2 * linux/drivers/mmc/core/mmc.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
33 #define MIN_CACHE_EN_TIMEOUT_MS 1600
35 static const unsigned int tran_exp
[] = {
36 10000, 100000, 1000000, 10000000,
40 static const unsigned char tran_mant
[] = {
41 0, 10, 12, 13, 15, 20, 25, 30,
42 35, 40, 45, 50, 55, 60, 70, 80,
45 static const unsigned int taac_exp
[] = {
46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
49 static const unsigned int taac_mant
[] = {
50 0, 10, 12, 13, 15, 20, 25, 30,
51 35, 40, 45, 50, 55, 60, 70, 80,
54 #define UNSTUFF_BITS(resp,start,size) \
56 const int __size = size; \
57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
58 const int __off = 3 - ((start) / 32); \
59 const int __shft = (start) & 31; \
62 __res = resp[__off] >> __shft; \
63 if (__size + __shft > 32) \
64 __res |= resp[__off-1] << ((32 - __shft) % 32); \
69 * Given the decoded CSD structure, decode the raw CID to our CID structure.
71 static int mmc_decode_cid(struct mmc_card
*card
)
73 u32
*resp
= card
->raw_cid
;
76 * The selection of the format here is based upon published
77 * specs from sandisk and from what people have reported.
79 switch (card
->csd
.mmca_vsn
) {
80 case 0: /* MMC v1.0 - v1.2 */
81 case 1: /* MMC v1.4 */
82 card
->cid
.manfid
= UNSTUFF_BITS(resp
, 104, 24);
83 card
->cid
.prod_name
[0] = UNSTUFF_BITS(resp
, 96, 8);
84 card
->cid
.prod_name
[1] = UNSTUFF_BITS(resp
, 88, 8);
85 card
->cid
.prod_name
[2] = UNSTUFF_BITS(resp
, 80, 8);
86 card
->cid
.prod_name
[3] = UNSTUFF_BITS(resp
, 72, 8);
87 card
->cid
.prod_name
[4] = UNSTUFF_BITS(resp
, 64, 8);
88 card
->cid
.prod_name
[5] = UNSTUFF_BITS(resp
, 56, 8);
89 card
->cid
.prod_name
[6] = UNSTUFF_BITS(resp
, 48, 8);
90 card
->cid
.hwrev
= UNSTUFF_BITS(resp
, 44, 4);
91 card
->cid
.fwrev
= UNSTUFF_BITS(resp
, 40, 4);
92 card
->cid
.serial
= UNSTUFF_BITS(resp
, 16, 24);
93 card
->cid
.month
= UNSTUFF_BITS(resp
, 12, 4);
94 card
->cid
.year
= UNSTUFF_BITS(resp
, 8, 4) + 1997;
97 case 2: /* MMC v2.0 - v2.2 */
98 case 3: /* MMC v3.1 - v3.3 */
100 card
->cid
.manfid
= UNSTUFF_BITS(resp
, 120, 8);
101 card
->cid
.oemid
= UNSTUFF_BITS(resp
, 104, 16);
102 card
->cid
.prod_name
[0] = UNSTUFF_BITS(resp
, 96, 8);
103 card
->cid
.prod_name
[1] = UNSTUFF_BITS(resp
, 88, 8);
104 card
->cid
.prod_name
[2] = UNSTUFF_BITS(resp
, 80, 8);
105 card
->cid
.prod_name
[3] = UNSTUFF_BITS(resp
, 72, 8);
106 card
->cid
.prod_name
[4] = UNSTUFF_BITS(resp
, 64, 8);
107 card
->cid
.prod_name
[5] = UNSTUFF_BITS(resp
, 56, 8);
108 card
->cid
.prv
= UNSTUFF_BITS(resp
, 48, 8);
109 card
->cid
.serial
= UNSTUFF_BITS(resp
, 16, 32);
110 card
->cid
.month
= UNSTUFF_BITS(resp
, 12, 4);
111 card
->cid
.year
= UNSTUFF_BITS(resp
, 8, 4) + 1997;
115 pr_err("%s: card has unknown MMCA version %d\n",
116 mmc_hostname(card
->host
), card
->csd
.mmca_vsn
);
123 static void mmc_set_erase_size(struct mmc_card
*card
)
125 if (card
->ext_csd
.erase_group_def
& 1)
126 card
->erase_size
= card
->ext_csd
.hc_erase_size
;
128 card
->erase_size
= card
->csd
.erase_size
;
130 mmc_init_erase(card
);
134 * Given a 128-bit response, decode to our card CSD structure.
136 static int mmc_decode_csd(struct mmc_card
*card
)
138 struct mmc_csd
*csd
= &card
->csd
;
139 unsigned int e
, m
, a
, b
;
140 u32
*resp
= card
->raw_csd
;
143 * We only understand CSD structure v1.1 and v1.2.
144 * v1.2 has extra information in bits 15, 11 and 10.
145 * We also support eMMC v4.4 & v4.41.
147 csd
->structure
= UNSTUFF_BITS(resp
, 126, 2);
148 if (csd
->structure
== 0) {
149 pr_err("%s: unrecognised CSD structure version %d\n",
150 mmc_hostname(card
->host
), csd
->structure
);
154 csd
->mmca_vsn
= UNSTUFF_BITS(resp
, 122, 4);
155 m
= UNSTUFF_BITS(resp
, 115, 4);
156 e
= UNSTUFF_BITS(resp
, 112, 3);
157 csd
->taac_ns
= (taac_exp
[e
] * taac_mant
[m
] + 9) / 10;
158 csd
->taac_clks
= UNSTUFF_BITS(resp
, 104, 8) * 100;
160 m
= UNSTUFF_BITS(resp
, 99, 4);
161 e
= UNSTUFF_BITS(resp
, 96, 3);
162 csd
->max_dtr
= tran_exp
[e
] * tran_mant
[m
];
163 csd
->cmdclass
= UNSTUFF_BITS(resp
, 84, 12);
165 e
= UNSTUFF_BITS(resp
, 47, 3);
166 m
= UNSTUFF_BITS(resp
, 62, 12);
167 csd
->capacity
= (1 + m
) << (e
+ 2);
169 csd
->read_blkbits
= UNSTUFF_BITS(resp
, 80, 4);
170 csd
->read_partial
= UNSTUFF_BITS(resp
, 79, 1);
171 csd
->write_misalign
= UNSTUFF_BITS(resp
, 78, 1);
172 csd
->read_misalign
= UNSTUFF_BITS(resp
, 77, 1);
173 csd
->dsr_imp
= UNSTUFF_BITS(resp
, 76, 1);
174 csd
->r2w_factor
= UNSTUFF_BITS(resp
, 26, 3);
175 csd
->write_blkbits
= UNSTUFF_BITS(resp
, 22, 4);
176 csd
->write_partial
= UNSTUFF_BITS(resp
, 21, 1);
178 if (csd
->write_blkbits
>= 9) {
179 a
= UNSTUFF_BITS(resp
, 42, 5);
180 b
= UNSTUFF_BITS(resp
, 37, 5);
181 csd
->erase_size
= (a
+ 1) * (b
+ 1);
182 csd
->erase_size
<<= csd
->write_blkbits
- 9;
188 static void mmc_select_card_type(struct mmc_card
*card
)
190 struct mmc_host
*host
= card
->host
;
191 u8 card_type
= card
->ext_csd
.raw_card_type
;
192 u32 caps
= host
->caps
, caps2
= host
->caps2
;
193 unsigned int hs_max_dtr
= 0, hs200_max_dtr
= 0;
194 unsigned int avail_type
= 0;
196 if (caps
& MMC_CAP_MMC_HIGHSPEED
&&
197 card_type
& EXT_CSD_CARD_TYPE_HS_26
) {
198 hs_max_dtr
= MMC_HIGH_26_MAX_DTR
;
199 avail_type
|= EXT_CSD_CARD_TYPE_HS_26
;
202 if (caps
& MMC_CAP_MMC_HIGHSPEED
&&
203 card_type
& EXT_CSD_CARD_TYPE_HS_52
) {
204 hs_max_dtr
= MMC_HIGH_52_MAX_DTR
;
205 avail_type
|= EXT_CSD_CARD_TYPE_HS_52
;
208 if (caps
& (MMC_CAP_1_8V_DDR
| MMC_CAP_3_3V_DDR
) &&
209 card_type
& EXT_CSD_CARD_TYPE_DDR_1_8V
) {
210 hs_max_dtr
= MMC_HIGH_DDR_MAX_DTR
;
211 avail_type
|= EXT_CSD_CARD_TYPE_DDR_1_8V
;
214 if (caps
& MMC_CAP_1_2V_DDR
&&
215 card_type
& EXT_CSD_CARD_TYPE_DDR_1_2V
) {
216 hs_max_dtr
= MMC_HIGH_DDR_MAX_DTR
;
217 avail_type
|= EXT_CSD_CARD_TYPE_DDR_1_2V
;
220 if (caps2
& MMC_CAP2_HS200_1_8V_SDR
&&
221 card_type
& EXT_CSD_CARD_TYPE_HS200_1_8V
) {
222 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
223 avail_type
|= EXT_CSD_CARD_TYPE_HS200_1_8V
;
226 if (caps2
& MMC_CAP2_HS200_1_2V_SDR
&&
227 card_type
& EXT_CSD_CARD_TYPE_HS200_1_2V
) {
228 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
229 avail_type
|= EXT_CSD_CARD_TYPE_HS200_1_2V
;
232 if (caps2
& MMC_CAP2_HS400_1_8V
&&
233 card_type
& EXT_CSD_CARD_TYPE_HS400_1_8V
) {
234 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
235 avail_type
|= EXT_CSD_CARD_TYPE_HS400_1_8V
;
238 if (caps2
& MMC_CAP2_HS400_1_2V
&&
239 card_type
& EXT_CSD_CARD_TYPE_HS400_1_2V
) {
240 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
241 avail_type
|= EXT_CSD_CARD_TYPE_HS400_1_2V
;
244 if ((caps2
& MMC_CAP2_HS400_ES
) &&
245 card
->ext_csd
.strobe_support
&&
246 (avail_type
& EXT_CSD_CARD_TYPE_HS400
))
247 avail_type
|= EXT_CSD_CARD_TYPE_HS400ES
;
249 card
->ext_csd
.hs_max_dtr
= hs_max_dtr
;
250 card
->ext_csd
.hs200_max_dtr
= hs200_max_dtr
;
251 card
->mmc_avail_type
= avail_type
;
254 static void mmc_manage_enhanced_area(struct mmc_card
*card
, u8
*ext_csd
)
256 u8 hc_erase_grp_sz
, hc_wp_grp_sz
;
259 * Disable these attributes by default
261 card
->ext_csd
.enhanced_area_offset
= -EINVAL
;
262 card
->ext_csd
.enhanced_area_size
= -EINVAL
;
265 * Enhanced area feature support -- check whether the eMMC
266 * card has the Enhanced area enabled. If so, export enhanced
267 * area offset and size to user by adding sysfs interface.
