staging: rtl8188eu: remove unused code
[linux/fpc-iii.git] / drivers / mmc / core / core.c
blob6db36dc870b585d6ca19ed2e1710c34b73a59986
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/of.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/slot-gpio.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/mmc.h>
41 #include "core.h"
42 #include "card.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
52 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
53 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
54 #define SD_DISCARD_TIMEOUT_MS (250)
56 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
63 bool use_spi_crc = 1;
64 module_param(use_spi_crc, bool, 0);
66 static int mmc_schedule_delayed_work(struct delayed_work *work,
67 unsigned long delay)
70 * We use the system_freezable_wq, because of two reasons.
71 * First, it allows several works (not the same work item) to be
72 * executed simultaneously. Second, the queue becomes frozen when
73 * userspace becomes frozen during system PM.
75 return queue_delayed_work(system_freezable_wq, work, delay);
78 #ifdef CONFIG_FAIL_MMC_REQUEST
81 * Internal function. Inject random data errors.
82 * If mmc_data is NULL no errors are injected.
84 static void mmc_should_fail_request(struct mmc_host *host,
85 struct mmc_request *mrq)
87 struct mmc_command *cmd = mrq->cmd;
88 struct mmc_data *data = mrq->data;
89 static const int data_errors[] = {
90 -ETIMEDOUT,
91 -EILSEQ,
92 -EIO,
95 if (!data)
96 return;
98 if ((cmd && cmd->error) || data->error ||
99 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
100 return;
102 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
103 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
106 #else /* CONFIG_FAIL_MMC_REQUEST */
108 static inline void mmc_should_fail_request(struct mmc_host *host,
109 struct mmc_request *mrq)
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
115 static inline void mmc_complete_cmd(struct mmc_request *mrq)
117 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
118 complete_all(&mrq->cmd_completion);
121 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
123 if (!mrq->cap_cmd_during_tfr)
124 return;
126 mmc_complete_cmd(mrq);
128 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 mmc_hostname(host), mrq->cmd->opcode);
131 EXPORT_SYMBOL(mmc_command_done);
134 * mmc_request_done - finish processing an MMC request
135 * @host: MMC host which completed request
136 * @mrq: MMC request which request
138 * MMC drivers should call this function when they have completed
139 * their processing of a request.
141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
143 struct mmc_command *cmd = mrq->cmd;
144 int err = cmd->error;
146 /* Flag re-tuning needed on CRC errors */
147 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
148 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
149 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
150 (mrq->data && mrq->data->error == -EILSEQ) ||
151 (mrq->stop && mrq->stop->error == -EILSEQ)))
152 mmc_retune_needed(host);
154 if (err && cmd->retries && mmc_host_is_spi(host)) {
155 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
156 cmd->retries = 0;
159 if (host->ongoing_mrq == mrq)
160 host->ongoing_mrq = NULL;
162 mmc_complete_cmd(mrq);
164 trace_mmc_request_done(host, mrq);
167 * We list various conditions for the command to be considered
168 * properly done:
170 * - There was no error, OK fine then
171 * - We are not doing some kind of retry
172 * - The card was removed (...so just complete everything no matter
173 * if there are errors or retries)
175 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
176 mmc_should_fail_request(host, mrq);
178 if (!host->ongoing_mrq)
179 led_trigger_event(host->led, LED_OFF);
181 if (mrq->sbc) {
182 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
183 mmc_hostname(host), mrq->sbc->opcode,
184 mrq->sbc->error,
185 mrq->sbc->resp[0], mrq->sbc->resp[1],
186 mrq->sbc->resp[2], mrq->sbc->resp[3]);
189 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
190 mmc_hostname(host), cmd->opcode, err,
191 cmd->resp[0], cmd->resp[1],
192 cmd->resp[2], cmd->resp[3]);
194 if (mrq->data) {
195 pr_debug("%s: %d bytes transferred: %d\n",
196 mmc_hostname(host),
197 mrq->data->bytes_xfered, mrq->data->error);
200 if (mrq->stop) {
201 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
202 mmc_hostname(host), mrq->stop->opcode,
203 mrq->stop->error,
204 mrq->stop->resp[0], mrq->stop->resp[1],
205 mrq->stop->resp[2], mrq->stop->resp[3]);
209 * Request starter must handle retries - see
210 * mmc_wait_for_req_done().
212 if (mrq->done)
213 mrq->done(mrq);
216 EXPORT_SYMBOL(mmc_request_done);
218 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
220 int err;
222 /* Assumes host controller has been runtime resumed by mmc_claim_host */
223 err = mmc_retune(host);
224 if (err) {
225 mrq->cmd->error = err;
226 mmc_request_done(host, mrq);
227 return;
231 * For sdio rw commands we must wait for card busy otherwise some
232 * sdio devices won't work properly.
233 * And bypass I/O abort, reset and bus suspend operations.
235 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
236 host->ops->card_busy) {
237 int tries = 500; /* Wait aprox 500ms at maximum */
239 while (host->ops->card_busy(host) && --tries)
240 mmc_delay(1);
242 if (tries == 0) {
243 mrq->cmd->error = -EBUSY;
244 mmc_request_done(host, mrq);
245 return;
249 if (mrq->cap_cmd_during_tfr) {
250 host->ongoing_mrq = mrq;
252 * Retry path could come through here without having waiting on
253 * cmd_completion, so ensure it is reinitialised.
255 reinit_completion(&mrq->cmd_completion);
258 trace_mmc_request_start(host, mrq);
260 if (host->cqe_on)
261 host->cqe_ops->cqe_off(host);
263 host->ops->request(host, mrq);
266 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
267 bool cqe)
269 if (mrq->sbc) {
270 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
271 mmc_hostname(host), mrq->sbc->opcode,
272 mrq->sbc->arg, mrq->sbc->flags);
275 if (mrq->cmd) {
276 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
277 mmc_hostname(host), cqe ? "CQE direct " : "",
278 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
279 } else if (cqe) {
280 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
281 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
284 if (mrq->data) {
285 pr_debug("%s: blksz %d blocks %d flags %08x "
286 "tsac %d ms nsac %d\n",
287 mmc_hostname(host), mrq->data->blksz,
288 mrq->data->blocks, mrq->data->flags,
289 mrq->data->timeout_ns / 1000000,
290 mrq->data->timeout_clks);
293 if (mrq->stop) {
294 pr_debug("%s: CMD%u arg %08x flags %08x\n",
295 mmc_hostname(host), mrq->stop->opcode,
296 mrq->stop->arg, mrq->stop->flags);
300 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
302 unsigned int i, sz = 0;
303 struct scatterlist *sg;
305 if (mrq->cmd) {
306 mrq->cmd->error = 0;
307 mrq->cmd->mrq = mrq;
308 mrq->cmd->data = mrq->data;
310 if (mrq->sbc) {
311 mrq->sbc->error = 0;
312 mrq->sbc->mrq = mrq;
314 if (mrq->data) {
315 if (mrq->data->blksz > host->max_blk_size ||
316 mrq->data->blocks > host->max_blk_count ||
317 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
318 return -EINVAL;
320 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
321 sz += sg->length;
322 if (sz != mrq->data->blocks * mrq->data->blksz)
323 return -EINVAL;
325 mrq->data->error = 0;
326 mrq->data->mrq = mrq;
327 if (mrq->stop) {
328 mrq->data->stop = mrq->stop;
329 mrq->stop->error = 0;
330 mrq->stop->mrq = mrq;
334 return 0;
337 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
339 int err;
341 init_completion(&mrq->cmd_completion);
343 mmc_retune_hold(host);
345 if (mmc_card_removed(host->card))
346 return -ENOMEDIUM;
348 mmc_mrq_pr_debug(host, mrq, false);
350 WARN_ON(!host->claimed);
352 err = mmc_mrq_prep(host, mrq);
353 if (err)
354 return err;
356 led_trigger_event(host->led, LED_FULL);
357 __mmc_start_request(host, mrq);
359 return 0;
361 EXPORT_SYMBOL(mmc_start_request);
363 static void mmc_wait_done(struct mmc_request *mrq)
365 complete(&mrq->completion);
368 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
370 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
373 * If there is an ongoing transfer, wait for the command line to become
374 * available.
