;
516 static ssize_t dimmdev_size_show(struct device *dev,
517 struct device_attribute *mattr, char *data)
519 struct dimm_info *dimm = to_dimm(dev);
521 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
524 static ssize_t dimmdev_mem_type_show(struct device *dev,
525 struct device_attribute *mattr, char *data)
527 struct dimm_info *dimm = to_dimm(dev);
529 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
532 static ssize_t dimmdev_dev_type_show(struct device *dev,
533 struct device_attribute *mattr, char *data)
535 struct dimm_info *dimm = to_dimm(dev);
537 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
540 static ssize_t dimmdev_edac_mode_show(struct device *dev,
541 struct device_attribute *mattr,
542 char *data)
544 struct dimm_info *dimm = to_dimm(dev);
546 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
549 static ssize_t dimmdev_ce_count_show(struct device *dev,
550 struct device_attribute *mattr,
551 char *data)
553 struct dimm_info *dimm = to_dimm(dev);
554 u32 count;
555 int off;
557 off = EDAC_DIMM_OFF(dimm->mci->layers,
558 dimm->mci->n_layers,
559 dimm->location[0],
560 dimm->location[1],
561 dimm->location[2]);
562 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
563 return sprintf(data, "%u\n", count);
566 static ssize_t dimmdev_ue_count_show(struct device *dev,
567 struct device_attribute *mattr,
568 char *data)
570 struct dimm_info *dimm = to_dimm(dev);
571 u32 count;
572 int off;
574 off = EDAC_DIMM_OFF(dimm->mci->layers,
575 dimm->mci->n_layers,
576 dimm->location[0],
577 dimm->location[1],
578 dimm->location[2]);
579 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
580 return sprintf(data, "%u\n", count);
583 /* dimm/rank attribute files */
584 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
585 dimmdev_label_show, dimmdev_label_store);
586 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
587 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
588 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
589 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
590 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
591 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
592 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
594 /* attributes of the dimm<id>/rank<id> object */
595 static struct attribute *dimm_attrs[] = {
596 &dev_attr_dimm_label.attr,
597 &dev_attr_dimm_location.attr,
598 &dev_attr_size.attr,
599 &dev_attr_dimm_mem_type.attr,
600 &dev_attr_dimm_dev_type.attr,
601 &dev_attr_dimm_edac_mode.attr,
602 &dev_attr_dimm_ce_count.attr,
603 &dev_attr_dimm_ue_count.attr,
604 NULL,
607 static const struct attribute_group dimm_attr_grp = {
608 .attrs = dimm_attrs,
611 static const struct attribute_group *dimm_attr_groups[] = {
612 &dimm_attr_grp,
613 NULL
616 static void dimm_attr_release(struct device *dev)
618 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
620 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
621 kfree(dimm);
624 static const struct device_type dimm_attr_type = {
625 .groups = dimm_attr_groups,
626 .release = dimm_attr_release,
629 /* Create a DIMM object under specifed memory controller device */
630 static int edac_create_dimm_object(struct mem_ctl_info *mci,
631 struct dimm_info *dimm,
632 int index)
634 int err;
635 dimm->mci = mci;
637 dimm->dev.type = &dimm_attr_type;
638 device_initialize(&dimm->dev);
640 dimm->dev.parent = &mci->dev;
641 if (mci->csbased)
642 dev_set_name(&dimm->dev, "rank%d", index);
643 else
644 dev_set_name(&dimm->dev, "dimm%d", index);
645 dev_set_drvdata(&dimm->dev, dimm);
646 pm_runtime_forbid(&mci->dev);
648 err = device_add(&dimm->dev);
650 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
652 return err;
656 * Memory controller device
659 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
661 static ssize_t mci_reset_counters_store(struct device *dev,
662 struct device_attribute *mattr,
663 const char *data, size_t count)
665 struct mem_ctl_info *mci = to_mci(dev);
666 int cnt, row, chan, i;
667 mci->ue_mc = 0;
668 mci->ce_mc = 0;
669 mci->ue_noinfo_count = 0;
670 mci->ce_noinfo_count = 0;
672 for (row = 0; row < mci->nr_csrows; row++) {
673 struct csrow_info *ri = mci->csrows[row];
675 ri->ue_count = 0;
676 ri->ce_count = 0;
678 for (chan = 0; chan < ri->nr_channels; chan++)
679 ri->channels[chan]->ce_count = 0;
682 cnt = 1;
683 for (i = 0; i < mci->n_layers; i++) {
684 cnt *= mci->layers[i].size;
685 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
686 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
689 mci->start_time = jiffies;
690 return count;
693 /* Memory scrubbing interface:
695 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
696 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
697 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
699 * Negative value still means that an error has occurred while setting
700 * the scrub rate.