269 if ((ext_csd
[EXT_CSD_PARTITION_SUPPORT
] & 0x2) &&
270 (ext_csd
[EXT_CSD_PARTITION_ATTRIBUTE
] & 0x1)) {
271 if (card
->ext_csd
.partition_setting_completed
) {
273 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
275 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
278 * calculate the enhanced data area offset, in bytes
280 card
->ext_csd
.enhanced_area_offset
=
281 (((unsigned long long)ext_csd
[139]) << 24) +
282 (((unsigned long long)ext_csd
[138]) << 16) +
283 (((unsigned long long)ext_csd
[137]) << 8) +
284 (((unsigned long long)ext_csd
[136]));
285 if (mmc_card_blockaddr(card
))
286 card
->ext_csd
.enhanced_area_offset
<<= 9;
288 * calculate the enhanced data area size, in kilobytes
290 card
->ext_csd
.enhanced_area_size
=
291 (ext_csd
[142] << 16) + (ext_csd
[141] << 8) +
293 card
->ext_csd
.enhanced_area_size
*=
294 (size_t)(hc_erase_grp_sz
* hc_wp_grp_sz
);
295 card
->ext_csd
.enhanced_area_size
<<= 9;
297 pr_warn("%s: defines enhanced area without partition setting complete\n",
298 mmc_hostname(card
->host
));
303 static void mmc_part_add(struct mmc_card
*card
, unsigned int size
,
304 unsigned int part_cfg
, char *name
, int idx
, bool ro
,
307 card
->part
[card
->nr_parts
].size
= size
;
308 card
->part
[card
->nr_parts
].part_cfg
= part_cfg
;
309 sprintf(card
->part
[card
->nr_parts
].name
, name
, idx
);
310 card
->part
[card
->nr_parts
].force_ro
= ro
;
311 card
->part
[card
->nr_parts
].area_type
= area_type
;
315 static void mmc_manage_gp_partitions(struct mmc_card
*card
, u8
*ext_csd
)
318 u8 hc_erase_grp_sz
, hc_wp_grp_sz
;
319 unsigned int part_size
;
322 * General purpose partition feature support --
323 * If ext_csd has the size of general purpose partitions,
324 * set size, part_cfg, partition name in mmc_part.
326 if (ext_csd
[EXT_CSD_PARTITION_SUPPORT
] &
327 EXT_CSD_PART_SUPPORT_PART_EN
) {
329 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
331 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
333 for (idx
= 0; idx
< MMC_NUM_GP_PARTITION
; idx
++) {
334 if (!ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3] &&
335 !ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 1] &&
336 !ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 2])
338 if (card
->ext_csd
.partition_setting_completed
== 0) {
339 pr_warn("%s: has partition size defined without partition complete\n",
340 mmc_hostname(card
->host
));
344 (ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 2]
346 (ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 1]
348 ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3];
349 part_size
*= (size_t)(hc_erase_grp_sz
*
351 mmc_part_add(card
, part_size
<< 19,
352 EXT_CSD_PART_CONFIG_ACC_GP0
+ idx
,
354 MMC_BLK_DATA_AREA_GP
);
359 /* Minimum partition switch timeout in milliseconds */
360 #define MMC_MIN_PART_SWITCH_TIME 300
363 * Decode extended CSD.
365 static int mmc_decode_ext_csd(struct mmc_card
*card
, u8
*ext_csd
)
368 unsigned int part_size
;
369 struct device_node
*np
;
370 bool broken_hpi
= false;
372 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
373 card
->ext_csd
.raw_ext_csd_structure
= ext_csd
[EXT_CSD_STRUCTURE
];
374 if (card
->csd
.structure
== 3) {
375 if (card
->ext_csd
.raw_ext_csd_structure
> 2) {
376 pr_err("%s: unrecognised EXT_CSD structure "
377 "version %d\n", mmc_hostname(card
->host
),
378 card
->ext_csd
.raw_ext_csd_structure
);
384 np
= mmc_of_find_child_device(card
->host
, 0);
385 if (np
&& of_device_is_compatible(np
, "mmc-card"))
386 broken_hpi
= of_property_read_bool(np
, "broken-hpi");
390 * The EXT_CSD format is meant to be forward compatible. As long
391 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
392 * are authorized, see JEDEC JESD84-B50 section B.8.
394 card
->ext_csd
.rev
= ext_csd
[EXT_CSD_REV
];
396 /* fixup device after ext_csd revision field is updated */
397 mmc_fixup_device(card
, mmc_ext_csd_fixups
);
399 card
->ext_csd
.raw_sectors
[0] = ext_csd
[EXT_CSD_SEC_CNT
+ 0];
400 card
->ext_csd
.raw_sectors
[1] = ext_csd
[EXT_CSD_SEC_CNT
+ 1];
401 card
->ext_csd
.raw_sectors
[2] = ext_csd
[EXT_CSD_SEC_CNT
+ 2];
402 card
->ext_csd
.raw_sectors
[3] = ext_csd
[EXT_CSD_SEC_CNT
+ 3];
403 if (card
->ext_csd
.rev
>= 2) {
404 card
->ext_csd
.sectors
=
405 ext_csd
[EXT_CSD_SEC_CNT
+ 0] << 0 |
406 ext_csd
[EXT_CSD_SEC_CNT
+ 1] << 8 |
407 ext_csd
[EXT_CSD_SEC_CNT
+ 2] << 16 |
408 ext_csd
[EXT_CSD_SEC_CNT
+ 3] << 24;
410 /* Cards with density > 2GiB are sector addressed */
411 if (card
->ext_csd
.sectors
> (2u * 1024 * 1024 * 1024) / 512)
412 mmc_card_set_blockaddr(card
);
415 card
->ext_csd
.strobe_support
= ext_csd
[EXT_CSD_STROBE_SUPPORT
];
416 card
->ext_csd
.raw_card_type
= ext_csd
[EXT_CSD_CARD_TYPE
];
417 mmc_select_card_type(card
);
419 card
->ext_csd
.raw_s_a_timeout
= ext_csd
[EXT_CSD_S_A_TIMEOUT
];
420 card
->ext_csd
.raw_erase_timeout_mult
=
421 ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
];
422 card
->ext_csd
.raw_hc_erase_grp_size
=
423 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
424 if (card
->ext_csd
.rev
>= 3) {
425 u8 sa_shift
= ext_csd
[EXT_CSD_S_A_TIMEOUT
];
426 card
->ext_csd
.part_config
= ext_csd
[EXT_CSD_PART_CONFIG
];
428 /* EXT_CSD value is in units of 10ms, but we store in ms */
429 card
->ext_csd
.part_time
= 10 * ext_csd
[EXT_CSD_PART_SWITCH_TIME
];
430 /* Some eMMC set the value too low so set a minimum */
431 if (card
->ext_csd
.part_time
&&
432 card
->ext_csd
.part_time
< MMC_MIN_PART_SWITCH_TIME
)
433 card
->ext_csd
.part_time
= MMC_MIN_PART_SWITCH_TIME
;
435 /* Sleep / awake timeout in 100ns units */
436 if (sa_shift
> 0 && sa_shift
<= 0x17)
437 card
->ext_csd
.sa_timeout
=
438 1 << ext_csd
[EXT_CSD_S_A_TIMEOUT
];
439 card
->ext_csd
.erase_group_def
=
440 ext_csd
[EXT_CSD_ERASE_GROUP_DEF
];
441 card
->ext_csd
.hc_erase_timeout
= 300 *
442 ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
];
443 card
->ext_csd
.hc_erase_size
=
444 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
] << 10;
446 card
->ext_csd
.rel_sectors
= ext_csd
[EXT_CSD_REL_WR_SEC_C
];
449 * There are two boot regions of equal size, defined in
452 if (ext_csd
[EXT_CSD_BOOT_MULT
] && mmc_boot_partition_access(card
->host
)) {
453 for (idx
= 0; idx
< MMC_NUM_BOOT_PARTITION
; idx
++) {
454 part_size
= ext_csd
[EXT_CSD_BOOT_MULT
] << 17;
455 mmc_part_add(card
, part_size
,
456 EXT_CSD_PART_CONFIG_ACC_BOOT0
+ idx
,
458 MMC_BLK_DATA_AREA_BOOT
);
463 card
->ext_csd
.raw_hc_erase_gap_size
=
464 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
465 card
->ext_csd
.raw_sec_trim_mult
=
466 ext_csd
[EXT_CSD_SEC_TRIM_MULT
];
467 card
->ext_csd
.raw_sec_erase_mult
=
468 ext_csd
[EXT_CSD_SEC_ERASE_MULT
];
469 card
->ext_csd
.raw_sec_feature_support
=
470 ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
];
471 card
->ext_csd
.raw_trim_mult
=
472 ext_csd
[EXT_CSD_TRIM_MULT
];
473 card
->ext_csd
.raw_partition_support
= ext_csd
[EXT_CSD_PARTITION_SUPPORT
];
474 card
->ext_csd
.raw_driver_strength
= ext_csd
[EXT_CSD_DRIVER_STRENGTH
];
475 if (card
->ext_csd
.rev
>= 4) {
476 if (ext_csd
[EXT_CSD_PARTITION_SETTING_COMPLETED
] &
477 EXT_CSD_PART_SETTING_COMPLETED
)
478 card
->ext_csd
.partition_setting_completed
= 1;
480 card
->ext_csd
.partition_setting_completed
= 0;
482 mmc_manage_enhanced_area(card
, ext_csd
);
484 mmc_manage_gp_partitions(card
, ext_csd
);
486 card
->ext_csd
.sec_trim_mult
=
487 ext_csd
[EXT_CSD_SEC_TRIM_MULT
];
488 card
->ext_csd
.sec_erase_mult
=
489 ext_csd
[EXT_CSD_SEC_ERASE_MULT
];
490 card
->ext_csd
.sec_feature_support
=
491 ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
];
492 card
->ext_csd
.trim_timeout
= 300 *
493 ext_csd
[EXT_CSD_TRIM_MULT
];
496 * Note that the call to mmc_part_add above defaults to read
497 * only. If this default assumption is changed, the call must
498 * take into account the value of boot_locked below.