376 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
377 wait_for_completion(&ongoing_mrq->cmd_completion);
380 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
382 int err;
384 mmc_wait_ongoing_tfr_cmd(host);
386 init_completion(&mrq->completion);
387 mrq->done = mmc_wait_done;
389 err = mmc_start_request(host, mrq);
390 if (err) {
391 mrq->cmd->error = err;
392 mmc_complete_cmd(mrq);
393 complete(&mrq->completion);
396 return err;
399 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
401 struct mmc_command *cmd;
403 while (1) {
404 wait_for_completion(&mrq->completion);
406 cmd = mrq->cmd;
409 * If host has timed out waiting for the sanitize
410 * to complete, card might be still in programming state
411 * so let's try to bring the card out of programming
412 * state.
414 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
415 if (!mmc_interrupt_hpi(host->card)) {
416 pr_warn("%s: %s: Interrupted sanitize\n",
417 mmc_hostname(host), __func__);
418 cmd->error = 0;
419 break;
420 } else {
421 pr_err("%s: %s: Failed to interrupt sanitize\n",
422 mmc_hostname(host), __func__);
425 if (!cmd->error || !cmd->retries ||
426 mmc_card_removed(host->card))
427 break;
429 mmc_retune_recheck(host);
431 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
432 mmc_hostname(host), cmd->opcode, cmd->error);
433 cmd->retries--;
434 cmd->error = 0;
435 __mmc_start_request(host, mrq);
438 mmc_retune_release(host);
440 EXPORT_SYMBOL(mmc_wait_for_req_done);
443 * mmc_cqe_start_req - Start a CQE request.
444 * @host: MMC host to start the request
445 * @mrq: request to start
447 * Start the request, re-tuning if needed and it is possible. Returns an error
448 * code if the request fails to start or -EBUSY if CQE is busy.
450 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
452 int err;
455 * CQE cannot process re-tuning commands. Caller must hold retuning
456 * while CQE is in use. Re-tuning can happen here only when CQE has no
457 * active requests i.e. this is the first. Note, re-tuning will call
458 * ->cqe_off().
460 err = mmc_retune(host);
461 if (err)
462 goto out_err;
464 mrq->host = host;
466 mmc_mrq_pr_debug(host, mrq, true);
468 err = mmc_mrq_prep(host, mrq);
469 if (err)
470 goto out_err;
472 err = host->cqe_ops->cqe_request(host, mrq);
473 if (err)
474 goto out_err;
476 trace_mmc_request_start(host, mrq);
478 return 0;
480 out_err:
481 if (mrq->cmd) {
482 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
483 mmc_hostname(host), mrq->cmd->opcode, err);
484 } else {
485 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
486 mmc_hostname(host), mrq->tag, err);
488 return err;
490 EXPORT_SYMBOL(mmc_cqe_start_req);
493 * mmc_cqe_request_done - CQE has finished processing an MMC request
494 * @host: MMC host which completed request
495 * @mrq: MMC request which completed
497 * CQE drivers should call this function when they have completed
498 * their processing of a request.
500 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
502 mmc_should_fail_request(host, mrq);
504 /* Flag re-tuning needed on CRC errors */
505 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
506 (mrq->data && mrq->data->error == -EILSEQ))
507 mmc_retune_needed(host);
509 trace_mmc_request_done(host, mrq);
511 if (mrq->cmd) {
512 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
513 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
514 } else {
515 pr_debug("%s: CQE transfer done tag %d\n",
516 mmc_hostname(host), mrq->tag);
519 if (mrq->data) {
520 pr_debug("%s: %d bytes transferred: %d\n",
521 mmc_hostname(host),
522 mrq->data->bytes_xfered, mrq->data->error);
525 mrq->done(mrq);
527 EXPORT_SYMBOL(mmc_cqe_request_done);
530 * mmc_cqe_post_req - CQE post process of a completed MMC request
531 * @host: MMC host
532 * @mrq: MMC request to be processed
534 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
536 if (host->cqe_ops->cqe_post_req)
537 host->cqe_ops->cqe_post_req(host, mrq);
539 EXPORT_SYMBOL(mmc_cqe_post_req);
541 /* Arbitrary 1 second timeout */
542 #define MMC_CQE_RECOVERY_TIMEOUT 1000
545 * mmc_cqe_recovery - Recover from CQE errors.
546 * @host: MMC host to recover
548 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
549 * in eMMC, and discarding the queue in CQE. CQE must call
550 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
551 * fails to discard its queue.
553 int mmc_cqe_recovery(struct mmc_host *host)
555 struct mmc_command cmd;
556 int err;
558 mmc_retune_hold_now(host);
561 * Recovery is expected seldom, if at all, but it reduces performance,
562 * so make sure it is not completely silent.
564 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
566 host->cqe_ops->cqe_recovery_start(host);
568 memset(&cmd, 0, sizeof(cmd));
569 cmd.opcode = MMC_STOP_TRANSMISSION,
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
573 mmc_wait_for_cmd(host, &cmd, 0);
575 memset(&cmd, 0, sizeof(cmd));
576 cmd.opcode = MMC_CMDQ_TASK_MGMT;
577 cmd.arg = 1; /* Discard entire queue */
578 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
579 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
580 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
581 err = mmc_wait_for_cmd(host, &cmd, 0);
583 host->cqe_ops->cqe_recovery_finish(host);
585 mmc_retune_release(host);
587 return err;
589 EXPORT_SYMBOL(mmc_cqe_recovery);
592 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
593 * @host: MMC host
594 * @mrq: MMC request
596 * mmc_is_req_done() is used with requests that have
597 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
598 * starting a request and before waiting for it to complete. That is,
599 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
600 * and before mmc_wait_for_req_done(). If it is called at other times the
601 * result is not meaningful.
603 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
605 return completion_done(&mrq->completion);
607 EXPORT_SYMBOL(mmc_is_req_done);
610 * mmc_wait_for_req - start a request and wait for completion
611 * @host: MMC host to start command
612 * @mrq: MMC request to start
614 * Start a new MMC custom command request for a host, and wait
615 * for the command to complete. In the case of 'cap_cmd_during_tfr'
616 * requests, the transfer is ongoing and the caller can issue further
617 * commands that do not use the data lines, and then wait by calling
618 * mmc_wait_for_req_done().
619 * Does not attempt to parse the response.
621 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
623 __mmc_start_req(host, mrq);
625 if (!mrq->cap_cmd_during_tfr)
626 mmc_wait_for_req_done(host, mrq);
628 EXPORT_SYMBOL(mmc_wait_for_req);
631 * mmc_wait_for_cmd - start a command and wait for completion
632 * @host: MMC host to start command
633 * @cmd: MMC command to start
634 * @retries: maximum number of retries
636 * Start a new MMC command for a host, and wait for the command
637 * to complete. Return any error that occurred while the command
638 * was executing. Do not attempt to parse the response.
640 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
642 struct mmc_request mrq = {};
644 WARN_ON(!host->claimed);
646 memset(cmd->resp, 0, sizeof(cmd->resp));
647 cmd->retries = retries;
649 mrq.cmd = cmd;
650 cmd->data = NULL;
652 mmc_wait_for_req(host, &mrq);
654 return cmd->error;
657 EXPORT_SYMBOL(mmc_wait_for_cmd);
660 * mmc_set_data_timeout - set the timeout for a data command
661 * @data: data phase for command
662 * @card: the MMC card associated with the data transfer
664 * Computes the data timeout parameters according to the
665 * correct algorithm given the card type.
667 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
669 unsigned int mult;
672 * SDIO cards only define an upper 1 s limit on access.
674 if (mmc_card_sdio(card)) {
675 data->timeout_ns = 1000000000;
676 data->timeout_clks = 0;
677 return;
681 * SD cards use a 100 multiplier rather than 10
683 mult = mmc_card_sd(card) ? 100 : 10;
686 * Scale up the multiplier (and therefore the timeout) by
687 * the r2w factor for writes.
