2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/slot-gpio.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/mmc.h>
52 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
53 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
54 #define SD_DISCARD_TIMEOUT_MS (250)
56 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
64 module_param(use_spi_crc
, bool, 0);
66 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
70 * We use the system_freezable_wq, because of two reasons.
71 * First, it allows several works (not the same work item) to be
72 * executed simultaneously. Second, the queue becomes frozen when
73 * userspace becomes frozen during system PM.
75 return queue_delayed_work(system_freezable_wq
, work
, delay
);
78 #ifdef CONFIG_FAIL_MMC_REQUEST
81 * Internal function. Inject random data errors.
82 * If mmc_data is NULL no errors are injected.
84 static void mmc_should_fail_request(struct mmc_host
*host
,
85 struct mmc_request
*mrq
)
87 struct mmc_command
*cmd
= mrq
->cmd
;
88 struct mmc_data
*data
= mrq
->data
;
89 static const int data_errors
[] = {
98 if ((cmd
&& cmd
->error
) || data
->error
||
99 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
102 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
103 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
106 #else /* CONFIG_FAIL_MMC_REQUEST */
108 static inline void mmc_should_fail_request(struct mmc_host
*host
,
109 struct mmc_request
*mrq
)
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
115 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
117 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
118 complete_all(&mrq
->cmd_completion
);
121 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
123 if (!mrq
->cap_cmd_during_tfr
)
126 mmc_complete_cmd(mrq
);
128 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 mmc_hostname(host
), mrq
->cmd
->opcode
);
131 EXPORT_SYMBOL(mmc_command_done
);
134 * mmc_request_done - finish processing an MMC request
135 * @host: MMC host which completed request
136 * @mrq: MMC request which request
138 * MMC drivers should call this function when they have completed
139 * their processing of a request.
141 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
143 struct mmc_command
*cmd
= mrq
->cmd
;
144 int err
= cmd
->error
;
146 /* Flag re-tuning needed on CRC errors */
147 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
148 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
149 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
150 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
151 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
152 mmc_retune_needed(host
);
154 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
155 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
159 if (host
->ongoing_mrq
== mrq
)
160 host
->ongoing_mrq
= NULL
;
162 mmc_complete_cmd(mrq
);
164 trace_mmc_request_done(host
, mrq
);
167 * We list various conditions for the command to be considered
170 * - There was no error, OK fine then
171 * - We are not doing some kind of retry
172 * - The card was removed (...so just complete everything no matter
173 * if there are errors or retries)
175 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
176 mmc_should_fail_request(host
, mrq
);
178 if (!host
->ongoing_mrq
)
179 led_trigger_event(host
->led
, LED_OFF
);
182 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
183 mmc_hostname(host
), mrq
->sbc
->opcode
,
185 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
186 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
189 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
190 mmc_hostname(host
), cmd
->opcode
, err
,
191 cmd
->resp
[0], cmd
->resp
[1],
192 cmd
->resp
[2], cmd
->resp
[3]);
195 pr_debug("%s: %d bytes transferred: %d\n",
197 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
201 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
202 mmc_hostname(host
), mrq
->stop
->opcode
,
204 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
205 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
209 * Request starter must handle retries - see
210 * mmc_wait_for_req_done().
216 EXPORT_SYMBOL(mmc_request_done
);
218 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
222 /* Assumes host controller has been runtime resumed by mmc_claim_host */
223 err
= mmc_retune(host
);
225 mrq
->cmd
->error
= err
;
226 mmc_request_done(host
, mrq
);
231 * For sdio rw commands we must wait for card busy otherwise some
232 * sdio devices won't work properly.
233 * And bypass I/O abort, reset and bus suspend operations.
235 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
236 host
->ops
->card_busy
) {
237 int tries
= 500; /* Wait aprox 500ms at maximum */
239 while (host
->ops
->card_busy(host
) && --tries
)
243 mrq
->cmd
->error
= -EBUSY
;
244 mmc_request_done(host
, mrq
);
249 if (mrq
->cap_cmd_during_tfr
) {
250 host
->ongoing_mrq
= mrq
;
252 * Retry path could come through here without having waiting on
253 * cmd_completion, so ensure it is reinitialised.
255 reinit_completion(&mrq
->cmd_completion
);
258 trace_mmc_request_start(host
, mrq
);
261 host
->cqe_ops
->cqe_off(host
);
263 host
->ops
->request(host
, mrq
);
266 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
270 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
271 mmc_hostname(host
), mrq
->sbc
->opcode
,
272 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
276 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
277 mmc_hostname(host
), cqe
? "CQE direct " : "",
278 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
280 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
281 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
285 pr_debug("%s: blksz %d blocks %d flags %08x "
286 "tsac %d ms nsac %d\n",
287 mmc_hostname(host
), mrq
->data
->blksz
,
288 mrq
->data
->blocks
, mrq
->data
->flags
,
289 mrq
->data
->timeout_ns
/ 1000000,
290 mrq
->data
->timeout_clks
);
294 pr_debug("%s: CMD%u arg %08x flags %08x\n",
295 mmc_hostname(host
), mrq
->stop
->opcode
,
296 mrq
->stop
->arg
, mrq
->stop
->flags
);
300 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
302 unsigned int i
, sz
= 0;
303 struct scatterlist
*sg
;
308 mrq
->cmd
->data
= mrq
->data
;
315 if (mrq
->data
->blksz
> host
->max_blk_size
||
316 mrq
->data
->blocks
> host
->max_blk_count
||
317 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
320 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
322 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
325 mrq
->data
->error
= 0;
326 mrq
->data
->mrq
= mrq
;
328 mrq
->data
->stop
= mrq
->stop
;
329 mrq
->stop
->error
= 0;
330 mrq
->stop
->mrq
= mrq
;
337 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
341 init_completion(&mrq
->cmd_completion
);
343 mmc_retune_hold(host
);
345 if (mmc_card_removed(host
->card
))
348 mmc_mrq_pr_debug(host
, mrq
, false);
350 WARN_ON(!host
->claimed
);
352 err
= mmc_mrq_prep(host
, mrq
);
356 led_trigger_event(host
->led
, LED_FULL
);
357 __mmc_start_request(host
, mrq
);
361 EXPORT_SYMBOL(mmc_start_request
);
363 static void mmc_wait_done(struct mmc_request
*mrq
)
365 complete(&mrq
->completion
);
368 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
370 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
373 * If there is an ongoing transfer, wait for the command line to become
376 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
377 wait_for_completion(&ongoing_mrq
->cmd_completion
);
380 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
384 mmc_wait_ongoing_tfr_cmd(host
);
386 init_completion(&mrq
->completion
);
387 mrq
->done
= mmc_wait_done
;
389 err
= mmc_start_request(host
, mrq
);
391 mrq
->cmd
->error
= err
;
392 mmc_complete_cmd(mrq
);
393 complete(&mrq
->completion
);
399 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
401 struct mmc_command
*cmd
;
404 wait_for_completion(&mrq
->completion
);
409 * If host has timed out waiting for the sanitize
410 * to complete, card might be still in programming state
411 * so let's try to bring the card out of programming
414 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
415 if (!mmc_interrupt_hpi(host
->card
)) {
416 pr_warn("%s: %s: Interrupted sanitize\n",
417 mmc_hostname(host
), __func__
);
421 pr_err("%s: %s: Failed to interrupt sanitize\n",
422 mmc_hostname(host
), __func__
);
425 if (!cmd
->error
|| !cmd
->retries
||
426 mmc_card_removed(host
->card
))
429 mmc_retune_recheck(host
);
431 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
432 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
435 __mmc_start_request(host
, mrq
);
438 mmc_retune_release(host
);
440 EXPORT_SYMBOL(mmc_wait_for_req_done
);
443 * mmc_cqe_start_req - Start a CQE request.