500 card
->ext_csd
.boot_ro_lock
= ext_csd
[EXT_CSD_BOOT_WP
];
501 card
->ext_csd
.boot_ro_lockable
= true;
503 /* Save power class values */
504 card
->ext_csd
.raw_pwr_cl_52_195
=
505 ext_csd
[EXT_CSD_PWR_CL_52_195
];
506 card
->ext_csd
.raw_pwr_cl_26_195
=
507 ext_csd
[EXT_CSD_PWR_CL_26_195
];
508 card
->ext_csd
.raw_pwr_cl_52_360
=
509 ext_csd
[EXT_CSD_PWR_CL_52_360
];
510 card
->ext_csd
.raw_pwr_cl_26_360
=
511 ext_csd
[EXT_CSD_PWR_CL_26_360
];
512 card
->ext_csd
.raw_pwr_cl_200_195
=
513 ext_csd
[EXT_CSD_PWR_CL_200_195
];
514 card
->ext_csd
.raw_pwr_cl_200_360
=
515 ext_csd
[EXT_CSD_PWR_CL_200_360
];
516 card
->ext_csd
.raw_pwr_cl_ddr_52_195
=
517 ext_csd
[EXT_CSD_PWR_CL_DDR_52_195
];
518 card
->ext_csd
.raw_pwr_cl_ddr_52_360
=
519 ext_csd
[EXT_CSD_PWR_CL_DDR_52_360
];
520 card
->ext_csd
.raw_pwr_cl_ddr_200_360
=
521 ext_csd
[EXT_CSD_PWR_CL_DDR_200_360
];
524 if (card
->ext_csd
.rev
>= 5) {
525 /* Adjust production date as per JEDEC JESD84-B451 */
526 if (card
->cid
.year
< 2010)
527 card
->cid
.year
+= 16;
529 /* check whether the eMMC card supports BKOPS */
530 if (ext_csd
[EXT_CSD_BKOPS_SUPPORT
] & 0x1) {
531 card
->ext_csd
.bkops
= 1;
532 card
->ext_csd
.man_bkops_en
=
533 (ext_csd
[EXT_CSD_BKOPS_EN
] &
534 EXT_CSD_MANUAL_BKOPS_MASK
);
535 card
->ext_csd
.raw_bkops_status
=
536 ext_csd
[EXT_CSD_BKOPS_STATUS
];
537 if (card
->ext_csd
.man_bkops_en
)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card
->host
));
540 card
->ext_csd
.auto_bkops_en
=
541 (ext_csd
[EXT_CSD_BKOPS_EN
] &
542 EXT_CSD_AUTO_BKOPS_MASK
);
543 if (card
->ext_csd
.auto_bkops_en
)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card
->host
));
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card
) &&
550 !broken_hpi
&& (ext_csd
[EXT_CSD_HPI_FEATURES
] & 0x1)) {
551 card
->ext_csd
.hpi
= 1;
552 if (ext_csd
[EXT_CSD_HPI_FEATURES
] & 0x2)
553 card
->ext_csd
.hpi_cmd
= MMC_STOP_TRANSMISSION
;
555 card
->ext_csd
.hpi_cmd
= MMC_SEND_STATUS
;
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
560 card
->ext_csd
.out_of_int_time
=
561 ext_csd
[EXT_CSD_OUT_OF_INTERRUPT_TIME
] * 10;
564 card
->ext_csd
.rel_param
= ext_csd
[EXT_CSD_WR_REL_PARAM
];
565 card
->ext_csd
.rst_n_function
= ext_csd
[EXT_CSD_RST_N_FUNCTION
];
568 * RPMB regions are defined in multiples of 128K.
570 card
->ext_csd
.raw_rpmb_size_mult
= ext_csd
[EXT_CSD_RPMB_MULT
];
571 if (ext_csd
[EXT_CSD_RPMB_MULT
] && mmc_host_cmd23(card
->host
)) {
572 mmc_part_add(card
, ext_csd
[EXT_CSD_RPMB_MULT
] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB
,
575 MMC_BLK_DATA_AREA_RPMB
);
579 card
->ext_csd
.raw_erased_mem_count
= ext_csd
[EXT_CSD_ERASED_MEM_CONT
];
580 if (ext_csd
[EXT_CSD_ERASED_MEM_CONT
])
581 card
->erased_byte
= 0xFF;
583 card
->erased_byte
= 0x0;
585 /* eMMC v4.5 or later */
586 card
->ext_csd
.generic_cmd6_time
= DEFAULT_CMD6_TIMEOUT_MS
;
587 if (card
->ext_csd
.rev
>= 6) {
588 card
->ext_csd
.feature_support
|= MMC_DISCARD_FEATURE
;
590 card
->ext_csd
.generic_cmd6_time
= 10 *
591 ext_csd
[EXT_CSD_GENERIC_CMD6_TIME
];
592 card
->ext_csd
.power_off_longtime
= 10 *
593 ext_csd
[EXT_CSD_POWER_OFF_LONG_TIME
];
595 card
->ext_csd
.cache_size
=
596 ext_csd
[EXT_CSD_CACHE_SIZE
+ 0] << 0 |
597 ext_csd
[EXT_CSD_CACHE_SIZE
+ 1] << 8 |
598 ext_csd
[EXT_CSD_CACHE_SIZE
+ 2] << 16 |
599 ext_csd
[EXT_CSD_CACHE_SIZE
+ 3] << 24;
601 if (ext_csd
[EXT_CSD_DATA_SECTOR_SIZE
] == 1)
602 card
->ext_csd
.data_sector_size
= 4096;
604 card
->ext_csd
.data_sector_size
= 512;
606 if ((ext_csd
[EXT_CSD_DATA_TAG_SUPPORT
] & 1) &&
607 (ext_csd
[EXT_CSD_TAG_UNIT_SIZE
] <= 8)) {
608 card
->ext_csd
.data_tag_unit_size
=
609 ((unsigned int) 1 << ext_csd
[EXT_CSD_TAG_UNIT_SIZE
]) *
610 (card
->ext_csd
.data_sector_size
);
612 card
->ext_csd
.data_tag_unit_size
= 0;
615 card
->ext_csd
.max_packed_writes
=
616 ext_csd
[EXT_CSD_MAX_PACKED_WRITES
];
617 card
->ext_csd
.max_packed_reads
=
618 ext_csd
[EXT_CSD_MAX_PACKED_READS
];
620 card
->ext_csd
.data_sector_size
= 512;
623 /* eMMC v5 or later */
624 if (card
->ext_csd
.rev
>= 7) {
625 memcpy(card
->ext_csd
.fwrev
, &ext_csd
[EXT_CSD_FIRMWARE_VERSION
],
627 card
->ext_csd
.ffu_capable
=
628 (ext_csd
[EXT_CSD_SUPPORTED_MODE
] & 0x1) &&
629 !(ext_csd
[EXT_CSD_FW_CONFIG
] & 0x1);
631 card
->ext_csd
.pre_eol_info
= ext_csd
[EXT_CSD_PRE_EOL_INFO
];
632 card
->ext_csd
.device_life_time_est_typ_a
=
633 ext_csd
[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A
];
634 card
->ext_csd
.device_life_time_est_typ_b
=
635 ext_csd
[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B
];
638 /* eMMC v5.1 or later */
639 if (card
->ext_csd
.rev
>= 8) {
640 card
->ext_csd
.cmdq_support
= ext_csd
[EXT_CSD_CMDQ_SUPPORT
] &
641 EXT_CSD_CMDQ_SUPPORTED
;
642 card
->ext_csd
.cmdq_depth
= (ext_csd
[EXT_CSD_CMDQ_DEPTH
] &
643 EXT_CSD_CMDQ_DEPTH_MASK
) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card
->ext_csd
.cmdq_depth
<= 2) {
646 card
->ext_csd
.cmdq_support
= false;
647 card
->ext_csd
.cmdq_depth
= 0;
649 if (card
->ext_csd
.cmdq_support
) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card
->host
),
652 card
->ext_csd
.cmdq_depth
);
659 static int mmc_read_ext_csd(struct mmc_card
*card
)
664 if (!mmc_can_ext_csd(card
))
667 err
= mmc_get_ext_csd(card
, &ext_csd
);
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
680 if (card
->csd
.capacity
== (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card
->host
));
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card
->host
));
692 err
= mmc_decode_ext_csd(card
, ext_csd
);
697 static int mmc_compare_ext_csds(struct mmc_card
*card
, unsigned bus_width
)
702 if (bus_width
== MMC_BUS_WIDTH_1
)
705 err
= mmc_get_ext_csd(card
, &bw_ext_csd
);
709 /* only compare read only fields */
710 err
= !((card
->ext_csd
.raw_partition_support