689 if (data->flags & MMC_DATA_WRITE)
690 mult <<= card->csd.r2w_factor;
692 data->timeout_ns = card->csd.taac_ns * mult;
693 data->timeout_clks = card->csd.taac_clks * mult;
696 * SD cards also have an upper limit on the timeout.
698 if (mmc_card_sd(card)) {
699 unsigned int timeout_us, limit_us;
701 timeout_us = data->timeout_ns / 1000;
702 if (card->host->ios.clock)
703 timeout_us += data->timeout_clks * 1000 /
704 (card->host->ios.clock / 1000);
706 if (data->flags & MMC_DATA_WRITE)
708 * The MMC spec "It is strongly recommended
709 * for hosts to implement more than 500ms
710 * timeout value even if the card indicates
711 * the 250ms maximum busy length." Even the
712 * previous value of 300ms is known to be
713 * insufficient for some cards.
715 limit_us = 3000000;
716 else
717 limit_us = 100000;
720 * SDHC cards always use these fixed values.
722 if (timeout_us > limit_us) {
723 data->timeout_ns = limit_us * 1000;
724 data->timeout_clks = 0;
727 /* assign limit value if invalid */
728 if (timeout_us == 0)
729 data->timeout_ns = limit_us * 1000;
733 * Some cards require longer data read timeout than indicated in CSD.
734 * Address this by setting the read timeout to a "reasonably high"
735 * value. For the cards tested, 600ms has proven enough. If necessary,
736 * this value can be increased if other problematic cards require this.
738 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
739 data->timeout_ns = 600000000;
740 data->timeout_clks = 0;
744 * Some cards need very high timeouts if driven in SPI mode.
745 * The worst observed timeout was 900ms after writing a
746 * continuous stream of data until the internal logic
747 * overflowed.
749 if (mmc_host_is_spi(card->host)) {
750 if (data->flags & MMC_DATA_WRITE) {
751 if (data->timeout_ns < 1000000000)
752 data->timeout_ns = 1000000000; /* 1s */
753 } else {
754 if (data->timeout_ns < 100000000)
755 data->timeout_ns = 100000000; /* 100ms */
759 EXPORT_SYMBOL(mmc_set_data_timeout);
762 * Allow claiming an already claimed host if the context is the same or there is
763 * no context but the task is the same.
765 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
766 struct task_struct *task)
768 return host->claimer == ctx ||
769 (!ctx && task && host->claimer->task == task);
772 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
773 struct mmc_ctx *ctx,
774 struct task_struct *task)
776 if (!host->claimer) {
777 if (ctx)
778 host->claimer = ctx;
779 else
780 host->claimer = &host->default_ctx;
782 if (task)
783 host->claimer->task = task;
787 * __mmc_claim_host - exclusively claim a host
788 * @host: mmc host to claim
789 * @ctx: context that claims the host or NULL in which case the default
790 * context will be used
791 * @abort: whether or not the operation should be aborted
793 * Claim a host for a set of operations. If @abort is non null and
794 * dereference a non-zero value then this will return prematurely with
795 * that non-zero value without acquiring the lock. Returns zero
796 * with the lock held otherwise.
798 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
799 atomic_t *abort)
801 struct task_struct *task = ctx ? NULL : current;
802 DECLARE_WAITQUEUE(wait, current);
803 unsigned long flags;
804 int stop;
805 bool pm = false;
807 might_sleep();
809 add_wait_queue(&host->wq, &wait);
810 spin_lock_irqsave(&host->lock, flags);
811 while (1) {
812 set_current_state(TASK_UNINTERRUPTIBLE);
813 stop = abort ? atomic_read(abort) : 0;
814 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
815 break;
816 spin_unlock_irqrestore(&host->lock, flags);
817 schedule();
818 spin_lock_irqsave(&host->lock, flags);
820 set_current_state(TASK_RUNNING);
821 if (!stop) {
822 host->claimed = 1;
823 mmc_ctx_set_claimer(host, ctx, task);
824 host->claim_cnt += 1;
825 if (host->claim_cnt == 1)
826 pm = true;
827 } else
828 wake_up(&host->wq);
829 spin_unlock_irqrestore(&host->lock, flags);
830 remove_wait_queue(&host->wq, &wait);
832 if (pm)
833 pm_runtime_get_sync(mmc_dev(host));
835 return stop;
837 EXPORT_SYMBOL(__mmc_claim_host);
840 * mmc_release_host - release a host
841 * @host: mmc host to release
843 * Release a MMC host, allowing others to claim the host
844 * for their operations.
846 void mmc_release_host(struct mmc_host *host)
848 unsigned long flags;
850 WARN_ON(!host->claimed);
852 spin_lock_irqsave(&host->lock, flags);
853 if (--host->claim_cnt) {
854 /* Release for nested claim */
855 spin_unlock_irqrestore(&host->lock, flags);
856 } else {
857 host->claimed = 0;
858 host->claimer->task = NULL;
859 host->claimer = NULL;
860 spin_unlock_irqrestore(&host->lock, flags);
861 wake_up(&host->wq);
862 pm_runtime_mark_last_busy(mmc_dev(host));
863 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
864 pm_runtime_put_sync_suspend(mmc_dev(host));
865 else
866 pm_runtime_put_autosuspend(mmc_dev(host));
869 EXPORT_SYMBOL(mmc_release_host);
872 * This is a helper function, which fetches a runtime pm reference for the
873 * card device and also claims the host.
875 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
877 pm_runtime_get_sync(&card->dev);
878 __mmc_claim_host(card->host, ctx, NULL);
880 EXPORT_SYMBOL(mmc_get_card);
883 * This is a helper function, which releases the host and drops the runtime
884 * pm reference for the card device.
886 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
888 struct mmc_host *host = card->host;
890 WARN_ON(ctx && host->claimer != ctx);
892 mmc_release_host(host);
893 pm_runtime_mark_last_busy(&card->dev);
894 pm_runtime_put_autosuspend(&card->dev);
896 EXPORT_SYMBOL(mmc_put_card);
899 * Internal function that does the actual ios call to the host driver,
900 * optionally printing some debug output.
902 static inline void mmc_set_ios(struct mmc_host *host)
904 struct mmc_ios *ios = &host->ios;
906 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
907 "width %u timing %u\n",
908 mmc_hostname(host), ios->clock, ios->bus_mode,
909 ios->power_mode, ios->chip_select, ios->vdd,
910 1 << ios->bus_width, ios->timing);
912 host->ops->set_ios(host, ios);
916 * Control chip select pin on a host.
918 void mmc_set_chip_select(struct mmc_host *host, int mode)
920 host->ios.chip_select = mode;
921 mmc_set_ios(host);
925 * Sets the host clock to the highest possible frequency that
926 * is below "hz".
928 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
930 WARN_ON(hz && hz < host->f_min);
932 if (hz > host->f_max)
933 hz = host->f_max;
935 host->ios.clock = hz;
936 mmc_set_ios(host);
939 int mmc_execute_tuning(struct mmc_card *card)
941 struct mmc_host *host = card->host;
942 u32 opcode;
943 int err;
945 if (!host->ops->execute_tuning)
946 return 0;
948 if (host->cqe_on)
949 host->cqe_ops->cqe_off(host);
951 if (mmc_card_mmc(card))
952 opcode = MMC_SEND_TUNING_BLOCK_HS200;
953 else
954 opcode = MMC_SEND_TUNING_BLOCK;
956 err = host->ops->execute_tuning(host, opcode);
958 if (err)
959 pr_err("%s: tuning execution failed: %d\n",
960 mmc_hostname(host), err);
961 else
962 mmc_retune_enable(host);
964 return err;
968 * Change the bus mode (open drain/push-pull) of a host.
970 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
972 host->ios.bus_mode = mode;
973 mmc_set_ios(host);
977 * Change data bus width of a host.
979 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
981 host->ios.bus_width = width;
982 mmc_set_ios(host);
986 * Set initial state after a power cycle or a hw_reset.