444 * @host: MMC host to start the request
445 * @mrq: request to start
447 * Start the request, re-tuning if needed and it is possible. Returns an error
448 * code if the request fails to start or -EBUSY if CQE is busy.
450 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
455 * CQE cannot process re-tuning commands. Caller must hold retuning
456 * while CQE is in use. Re-tuning can happen here only when CQE has no
457 * active requests i.e. this is the first. Note, re-tuning will call
460 err
= mmc_retune(host
);
466 mmc_mrq_pr_debug(host
, mrq
, true);
468 err
= mmc_mrq_prep(host
, mrq
);
472 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
476 trace_mmc_request_start(host
, mrq
);
482 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
483 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
485 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
486 mmc_hostname(host
), mrq
->tag
, err
);
490 EXPORT_SYMBOL(mmc_cqe_start_req
);
493 * mmc_cqe_request_done - CQE has finished processing an MMC request
494 * @host: MMC host which completed request
495 * @mrq: MMC request which completed
497 * CQE drivers should call this function when they have completed
498 * their processing of a request.
500 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
502 mmc_should_fail_request(host
, mrq
);
504 /* Flag re-tuning needed on CRC errors */
505 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
506 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
507 mmc_retune_needed(host
);
509 trace_mmc_request_done(host
, mrq
);
512 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
513 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
515 pr_debug("%s: CQE transfer done tag %d\n",
516 mmc_hostname(host
), mrq
->tag
);
520 pr_debug("%s: %d bytes transferred: %d\n",
522 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
527 EXPORT_SYMBOL(mmc_cqe_request_done
);
530 * mmc_cqe_post_req - CQE post process of a completed MMC request
532 * @mrq: MMC request to be processed
534 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
536 if (host
->cqe_ops
->cqe_post_req
)
537 host
->cqe_ops
->cqe_post_req(host
, mrq
);
539 EXPORT_SYMBOL(mmc_cqe_post_req
);
541 /* Arbitrary 1 second timeout */
542 #define MMC_CQE_RECOVERY_TIMEOUT 1000
545 * mmc_cqe_recovery - Recover from CQE errors.
546 * @host: MMC host to recover
548 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
549 * in eMMC, and discarding the queue in CQE. CQE must call
550 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
551 * fails to discard its queue.
553 int mmc_cqe_recovery(struct mmc_host
*host
)
555 struct mmc_command cmd
;
558 mmc_retune_hold_now(host
);
561 * Recovery is expected seldom, if at all, but it reduces performance,
562 * so make sure it is not completely silent.
564 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
566 host
->cqe_ops
->cqe_recovery_start(host
);
568 memset(&cmd
, 0, sizeof(cmd
));
569 cmd
.opcode
= MMC_STOP_TRANSMISSION
,
570 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
,
571 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
572 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
573 mmc_wait_for_cmd(host
, &cmd
, 0);
575 memset(&cmd
, 0, sizeof(cmd
));
576 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
577 cmd
.arg
= 1; /* Discard entire queue */
578 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
579 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
580 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
581 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
583 host
->cqe_ops
->cqe_recovery_finish(host
);
585 mmc_retune_release(host
);
589 EXPORT_SYMBOL(mmc_cqe_recovery
);
592 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
596 * mmc_is_req_done() is used with requests that have
597 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
598 * starting a request and before waiting for it to complete. That is,
599 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
600 * and before mmc_wait_for_req_done(). If it is called at other times the
601 * result is not meaningful.
603 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
605 return completion_done(&mrq
->completion
);
607 EXPORT_SYMBOL(mmc_is_req_done
);
610 * mmc_wait_for_req - start a request and wait for completion
611 * @host: MMC host to start command
612 * @mrq: MMC request to start
614 * Start a new MMC custom command request for a host, and wait
615 * for the command to complete. In the case of 'cap_cmd_during_tfr'
616 * requests, the transfer is ongoing and the caller can issue further
617 * commands that do not use the data lines, and then wait by calling
618 * mmc_wait_for_req_done().
619 * Does not attempt to parse the response.
621 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
623 __mmc_start_req(host
, mrq
);
625 if (!mrq
->cap_cmd_during_tfr
)
626 mmc_wait_for_req_done(host
, mrq
);
628 EXPORT_SYMBOL(mmc_wait_for_req
);
631 * mmc_wait_for_cmd - start a command and wait for completion
632 * @host: MMC host to start command
633 * @cmd: MMC command to start
634 * @retries: maximum number of retries
636 * Start a new MMC command for a host, and wait for the command
637 * to complete. Return any error that occurred while the command
638 * was executing. Do not attempt to parse the response.
640 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
642 struct mmc_request mrq
= {};
644 WARN_ON(!host
->claimed
);
646 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
647 cmd
->retries
= retries
;
652 mmc_wait_for_req(host
, &mrq
);
657 EXPORT_SYMBOL(mmc_wait_for_cmd
);
660 * mmc_set_data_timeout - set the timeout for a data command
661 * @data: data phase for command
662 * @card: the MMC card associated with the data transfer
664 * Computes the data timeout parameters according to the
665 * correct algorithm given the card type.
667 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
672 * SDIO cards only define an upper 1 s limit on access.
674 if (mmc_card_sdio(card
)) {
675 data
->timeout_ns
= 1000000000;
676 data
->timeout_clks
= 0;
681 * SD cards use a 100 multiplier rather than 10
683 mult
= mmc_card_sd(card
) ? 100 : 10;
686 * Scale up the multiplier (and therefore the timeout) by
687 * the r2w factor for writes.