702 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
703 struct device_attribute *mattr,
704 const char *data, size_t count)
706 struct mem_ctl_info *mci = to_mci(dev);
707 unsigned long bandwidth = 0;
708 int new_bw = 0;
710 if (kstrtoul(data, 10, &bandwidth) < 0)
711 return -EINVAL;
713 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
714 if (new_bw < 0) {
715 edac_printk(KERN_WARNING, EDAC_MC,
716 "Error setting scrub rate to: %lu\n", bandwidth);
717 return -EINVAL;
720 return count;
724 * ->get_sdram_scrub_rate() return value semantics same as above.
726 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
727 struct device_attribute *mattr,
728 char *data)
730 struct mem_ctl_info *mci = to_mci(dev);
731 int bandwidth = 0;
733 bandwidth = mci->get_sdram_scrub_rate(mci);
734 if (bandwidth < 0) {
735 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
736 return bandwidth;
739 return sprintf(data, "%d\n", bandwidth);
742 /* default attribute files for the MCI object */
743 static ssize_t mci_ue_count_show(struct device *dev,
744 struct device_attribute *mattr,
745 char *data)
747 struct mem_ctl_info *mci = to_mci(dev);
749 return sprintf(data, "%d\n", mci->ue_mc);
752 static ssize_t mci_ce_count_show(struct device *dev,
753 struct device_attribute *mattr,
754 char *data)
756 struct mem_ctl_info *mci = to_mci(dev);
758 return sprintf(data, "%d\n", mci->ce_mc);
761 static ssize_t mci_ce_noinfo_show(struct device *dev,
762 struct device_attribute *mattr,
763 char *data)
765 struct mem_ctl_info *mci = to_mci(dev);
767 return sprintf(data, "%d\n", mci->ce_noinfo_count);
770 static ssize_t mci_ue_noinfo_show(struct device *dev,
771 struct device_attribute *mattr,
772 char *data)
774 struct mem_ctl_info *mci = to_mci(dev);
776 return sprintf(data, "%d\n", mci->ue_noinfo_count);
779 static ssize_t mci_seconds_show(struct device *dev,
780 struct device_attribute *mattr,
781 char *data)
783 struct mem_ctl_info *mci = to_mci(dev);
785 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
788 static ssize_t mci_ctl_name_show(struct device *dev,
789 struct device_attribute *mattr,
790 char *data)
792 struct mem_ctl_info *mci = to_mci(dev);
794 return sprintf(data, "%s\n", mci->ctl_name);
797 static ssize_t mci_size_mb_show(struct device *dev,
798 struct device_attribute *mattr,
799 char *data)
801 struct mem_ctl_info *mci = to_mci(dev);
802 int total_pages = 0, csrow_idx, j;
804 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
805 struct csrow_info *csrow = mci->csrows[csrow_idx];
807 for (j = 0; j < csrow->nr_channels; j++) {
808 struct dimm_info *dimm = csrow->channels[j]->dimm;
810 total_pages += dimm->nr_pages;
814 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
817 static ssize_t mci_max_location_show(struct device *dev,
818 struct device_attribute *mattr,
819 char *data)
821 struct mem_ctl_info *mci = to_mci(dev);
822 int i;
823 char *p = data;
825 for (i = 0; i < mci->n_layers; i++) {
826 p += sprintf(p, "%s %d ",
827 edac_layer_name[mci->layers[i].type],
828 mci->layers[i].size - 1);
831 return p - data;
834 /* default Control file */
835 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
837 /* default Attribute files */
838 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
839 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
840 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
841 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
842 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
843 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
844 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
845 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
847 /* memory scrubber attribute file */
848 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
849 mci_sdram_scrub_rate_store); /* umode set later in is_visible */
851 static struct attribute *mci_attrs[] = {
852 &dev_attr_reset_counters.attr,
853 &dev_attr_mc_name.attr,
854 &dev_attr_size_mb.attr,
855 &dev_attr_seconds_since_reset.attr,
856 &dev_attr_ue_noinfo_count.attr,
857 &dev_attr_ce_noinfo_count.attr,
858 &dev_attr_ue_count.attr,
859 &dev_attr_ce_count.attr,
860 &dev_attr_max_location.attr,
861 &dev_attr_sdram_scrub_rate.attr,
862 NULL
865 static umode_t mci_attr_is_visible(struct kobject *kobj,
866 struct attribute *attr, int idx)
868 struct device *dev = kobj_to_dev(kobj);