988 void mmc_set_initial_state(struct mmc_host *host)
990 if (host->cqe_on)
991 host->cqe_ops->cqe_off(host);
993 mmc_retune_disable(host);
995 if (mmc_host_is_spi(host))
996 host->ios.chip_select = MMC_CS_HIGH;
997 else
998 host->ios.chip_select = MMC_CS_DONTCARE;
999 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1000 host->ios.bus_width = MMC_BUS_WIDTH_1;
1001 host->ios.timing = MMC_TIMING_LEGACY;
1002 host->ios.drv_type = 0;
1003 host->ios.enhanced_strobe = false;
1006 * Make sure we are in non-enhanced strobe mode before we
1007 * actually enable it in ext_csd.
1009 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1010 host->ops->hs400_enhanced_strobe)
1011 host->ops->hs400_enhanced_strobe(host, &host->ios);
1013 mmc_set_ios(host);
1017 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1018 * @vdd: voltage (mV)
1019 * @low_bits: prefer low bits in boundary cases
1021 * This function returns the OCR bit number according to the provided @vdd
1022 * value. If conversion is not possible a negative errno value returned.
1024 * Depending on the @low_bits flag the function prefers low or high OCR bits
1025 * on boundary voltages. For example,
1026 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1027 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1029 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1031 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1033 const int max_bit = ilog2(MMC_VDD_35_36);
1034 int bit;
1036 if (vdd < 1650 || vdd > 3600)
1037 return -EINVAL;
1039 if (vdd >= 1650 && vdd <= 1950)
1040 return ilog2(MMC_VDD_165_195);
1042 if (low_bits)
1043 vdd -= 1;
1045 /* Base 2000 mV, step 100 mV, bit's base 8. */
1046 bit = (vdd - 2000) / 100 + 8;
1047 if (bit > max_bit)
1048 return max_bit;
1049 return bit;
1053 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1054 * @vdd_min: minimum voltage value (mV)
1055 * @vdd_max: maximum voltage value (mV)
1057 * This function returns the OCR mask bits according to the provided @vdd_min
1058 * and @vdd_max values. If conversion is not possible the function returns 0.
1060 * Notes wrt boundary cases:
1061 * This function sets the OCR bits for all boundary voltages, for example
1062 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1063 * MMC_VDD_34_35 mask.
1065 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1067 u32 mask = 0;
1069 if (vdd_max < vdd_min)
1070 return 0;
1072 /* Prefer high bits for the boundary vdd_max values. */
1073 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1074 if (vdd_max < 0)
1075 return 0;
1077 /* Prefer low bits for the boundary vdd_min values. */
1078 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1079 if (vdd_min < 0)
1080 return 0;
1082 /* Fill the mask, from max bit to min bit. */
1083 while (vdd_max >= vdd_min)
1084 mask |= 1 << vdd_max--;
1086 return mask;
1089 static int mmc_of_get_func_num(struct device_node *node)
1091 u32 reg;
1092 int ret;
1094 ret = of_property_read_u32(node, "reg", &reg);
1095 if (ret < 0)
1096 return ret;
1098 return reg;
1101 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1102 unsigned func_num)
1104 struct device_node *node;
1106 if (!host->parent || !host->parent->of_node)
1107 return NULL;
1109 for_each_child_of_node(host->parent->of_node, node) {
1110 if (mmc_of_get_func_num(node) == func_num)
1111 return node;
1114 return NULL;
1118 * Mask off any voltages we don't support and select
1119 * the lowest voltage
1121 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1123 int bit;
1126 * Sanity check the voltages that the card claims to
1127 * support.
1129 if (ocr & 0x7F) {
1130 dev_warn(mmc_dev(host),
1131 "card claims to support voltages below defined range\n");
1132 ocr &= ~0x7F;
1135 ocr &= host->ocr_avail;
1136 if (!ocr) {
1137 dev_warn(mmc_dev(host), "no support for card's volts\n");
1138 return 0;
1141 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1142 bit = ffs(ocr) - 1;
1143 ocr &= 3 << bit;
1144 mmc_power_cycle(host, ocr);
1145 } else {
1146 bit = fls(ocr) - 1;
1147 ocr &= 3 << bit;
1148 if (bit != host->ios.vdd)
1149 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1152 return ocr;
1155 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1157 int err = 0;
1158 int old_signal_voltage = host->ios.signal_voltage;
1160 host->ios.signal_voltage = signal_voltage;
1161 if (host->ops->start_signal_voltage_switch)
1162 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1164 if (err)
1165 host->ios.signal_voltage = old_signal_voltage;
1167 return err;
1171 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1173 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1182 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1184 u32 clock;
1187 * During a signal voltage level switch, the clock must be gated
1188 * for 5 ms according to the SD spec
1190 clock = host->ios.clock;
1191 host->ios.clock = 0;
1192 mmc_set_ios(host);
1194 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195 return -EAGAIN;
1197 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198 mmc_delay(10);
1199 host->ios.clock = clock;
1200 mmc_set_ios(host);
1202 return 0;
1205 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1207 struct mmc_command cmd = {};
1208 int err = 0;
1211 * If we cannot switch voltages, return failure so the caller
1212 * can continue without UHS mode
1214 if (!host->ops->start_signal_voltage_switch)
1215 return -EPERM;
1216 if (!host->ops->card_busy)
1217 pr_warn("%s: cannot verify signal voltage switch\n",
1218 mmc_hostname(host));
1220 cmd.opcode = SD_SWITCH_VOLTAGE;
1221 cmd.arg = 0;
1222 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1224 err = mmc_wait_for_cmd(host, &cmd, 0);
1225 if (err)
1226 return err;
1228 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229 return -EIO;
1232 * The card should drive cmd and dat[0:3] low immediately
1233 * after the response of cmd11, but wait 1 ms to be sure
1235 mmc_delay(1);
1236 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237 err = -EAGAIN;
1238 goto power_cycle;
1241 if (mmc_host_set_uhs_voltage(host)) {
1243 * Voltages may not have been switched, but we've already
1244 * sent CMD11, so a power cycle is required anyway
1246 err = -EAGAIN;
1247 goto power_cycle;
1250 /* Wait for at least 1 ms according to spec */
1251 mmc_delay(1);
1254 * Failure to switch is indicated by the card holding
1255 * dat[0:3] low
1257 if (host->ops->card_busy && host->ops->card_busy(host))
1258 err = -EAGAIN;
1260 power_cycle:
1261 if (err) {
1262 pr_debug("%s: Signal voltage switch failed, "
1263 "power cycling card\n", mmc_hostname(host));
1264 mmc_power_cycle(host, ocr);
1267 return err;
1271 * Select timing parameters for host.
1273 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1275 host->ios.timing = timing;
1276 mmc_set_ios(host);
1280 * Select appropriate driver type for host.
1282 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1284 host->ios.drv_type = drv_type;
1285 mmc_set_ios(host);
1288 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1289 int card_drv_type, int *drv_type)
1291 struct mmc_host *host = card->host;
1292 int host_drv_type = SD_DRIVER_TYPE_B;
1294 *drv_type = 0;
1296 if (!host->ops->select_drive_strength)
1297 return 0;
1299 /* Use SD definition of driver strength for hosts */
1300 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1301 host_drv_type |= SD_DRIVER_TYPE_A;
1303 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1304 host_drv_type |= SD_DRIVER_TYPE_C;
1306 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1307 host_drv_type |= SD_DRIVER_TYPE_D;
1310 * The drive strength that the hardware can support
1311 * depends on the board design. Pass the appropriate
1312 * information and let the hardware specific code
1313 * return what is possible given the options
1315 return host->ops->select_drive_strength(card, max_dtr,
1316 host_drv_type,
1317 card_drv_type,
1318 drv_type);
1322 * Apply power to the MMC stack. This is a two-stage process.
1323 * First, we enable power to the card without the clock running.
1324 * We then wait a bit for the power to stabilise. Finally,
1325 * enable the bus drivers and clock to the card.
1327 * We must _NOT_ enable the clock prior to power stablising.
1329 * If a host does all the power sequencing itself, ignore the
1330 * initial MMC_POWER_UP stage.