689 if (data
->flags
& MMC_DATA_WRITE
)
690 mult
<<= card
->csd
.r2w_factor
;
692 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
693 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
696 * SD cards also have an upper limit on the timeout.
698 if (mmc_card_sd(card
)) {
699 unsigned int timeout_us
, limit_us
;
701 timeout_us
= data
->timeout_ns
/ 1000;
702 if (card
->host
->ios
.clock
)
703 timeout_us
+= data
->timeout_clks
* 1000 /
704 (card
->host
->ios
.clock
/ 1000);
706 if (data
->flags
& MMC_DATA_WRITE
)
708 * The MMC spec "It is strongly recommended
709 * for hosts to implement more than 500ms
710 * timeout value even if the card indicates
711 * the 250ms maximum busy length." Even the
712 * previous value of 300ms is known to be
713 * insufficient for some cards.
720 * SDHC cards always use these fixed values.
722 if (timeout_us
> limit_us
) {
723 data
->timeout_ns
= limit_us
* 1000;
724 data
->timeout_clks
= 0;
727 /* assign limit value if invalid */
729 data
->timeout_ns
= limit_us
* 1000;
733 * Some cards require longer data read timeout than indicated in CSD.
734 * Address this by setting the read timeout to a "reasonably high"
735 * value. For the cards tested, 600ms has proven enough. If necessary,
736 * this value can be increased if other problematic cards require this.
738 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
739 data
->timeout_ns
= 600000000;
740 data
->timeout_clks
= 0;
744 * Some cards need very high timeouts if driven in SPI mode.
745 * The worst observed timeout was 900ms after writing a
746 * continuous stream of data until the internal logic
749 if (mmc_host_is_spi(card
->host
)) {
750 if (data
->flags
& MMC_DATA_WRITE
) {
751 if (data
->timeout_ns
< 1000000000)
752 data
->timeout_ns
= 1000000000; /* 1s */
754 if (data
->timeout_ns
< 100000000)
755 data
->timeout_ns
= 100000000; /* 100ms */
759 EXPORT_SYMBOL(mmc_set_data_timeout
);
762 * Allow claiming an already claimed host if the context is the same or there is
763 * no context but the task is the same.
765 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
766 struct task_struct
*task
)
768 return host
->claimer
== ctx
||
769 (!ctx
&& task
&& host
->claimer
->task
== task
);
772 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
774 struct task_struct
*task
)
776 if (!host
->claimer
) {
780 host
->claimer
= &host
->default_ctx
;
783 host
->claimer
->task
= task
;
787 * __mmc_claim_host - exclusively claim a host
788 * @host: mmc host to claim
789 * @ctx: context that claims the host or NULL in which case the default
790 * context will be used
791 * @abort: whether or not the operation should be aborted
793 * Claim a host for a set of operations. If @abort is non null and
794 * dereference a non-zero value then this will return prematurely with
795 * that non-zero value without acquiring the lock. Returns zero
796 * with the lock held otherwise.
798 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
801 struct task_struct
*task
= ctx
? NULL
: current
;
802 DECLARE_WAITQUEUE(wait
, current
);
809 add_wait_queue(&host
->wq
, &wait
);
810 spin_lock_irqsave(&host
->lock
, flags
);
812 set_current_state(TASK_UNINTERRUPTIBLE
);
813 stop
= abort
? atomic_read(abort
) : 0;
814 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
816 spin_unlock_irqrestore(&host
->lock
, flags
);
818 spin_lock_irqsave(&host
->lock
, flags
);
820 set_current_state(TASK_RUNNING
);
823 mmc_ctx_set_claimer(host
, ctx
, task
);
824 host
->claim_cnt
+= 1;
825 if (host
->claim_cnt
== 1)
829 spin_unlock_irqrestore(&host
->lock
, flags
);
830 remove_wait_queue(&host
->wq
, &wait
);
833 pm_runtime_get_sync(mmc_dev(host
));
837 EXPORT_SYMBOL(__mmc_claim_host
);
840 * mmc_release_host - release a host
841 * @host: mmc host to release
843 * Release a MMC host, allowing others to claim the host
844 * for their operations.
846 void mmc_release_host(struct mmc_host
*host
)
850 WARN_ON(!host
->claimed
);
852 spin_lock_irqsave(&host
->lock
, flags
);
853 if (--host
->claim_cnt
) {
854 /* Release for nested claim */
855 spin_unlock_irqrestore(&host
->lock
, flags
);
858 host
->claimer
->task
= NULL
;
859 host
->claimer
= NULL
;
860 spin_unlock_irqrestore(&host
->lock
, flags
);
862 pm_runtime_mark_last_busy(mmc_dev(host
));
863 if (host
->caps
& MMC_CAP_SYNC_RUNTIME_PM
)
864 pm_runtime_put_sync_suspend(mmc_dev(host
));
866 pm_runtime_put_autosuspend(mmc_dev(host
));
869 EXPORT_SYMBOL(mmc_release_host
);
872 * This is a helper function, which fetches a runtime pm reference for the
873 * card device and also claims the host.
875 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
877 pm_runtime_get_sync(&card
->dev
);
878 __mmc_claim_host(card
->host
, ctx
, NULL
);
880 EXPORT_SYMBOL(mmc_get_card
);
883 * This is a helper function, which releases the host and drops the runtime
884 * pm reference for the card device.
886 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
888 struct mmc_host
*host
= card
->host
;
890 WARN_ON(ctx
&& host
->claimer
!= ctx
);
892 mmc_release_host(host
);
893 pm_runtime_mark_last_busy(&card
->dev
);
894 pm_runtime_put_autosuspend(&card
->dev
);
896 EXPORT_SYMBOL(mmc_put_card
);
899 * Internal function that does the actual ios call to the host driver,
900 * optionally printing some debug output.
902 static inline void mmc_set_ios(struct mmc_host
*host
)
904 struct mmc_ios
*ios
= &host
->ios
;
906 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
907 "width %u timing %u\n",
908 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
909 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
910 1 << ios
->bus_width
, ios
->timing
);
912 host
->ops
->set_ios(host
, ios
);
916 * Control chip select pin on a host.
918 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
920 host
->ios
.chip_select
= mode
;
925 * Sets the host clock to the highest possible frequency that
928 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
930 WARN_ON(hz
&& hz
< host
->f_min
);
932 if (hz
> host
->f_max
)
935 host
->ios
.clock
= hz
;
939 int mmc_execute_tuning(struct mmc_card
*card
)
941 struct mmc_host
*host
= card
->host
;
945 if (!host
->ops
->execute_tuning
)
949 host
->cqe_ops
->cqe_off(host
);
951 if (mmc_card_mmc(card
))
952 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
954 opcode
= MMC_SEND_TUNING_BLOCK
;
956 err
= host
->ops
->execute_tuning(host
, opcode
);
959 pr_err("%s: tuning execution failed: %d\n",
960 mmc_hostname(host
), err
);
962 mmc_retune_enable(host
);
968 * Change the bus mode (open drain/push-pull) of a host.