==
711 bw_ext_csd
[EXT_CSD_PARTITION_SUPPORT
]) &&
712 (card
->ext_csd
.raw_erased_mem_count
==
713 bw_ext_csd
[EXT_CSD_ERASED_MEM_CONT
]) &&
714 (card
->ext_csd
.rev
==
715 bw_ext_csd
[EXT_CSD_REV
]) &&
716 (card
->ext_csd
.raw_ext_csd_structure
==
717 bw_ext_csd
[EXT_CSD_STRUCTURE
]) &&
718 (card
->ext_csd
.raw_card_type
==
719 bw_ext_csd
[EXT_CSD_CARD_TYPE
]) &&
720 (card
->ext_csd
.raw_s_a_timeout
==
721 bw_ext_csd
[EXT_CSD_S_A_TIMEOUT
]) &&
722 (card
->ext_csd
.raw_hc_erase_gap_size
==
723 bw_ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
]) &&
724 (card
->ext_csd
.raw_erase_timeout_mult
==
725 bw_ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
]) &&
726 (card
->ext_csd
.raw_hc_erase_grp_size
==
727 bw_ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
]) &&
728 (card
->ext_csd
.raw_sec_trim_mult
==
729 bw_ext_csd
[EXT_CSD_SEC_TRIM_MULT
]) &&
730 (card
->ext_csd
.raw_sec_erase_mult
==
731 bw_ext_csd
[EXT_CSD_SEC_ERASE_MULT
]) &&
732 (card
->ext_csd
.raw_sec_feature_support
==
733 bw_ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
]) &&
734 (card
->ext_csd
.raw_trim_mult
==
735 bw_ext_csd
[EXT_CSD_TRIM_MULT
]) &&
736 (card
->ext_csd
.raw_sectors
[0] ==
737 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 0]) &&
738 (card
->ext_csd
.raw_sectors
[1] ==
739 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 1]) &&
740 (card
->ext_csd
.raw_sectors
[2] ==
741 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 2]) &&
742 (card
->ext_csd
.raw_sectors
[3] ==
743 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 3]) &&
744 (card
->ext_csd
.raw_pwr_cl_52_195
==
745 bw_ext_csd
[EXT_CSD_PWR_CL_52_195
]) &&
746 (card
->ext_csd
.raw_pwr_cl_26_195
==
747 bw_ext_csd
[EXT_CSD_PWR_CL_26_195
]) &&
748 (card
->ext_csd
.raw_pwr_cl_52_360
==
749 bw_ext_csd
[EXT_CSD_PWR_CL_52_360
]) &&
750 (card
->ext_csd
.raw_pwr_cl_26_360
==
751 bw_ext_csd
[EXT_CSD_PWR_CL_26_360
]) &&
752 (card
->ext_csd
.raw_pwr_cl_200_195
==
753 bw_ext_csd
[EXT_CSD_PWR_CL_200_195
]) &&
754 (card
->ext_csd
.raw_pwr_cl_200_360
==
755 bw_ext_csd
[EXT_CSD_PWR_CL_200_360
]) &&
756 (card
->ext_csd
.raw_pwr_cl_ddr_52_195
==
757 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_52_195
]) &&
758 (card
->ext_csd
.raw_pwr_cl_ddr_52_360
==
759 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_52_360
]) &&
760 (card
->ext_csd
.raw_pwr_cl_ddr_200_360
==
761 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_200_360
]));
770 MMC_DEV_ATTR(cid
, "%08x%08x%08x%08x\n", card
->raw_cid
[0], card
->raw_cid
[1],
771 card
->raw_cid
[2], card
->raw_cid
[3]);
772 MMC_DEV_ATTR(csd
, "%08x%08x%08x%08x\n", card
->raw_csd
[0], card
->raw_csd
[1],
773 card
->raw_csd
[2], card
->raw_csd
[3]);
774 MMC_DEV_ATTR(date
, "%02d/%04d\n", card
->cid
.month
, card
->cid
.year
);
775 MMC_DEV_ATTR(erase_size
, "%u\n", card
->erase_size
<< 9);
776 MMC_DEV_ATTR(preferred_erase_size
, "%u\n", card
->pref_erase
<< 9);
777 MMC_DEV_ATTR(ffu_capable
, "%d\n", card
->ext_csd
.ffu_capable
);
778 MMC_DEV_ATTR(hwrev
, "0x%x\n", card
->cid
.hwrev
);
779 MMC_DEV_ATTR(manfid
, "0x%06x\n", card
->cid
.manfid
);
780 MMC_DEV_ATTR(name
, "%s\n", card
->cid
.prod_name
);
781 MMC_DEV_ATTR(oemid
, "0x%04x\n", card
->cid
.oemid
);
782 MMC_DEV_ATTR(prv
, "0x%x\n", card
->cid
.prv
);
783 MMC_DEV_ATTR(rev
, "0x%x\n", card
->ext_csd
.rev
);
784 MMC_DEV_ATTR(pre_eol_info
, "0x%02x\n", card
->ext_csd
.pre_eol_info
);
785 MMC_DEV_ATTR(life_time
, "0x%02x 0x%02x\n",
786 card
->ext_csd
.device_life_time_est_typ_a
,
787 card
->ext_csd
.device_life_time_est_typ_b
);
788 MMC_DEV_ATTR(serial
, "0x%08x\n", card
->cid
.serial
);
789 MMC_DEV_ATTR(enhanced_area_offset
, "%llu\n",
790 card
->ext_csd
.enhanced_area_offset
);
791 MMC_DEV_ATTR(enhanced_area_size
, "%u\n", card
->ext_csd
.enhanced_area_size
);
792 MMC_DEV_ATTR(raw_rpmb_size_mult
, "%#x\n", card
->ext_csd
.raw_rpmb_size_mult
);
793 MMC_DEV_ATTR(rel_sectors
, "%#x\n", card
->ext_csd
.rel_sectors
);
794 MMC_DEV_ATTR(ocr
, "0x%08x\n", card
->ocr
);
795 MMC_DEV_ATTR(rca
, "0x%04x\n", card
->rca
);
796 MMC_DEV_ATTR(cmdq_en
, "%d\n", card
->ext_csd
.cmdq_en
);
798 static ssize_t
mmc_fwrev_show(struct device
*dev
,
799 struct device_attribute
*attr
,
802 struct mmc_card
*card
= mmc_dev_to_card(dev
);
804 if (card
->ext_csd
.rev
< 7) {
805 return sprintf(buf
, "0x%x\n", card
->cid
.fwrev
);
807 return sprintf(buf
, "0x%*phN\n", MMC_FIRMWARE_LEN
,
808 card
->ext_csd
.fwrev
);
812 static DEVICE_ATTR(fwrev
, S_IRUGO
, mmc_fwrev_show
, NULL
);
814 static ssize_t
mmc_dsr_show(struct device
*dev
,
815 struct device_attribute
*attr
,
818 struct mmc_card
*card
= mmc_dev_to_card(dev
);
819 struct mmc_host
*host
= card
->host
;
821 if (card
->csd
.dsr_imp
&& host
->dsr_req
)
822 return sprintf(buf
, "0x%x\n", host
->dsr
);
824 /* return default DSR value */
825 return sprintf(buf
, "0x%x\n", 0x404);
828 static DEVICE_ATTR(dsr
, S_IRUGO
, mmc_dsr_show
, NULL
);
830 static struct attribute
*mmc_std_attrs
[] = {
834 &dev_attr_erase_size
.attr
,
835 &dev_attr_preferred_erase_size
.attr
,
836 &dev_attr_fwrev
.attr
,
837 &dev_attr_ffu_capable
.attr
,
838 &dev_attr_hwrev
.attr
,
839 &dev_attr_manfid
.attr
,
841 &dev_attr_oemid
.attr
,
844 &dev_attr_pre_eol_info
.attr
,
845 &dev_attr_life_time
.attr
,
846 &dev_attr_serial
.attr
,
847 &dev_attr_enhanced_area_offset
.attr
,
848 &dev_attr_enhanced_area_size
.attr
,
849 &dev_attr_raw_rpmb_size_mult
.attr
,
850 &dev_attr_rel_sectors
.attr
,
854 &dev_attr_cmdq_en
.attr
,
857 ATTRIBUTE_GROUPS(mmc_std
);
859 static struct device_type mmc_type
= {
860 .groups
= mmc_std_groups
,
864 * Select the PowerClass for the current bus width
865 * If power class is defined for 4/8 bit bus in the
866 * extended CSD register, select it by executing the
867 * mmc_switch command.