1332 void mmc_power_up(struct mmc_host *host, u32 ocr)
1334 if (host->ios.power_mode == MMC_POWER_ON)
1335 return;
1337 mmc_pwrseq_pre_power_on(host);
1339 host->ios.vdd = fls(ocr) - 1;
1340 host->ios.power_mode = MMC_POWER_UP;
1341 /* Set initial state and call mmc_set_ios */
1342 mmc_set_initial_state(host);
1344 mmc_set_initial_signal_voltage(host);
1347 * This delay should be sufficient to allow the power supply
1348 * to reach the minimum voltage.
1350 mmc_delay(host->ios.power_delay_ms);
1352 mmc_pwrseq_post_power_on(host);
1354 host->ios.clock = host->f_init;
1356 host->ios.power_mode = MMC_POWER_ON;
1357 mmc_set_ios(host);
1360 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361 * time required to reach a stable voltage.
1363 mmc_delay(host->ios.power_delay_ms);
1366 void mmc_power_off(struct mmc_host *host)
1368 if (host->ios.power_mode == MMC_POWER_OFF)
1369 return;
1371 mmc_pwrseq_power_off(host);
1373 host->ios.clock = 0;
1374 host->ios.vdd = 0;
1376 host->ios.power_mode = MMC_POWER_OFF;
1377 /* Set initial state and call mmc_set_ios */
1378 mmc_set_initial_state(host);
1381 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382 * XO-1.5, require a short delay after poweroff before the card
1383 * can be successfully turned on again.
1385 mmc_delay(1);
1388 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1390 mmc_power_off(host);
1391 /* Wait at least 1 ms according to SD spec */
1392 mmc_delay(1);
1393 mmc_power_up(host, ocr);
1397 * Cleanup when the last reference to the bus operator is dropped.
1399 static void __mmc_release_bus(struct mmc_host *host)
1401 WARN_ON(!host->bus_dead);
1403 host->bus_ops = NULL;
1407 * Increase reference count of bus operator
1409 static inline void mmc_bus_get(struct mmc_host *host)
1411 unsigned long flags;
1413 spin_lock_irqsave(&host->lock, flags);
1414 host->bus_refs++;
1415 spin_unlock_irqrestore(&host->lock, flags);
1419 * Decrease reference count of bus operator and free it if
1420 * it is the last reference.
1422 static inline void mmc_bus_put(struct mmc_host *host)
1424 unsigned long flags;
1426 spin_lock_irqsave(&host->lock, flags);
1427 host->bus_refs--;
1428 if ((host->bus_refs == 0) && host->bus_ops)
1429 __mmc_release_bus(host);
1430 spin_unlock_irqrestore(&host->lock, flags);
1434 * Assign a mmc bus handler to a host. Only one bus handler may control a
1435 * host at any given time.
1437 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1439 unsigned long flags;
1441 WARN_ON(!host->claimed);
1443 spin_lock_irqsave(&host->lock, flags);
1445 WARN_ON(host->bus_ops);
1446 WARN_ON(host->bus_refs);
1448 host->bus_ops = ops;
1449 host->bus_refs = 1;
1450 host->bus_dead = 0;
1452 spin_unlock_irqrestore(&host->lock, flags);
1456 * Remove the current bus handler from a host.
1458 void mmc_detach_bus(struct mmc_host *host)
1460 unsigned long flags;
1462 WARN_ON(!host->claimed);
1463 WARN_ON(!host->bus_ops);
1465 spin_lock_irqsave(&host->lock, flags);
1467 host->bus_dead = 1;
1469 spin_unlock_irqrestore(&host->lock, flags);
1471 mmc_bus_put(host);
1474 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1475 bool cd_irq)
1478 * If the device is configured as wakeup, we prevent a new sleep for
1479 * 5 s to give provision for user space to consume the event.
1481 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1482 device_can_wakeup(mmc_dev(host)))
1483 pm_wakeup_event(mmc_dev(host), 5000);
1485 host->detect_change = 1;
1486 mmc_schedule_delayed_work(&host->detect, delay);
1490 * mmc_detect_change - process change of state on a MMC socket
1491 * @host: host which changed state.
1492 * @delay: optional delay to wait before detection (jiffies)
1494 * MMC drivers should call this when they detect a card has been
1495 * inserted or removed. The MMC layer will confirm that any
1496 * present card is still functional, and initialize any newly
1497 * inserted.
1499 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1501 _mmc_detect_change(host, delay, true);
1503 EXPORT_SYMBOL(mmc_detect_change);
1505 void mmc_init_erase(struct mmc_card *card)
1507 unsigned int sz;
1509 if (is_power_of_2(card->erase_size))
1510 card->erase_shift = ffs(card->erase_size) - 1;
1511 else
1512 card->erase_shift = 0;
1515 * It is possible to erase an arbitrarily large area of an SD or MMC
1516 * card. That is not desirable because it can take a long time
1517 * (minutes) potentially delaying more important I/O, and also the
1518 * timeout calculations become increasingly hugely over-estimated.
1519 * Consequently, 'pref_erase' is defined as a guide to limit erases
1520 * to that size and alignment.
1522 * For SD cards that define Allocation Unit size, limit erases to one
1523 * Allocation Unit at a time.
1524 * For MMC, have a stab at ai good value and for modern cards it will
1525 * end up being 4MiB. Note that if the value is too small, it can end
1526 * up taking longer to erase. Also note, erase_size is already set to
1527 * High Capacity Erase Size if available when this function is called.
1529 if (mmc_card_sd(card) && card->ssr.au) {
1530 card->pref_erase = card->ssr.au;
1531 card->erase_shift = ffs(card->ssr.au) - 1;
1532 } else if (card->erase_size) {
1533 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1534 if (sz < 128)
1535 card->pref_erase = 512 * 1024 / 512;
1536 else if (sz < 512)
1537 card->pref_erase = 1024 * 1024 / 512;
1538 else if (sz < 1024)
1539 card->pref_erase = 2 * 1024 * 1024 / 512;
1540 else
1541 card->pref_erase = 4 * 1024 * 1024 / 512;
1542 if (card->pref_erase < card->erase_size)
1543 card->pref_erase = card->erase_size;
1544 else {
1545 sz = card->pref_erase % card->erase_size;
1546 if (sz)
1547 card->pref_erase += card->erase_size - sz;
1549 } else
1550 card->pref_erase = 0;
1553 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1554 unsigned int arg, unsigned int qty)
1556 unsigned int erase_timeout;
1558 if (arg == MMC_DISCARD_ARG ||
1559 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1560 erase_timeout = card->ext_csd.trim_timeout;
1561 } else if (card->ext_csd.erase_group_def & 1) {
1562 /* High Capacity Erase Group Size uses HC timeouts */
1563 if (arg == MMC_TRIM_ARG)
1564 erase_timeout = card->ext_csd.trim_timeout;
1565 else
1566 erase_timeout = card->ext_csd.hc_erase_timeout;
1567 } else {
1568 /* CSD Erase Group Size uses write timeout */
1569 unsigned int mult = (10 << card->csd.r2w_factor);
1570 unsigned int timeout_clks = card->csd.taac_clks * mult;
1571 unsigned int timeout_us;
1573 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1574 if (card->csd.taac_ns < 1000000)
1575 timeout_us = (card->csd.taac_ns * mult) / 1000;
1576 else
1577 timeout_us = (card->csd.taac_ns / 1000) * mult;
1580 * ios.clock is only a target. The real clock rate might be
1581 * less but not that much less, so fudge it by multiplying by 2.
1583 timeout_clks <<= 1;
1584 timeout_us += (timeout_clks * 1000) /
1585 (card->host->ios.clock / 1000);
1587 erase_timeout = timeout_us / 1000;
1590 * Theoretically, the calculation could underflow so round up
1591 * to 1ms in that case.
1593 if (!erase_timeout)
1594 erase_timeout = 1;
1597 /* Multiplier for secure operations */
1598 if (arg & MMC_SECURE_ARGS) {
1599 if (arg == MMC_SECURE_ERASE_ARG)
1600 erase_timeout *= card->ext_csd.sec_erase_mult;
1601 else
1602 erase_timeout *= card->ext_csd.sec_trim_mult;
1605 erase_timeout *= qty;
1608 * Ensure at least a 1 second timeout for SPI as per
1609 * 'mmc_set_data_timeout()'
1611 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1612 erase_timeout = 1000;
1614 return erase_timeout;
1617 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1618 unsigned int arg,
1619 unsigned int qty)
1621 unsigned int erase_timeout;
1623 /* for DISCARD none of the below calculation applies.