970 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
972 host
->ios
.bus_mode
= mode
;
977 * Change data bus width of a host.
979 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
981 host
->ios
.bus_width
= width
;
986 * Set initial state after a power cycle or a hw_reset.
988 void mmc_set_initial_state(struct mmc_host
*host
)
991 host
->cqe_ops
->cqe_off(host
);
993 mmc_retune_disable(host
);
995 if (mmc_host_is_spi(host
))
996 host
->ios
.chip_select
= MMC_CS_HIGH
;
998 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
999 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1000 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1001 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1002 host
->ios
.drv_type
= 0;
1003 host
->ios
.enhanced_strobe
= false;
1006 * Make sure we are in non-enhanced strobe mode before we
1007 * actually enable it in ext_csd.
1009 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1010 host
->ops
->hs400_enhanced_strobe
)
1011 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1017 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1018 * @vdd: voltage (mV)
1019 * @low_bits: prefer low bits in boundary cases
1021 * This function returns the OCR bit number according to the provided @vdd
1022 * value. If conversion is not possible a negative errno value returned.
1024 * Depending on the @low_bits flag the function prefers low or high OCR bits
1025 * on boundary voltages. For example,
1026 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1027 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1029 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1031 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1033 const int max_bit
= ilog2(MMC_VDD_35_36
);
1036 if (vdd
< 1650 || vdd
> 3600)
1039 if (vdd
>= 1650 && vdd
<= 1950)
1040 return ilog2(MMC_VDD_165_195
);
1045 /* Base 2000 mV, step 100 mV, bit's base 8. */
1046 bit
= (vdd
- 2000) / 100 + 8;
1053 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1054 * @vdd_min: minimum voltage value (mV)
1055 * @vdd_max: maximum voltage value (mV)
1057 * This function returns the OCR mask bits according to the provided @vdd_min
1058 * and @vdd_max values. If conversion is not possible the function returns 0.
1060 * Notes wrt boundary cases:
1061 * This function sets the OCR bits for all boundary voltages, for example
1062 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1063 * MMC_VDD_34_35 mask.
1065 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1069 if (vdd_max
< vdd_min
)
1072 /* Prefer high bits for the boundary vdd_max values. */
1073 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1077 /* Prefer low bits for the boundary vdd_min values. */
1078 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1082 /* Fill the mask, from max bit to min bit. */
1083 while (vdd_max
>= vdd_min
)
1084 mask
|= 1 << vdd_max
--;
1089 static int mmc_of_get_func_num(struct device_node
*node
)
1094 ret
= of_property_read_u32(node
, "reg", ®
);
1101 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1104 struct device_node
*node
;
1106 if (!host
->parent
|| !host
->parent
->of_node
)
1109 for_each_child_of_node(host
->parent
->of_node
, node
) {
1110 if (mmc_of_get_func_num(node
) == func_num
)
1118 * Mask off any voltages we don't support and select
1119 * the lowest voltage
1121 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1126 * Sanity check the voltages that the card claims to
1130 dev_warn(mmc_dev(host
),
1131 "card claims to support voltages below defined range\n");
1135 ocr
&= host
->ocr_avail
;
1137 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1141 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1144 mmc_power_cycle(host
, ocr
);
1148 if (bit
!= host
->ios
.vdd
)
1149 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1155 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1158 int old_signal_voltage
= host
->ios
.signal_voltage
;
1160 host
->ios
.signal_voltage
= signal_voltage
;
1161 if (host
->ops
->start_signal_voltage_switch
)
1162 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1165 host
->ios
.signal_voltage
= old_signal_voltage
;
1171 void mmc_set_initial_signal_voltage(struct mmc_host
*host
)
1173 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1175 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1176 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1177 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1178 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1179 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1182 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1187 * During a signal voltage level switch, the clock must be gated
1188 * for 5 ms according to the SD spec
1190 clock
= host
->ios
.clock
;
1191 host
->ios
.clock
= 0;
1194 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1197 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1199 host
->ios
.clock
= clock
;
1205 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1207 struct mmc_command cmd
= {};
1211 * If we cannot switch voltages, return failure so the caller
1212 * can continue without UHS mode
1214 if (!host
->ops
->start_signal_voltage_switch
)
1216 if (!host
->ops
->card_busy
)
1217 pr_warn("%s: cannot verify signal voltage switch\n",
1218 mmc_hostname(host
));
1220 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1222 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1224 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1228 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1232 * The card should drive cmd and dat[0:3] low immediately
1233 * after the response of cmd11, but wait 1 ms to be sure
1236 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1241 if (mmc_host_set_uhs_voltage(host
)) {
1243 * Voltages may not have been switched, but we've already
1244 * sent CMD11, so a power cycle is required anyway
1250 /* Wait for at least 1 ms according to spec */
1254 * Failure to switch is indicated by the card holding
1257 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1262 pr_debug("%s: Signal voltage switch failed, "
1263 "power cycling card\n", mmc_hostname(host
));
1264 mmc_power_cycle(host
, ocr
);
1271 * Select timing parameters for host.
1273 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1275 host
->ios
.timing
= timing
;
1280 * Select appropriate driver type for host.
1282 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1284 host
->ios
.drv_type
= drv_type
;
1288 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1289 int card_drv_type
, int *drv_type
)
1291 struct mmc_host
*host
= card
->host
;
1292 int host_drv_type
= SD_DRIVER_TYPE_B
;
1296 if (!host
->ops
->select_drive_strength
)
1299 /* Use SD definition of driver strength for hosts */
1300 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1301 host_drv_type
|= SD_DRIVER_TYPE_A
;
1303 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1304 host_drv_type
|= SD_DRIVER_TYPE_C
;
1306 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1307 host_drv_type
|= SD_DRIVER_TYPE_D
;
1310 * The drive strength that the hardware can support
1311 * depends on the board design. Pass the appropriate
1312 * information and let the hardware specific code
1313 * return what is possible given the options
1315 return host
->ops
->select_drive_strength(card
, max_dtr
,
1322 * Apply power to the MMC stack. This is a two-stage process.
1323 * First, we enable power to the card without the clock running.
1324 * We then wait a bit for the power to stabilise. Finally,
1325 * enable the bus drivers and clock to the card.
1327 * We must _NOT_ enable the clock prior to power stablising.