869 static int __mmc_select_powerclass(struct mmc_card
*card
,
870 unsigned int bus_width
)
872 struct mmc_host
*host
= card
->host
;
873 struct mmc_ext_csd
*ext_csd
= &card
->ext_csd
;
874 unsigned int pwrclass_val
= 0;
877 switch (1 << host
->ios
.vdd
) {
878 case MMC_VDD_165_195
:
879 if (host
->ios
.clock
<= MMC_HIGH_26_MAX_DTR
)
880 pwrclass_val
= ext_csd
->raw_pwr_cl_26_195
;
881 else if (host
->ios
.clock
<= MMC_HIGH_52_MAX_DTR
)
882 pwrclass_val
= (bus_width
<= EXT_CSD_BUS_WIDTH_8
) ?
883 ext_csd
->raw_pwr_cl_52_195
:
884 ext_csd
->raw_pwr_cl_ddr_52_195
;
885 else if (host
->ios
.clock
<= MMC_HS200_MAX_DTR
)
886 pwrclass_val
= ext_csd
->raw_pwr_cl_200_195
;
897 if (host
->ios
.clock
<= MMC_HIGH_26_MAX_DTR
)
898 pwrclass_val
= ext_csd
->raw_pwr_cl_26_360
;
899 else if (host
->ios
.clock
<= MMC_HIGH_52_MAX_DTR
)
900 pwrclass_val
= (bus_width
<= EXT_CSD_BUS_WIDTH_8
) ?
901 ext_csd
->raw_pwr_cl_52_360
:
902 ext_csd
->raw_pwr_cl_ddr_52_360
;
903 else if (host
->ios
.clock
<= MMC_HS200_MAX_DTR
)
904 pwrclass_val
= (bus_width
== EXT_CSD_DDR_BUS_WIDTH_8
) ?
905 ext_csd
->raw_pwr_cl_ddr_200_360
:
906 ext_csd
->raw_pwr_cl_200_360
;
909 pr_warn("%s: Voltage range not supported for power class\n",
914 if (bus_width
& (EXT_CSD_BUS_WIDTH_8
| EXT_CSD_DDR_BUS_WIDTH_8
))
915 pwrclass_val
= (pwrclass_val
& EXT_CSD_PWR_CL_8BIT_MASK
) >>
916 EXT_CSD_PWR_CL_8BIT_SHIFT
;
918 pwrclass_val
= (pwrclass_val
& EXT_CSD_PWR_CL_4BIT_MASK
) >>
919 EXT_CSD_PWR_CL_4BIT_SHIFT
;
921 /* If the power class is different from the default value */
922 if (pwrclass_val
> 0) {
923 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
926 card
->ext_csd
.generic_cmd6_time
);
932 static int mmc_select_powerclass(struct mmc_card
*card
)
934 struct mmc_host
*host
= card
->host
;
935 u32 bus_width
, ext_csd_bits
;
938 /* Power class selection is supported for versions >= 4.0 */
939 if (!mmc_can_ext_csd(card
))
942 bus_width
= host
->ios
.bus_width
;
943 /* Power class values are defined only for 4/8 bit bus */
944 if (bus_width
== MMC_BUS_WIDTH_1
)
947 ddr
= card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_52
;
949 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
950 EXT_CSD_DDR_BUS_WIDTH_8
: EXT_CSD_DDR_BUS_WIDTH_4
;
952 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
953 EXT_CSD_BUS_WIDTH_8
: EXT_CSD_BUS_WIDTH_4
;
955 err
= __mmc_select_powerclass(card
, ext_csd_bits
);
957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 mmc_hostname(host
), 1 << bus_width
, ddr
);
964 * Set the bus speed for the selected speed mode.
966 static void mmc_set_bus_speed(struct mmc_card
*card
)
968 unsigned int max_dtr
= (unsigned int)-1;
970 if ((mmc_card_hs200(card
) || mmc_card_hs400(card
)) &&
971 max_dtr
> card
->ext_csd
.hs200_max_dtr
)
972 max_dtr
= card
->ext_csd
.hs200_max_dtr
;
973 else if (mmc_card_hs(card
) && max_dtr
> card
->ext_csd
.hs_max_dtr
)
974 max_dtr
= card
->ext_csd
.hs_max_dtr
;
975 else if (max_dtr
> card
->csd
.max_dtr
)
976 max_dtr
= card
->csd
.max_dtr
;
978 mmc_set_clock(card
->host
, max_dtr
);
982 * Select the bus width amoung 4-bit and 8-bit(SDR).
983 * If the bus width is changed successfully, return the selected width value.
984 * Zero is returned instead of error value if the wide width is not supported.
986 static int mmc_select_bus_width(struct mmc_card
*card
)
988 static unsigned ext_csd_bits
[] = {
992 static unsigned bus_widths
[] = {
996 struct mmc_host
*host
= card
->host
;
997 unsigned idx
, bus_width
= 0;
1000 if (!mmc_can_ext_csd(card
) ||
1001 !(host
->caps
& (MMC_CAP_4_BIT_DATA
| MMC_CAP_8_BIT_DATA
)))
1004 idx
= (host
->caps
& MMC_CAP_8_BIT_DATA
) ? 0 : 1;
1007 * Unlike SD, MMC cards dont have a configuration register to notify
1008 * supported bus width. So bus test command should be run to identify
1009 * the supported bus width or compare the ext csd values of current
1010 * bus width and ext csd values of 1 bit mode read earlier.
1012 for (; idx
< ARRAY_SIZE(bus_widths
); idx
++) {
1014 * Host is capable of 8bit transfer, then switch
1015 * the device to work in 8bit transfer mode. If the
1016 * mmc switch command returns error then switch to
1017 * 4bit transfer mode. On success set the corresponding
1018 * bus width on the host.
1020 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1023 card
->ext_csd
.generic_cmd6_time
);
1027 bus_width
= bus_widths
[idx
];
1028 mmc_set_bus_width(host
, bus_width
);
1031 * If controller can't handle bus width test,
1032 * compare ext_csd previously read in 1 bit mode
1033 * against ext_csd at new bus width
1035 if (!(host
->caps
& MMC_CAP_BUS_WIDTH_TEST
))
1036 err
= mmc_compare_ext_csds(card
, bus_width
);
1038 err
= mmc_bus_test(card
, bus_width
);
1044 pr_warn("%s: switch to bus width %d failed\n",
1045 mmc_hostname(host
), 1 << bus_width
);
1053 * Switch to the high-speed mode
1055 static int mmc_select_hs(struct mmc_card
*card
)
1059 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1060 EXT_CSD_HS_TIMING
, EXT_CSD_TIMING_HS
,
1061 card
->ext_csd
.generic_cmd6_time
, MMC_TIMING_MMC_HS
,
1064 pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 mmc_hostname(card
->host
), err
);
1071 * Activate wide bus and DDR if supported.
1073 static int mmc_select_hs_ddr(struct mmc_card
*card
)
1075 struct mmc_host
*host
= card
->host
;
1076 u32 bus_width
, ext_csd_bits
;
1079 if (!(card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_52
))
1082 bus_width
= host
->ios
.bus_width
;
1083 if (bus_width
== MMC_BUS_WIDTH_1
)
1086 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
1087 EXT_CSD_DDR_BUS_WIDTH_8
: EXT_CSD_DDR_BUS_WIDTH_4
;
1089 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1092 card
->ext_csd
.generic_cmd6_time
,
1093 MMC_TIMING_MMC_DDR52
,
1096 pr_err("%s: switch to bus width %d ddr failed\n",
1097 mmc_hostname(host
), 1 << bus_width
);
1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 * in the JEDEC spec for DDR.