1624 * the busy timeout is 250msec per discard command.
1626 if (arg == SD_DISCARD_ARG)
1627 return SD_DISCARD_TIMEOUT_MS;
1629 if (card->ssr.erase_timeout) {
1630 /* Erase timeout specified in SD Status Register (SSR) */
1631 erase_timeout = card->ssr.erase_timeout * qty +
1632 card->ssr.erase_offset;
1633 } else {
1635 * Erase timeout not specified in SD Status Register (SSR) so
1636 * use 250ms per write block.
1638 erase_timeout = 250 * qty;
1641 /* Must not be less than 1 second */
1642 if (erase_timeout < 1000)
1643 erase_timeout = 1000;
1645 return erase_timeout;
1648 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1649 unsigned int arg,
1650 unsigned int qty)
1652 if (mmc_card_sd(card))
1653 return mmc_sd_erase_timeout(card, arg, qty);
1654 else
1655 return mmc_mmc_erase_timeout(card, arg, qty);
1658 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1659 unsigned int to, unsigned int arg)
1661 struct mmc_command cmd = {};
1662 unsigned int qty = 0, busy_timeout = 0;
1663 bool use_r1b_resp = false;
1664 unsigned long timeout;
1665 int loop_udelay=64, udelay_max=32768;
1666 int err;
1668 mmc_retune_hold(card->host);
1671 * qty is used to calculate the erase timeout which depends on how many
1672 * erase groups (or allocation units in SD terminology) are affected.
1673 * We count erasing part of an erase group as one erase group.
1674 * For SD, the allocation units are always a power of 2. For MMC, the
1675 * erase group size is almost certainly also power of 2, but it does not
1676 * seem to insist on that in the JEDEC standard, so we fall back to
1677 * division in that case. SD may not specify an allocation unit size,
1678 * in which case the timeout is based on the number of write blocks.
1680 * Note that the timeout for secure trim 2 will only be correct if the
1681 * number of erase groups specified is the same as the total of all
1682 * preceding secure trim 1 commands. Since the power may have been
1683 * lost since the secure trim 1 commands occurred, it is generally
1684 * impossible to calculate the secure trim 2 timeout correctly.
1686 if (card->erase_shift)
1687 qty += ((to >> card->erase_shift) -
1688 (from >> card->erase_shift)) + 1;
1689 else if (mmc_card_sd(card))
1690 qty += to - from + 1;
1691 else
1692 qty += ((to / card->erase_size) -
1693 (from / card->erase_size)) + 1;
1695 if (!mmc_card_blockaddr(card)) {
1696 from <<= 9;
1697 to <<= 9;
1700 if (mmc_card_sd(card))
1701 cmd.opcode = SD_ERASE_WR_BLK_START;
1702 else
1703 cmd.opcode = MMC_ERASE_GROUP_START;
1704 cmd.arg = from;
1705 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1706 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1707 if (err) {
1708 pr_err("mmc_erase: group start error %d, "
1709 "status %#x\n", err, cmd.resp[0]);
1710 err = -EIO;
1711 goto out;
1714 memset(&cmd, 0, sizeof(struct mmc_command));
1715 if (mmc_card_sd(card))
1716 cmd.opcode = SD_ERASE_WR_BLK_END;
1717 else
1718 cmd.opcode = MMC_ERASE_GROUP_END;
1719 cmd.arg = to;
1720 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1721 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1722 if (err) {
1723 pr_err("mmc_erase: group end error %d, status %#x\n",
1724 err, cmd.resp[0]);
1725 err = -EIO;
1726 goto out;
1729 memset(&cmd, 0, sizeof(struct mmc_command));
1730 cmd.opcode = MMC_ERASE;
1731 cmd.arg = arg;
1732 busy_timeout = mmc_erase_timeout(card, arg, qty);
1734 * If the host controller supports busy signalling and the timeout for
1735 * the erase operation does not exceed the max_busy_timeout, we should
1736 * use R1B response. Or we need to prevent the host from doing hw busy
1737 * detection, which is done by converting to a R1 response instead.
1739 if (card->host->max_busy_timeout &&
1740 busy_timeout > card->host->max_busy_timeout) {
1741 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1742 } else {
1743 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1744 cmd.busy_timeout = busy_timeout;
1745 use_r1b_resp = true;
1748 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1749 if (err) {
1750 pr_err("mmc_erase: erase error %d, status %#x\n",
1751 err, cmd.resp[0]);
1752 err = -EIO;
1753 goto out;
1756 if (mmc_host_is_spi(card->host))
1757 goto out;
1760 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1761 * shall be avoided.
1763 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1764 goto out;
1766 timeout = jiffies + msecs_to_jiffies(busy_timeout);
1767 do {
1768 memset(&cmd, 0, sizeof(struct mmc_command));
1769 cmd.opcode = MMC_SEND_STATUS;
1770 cmd.arg = card->rca << 16;
1771 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1772 /* Do not retry else we can't see errors */
1773 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1774 if (err || R1_STATUS(cmd.resp[0])) {
1775 pr_err("error %d requesting status %#x\n",
1776 err, cmd.resp[0]);
1777 err = -EIO;
1778 goto out;
1781 /* Timeout if the device never becomes ready for data and
1782 * never leaves the program state.
1784 if (time_after(jiffies, timeout)) {
1785 pr_err("%s: Card stuck in programming state! %s\n",
1786 mmc_hostname(card->host), __func__);
1787 err = -EIO;
1788 goto out;
1790 if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
1791 R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
1792 break;
1794 usleep_range(loop_udelay, loop_udelay*2);
1795 if (loop_udelay < udelay_max)
1796 loop_udelay *= 2;
1797 } while (1);
1799 out:
1800 mmc_retune_release(card->host);
1801 return err;
1804 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1805 unsigned int *from,
1806 unsigned int *to,
1807 unsigned int nr)
1809 unsigned int from_new = *from, nr_new = nr, rem;
1812 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1813 * to align the erase size efficiently.
1815 if (is_power_of_2(card->erase_size)) {
1816 unsigned int temp = from_new;
1818 from_new = round_up(temp, card->erase_size);
1819 rem = from_new - temp;
1821 if (nr_new > rem)
1822 nr_new -= rem;
1823 else
1824 return 0;
1826 nr_new = round_down(nr_new, card->erase_size);
1827 } else {
1828 rem = from_new % card->erase_size;
1829 if (rem) {
1830 rem = card->erase_size - rem;
1831 from_new += rem;
1832 if (nr_new > rem)
1833 nr_new -= rem;
1834 else
1835 return 0;
1838 rem = nr_new % card->erase_size;
1839 if (rem)
1840 nr_new -= rem;
1843 if (nr_new == 0)
1844 return 0;
1846 *to = from_new + nr_new;
1847 *from = from_new;
1849 return nr_new;
1853 * mmc_erase - erase sectors.
1854 * @card: card to erase
1855 * @from: first sector to erase
1856 * @nr: number of sectors to erase
1857 * @arg: erase command argument
1859 * Caller must claim host before calling this function.
1861 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1862 unsigned int arg)
1864 unsigned int rem, to = from + nr;
1865 int err;
1867 if (!(card->host->caps & MMC_CAP_ERASE) ||
1868 !(card->csd.cmdclass & CCC_ERASE))
1869 return -EOPNOTSUPP;
1871 if (!card->erase_size)
1872 return -EOPNOTSUPP;
1874 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1875 return -EOPNOTSUPP;
1877 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1878 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1879 return -EOPNOTSUPP;
1881 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1882 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1883 return -EOPNOTSUPP;
1885 if (arg == MMC_SECURE_ERASE_ARG) {
1886 if (from % card->erase_size || nr % card->erase_size)
1887 return -EINVAL;
1890 if (arg == MMC_ERASE_ARG)
1891 nr = mmc_align_erase_size(card, &from, &to, nr);
1893 if (nr == 0)
1894 return 0;
1896 if (to <= from)
1897 return -EINVAL;
1899 /* 'from' and 'to' are inclusive */
1900 to -= 1;
1903 * Special case where only one erase-group fits in the timeout budget:
1904 * If the region crosses an erase-group boundary on this particular
1905 * case, we will be trimming more than one erase-group which, does not
1906 * fit in the timeout budget of the controller, so we need to split it
1907 * and call mmc_do_erase() twice if necessary. This special case is
1908 * identified by the card->eg_boundary flag.