869 struct mem_ctl_info *mci = to_mci(dev);
870 umode_t mode = 0;
872 if (attr != &dev_attr_sdram_scrub_rate.attr)
873 return attr->mode;
874 if (mci->get_sdram_scrub_rate)
875 mode |= S_IRUGO;
876 if (mci->set_sdram_scrub_rate)
877 mode |= S_IWUSR;
878 return mode;
881 static const struct attribute_group mci_attr_grp = {
882 .attrs = mci_attrs,
883 .is_visible = mci_attr_is_visible,
886 static const struct attribute_group *mci_attr_groups[] = {
887 &mci_attr_grp,
888 NULL
891 static void mci_attr_release(struct device *dev)
893 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
895 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
896 kfree(mci);
899 static const struct device_type mci_attr_type = {
900 .groups = mci_attr_groups,
901 .release = mci_attr_release,
905 * Create a new Memory Controller kobject instance,
906 * mc<id> under the 'mc' directory
908 * Return:
909 * 0 Success
910 * !0 Failure
912 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
913 const struct attribute_group **groups)
915 int i, err;
917 /* get the /sys/devices/system/edac subsys reference */
918 mci->dev.type = &mci_attr_type;
919 device_initialize(&mci->dev);
921 mci->dev.parent = mci_pdev;
922 mci->dev.groups = groups;
923 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
924 dev_set_drvdata(&mci->dev, mci);
925 pm_runtime_forbid(&mci->dev);
927 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
928 err = device_add(&mci->dev);
929 if (err < 0) {
930 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
931 goto out;
935 * Create the dimm/rank devices
937 for (i = 0; i < mci->tot_dimms; i++) {
938 struct dimm_info *dimm = mci->dimms[i];
939 /* Only expose populated DIMMs */
940 if (!dimm->nr_pages)
941 continue;
943 #ifdef CONFIG_EDAC_DEBUG
944 edac_dbg(1, "creating dimm%d, located at ", i);
945 if (edac_debug_level >= 1) {
946 int lay;
947 for (lay = 0; lay < mci->n_layers; lay++)
948 printk(KERN_CONT "%s %d ",
949 edac_layer_name[mci->layers[lay].type],
950 dimm->location[lay]);
951 printk(KERN_CONT "\n");
953 #endif
954 err = edac_create_dimm_object(mci, dimm, i);
955 if (err) {
956 edac_dbg(1, "failure: create dimm %d obj\n", i);
957 goto fail_unregister_dimm;
961 #ifdef CONFIG_EDAC_LEGACY_SYSFS
962 err = edac_create_csrow_objects(mci);
963 if (err < 0)
964 goto fail_unregister_dimm;
965 #endif
967 edac_create_debugfs_nodes(mci);
968 return 0;
970 fail_unregister_dimm:
971 for (i--; i >= 0; i--) {
972 struct dimm_info *dimm = mci->dimms[i];
973 if (!dimm->nr_pages)
974 continue;
976 device_unregister(&dimm->dev);
978 device_unregister(&mci->dev);
980 out:
981 return err;
985 * remove a Memory Controller instance
987 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
989 int i;
991 edac_dbg(0, "\n");
993 #ifdef CONFIG_EDAC_DEBUG
994 edac_debugfs_remove_recursive(mci->debugfs);
995 #endif
996 #ifdef CONFIG_EDAC_LEGACY_SYSFS
997 edac_delete_csrow_objects(mci);
998 #endif
1000 for (i = 0; i < mci->tot_dimms; i++) {
1001 struct dimm_info *dimm = mci->dimms[i];
1002 if (dimm->nr_pages == 0)
1003 continue;
1004 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1005 device_unregister(&dimm->dev);
1009 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1011 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1012 device_unregister(&mci->dev);
1015 static void mc_attr_release(struct device *dev)
1018 * There's no container structure here, as this is just the mci
1019 * parent device, used to create the /sys/devices/mc sysfs node.
1020 * So, there are no attributes on it.
1022 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1023 kfree(dev);
1026 static const struct device_type mc_attr_type = {
1027 .release = mc_attr_release,
1030 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1032 int __init edac_mc_sysfs_init(void)
1034 int err;
1036 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1037 if (!mci_pdev) {
1038 err = -ENOMEM;
1039 goto out;
1042 mci_pdev->bus = edac_get_sysfs_subsys();
1043 mci_pdev->type = &mc_attr_type;
1044 device_initialize(mci_pdev);
1045 dev_set_name(mci_pdev, "mc");
1047 err = device_add(mci_pdev);
1048 if (err < 0)
1049 goto out_put_device;
1051 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1053 return 0;
1055 out_put_device:
1056 put_device(mci_pdev);
1057 out:
1058 return err;
1061 void edac_mc_sysfs_exit(void)
1063 device_unregister(mci_pdev);