1329 * If a host does all the power sequencing itself, ignore the
1330 * initial MMC_POWER_UP stage.
1332 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1334 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1337 mmc_pwrseq_pre_power_on(host
);
1339 host
->ios
.vdd
= fls(ocr
) - 1;
1340 host
->ios
.power_mode
= MMC_POWER_UP
;
1341 /* Set initial state and call mmc_set_ios */
1342 mmc_set_initial_state(host
);
1344 mmc_set_initial_signal_voltage(host
);
1347 * This delay should be sufficient to allow the power supply
1348 * to reach the minimum voltage.
1350 mmc_delay(host
->ios
.power_delay_ms
);
1352 mmc_pwrseq_post_power_on(host
);
1354 host
->ios
.clock
= host
->f_init
;
1356 host
->ios
.power_mode
= MMC_POWER_ON
;
1360 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361 * time required to reach a stable voltage.
1363 mmc_delay(host
->ios
.power_delay_ms
);
1366 void mmc_power_off(struct mmc_host
*host
)
1368 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1371 mmc_pwrseq_power_off(host
);
1373 host
->ios
.clock
= 0;
1376 host
->ios
.power_mode
= MMC_POWER_OFF
;
1377 /* Set initial state and call mmc_set_ios */
1378 mmc_set_initial_state(host
);
1381 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382 * XO-1.5, require a short delay after poweroff before the card
1383 * can be successfully turned on again.
1388 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1390 mmc_power_off(host
);
1391 /* Wait at least 1 ms according to SD spec */
1393 mmc_power_up(host
, ocr
);
1397 * Cleanup when the last reference to the bus operator is dropped.
1399 static void __mmc_release_bus(struct mmc_host
*host
)
1401 WARN_ON(!host
->bus_dead
);
1403 host
->bus_ops
= NULL
;
1407 * Increase reference count of bus operator
1409 static inline void mmc_bus_get(struct mmc_host
*host
)
1411 unsigned long flags
;
1413 spin_lock_irqsave(&host
->lock
, flags
);
1415 spin_unlock_irqrestore(&host
->lock
, flags
);
1419 * Decrease reference count of bus operator and free it if
1420 * it is the last reference.
1422 static inline void mmc_bus_put(struct mmc_host
*host
)
1424 unsigned long flags
;
1426 spin_lock_irqsave(&host
->lock
, flags
);
1428 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1429 __mmc_release_bus(host
);
1430 spin_unlock_irqrestore(&host
->lock
, flags
);
1434 * Assign a mmc bus handler to a host. Only one bus handler may control a
1435 * host at any given time.
1437 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1439 unsigned long flags
;
1441 WARN_ON(!host
->claimed
);
1443 spin_lock_irqsave(&host
->lock
, flags
);
1445 WARN_ON(host
->bus_ops
);
1446 WARN_ON(host
->bus_refs
);
1448 host
->bus_ops
= ops
;
1452 spin_unlock_irqrestore(&host
->lock
, flags
);
1456 * Remove the current bus handler from a host.
1458 void mmc_detach_bus(struct mmc_host
*host
)
1460 unsigned long flags
;
1462 WARN_ON(!host
->claimed
);
1463 WARN_ON(!host
->bus_ops
);
1465 spin_lock_irqsave(&host
->lock
, flags
);
1469 spin_unlock_irqrestore(&host
->lock
, flags
);
1474 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1478 * If the device is configured as wakeup, we prevent a new sleep for
1479 * 5 s to give provision for user space to consume the event.
1481 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1482 device_can_wakeup(mmc_dev(host
)))
1483 pm_wakeup_event(mmc_dev(host
), 5000);
1485 host
->detect_change
= 1;
1486 mmc_schedule_delayed_work(&host
->detect
, delay
);
1490 * mmc_detect_change - process change of state on a MMC socket
1491 * @host: host which changed state.
1492 * @delay: optional delay to wait before detection (jiffies)
1494 * MMC drivers should call this when they detect a card has been
1495 * inserted or removed. The MMC layer will confirm that any
1496 * present card is still functional, and initialize any newly
1499 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1501 _mmc_detect_change(host
, delay
, true);
1503 EXPORT_SYMBOL(mmc_detect_change
);
1505 void mmc_init_erase(struct mmc_card
*card
)
1509 if (is_power_of_2(card
->erase_size
))
1510 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1512 card
->erase_shift
= 0;
1515 * It is possible to erase an arbitrarily large area of an SD or MMC
1516 * card. That is not desirable because it can take a long time
1517 * (minutes) potentially delaying more important I/O, and also the
1518 * timeout calculations become increasingly hugely over-estimated.
1519 * Consequently, 'pref_erase' is defined as a guide to limit erases
1520 * to that size and alignment.
1522 * For SD cards that define Allocation Unit size, limit erases to one
1523 * Allocation Unit at a time.
1524 * For MMC, have a stab at ai good value and for modern cards it will
1525 * end up being 4MiB. Note that if the value is too small, it can end
1526 * up taking longer to erase. Also note, erase_size is already set to
1527 * High Capacity Erase Size if available when this function is called.
1529 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1530 card
->pref_erase
= card
->ssr
.au
;
1531 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1532 } else if (card
->erase_size
) {
1533 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1535 card
->pref_erase
= 512 * 1024 / 512;
1537 card
->pref_erase
= 1024 * 1024 / 512;
1539 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1541 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1542 if (card
->pref_erase
< card
->erase_size
)
1543 card
->pref_erase
= card
->erase_size
;
1545 sz
= card
->pref_erase
% card
->erase_size
;
1547 card
->pref_erase
+= card
->erase_size
- sz
;
1550 card
->pref_erase
= 0;
1553 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1554 unsigned int arg
, unsigned int qty
)
1556 unsigned int erase_timeout
;
1558 if (arg
== MMC_DISCARD_ARG
||
1559 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1560 erase_timeout
= card
->ext_csd
.trim_timeout
;
1561 } else if (card
->ext_csd
.erase_group_def
& 1) {
1562 /* High Capacity Erase Group Size uses HC timeouts */
1563 if (arg
== MMC_TRIM_ARG
)
1564 erase_timeout
= card
->ext_csd
.trim_timeout
;
1566 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1568 /* CSD Erase Group Size uses write timeout */
1569 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1570 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1571 unsigned int timeout_us
;
1573 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1574 if (card
->csd
.taac_ns
< 1000000)
1575 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1577 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1580 * ios.clock is only a target. The real clock rate might be
1581 * less but not that much less, so fudge it by multiplying by 2.
1584 timeout_us
+= (timeout_clks
* 1000) /
1585 (card
->host
->ios
.clock
/ 1000);
1587 erase_timeout
= timeout_us
/ 1000;
1590 * Theoretically, the calculation could underflow so round up
1591 * to 1ms in that case.