1910 rem = card->erase_size - (from % card->erase_size);
1911 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1912 err = mmc_do_erase(card, from, from + rem - 1, arg);
1913 from += rem;
1914 if ((err) || (to <= from))
1915 return err;
1918 return mmc_do_erase(card, from, to, arg);
1920 EXPORT_SYMBOL(mmc_erase);
1922 int mmc_can_erase(struct mmc_card *card)
1924 if ((card->host->caps & MMC_CAP_ERASE) &&
1925 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1926 return 1;
1927 return 0;
1929 EXPORT_SYMBOL(mmc_can_erase);
1931 int mmc_can_trim(struct mmc_card *card)
1933 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1934 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1935 return 1;
1936 return 0;
1938 EXPORT_SYMBOL(mmc_can_trim);
1940 int mmc_can_discard(struct mmc_card *card)
1943 * As there's no way to detect the discard support bit at v4.5
1944 * use the s/w feature support filed.
1946 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1947 return 1;
1948 return 0;
1950 EXPORT_SYMBOL(mmc_can_discard);
1952 int mmc_can_sanitize(struct mmc_card *card)
1954 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1955 return 0;
1956 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1957 return 1;
1958 return 0;
1960 EXPORT_SYMBOL(mmc_can_sanitize);
1962 int mmc_can_secure_erase_trim(struct mmc_card *card)
1964 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1965 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1966 return 1;
1967 return 0;
1969 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1971 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1972 unsigned int nr)
1974 if (!card->erase_size)
1975 return 0;
1976 if (from % card->erase_size || nr % card->erase_size)
1977 return 0;
1978 return 1;
1980 EXPORT_SYMBOL(mmc_erase_group_aligned);
1982 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1983 unsigned int arg)
1985 struct mmc_host *host = card->host;
1986 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1987 unsigned int last_timeout = 0;
1988 unsigned int max_busy_timeout = host->max_busy_timeout ?
1989 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1991 if (card->erase_shift) {
1992 max_qty = UINT_MAX >> card->erase_shift;
1993 min_qty = card->pref_erase >> card->erase_shift;
1994 } else if (mmc_card_sd(card)) {
1995 max_qty = UINT_MAX;
1996 min_qty = card->pref_erase;
1997 } else {
1998 max_qty = UINT_MAX / card->erase_size;
1999 min_qty = card->pref_erase / card->erase_size;
2003 * We should not only use 'host->max_busy_timeout' as the limitation
2004 * when deciding the max discard sectors. We should set a balance value
2005 * to improve the erase speed, and it can not get too long timeout at
2006 * the same time.
2008 * Here we set 'card->pref_erase' as the minimal discard sectors no
2009 * matter what size of 'host->max_busy_timeout', but if the
2010 * 'host->max_busy_timeout' is large enough for more discard sectors,
2011 * then we can continue to increase the max discard sectors until we
2012 * get a balance value. In cases when the 'host->max_busy_timeout'
2013 * isn't specified, use the default max erase timeout.
2015 do {
2016 y = 0;
2017 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2018 timeout = mmc_erase_timeout(card, arg, qty + x);
2020 if (qty + x > min_qty && timeout > max_busy_timeout)
2021 break;
2023 if (timeout < last_timeout)
2024 break;
2025 last_timeout = timeout;
2026 y = x;
2028 qty += y;
2029 } while (y);
2031 if (!qty)
2032 return 0;
2035 * When specifying a sector range to trim, chances are we might cross
2036 * an erase-group boundary even if the amount of sectors is less than
2037 * one erase-group.
2038 * If we can only fit one erase-group in the controller timeout budget,
2039 * we have to care that erase-group boundaries are not crossed by a
2040 * single trim operation. We flag that special case with "eg_boundary".
2041 * In all other cases we can just decrement qty and pretend that we
2042 * always touch (qty + 1) erase-groups as a simple optimization.
2044 if (qty == 1)
2045 card->eg_boundary = 1;
2046 else
2047 qty--;
2049 /* Convert qty to sectors */
2050 if (card->erase_shift)
2051 max_discard = qty << card->erase_shift;
2052 else if (mmc_card_sd(card))
2053 max_discard = qty + 1;
2054 else
2055 max_discard = qty * card->erase_size;
2057 return max_discard;
2060 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2062 struct mmc_host *host = card->host;
2063 unsigned int max_discard, max_trim;
2066 * Without erase_group_def set, MMC erase timeout depends on clock
2067 * frequence which can change. In that case, the best choice is
2068 * just the preferred erase size.
2070 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2071 return card->pref_erase;
2073 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2074 if (mmc_can_trim(card)) {
2075 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2076 if (max_trim < max_discard || max_discard == 0)
2077 max_discard = max_trim;
2078 } else if (max_discard < card->erase_size) {
2079 max_discard = 0;
2081 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2082 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2083 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2084 return max_discard;
2086 EXPORT_SYMBOL(mmc_calc_max_discard);
2088 bool mmc_card_is_blockaddr(struct mmc_card *card)
2090 return card ? mmc_card_blockaddr(card) : false;
2092 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2094 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2096 struct mmc_command cmd = {};
2098 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2099 mmc_card_hs400(card) || mmc_card_hs400es(card))
2100 return 0;
2102 cmd.opcode = MMC_SET_BLOCKLEN;
2103 cmd.arg = blocklen;
2104 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2105 return mmc_wait_for_cmd(card->host, &cmd, 5);
2107 EXPORT_SYMBOL(mmc_set_blocklen);
2109 static void mmc_hw_reset_for_init(struct mmc_host *host)
2111 mmc_pwrseq_reset(host);
2113 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2114 return;
2115 host->ops->hw_reset(host);
2118 int mmc_hw_reset(struct mmc_host *host)
2120 int ret;
2122 if (!host->card)
2123 return -EINVAL;
2125 mmc_bus_get(host);
2126 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2127 mmc_bus_put(host);
2128 return -EOPNOTSUPP;
2131 ret = host->bus_ops->hw_reset(host);
2132 mmc_bus_put(host);
2134 if (ret)
2135 pr_warn("%s: tried to HW reset card, got error %d\n",
2136 mmc_hostname(host), ret);
2138 return ret;
2140 EXPORT_SYMBOL(mmc_hw_reset);
2142 int mmc_sw_reset(struct mmc_host *host)
2144 int ret;
2146 if (!host->card)
2147 return -EINVAL;
2149 mmc_bus_get(host);
2150 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2151 mmc_bus_put(host);
2152 return -EOPNOTSUPP;
2155 ret = host->bus_ops->sw_reset(host);
2156 mmc_bus_put(host);
2158 if (ret)
2159 pr_warn("%s: tried to SW reset card, got error %d\n",
2160 mmc_hostname(host), ret);
2162 return ret;
2164 EXPORT_SYMBOL(mmc_sw_reset);
2166 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2168 host->f_init = freq;
2170 pr_debug("%s: %s: trying to init card at %u Hz\n",
2171 mmc_hostname(host), __func__, host->f_init);
2173 mmc_power_up(host, host->ocr_avail);
2176 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2177 * do a hardware reset if possible.
2179 mmc_hw_reset_for_init(host);
2182 * sdio_reset sends CMD52 to reset card. Since we do not know
2183 * if the card is being re-initialized, just send it. CMD52
2184 * should be ignored by SD/eMMC cards.