1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 * host controller can support this, like some of the SDHCI
1112 * controller which connect to an eMMC device. Some of these
1113 * host controller still needs to use 1.8v vccq for supporting
1116 * So the sequence will be:
1117 * if (host and device can both support 1.2v IO)
1119 * else if (host and device can both support 1.8v IO)
1121 * so if host and device can only support 3.3v IO, this is the
1124 * WARNING: eMMC rules are NOT the same as SD DDR
1126 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_1_2V
) {
1127 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1132 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_1_8V
&&
1133 host
->caps
& MMC_CAP_1_8V_DDR
)
1134 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1136 /* make sure vccq is 3.3v after switching disaster */
1138 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
);
1143 static int mmc_select_hs400(struct mmc_card
*card
)
1145 struct mmc_host
*host
= card
->host
;
1146 unsigned int max_dtr
;
1151 * HS400 mode requires 8-bit bus width
1153 if (!(card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400
&&
1154 host
->ios
.bus_width
== MMC_BUS_WIDTH_8
))
1157 /* Switch card to HS mode */
1158 val
= EXT_CSD_TIMING_HS
;
1159 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1160 EXT_CSD_HS_TIMING
, val
,
1161 card
->ext_csd
.generic_cmd6_time
, 0,
1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 mmc_hostname(host
), err
);
1169 /* Set host controller to HS timing */
1170 mmc_set_timing(card
->host
, MMC_TIMING_MMC_HS
);
1172 /* Prepare host to downgrade to HS timing */
1173 if (host
->ops
->hs400_downgrade
)
1174 host
->ops
->hs400_downgrade(host
);
1176 /* Reduce frequency to HS frequency */
1177 max_dtr
= card
->ext_csd
.hs_max_dtr
;
1178 mmc_set_clock(host
, max_dtr
);
1180 err
= mmc_switch_status(card
);
1184 if (host
->ops
->hs400_prepare_ddr
)
1185 host
->ops
->hs400_prepare_ddr(host
);
1187 /* Switch card to DDR */
1188 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1190 EXT_CSD_DDR_BUS_WIDTH_8
,
1191 card
->ext_csd
.generic_cmd6_time
);
1193 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1194 mmc_hostname(host
), err
);
1198 /* Switch card to HS400 */
1199 val
= EXT_CSD_TIMING_HS400
|
1200 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1201 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1202 EXT_CSD_HS_TIMING
, val
,
1203 card
->ext_csd
.generic_cmd6_time
, 0,
1206 pr_err("%s: switch to hs400 failed, err:%d\n",
1207 mmc_hostname(host
), err
);
1211 /* Set host controller to HS400 timing and frequency */
1212 mmc_set_timing(host
, MMC_TIMING_MMC_HS400
);
1213 mmc_set_bus_speed(card
);
1215 err
= mmc_switch_status(card
);
1219 if (host
->ops
->hs400_complete
)
1220 host
->ops
->hs400_complete(host
);
1225 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1230 int mmc_hs200_to_hs400(struct mmc_card
*card
)
1232 return mmc_select_hs400(card
);
1235 int mmc_hs400_to_hs200(struct mmc_card
*card
)
1237 struct mmc_host
*host
= card
->host
;
1238 unsigned int max_dtr
;
1242 /* Reduce frequency to HS */
1243 max_dtr
= card
->ext_csd
.hs_max_dtr
;
1244 mmc_set_clock(host
, max_dtr
);
1246 /* Switch HS400 to HS DDR */
1247 val
= EXT_CSD_TIMING_HS
;
1248 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_HS_TIMING
,
1249 val
, card
->ext_csd
.generic_cmd6_time
, 0,
1254 mmc_set_timing(host
, MMC_TIMING_MMC_DDR52
);
1256 err
= mmc_switch_status(card
);
1260 /* Switch HS DDR to HS */
1261 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_BUS_WIDTH
,
1262 EXT_CSD_BUS_WIDTH_8
, card
->ext_csd
.generic_cmd6_time
,
1263 0, true, false, true);
1267 mmc_set_timing(host
, MMC_TIMING_MMC_HS
);
1269 if (host
->ops
->hs400_downgrade
)
1270 host
->ops
->hs400_downgrade(host
);
1272 err
= mmc_switch_status(card
);
1276 /* Switch HS to HS200 */
1277 val
= EXT_CSD_TIMING_HS200
|
1278 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1279 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_HS_TIMING
,
1280 val
, card
->ext_csd
.generic_cmd6_time
, 0,
1285 mmc_set_timing(host
, MMC_TIMING_MMC_HS200
);
1288 * For HS200, CRC errors are not a reliable way to know the switch
1289 * failed. If there really is a problem, we would expect tuning will
1290 * fail and the result ends up the same.
1292 err
= __mmc_switch_status(card
, false);
1296 mmc_set_bus_speed(card
);
1298 /* Prepare tuning for HS400 mode. */
1299 if (host
->ops
->prepare_hs400_tuning
)
1300 host
->ops
->prepare_hs400_tuning(host
, &host
->ios
);
1305 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1310 static void mmc_select_driver_type(struct mmc_card
*card
)
1312 int card_drv_type
, drive_strength
, drv_type
= 0;
1313 int fixed_drv_type
= card
->host
->fixed_drv_type
;
1315 card_drv_type
= card
->ext_csd
.raw_driver_strength
|
1316 mmc_driver_type_mask(0);
1318 if (fixed_drv_type
>= 0)
1319 drive_strength
= card_drv_type
& mmc_driver_type_mask(fixed_drv_type
)
1320 ? fixed_drv_type
: 0;
1322 drive_strength
= mmc_select_drive_strength(card
,
1323 card
->ext_csd
.hs200_max_dtr
,
1324 card_drv_type
, &drv_type
);
1326 card
->drive_strength
= drive_strength
;
1329 mmc_set_driver_type(card
->host
, drv_type
);
1332 static int mmc_select_hs400es(struct mmc_card
*card
)
1334 struct mmc_host
*host
= card
->host
;
1338 if (!(host
->caps
& MMC_CAP_8_BIT_DATA
)) {
1343 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400_1_2V
)
1344 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1346 if (err
&& card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400_1_8V
)
1347 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1349 /* If fails try again during next card power cycle */
1353 err
= mmc_select_bus_width(card
);
1354 if (err
!= MMC_BUS_WIDTH_8
) {
1355 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1356 mmc_hostname(host
), err
);
1357 err
= err
< 0 ? err
: -ENOTSUPP
;
1361 /* Switch card to HS mode */
1362 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1363 EXT_CSD_HS_TIMING
, EXT_CSD_TIMING_HS
,
1364 card
->ext_csd
.generic_cmd6_time
, 0,
1367 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1368 mmc_hostname(host
), err
);
1372 mmc_set_timing(host
, MMC_TIMING_MMC_HS
);
1373 err
= mmc_switch_status(card
);
1377 mmc_set_clock(host
, card
->ext_csd
.hs_max_dtr
);
1379 /* Switch card to DDR with strobe bit */
1380 val
= EXT_CSD_DDR_BUS_WIDTH_8
| EXT_CSD_BUS_WIDTH_STROBE
;
1381 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1384 card
->ext_csd
.generic_cmd6_time
);
1386 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1387 mmc_hostname(host
), err
);
1391 mmc_select_driver_type(card
);
1393 /* Switch card to HS400 */
1394 val
= EXT_CSD_TIMING_HS400
|
1395 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1396 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1397 EXT_CSD_HS_TIMING
, val
,
1398 card
->ext_csd
.generic_cmd6_time
, 0,
1401 pr_err("%s: switch to hs400es failed, err:%d\n",
1402 mmc_hostname(host
), err
);
1406 /* Set host controller to HS400 timing and frequency */
1407 mmc_set_timing(host
, MMC_TIMING_MMC_HS400
);
1409 /* Controller enable enhanced strobe function */
1410 host
->ios
.enhanced_strobe
= true;
1411 if (host
->ops
->hs400_enhanced_strobe
)
1412 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1414 err
= mmc_switch_status(card
);
1421 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1427 * For device supporting HS200 mode, the following sequence
1428 * should be done before executing the tuning process.
1429 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1430 * 2. switch to HS200 mode
1431 * 3. set the clock to > 52Mhz and <=200MHz
1433 static int mmc_select_hs200(struct mmc_card
*card
)
1435 struct mmc_host
*host
= card
->host
;
1436 unsigned int old_timing
, old_signal_voltage
;
1440 old_signal_voltage
= host
->ios
.signal_voltage
;
1441 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200_1_2V
)
1442 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1444 if (err
&& card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200_1_8V
)
1445 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1447 /* If fails try again during next card power cycle */
1451 mmc_select_driver_type(card
);
1454 * Set the bus width(4 or 8) with host's support and
1455 * switch to HS200 mode if bus width is set successfully.
1457 err
= mmc_select_bus_width(card
);
1459 val
= EXT_CSD_TIMING_HS200
|
1460 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1461 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1462 EXT_CSD_HS_TIMING
, val
,
1463 card
->ext_csd
.generic_cmd6_time
, 0,
1467 old_timing
= host
->ios
.timing
;
1468 mmc_set_timing(host
, MMC_TIMING_MMC_HS200
);
1471 * For HS200, CRC errors are not a reliable way to know the
1472 * switch failed. If there really is a problem, we would expect
1473 * tuning will fail and the result ends up the same.
1475 err
= __mmc_switch_status(card
, false);
1478 * mmc_select_timing() assumes timing has not changed if
1479 * it is a switch error.
1481 if (err
== -EBADMSG
)
1482 mmc_set_timing(host
, old_timing
);
1486 /* fall back to the old signal voltage, if fails report error */
1487 if (mmc_set_signal_voltage(host
, old_signal_voltage
))
1490 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1497 * Activate High Speed, HS200 or HS400ES mode if supported.
1499 static int mmc_select_timing(struct mmc_card
*card
)
1503 if (!mmc_can_ext_csd(card
))
1506 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400ES
)
1507 err
= mmc_select_hs400es(card
);
1508 else if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200
)
1509 err
= mmc_select_hs200(card
);
1510 else if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS
)
1511 err
= mmc_select_hs(card
);
1513 if (err
&& err
!= -EBADMSG
)
1518 * Set the bus speed to the selected bus timing.