1597 /* Multiplier for secure operations */
1598 if (arg
& MMC_SECURE_ARGS
) {
1599 if (arg
== MMC_SECURE_ERASE_ARG
)
1600 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1602 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1605 erase_timeout
*= qty
;
1608 * Ensure at least a 1 second timeout for SPI as per
1609 * 'mmc_set_data_timeout()'
1611 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1612 erase_timeout
= 1000;
1614 return erase_timeout
;
1617 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1621 unsigned int erase_timeout
;
1623 /* for DISCARD none of the below calculation applies.
1624 * the busy timeout is 250msec per discard command.
1626 if (arg
== SD_DISCARD_ARG
)
1627 return SD_DISCARD_TIMEOUT_MS
;
1629 if (card
->ssr
.erase_timeout
) {
1630 /* Erase timeout specified in SD Status Register (SSR) */
1631 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1632 card
->ssr
.erase_offset
;
1635 * Erase timeout not specified in SD Status Register (SSR) so
1636 * use 250ms per write block.
1638 erase_timeout
= 250 * qty
;
1641 /* Must not be less than 1 second */
1642 if (erase_timeout
< 1000)
1643 erase_timeout
= 1000;
1645 return erase_timeout
;
1648 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1652 if (mmc_card_sd(card
))
1653 return mmc_sd_erase_timeout(card
, arg
, qty
);
1655 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1658 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1659 unsigned int to
, unsigned int arg
)
1661 struct mmc_command cmd
= {};
1662 unsigned int qty
= 0, busy_timeout
= 0;
1663 bool use_r1b_resp
= false;
1664 unsigned long timeout
;
1665 int loop_udelay
=64, udelay_max
=32768;
1668 mmc_retune_hold(card
->host
);
1671 * qty is used to calculate the erase timeout which depends on how many
1672 * erase groups (or allocation units in SD terminology) are affected.
1673 * We count erasing part of an erase group as one erase group.
1674 * For SD, the allocation units are always a power of 2. For MMC, the
1675 * erase group size is almost certainly also power of 2, but it does not
1676 * seem to insist on that in the JEDEC standard, so we fall back to
1677 * division in that case. SD may not specify an allocation unit size,
1678 * in which case the timeout is based on the number of write blocks.
1680 * Note that the timeout for secure trim 2 will only be correct if the
1681 * number of erase groups specified is the same as the total of all
1682 * preceding secure trim 1 commands. Since the power may have been
1683 * lost since the secure trim 1 commands occurred, it is generally
1684 * impossible to calculate the secure trim 2 timeout correctly.
1686 if (card
->erase_shift
)
1687 qty
+= ((to
>> card
->erase_shift
) -
1688 (from
>> card
->erase_shift
)) + 1;
1689 else if (mmc_card_sd(card
))
1690 qty
+= to
- from
+ 1;
1692 qty
+= ((to
/ card
->erase_size
) -
1693 (from
/ card
->erase_size
)) + 1;
1695 if (!mmc_card_blockaddr(card
)) {
1700 if (mmc_card_sd(card
))
1701 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1703 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1705 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1706 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1708 pr_err("mmc_erase: group start error %d, "
1709 "status %#x\n", err
, cmd
.resp
[0]);
1714 memset(&cmd
, 0, sizeof(struct mmc_command
));
1715 if (mmc_card_sd(card
))
1716 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
1718 cmd
.opcode
= MMC_ERASE_GROUP_END
;
1720 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1721 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1723 pr_err("mmc_erase: group end error %d, status %#x\n",
1729 memset(&cmd
, 0, sizeof(struct mmc_command
));
1730 cmd
.opcode
= MMC_ERASE
;
1732 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
1734 * If the host controller supports busy signalling and the timeout for
1735 * the erase operation does not exceed the max_busy_timeout, we should
1736 * use R1B response. Or we need to prevent the host from doing hw busy
1737 * detection, which is done by converting to a R1 response instead.
1739 if (card
->host
->max_busy_timeout
&&
1740 busy_timeout
> card
->host
->max_busy_timeout
) {
1741 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1743 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1744 cmd
.busy_timeout
= busy_timeout
;
1745 use_r1b_resp
= true;
1748 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1750 pr_err("mmc_erase: erase error %d, status %#x\n",
1756 if (mmc_host_is_spi(card
->host
))
1760 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1763 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
1766 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
1768 memset(&cmd
, 0, sizeof(struct mmc_command
));
1769 cmd
.opcode
= MMC_SEND_STATUS
;
1770 cmd
.arg
= card
->rca
<< 16;
1771 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1772 /* Do not retry else we can't see errors */
1773 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1774 if (err
|| R1_STATUS(cmd
.resp
[0])) {
1775 pr_err("error %d requesting status %#x\n",
1781 /* Timeout if the device never becomes ready for data and
1782 * never leaves the program state.
1784 if (time_after(jiffies
, timeout
)) {
1785 pr_err("%s: Card stuck in programming state! %s\n",
1786 mmc_hostname(card
->host
), __func__
);
1790 if ((cmd
.resp
[0] & R1_READY_FOR_DATA
) &&
1791 R1_CURRENT_STATE(cmd
.resp
[0]) != R1_STATE_PRG
)
1794 usleep_range(loop_udelay
, loop_udelay
*2);
1795 if (loop_udelay
< udelay_max
)
1800 mmc_retune_release(card
->host
);
1804 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
1809 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
1812 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1813 * to align the erase size efficiently.
1815 if (is_power_of_2(card
->erase_size
)) {
1816 unsigned int temp
= from_new
;
1818 from_new
= round_up(temp
, card
->erase_size
);
1819 rem
= from_new
- temp
;
1826 nr_new
= round_down(nr_new
, card
->erase_size
);
1828 rem
= from_new
% card
->erase_size
;
1830 rem
= card
->erase_size
- rem
;
1838 rem
= nr_new
% card
->erase_size
;
1846 *to
= from_new
+ nr_new
;
1853 * mmc_erase - erase sectors.
1854 * @card: card to erase
1855 * @from: first sector to erase
1856 * @nr: number of sectors to erase
1857 * @arg: erase command argument
1859 * Caller must claim host before calling this function.