2185 * Skip it if we already know that we do not support SDIO commands
2187 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2188 sdio_reset(host);
2190 mmc_go_idle(host);
2192 if (!(host->caps2 & MMC_CAP2_NO_SD))
2193 mmc_send_if_cond(host, host->ocr_avail);
2195 /* Order's important: probe SDIO, then SD, then MMC */
2196 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2197 if (!mmc_attach_sdio(host))
2198 return 0;
2200 if (!(host->caps2 & MMC_CAP2_NO_SD))
2201 if (!mmc_attach_sd(host))
2202 return 0;
2204 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2205 if (!mmc_attach_mmc(host))
2206 return 0;
2208 mmc_power_off(host);
2209 return -EIO;
2212 int _mmc_detect_card_removed(struct mmc_host *host)
2214 int ret;
2216 if (!host->card || mmc_card_removed(host->card))
2217 return 1;
2219 ret = host->bus_ops->alive(host);
2222 * Card detect status and alive check may be out of sync if card is
2223 * removed slowly, when card detect switch changes while card/slot
2224 * pads are still contacted in hardware (refer to "SD Card Mechanical
2225 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2226 * detect work 200ms later for this case.
2228 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2229 mmc_detect_change(host, msecs_to_jiffies(200));
2230 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2233 if (ret) {
2234 mmc_card_set_removed(host->card);
2235 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2238 return ret;
2241 int mmc_detect_card_removed(struct mmc_host *host)
2243 struct mmc_card *card = host->card;
2244 int ret;
2246 WARN_ON(!host->claimed);
2248 if (!card)
2249 return 1;
2251 if (!mmc_card_is_removable(host))
2252 return 0;
2254 ret = mmc_card_removed(card);
2256 * The card will be considered unchanged unless we have been asked to
2257 * detect a change or host requires polling to provide card detection.
2259 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2260 return ret;
2262 host->detect_change = 0;
2263 if (!ret) {
2264 ret = _mmc_detect_card_removed(host);
2265 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2267 * Schedule a detect work as soon as possible to let a
2268 * rescan handle the card removal.
2270 cancel_delayed_work(&host->detect);
2271 _mmc_detect_change(host, 0, false);
2275 return ret;
2277 EXPORT_SYMBOL(mmc_detect_card_removed);
2279 void mmc_rescan(struct work_struct *work)
2281 struct mmc_host *host =
2282 container_of(work, struct mmc_host, detect.work);
2283 int i;
2285 if (host->rescan_disable)
2286 return;
2288 /* If there is a non-removable card registered, only scan once */
2289 if (!mmc_card_is_removable(host) && host->rescan_entered)
2290 return;
2291 host->rescan_entered = 1;
2293 if (host->trigger_card_event && host->ops->card_event) {
2294 mmc_claim_host(host);
2295 host->ops->card_event(host);
2296 mmc_release_host(host);
2297 host->trigger_card_event = false;
2300 mmc_bus_get(host);
2303 * if there is a _removable_ card registered, check whether it is
2304 * still present
2306 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2307 host->bus_ops->detect(host);
2309 host->detect_change = 0;
2312 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2313 * the card is no longer present.
2315 mmc_bus_put(host);
2316 mmc_bus_get(host);
2318 /* if there still is a card present, stop here */
2319 if (host->bus_ops != NULL) {
2320 mmc_bus_put(host);
2321 goto out;
2325 * Only we can add a new handler, so it's safe to
2326 * release the lock here.
2328 mmc_bus_put(host);
2330 mmc_claim_host(host);
2331 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2332 host->ops->get_cd(host) == 0) {
2333 mmc_power_off(host);
2334 mmc_release_host(host);
2335 goto out;
2338 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2339 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2340 break;
2341 if (freqs[i] <= host->f_min)
2342 break;
2344 mmc_release_host(host);
2346 out:
2347 if (host->caps & MMC_CAP_NEEDS_POLL)
2348 mmc_schedule_delayed_work(&host->detect, HZ);
2351 void mmc_start_host(struct mmc_host *host)
2353 host->f_init = max(freqs[0], host->f_min);
2354 host->rescan_disable = 0;
2355 host->ios.power_mode = MMC_POWER_UNDEFINED;
2357 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2358 mmc_claim_host(host);
2359 mmc_power_up(host, host->ocr_avail);
2360 mmc_release_host(host);
2363 mmc_gpiod_request_cd_irq(host);
2364 _mmc_detect_change(host, 0, false);
2367 void mmc_stop_host(struct mmc_host *host)
2369 if (host->slot.cd_irq >= 0) {
2370 mmc_gpio_set_cd_wake(host, false);
2371 disable_irq(host->slot.cd_irq);
2374 host->rescan_disable = 1;
2375 cancel_delayed_work_sync(&host->detect);
2377 /* clear pm flags now and let card drivers set them as needed */
2378 host->pm_flags = 0;
2380 mmc_bus_get(host);
2381 if (host->bus_ops && !host->bus_dead) {
2382 /* Calling bus_ops->remove() with a claimed host can deadlock */
2383 host->bus_ops->remove(host);
2384 mmc_claim_host(host);
2385 mmc_detach_bus(host);
2386 mmc_power_off(host);
2387 mmc_release_host(host);
2388 mmc_bus_put(host);
2389 return;
2391 mmc_bus_put(host);
2393 mmc_claim_host(host);
2394 mmc_power_off(host);
2395 mmc_release_host(host);
2398 #ifdef CONFIG_PM_SLEEP
2399 /* Do the card removal on suspend if card is assumed removeable
2400 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2401 to sync the card.
2403 static int mmc_pm_notify(struct notifier_block *notify_block,
2404 unsigned long mode, void *unused)
2406 struct mmc_host *host = container_of(
2407 notify_block, struct mmc_host, pm_notify);
2408 unsigned long flags;
2409 int err = 0;
2411 switch (mode) {
2412 case PM_HIBERNATION_PREPARE:
2413 case PM_SUSPEND_PREPARE:
2414 case PM_RESTORE_PREPARE:
2415 spin_lock_irqsave(&host->lock, flags);
2416 host->rescan_disable = 1;
2417 spin_unlock_irqrestore(&host->lock, flags);
2418 cancel_delayed_work_sync(&host->detect);
2420 if (!host->bus_ops)
2421 break;
2423 /* Validate prerequisites for suspend */
2424 if (host->bus_ops->pre_suspend)
2425 err = host->bus_ops->pre_suspend(host);
2426 if (!err)
2427 break;
2429 if (!mmc_card_is_removable(host)) {
2430 dev_warn(mmc_dev(host),
2431 "pre_suspend failed for non-removable host: "
2432 "%d\n", err);
2433 /* Avoid removing non-removable hosts */
2434 break;
2437 /* Calling bus_ops->remove() with a claimed host can deadlock */
2438 host->bus_ops->remove(host);
2439 mmc_claim_host(host);
2440 mmc_detach_bus(host);
2441 mmc_power_off(host);
2442 mmc_release_host(host);
2443 host->pm_flags = 0;
2444 break;
2446 case PM_POST_SUSPEND:
2447 case PM_POST_HIBERNATION:
2448 case PM_POST_RESTORE:
2450 spin_lock_irqsave(&host->lock, flags);
2451 host->rescan_disable = 0;
2452 spin_unlock_irqrestore(&host->lock, flags);
2453 _mmc_detect_change(host, 0, false);
2457 return 0;
2460 void mmc_register_pm_notifier(struct mmc_host *host)
2462 host->pm_notify.notifier_call = mmc_pm_notify;
2463 register_pm_notifier(&host->pm_notify);
2466 void mmc_unregister_pm_notifier(struct mmc_host *host)
2468 unregister_pm_notifier(&host->pm_notify);
2470 #endif
2472 static int __init mmc_init(void)
2474 int ret;
2476 ret = mmc_register_bus();
2477 if (ret)
2478 return ret;
2480 ret = mmc_register_host_class();
2481 if (ret)
2482 goto unregister_bus;
2484 ret = sdio_register_bus();
2485 if (ret)
2486 goto unregister_host_class;
2488 return 0;
2490 unregister_host_class:
2491 mmc_unregister_host_class();
2492 unregister_bus:
2493 mmc_unregister_bus();
2494 return ret;
2497 static void __exit mmc_exit(void)
2499 sdio_unregister_bus();
2500 mmc_unregister_host_class();
2501 mmc_unregister_bus();
2504 subsys_initcall(mmc_init);
2505 module_exit(mmc_exit);
2507 MODULE_LICENSE("GPL");