1519 * If timing is not selected, backward compatible is the default.
1521 mmc_set_bus_speed(card
);
1526 * Execute tuning sequence to seek the proper bus operating
1527 * conditions for HS200 and HS400, which sends CMD21 to the device.
1529 static int mmc_hs200_tuning(struct mmc_card
*card
)
1531 struct mmc_host
*host
= card
->host
;
1534 * Timing should be adjusted to the HS400 target
1535 * operation frequency for tuning process
1537 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400
&&
1538 host
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
1539 if (host
->ops
->prepare_hs400_tuning
)
1540 host
->ops
->prepare_hs400_tuning(host
, &host
->ios
);
1542 return mmc_execute_tuning(card
);
1546 * Handle the detection and initialisation of a card.
1548 * In the case of a resume, "oldcard" will contain the card
1549 * we're trying to reinitialise.
1551 static int mmc_init_card(struct mmc_host
*host
, u32 ocr
,
1552 struct mmc_card
*oldcard
)
1554 struct mmc_card
*card
;
1559 WARN_ON(!host
->claimed
);
1561 /* Set correct bus mode for MMC before attempting init */
1562 if (!mmc_host_is_spi(host
))
1563 mmc_set_bus_mode(host
, MMC_BUSMODE_OPENDRAIN
);
1566 * Since we're changing the OCR value, we seem to
1567 * need to tell some cards to go back to the idle
1568 * state. We wait 1ms to give cards time to
1570 * mmc_go_idle is needed for eMMC that are asleep
1574 /* The extra bit indicates that we support high capacity */
1575 err
= mmc_send_op_cond(host
, ocr
| (1 << 30), &rocr
);
1580 * For SPI, enable CRC as appropriate.
1582 if (mmc_host_is_spi(host
)) {
1583 err
= mmc_spi_set_crc(host
, use_spi_crc
);
1589 * Fetch CID from card.
1591 err
= mmc_send_cid(host
, cid
);
1596 if (memcmp(cid
, oldcard
->raw_cid
, sizeof(cid
)) != 0) {
1597 pr_debug("%s: Perhaps the card was replaced\n",
1598 mmc_hostname(host
));
1606 * Allocate card structure.
1608 card
= mmc_alloc_card(host
, &mmc_type
);
1610 err
= PTR_ERR(card
);
1615 card
->type
= MMC_TYPE_MMC
;
1617 memcpy(card
->raw_cid
, cid
, sizeof(card
->raw_cid
));
1621 * Call the optional HC's init_card function to handle quirks.
1623 if (host
->ops
->init_card
)
1624 host
->ops
->init_card(host
, card
);
1627 * For native busses: set card RCA and quit open drain mode.
1629 if (!mmc_host_is_spi(host
)) {
1630 err
= mmc_set_relative_addr(card
);
1634 mmc_set_bus_mode(host
, MMC_BUSMODE_PUSHPULL
);
1639 * Fetch CSD from card.
1641 err
= mmc_send_csd(card
, card
->raw_csd
);
1645 err
= mmc_decode_csd(card
);
1648 err
= mmc_decode_cid(card
);
1654 * handling only for cards supporting DSR and hosts requesting
1657 if (card
->csd
.dsr_imp
&& host
->dsr_req
)
1661 * Select card, as all following commands rely on that.
1663 if (!mmc_host_is_spi(host
)) {
1664 err
= mmc_select_card(card
);
1670 /* Read extended CSD. */
1671 err
= mmc_read_ext_csd(card
);
1676 * If doing byte addressing, check if required to do sector
1677 * addressing. Handle the case of <2GB cards needing sector
1678 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1679 * ocr register has bit 30 set for sector addressing.
1682 mmc_card_set_blockaddr(card
);
1684 /* Erase size depends on CSD and Extended CSD */
1685 mmc_set_erase_size(card
);
1688 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1689 if (card
->ext_csd
.rev
>= 3) {
1690 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1691 EXT_CSD_ERASE_GROUP_DEF
, 1,
1692 card
->ext_csd
.generic_cmd6_time
);
1694 if (err
&& err
!= -EBADMSG
)
1700 * Just disable enhanced area off & sz
1701 * will try to enable ERASE_GROUP_DEF
1702 * during next time reinit
1704 card
->ext_csd
.enhanced_area_offset
= -EINVAL
;
1705 card
->ext_csd
.enhanced_area_size
= -EINVAL
;
1707 card
->ext_csd
.erase_group_def
= 1;
1709 * enable ERASE_GRP_DEF successfully.
1710 * This will affect the erase size, so
1711 * here need to reset erase size
1713 mmc_set_erase_size(card
);
1718 * Ensure eMMC user default partition is enabled
1720 if (card
->ext_csd
.part_config
& EXT_CSD_PART_CONFIG_ACC_MASK
) {
1721 card
->ext_csd
.part_config
&= ~EXT_CSD_PART_CONFIG_ACC_MASK
;
1722 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_PART_CONFIG
,
1723 card
->ext_csd
.part_config
,
1724 card
->ext_csd
.part_time
);
1725 if (err
&& err
!= -EBADMSG
)
1730 * Enable power_off_notification byte in the ext_csd register
1732 if (card
->ext_csd
.rev
>= 6) {
1733 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1734 EXT_CSD_POWER_OFF_NOTIFICATION
,
1736 card
->ext_csd
.generic_cmd6_time
);
1737 if (err
&& err
!= -EBADMSG
)
1741 * The err can be -EBADMSG or 0,
1742 * so check for success and update the flag
1745 card
->ext_csd
.power_off_notification
= EXT_CSD_POWER_ON
;
1749 if (mmc_can_discard(card
))
1750 card
->erase_arg
= MMC_DISCARD_ARG
;
1751 else if (mmc_can_trim(card
))
1752 card
->erase_arg
= MMC_TRIM_ARG
;
1754 card
->erase_arg
= MMC_ERASE_ARG
;
1757 * Select timing interface
1759 err
= mmc_select_timing(card
);
1763 if (mmc_card_hs200(card
)) {
1764 err
= mmc_hs200_tuning(card
);
1768 err
= mmc_select_hs400(card
);
1771 } else if (!mmc_card_hs400es(card
)) {
1772 /* Select the desired bus width optionally */
1773 err
= mmc_select_bus_width(card
);
1774 if (err
> 0 && mmc_card_hs(card
)) {
1775 err
= mmc_select_hs_ddr(card
);
1782 * Choose the power class with selected bus interface
1784 mmc_select_powerclass(card
);
1787 * Enable HPI feature (if supported)
1789 if (card
->ext_csd
.hpi
) {
1790 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1791 EXT_CSD_HPI_MGMT
, 1,
1792 card
->ext_csd
.generic_cmd6_time
);
1793 if (err
&& err
!= -EBADMSG
)
1796 pr_warn("%s: Enabling HPI failed\n",
1797 mmc_hostname(card
->host
));
1798 card
->ext_csd
.hpi_en
= 0;
1801 card
->ext_csd
.hpi_en
= 1;
1806 * If cache size is higher than 0, this indicates the existence of cache
1807 * and it can be turned on. Note that some eMMCs from Micron has been
1808 * reported to need ~800 ms timeout, while enabling the cache after
1809 * sudden power failure tests. Let's extend the timeout to a minimum of
1810 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1812 if (card
->ext_csd
.cache_size
> 0) {
1813 unsigned int timeout_ms
= MIN_CACHE_EN_TIMEOUT_MS
;
1815 timeout_ms
= max(card
->ext_csd
.generic_cmd6_time
, timeout_ms
);
1816 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1817 EXT_CSD_CACHE_CTRL
, 1, timeout_ms
);
1818 if (err
&& err
!= -EBADMSG
)
1822 * Only if no error, cache is turned on successfully.
1825 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1826 mmc_hostname(card
->host
), err
);
1827 card
->ext_csd
.cache_ctrl
= 0;
1830 card
->ext_csd
.cache_ctrl
= 1;
1835 * Enable Command Queue if supported. Note that Packed Commands cannot
1836 * be used with Command Queue.
1838 card
->ext_csd
.cmdq_en
= false;
1839 if (card
->ext_csd
.cmdq_support
&& host
->caps2
& MMC_CAP2_CQE
) {
1840 err
= mmc_cmdq_enable(card
);
1841 if (err
&& err
!= -EBADMSG
)
1844 pr_warn("%s: Enabling CMDQ failed\n",
1845 mmc_hostname(card
->host
));
1846 card
->ext_csd
.cmdq_support
= false;
1847 card
->ext_csd
.cmdq_depth
= 0;
1852 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1853 * disabled for a time, so a flag is needed to indicate to re-enable the
1856 card
->reenable_cmdq
= card
->ext_csd
.cmdq_en
;
1858 if (card
->ext_csd
.cmdq_en
&& !host
->cqe_enabled
) {
1859 err
= host
->cqe_ops
->cqe_enable(host
, card
);
1861 pr_err("%s: Failed to enable CQE, error %d\n",
1862 mmc_hostname(host
), err
);
1864 host
->cqe_enabled
= true;
1865 pr_info("%s: Command Queue Engine enabled\n",
1866 mmc_hostname(host
));
1870 if (host
->caps2
& MMC_CAP2_AVOID_3_3V
&&
1871 host
->ios
.signal_voltage
== MMC_SIGNAL_VOLTAGE_330
) {
1872 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1873 mmc_hostname(host
));
1885 mmc_remove_card(card
);
1890 static int mmc_can_sleep(struct mmc_card
*card
)
1892 return (card
&& card
->ext_csd
.rev
>= 3);
1895 static int mmc_sleep(struct mmc_host
*host
)
1897 struct mmc_command cmd
= {};
1898 struct mmc_card
*card
= host
->card
;
1899 unsigned int timeout_ms
= DIV_ROUND_UP(card
->ext_csd
.sa_timeout
, 10000);
1902 /* Re-tuning can't be done once the card is deselected */
1903 mmc_retune_hold(host
);
1905 err
= mmc_deselect_cards(host
);
1909 cmd
.opcode
= MMC_SLEEP_AWAKE
;
1910 cmd
.arg
= card
->rca
<< 16;
1914 * If the max_busy_timeout of the host is specified, validate it against
1915 * the sleep cmd timeout. A failure means we need to prevent the host
1916 * from doing hw busy detection, which is done by converting to a R1
1917 * response instead of a R1B.