1861 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
1864 unsigned int rem
, to
= from
+ nr
;
1867 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
1868 !(card
->csd
.cmdclass
& CCC_ERASE
))
1871 if (!card
->erase_size
)
1874 if (mmc_card_sd(card
) && arg
!= SD_ERASE_ARG
&& arg
!= SD_DISCARD_ARG
)
1877 if (mmc_card_mmc(card
) && (arg
& MMC_SECURE_ARGS
) &&
1878 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
1881 if (mmc_card_mmc(card
) && (arg
& MMC_TRIM_ARGS
) &&
1882 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
1885 if (arg
== MMC_SECURE_ERASE_ARG
) {
1886 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1890 if (arg
== MMC_ERASE_ARG
)
1891 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
1899 /* 'from' and 'to' are inclusive */
1903 * Special case where only one erase-group fits in the timeout budget:
1904 * If the region crosses an erase-group boundary on this particular
1905 * case, we will be trimming more than one erase-group which, does not
1906 * fit in the timeout budget of the controller, so we need to split it
1907 * and call mmc_do_erase() twice if necessary. This special case is
1908 * identified by the card->eg_boundary flag.
1910 rem
= card
->erase_size
- (from
% card
->erase_size
);
1911 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
1912 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
1914 if ((err
) || (to
<= from
))
1918 return mmc_do_erase(card
, from
, to
, arg
);
1920 EXPORT_SYMBOL(mmc_erase
);
1922 int mmc_can_erase(struct mmc_card
*card
)
1924 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
1925 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
1929 EXPORT_SYMBOL(mmc_can_erase
);
1931 int mmc_can_trim(struct mmc_card
*card
)
1933 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
1934 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
1938 EXPORT_SYMBOL(mmc_can_trim
);
1940 int mmc_can_discard(struct mmc_card
*card
)
1943 * As there's no way to detect the discard support bit at v4.5
1944 * use the s/w feature support filed.
1946 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
1950 EXPORT_SYMBOL(mmc_can_discard
);
1952 int mmc_can_sanitize(struct mmc_card
*card
)
1954 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
1956 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
1960 EXPORT_SYMBOL(mmc_can_sanitize
);
1962 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
1964 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
1965 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
1969 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
1971 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
1974 if (!card
->erase_size
)
1976 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1980 EXPORT_SYMBOL(mmc_erase_group_aligned
);
1982 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
1985 struct mmc_host
*host
= card
->host
;
1986 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
1987 unsigned int last_timeout
= 0;
1988 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
1989 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
1991 if (card
->erase_shift
) {
1992 max_qty
= UINT_MAX
>> card
->erase_shift
;
1993 min_qty
= card
->pref_erase
>> card
->erase_shift
;
1994 } else if (mmc_card_sd(card
)) {
1996 min_qty
= card
->pref_erase
;
1998 max_qty
= UINT_MAX
/ card
->erase_size
;
1999 min_qty
= card
->pref_erase
/ card
->erase_size
;
2003 * We should not only use 'host->max_busy_timeout' as the limitation
2004 * when deciding the max discard sectors. We should set a balance value
2005 * to improve the erase speed, and it can not get too long timeout at
2008 * Here we set 'card->pref_erase' as the minimal discard sectors no
2009 * matter what size of 'host->max_busy_timeout', but if the
2010 * 'host->max_busy_timeout' is large enough for more discard sectors,
2011 * then we can continue to increase the max discard sectors until we
2012 * get a balance value. In cases when the 'host->max_busy_timeout'
2013 * isn't specified, use the default max erase timeout.
2017 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2018 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2020 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2023 if (timeout
< last_timeout
)
2025 last_timeout
= timeout
;
2035 * When specifying a sector range to trim, chances are we might cross
2036 * an erase-group boundary even if the amount of sectors is less than
2038 * If we can only fit one erase-group in the controller timeout budget,
2039 * we have to care that erase-group boundaries are not crossed by a
2040 * single trim operation. We flag that special case with "eg_boundary".
2041 * In all other cases we can just decrement qty and pretend that we
2042 * always touch (qty + 1) erase-groups as a simple optimization.
2045 card
->eg_boundary
= 1;
2049 /* Convert qty to sectors */
2050 if (card
->erase_shift
)
2051 max_discard
= qty
<< card
->erase_shift
;
2052 else if (mmc_card_sd(card
))
2053 max_discard
= qty
+ 1;
2055 max_discard
= qty
* card
->erase_size
;
2060 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2062 struct mmc_host
*host
= card
->host
;
2063 unsigned int max_discard
, max_trim
;
2066 * Without erase_group_def set, MMC erase timeout depends on clock
2067 * frequence which can change. In that case, the best choice is
2068 * just the preferred erase size.
2070 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2071 return card
->pref_erase
;
2073 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2074 if (mmc_can_trim(card
)) {
2075 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2076 if (max_trim
< max_discard
|| max_discard
== 0)
2077 max_discard
= max_trim
;
2078 } else if (max_discard
< card
->erase_size
) {
2081 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2082 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2083 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2086 EXPORT_SYMBOL(mmc_calc_max_discard
);
2088 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2090 return card
? mmc_card_blockaddr(card
) : false;
2092 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2094 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2096 struct mmc_command cmd
= {};
2098 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2099 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2102 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2104 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2105 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2107 EXPORT_SYMBOL(mmc_set_blocklen
);
2109 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2111 mmc_pwrseq_reset(host
);
2113 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2115 host
->ops
->hw_reset(host
);
2118 int mmc_hw_reset(struct mmc_host
*host
)
2126 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->hw_reset
) {
2131 ret
= host
->bus_ops
->hw_reset(host
);
2135 pr_warn("%s: tried to HW reset card, got error %d\n",
2136 mmc_hostname(host
), ret
);
2140 EXPORT_SYMBOL(mmc_hw_reset
);
2142 int mmc_sw_reset(struct mmc_host
*host
)
2150 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->sw_reset
) {
2155 ret
= host
->bus_ops
->sw_reset(host
);
2159 pr_warn("%s: tried to SW reset card, got error %d\n",
2160 mmc_hostname(host
), ret
);
2164 EXPORT_SYMBOL(mmc_sw_reset
);
2166 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2168 host
->f_init
= freq
;
2170 pr_debug("%s: %s: trying to init card at %u Hz\n",
2171 mmc_hostname(host
), __func__
, host
->f_init
);
2173 mmc_power_up(host
, host
->ocr_avail
);
2176 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2177 * do a hardware reset if possible.
2179 mmc_hw_reset_for_init(host
);
2182 * sdio_reset sends CMD52 to reset card. Since we do not know
2183 * if the card is being re-initialized, just send it. CMD52
2184 * should be ignored by SD/eMMC cards.