1919 if (host
->max_busy_timeout
&& (timeout_ms
> host
->max_busy_timeout
)) {
1920 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1922 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
1923 cmd
.busy_timeout
= timeout_ms
;
1926 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1931 * If the host does not wait while the card signals busy, then we will
1932 * will have to wait the sleep/awake timeout. Note, we cannot use the
1933 * SEND_STATUS command to poll the status because that command (and most
1934 * others) is invalid while the card sleeps.
1936 if (!cmd
.busy_timeout
|| !(host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
))
1937 mmc_delay(timeout_ms
);
1940 mmc_retune_release(host
);
1944 static int mmc_can_poweroff_notify(const struct mmc_card
*card
)
1947 mmc_card_mmc(card
) &&
1948 (card
->ext_csd
.power_off_notification
== EXT_CSD_POWER_ON
);
1951 static int mmc_poweroff_notify(struct mmc_card
*card
, unsigned int notify_type
)
1953 unsigned int timeout
= card
->ext_csd
.generic_cmd6_time
;
1956 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1957 if (notify_type
== EXT_CSD_POWER_OFF_LONG
)
1958 timeout
= card
->ext_csd
.power_off_longtime
;
1960 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1961 EXT_CSD_POWER_OFF_NOTIFICATION
,
1962 notify_type
, timeout
, 0, true, false, false);
1964 pr_err("%s: Power Off Notification timed out, %u\n",
1965 mmc_hostname(card
->host
), timeout
);
1967 /* Disable the power off notification after the switch operation. */
1968 card
->ext_csd
.power_off_notification
= EXT_CSD_NO_POWER_NOTIFICATION
;
1974 * Host is being removed. Free up the current card.
1976 static void mmc_remove(struct mmc_host
*host
)
1978 mmc_remove_card(host
->card
);
1983 * Card detection - card is alive.
1985 static int mmc_alive(struct mmc_host
*host
)
1987 return mmc_send_status(host
->card
, NULL
);
1991 * Card detection callback from host.
1993 static void mmc_detect(struct mmc_host
*host
)
1997 mmc_get_card(host
->card
, NULL
);
2000 * Just check if our card has been removed.
2002 err
= _mmc_detect_card_removed(host
);
2004 mmc_put_card(host
->card
, NULL
);
2009 mmc_claim_host(host
);
2010 mmc_detach_bus(host
);
2011 mmc_power_off(host
);
2012 mmc_release_host(host
);
2016 static int _mmc_suspend(struct mmc_host
*host
, bool is_suspend
)
2019 unsigned int notify_type
= is_suspend
? EXT_CSD_POWER_OFF_SHORT
:
2020 EXT_CSD_POWER_OFF_LONG
;
2022 mmc_claim_host(host
);
2024 if (mmc_card_suspended(host
->card
))
2027 err
= mmc_flush_cache(host
->card
);
2031 if (mmc_can_poweroff_notify(host
->card
) &&
2032 ((host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) || !is_suspend
))
2033 err
= mmc_poweroff_notify(host
->card
, notify_type
);
2034 else if (mmc_can_sleep(host
->card
))
2035 err
= mmc_sleep(host
);
2036 else if (!mmc_host_is_spi(host
))
2037 err
= mmc_deselect_cards(host
);
2040 mmc_power_off(host
);
2041 mmc_card_set_suspended(host
->card
);
2044 mmc_release_host(host
);
2051 static int mmc_suspend(struct mmc_host
*host
)
2055 err
= _mmc_suspend(host
, true);
2057 pm_runtime_disable(&host
->card
->dev
);
2058 pm_runtime_set_suspended(&host
->card
->dev
);
2065 * This function tries to determine if the same card is still present
2066 * and, if so, restore all state to it.
2068 static int _mmc_resume(struct mmc_host
*host
)
2072 mmc_claim_host(host
);
2074 if (!mmc_card_suspended(host
->card
))
2077 mmc_power_up(host
, host
->card
->ocr
);
2078 err
= mmc_init_card(host
, host
->card
->ocr
, host
->card
);
2079 mmc_card_clr_suspended(host
->card
);
2082 mmc_release_host(host
);
2089 static int mmc_shutdown(struct mmc_host
*host
)
2094 * In a specific case for poweroff notify, we need to resume the card
2095 * before we can shutdown it properly.
2097 if (mmc_can_poweroff_notify(host
->card
) &&
2098 !(host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
))
2099 err
= _mmc_resume(host
);
2102 err
= _mmc_suspend(host
, false);
2108 * Callback for resume.
2110 static int mmc_resume(struct mmc_host
*host
)
2112 pm_runtime_enable(&host
->card
->dev
);
2117 * Callback for runtime_suspend.
2119 static int mmc_runtime_suspend(struct mmc_host
*host
)
2123 if (!(host
->caps
& MMC_CAP_AGGRESSIVE_PM
))
2126 err
= _mmc_suspend(host
, true);
2128 pr_err("%s: error %d doing aggressive suspend\n",
2129 mmc_hostname(host
), err
);
2135 * Callback for runtime_resume.
2137 static int mmc_runtime_resume(struct mmc_host
*host
)
2141 err
= _mmc_resume(host
);
2142 if (err
&& err
!= -ENOMEDIUM
)
2143 pr_err("%s: error %d doing runtime resume\n",
2144 mmc_hostname(host
), err
);
2149 static int mmc_can_reset(struct mmc_card
*card
)
2153 rst_n_function
= card
->ext_csd
.rst_n_function
;
2154 if ((rst_n_function
& EXT_CSD_RST_N_EN_MASK
) != EXT_CSD_RST_N_ENABLED
)
2159 static int _mmc_hw_reset(struct mmc_host
*host
)
2161 struct mmc_card
*card
= host
->card
;
2164 * In the case of recovery, we can't expect flushing the cache to work
2165 * always, but we have a go and ignore errors.
2167 mmc_flush_cache(host
->card
);
2169 if ((host
->caps
& MMC_CAP_HW_RESET
) && host
->ops
->hw_reset
&&
2170 mmc_can_reset(card
)) {
2171 /* If the card accept RST_n signal, send it. */
2172 mmc_set_clock(host
, host
->f_init
);
2173 host
->ops
->hw_reset(host
);
2174 /* Set initial state and call mmc_set_ios */
2175 mmc_set_initial_state(host
);
2177 /* Do a brute force power cycle */
2178 mmc_power_cycle(host
, card
->ocr
);
2179 mmc_pwrseq_reset(host
);
2181 return mmc_init_card(host
, card
->ocr
, card
);
2184 static const struct mmc_bus_ops mmc_ops
= {
2185 .remove
= mmc_remove
,
2186 .detect
= mmc_detect
,
2187 .suspend
= mmc_suspend
,
2188 .resume
= mmc_resume
,
2189 .runtime_suspend
= mmc_runtime_suspend
,
2190 .runtime_resume
= mmc_runtime_resume
,
2192 .shutdown
= mmc_shutdown
,
2193 .hw_reset
= _mmc_hw_reset
,
2197 * Starting point for MMC card init.
2199 int mmc_attach_mmc(struct mmc_host
*host
)
2204 WARN_ON(!host
->claimed
);
2206 /* Set correct bus mode for MMC before attempting attach */
2207 if (!mmc_host_is_spi(host
))
2208 mmc_set_bus_mode(host
, MMC_BUSMODE_OPENDRAIN
);
2210 err
= mmc_send_op_cond(host
, 0, &ocr
);
2214 mmc_attach_bus(host
, &mmc_ops
);
2215 if (host
->ocr_avail_mmc
)
2216 host
->ocr_avail
= host
->ocr_avail_mmc
;
2219 * We need to get OCR a different way for SPI.
2221 if (mmc_host_is_spi(host
)) {
2222 err
= mmc_spi_read_ocr(host
, 1, &ocr
);
2227 rocr
= mmc_select_voltage(host
, ocr
);
2230 * Can we support the voltage of the card?
2238 * Detect and init the card.
2240 err
= mmc_init_card(host
, rocr
, NULL
);
2244 mmc_release_host(host
);
2245 err
= mmc_add_card(host
->card
);
2249 mmc_claim_host(host
);
2253 mmc_remove_card(host
->card
);
2254 mmc_claim_host(host
);
2257 mmc_detach_bus(host
);
2259 pr_err("%s: error %d whilst initialising MMC card\n",
2260 mmc_hostname(host
), err
);