2185 * Skip it if we already know that we do not support SDIO commands
2187 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2192 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2193 mmc_send_if_cond(host
, host
->ocr_avail
);
2195 /* Order's important: probe SDIO, then SD, then MMC */
2196 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2197 if (!mmc_attach_sdio(host
))
2200 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2201 if (!mmc_attach_sd(host
))
2204 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2205 if (!mmc_attach_mmc(host
))
2208 mmc_power_off(host
);
2212 int _mmc_detect_card_removed(struct mmc_host
*host
)
2216 if (!host
->card
|| mmc_card_removed(host
->card
))
2219 ret
= host
->bus_ops
->alive(host
);
2222 * Card detect status and alive check may be out of sync if card is
2223 * removed slowly, when card detect switch changes while card/slot
2224 * pads are still contacted in hardware (refer to "SD Card Mechanical
2225 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2226 * detect work 200ms later for this case.
2228 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2229 mmc_detect_change(host
, msecs_to_jiffies(200));
2230 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2234 mmc_card_set_removed(host
->card
);
2235 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2241 int mmc_detect_card_removed(struct mmc_host
*host
)
2243 struct mmc_card
*card
= host
->card
;
2246 WARN_ON(!host
->claimed
);
2251 if (!mmc_card_is_removable(host
))
2254 ret
= mmc_card_removed(card
);
2256 * The card will be considered unchanged unless we have been asked to
2257 * detect a change or host requires polling to provide card detection.
2259 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2262 host
->detect_change
= 0;
2264 ret
= _mmc_detect_card_removed(host
);
2265 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2267 * Schedule a detect work as soon as possible to let a
2268 * rescan handle the card removal.
2270 cancel_delayed_work(&host
->detect
);
2271 _mmc_detect_change(host
, 0, false);
2277 EXPORT_SYMBOL(mmc_detect_card_removed
);
2279 void mmc_rescan(struct work_struct
*work
)
2281 struct mmc_host
*host
=
2282 container_of(work
, struct mmc_host
, detect
.work
);
2285 if (host
->rescan_disable
)
2288 /* If there is a non-removable card registered, only scan once */
2289 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2291 host
->rescan_entered
= 1;
2293 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2294 mmc_claim_host(host
);
2295 host
->ops
->card_event(host
);
2296 mmc_release_host(host
);
2297 host
->trigger_card_event
= false;
2303 * if there is a _removable_ card registered, check whether it is
2306 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2307 host
->bus_ops
->detect(host
);
2309 host
->detect_change
= 0;
2312 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2313 * the card is no longer present.
2318 /* if there still is a card present, stop here */
2319 if (host
->bus_ops
!= NULL
) {
2325 * Only we can add a new handler, so it's safe to
2326 * release the lock here.
2330 mmc_claim_host(host
);
2331 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2332 host
->ops
->get_cd(host
) == 0) {
2333 mmc_power_off(host
);
2334 mmc_release_host(host
);
2338 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2339 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2341 if (freqs
[i
] <= host
->f_min
)
2344 mmc_release_host(host
);
2347 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2348 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2351 void mmc_start_host(struct mmc_host
*host
)
2353 host
->f_init
= max(freqs
[0], host
->f_min
);
2354 host
->rescan_disable
= 0;
2355 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2357 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2358 mmc_claim_host(host
);
2359 mmc_power_up(host
, host
->ocr_avail
);
2360 mmc_release_host(host
);
2363 mmc_gpiod_request_cd_irq(host
);
2364 _mmc_detect_change(host
, 0, false);
2367 void mmc_stop_host(struct mmc_host
*host
)
2369 if (host
->slot
.cd_irq
>= 0) {
2370 mmc_gpio_set_cd_wake(host
, false);
2371 disable_irq(host
->slot
.cd_irq
);
2374 host
->rescan_disable
= 1;
2375 cancel_delayed_work_sync(&host
->detect
);
2377 /* clear pm flags now and let card drivers set them as needed */
2381 if (host
->bus_ops
&& !host
->bus_dead
) {
2382 /* Calling bus_ops->remove() with a claimed host can deadlock */
2383 host
->bus_ops
->remove(host
);
2384 mmc_claim_host(host
);
2385 mmc_detach_bus(host
);
2386 mmc_power_off(host
);
2387 mmc_release_host(host
);
2393 mmc_claim_host(host
);
2394 mmc_power_off(host
);
2395 mmc_release_host(host
);
2398 #ifdef CONFIG_PM_SLEEP
2399 /* Do the card removal on suspend if card is assumed removeable
2400 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2403 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2404 unsigned long mode
, void *unused
)
2406 struct mmc_host
*host
= container_of(
2407 notify_block
, struct mmc_host
, pm_notify
);
2408 unsigned long flags
;
2412 case PM_HIBERNATION_PREPARE
:
2413 case PM_SUSPEND_PREPARE
:
2414 case PM_RESTORE_PREPARE
:
2415 spin_lock_irqsave(&host
->lock
, flags
);
2416 host
->rescan_disable
= 1;
2417 spin_unlock_irqrestore(&host
->lock
, flags
);
2418 cancel_delayed_work_sync(&host
->detect
);
2423 /* Validate prerequisites for suspend */
2424 if (host
->bus_ops
->pre_suspend
)
2425 err
= host
->bus_ops
->pre_suspend(host
);
2429 if (!mmc_card_is_removable(host
)) {
2430 dev_warn(mmc_dev(host
),
2431 "pre_suspend failed for non-removable host: "
2433 /* Avoid removing non-removable hosts */
2437 /* Calling bus_ops->remove() with a claimed host can deadlock */
2438 host
->bus_ops
->remove(host
);
2439 mmc_claim_host(host
);
2440 mmc_detach_bus(host
);
2441 mmc_power_off(host
);
2442 mmc_release_host(host
);
2446 case PM_POST_SUSPEND
:
2447 case PM_POST_HIBERNATION
:
2448 case PM_POST_RESTORE
:
2450 spin_lock_irqsave(&host
->lock
, flags
);
2451 host
->rescan_disable
= 0;
2452 spin_unlock_irqrestore(&host
->lock
, flags
);
2453 _mmc_detect_change(host
, 0, false);
2460 void mmc_register_pm_notifier(struct mmc_host
*host
)
2462 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2463 register_pm_notifier(&host
->pm_notify
);
2466 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2468 unregister_pm_notifier(&host
->pm_notify
);
2472 static int __init
mmc_init(void)
2476 ret
= mmc_register_bus();
2480 ret
= mmc_register_host_class();
2482 goto unregister_bus
;
2484 ret
= sdio_register_bus();
2486 goto unregister_host_class
;
2490 unregister_host_class
:
2491 mmc_unregister_host_class();
2493 mmc_unregister_bus();
2497 static void __exit
mmc_exit(void)
2499 sdio_unregister_bus();
2500 mmc_unregister_host_class();
2501 mmc_unregister_bus();
2504 subsys_initcall(mmc_init
);
2505 module_exit(mmc_exit
);
2507 MODULE_LICENSE("GPL");