USB: serial: option: reimplement interface masking
[linux/fpc-iii.git] / arch / arm / mach-bcm / platsmp.c
blob7d954830eb57644e36d80b3ab17cb1778d208337
1 /*
2 * Copyright (C) 2014-2015 Broadcom Corporation
3 * Copyright 2014 Linaro Limited
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/irqchip/irq-bcm2836.h>
21 #include <linux/jiffies.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/sched.h>
25 #include <linux/sched/clock.h>
26 #include <linux/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/smp.h>
30 #include <asm/smp_plat.h>
31 #include <asm/smp_scu.h>
33 /* Size of mapped Cortex A9 SCU address space */
34 #define CORTEX_A9_SCU_SIZE 0x58
36 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
37 #define BOOT_ADDR_CPUID_MASK 0x3
39 /* Name of device node property defining secondary boot register location */
40 #define OF_SECONDARY_BOOT "secondary-boot-reg"
41 #define MPIDR_CPUID_BITMASK 0x3
44 * Enable the Cortex A9 Snoop Control Unit
46 * By the time this is called we already know there are multiple
47 * cores present. We assume we're running on a Cortex A9 processor,
48 * so any trouble getting the base address register or getting the
49 * SCU base is a problem.
51 * Return 0 if successful or an error code otherwise.
53 static int __init scu_a9_enable(void)
55 unsigned long config_base;
56 void __iomem *scu_base;
58 if (!scu_a9_has_base()) {
59 pr_err("no configuration base address register!\n");
60 return -ENXIO;
63 /* Config base address register value is zero for uniprocessor */
64 config_base = scu_a9_get_base();
65 if (!config_base) {
66 pr_err("hardware reports only one core\n");
67 return -ENOENT;
70 scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
71 if (!scu_base) {
72 pr_err("failed to remap config base (%lu/%u) for SCU\n",
73 config_base, CORTEX_A9_SCU_SIZE);
74 return -ENOMEM;
77 scu_enable(scu_base);
79 iounmap(scu_base); /* That's the last we'll need of this */
81 return 0;
84 static u32 secondary_boot_addr_for(unsigned int cpu)
86 u32 secondary_boot_addr = 0;
87 struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
89 if (!cpu_node) {
90 pr_err("Failed to find device tree node for CPU%u\n", cpu);
91 return 0;
94 if (of_property_read_u32(cpu_node,
95 OF_SECONDARY_BOOT,
96 &secondary_boot_addr))
97 pr_err("required secondary boot register not specified for CPU%u\n",
98 cpu);
100 of_node_put(cpu_node);
102 return secondary_boot_addr;
105 static int nsp_write_lut(unsigned int cpu)
107 void __iomem *sku_rom_lut;
108 phys_addr_t secondary_startup_phy;
109 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
111 if (!secondary_boot_addr)
112 return -EINVAL;
114 sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
115 sizeof(phys_addr_t));
116 if (!sku_rom_lut) {
117 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
118 return -ENOMEM;
121 secondary_startup_phy = __pa_symbol(secondary_startup);
122 BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
124 writel_relaxed(secondary_startup_phy, sku_rom_lut);
126 /* Ensure the write is visible to the secondary core */
127 smp_wmb();
129 iounmap(sku_rom_lut);
131 return 0;
134 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
136 const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
138 /* Enable the SCU on Cortex A9 based SoCs */
139 if (scu_a9_enable()) {
140 /* Update the CPU present map to reflect uniprocessor mode */
141 pr_warn("failed to enable A9 SCU - disabling SMP\n");
142 init_cpu_present(&only_cpu_0);
147 * The ROM code has the secondary cores looping, waiting for an event.
148 * When an event occurs each core examines the bottom two bits of the
149 * secondary boot register. When a core finds those bits contain its
150 * own core id, it performs initialization, including computing its boot
151 * address by clearing the boot register value's bottom two bits. The
152 * core signals that it is beginning its execution by writing its boot
153 * address back to the secondary boot register, and finally jumps to
154 * that address.
156 * So to start a core executing we need to:
157 * - Encode the (hardware) CPU id with the bottom bits of the secondary
158 * start address.
159 * - Write that value into the secondary boot register.
160 * - Generate an event to wake up the secondary CPU(s).
161 * - Wait for the secondary boot register to be re-written, which
162 * indicates the secondary core has started.
164 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
166 void __iomem *boot_reg;
167 phys_addr_t boot_func;
168 u64 start_clock;
169 u32 cpu_id;
170 u32 boot_val;
171 bool timeout = false;
172 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
174 cpu_id = cpu_logical_map(cpu);
175 if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
176 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
177 return -EINVAL;
180 if (!secondary_boot_addr)
181 return -EINVAL;
183 boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
184 sizeof(phys_addr_t));
185 if (!boot_reg) {
186 pr_err("unable to map boot register for cpu %u\n", cpu_id);
187 return -ENOMEM;
191 * Secondary cores will start in secondary_startup(),
192 * defined in "arch/arm/kernel/head.S"
194 boot_func = __pa_symbol(secondary_startup);
195 BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
196 BUG_ON(boot_func > (phys_addr_t)U32_MAX);
198 /* The core to start is encoded in the low bits */
199 boot_val = (u32)boot_func | cpu_id;
200 writel_relaxed(boot_val, boot_reg);
202 sev();
204 /* The low bits will be cleared once the core has started */
205 start_clock = local_clock();
206 while (!timeout && readl_relaxed(boot_reg) == boot_val)
207 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
209 iounmap(boot_reg);
211 if (!timeout)
212 return 0;
214 pr_err("timeout waiting for cpu %u to start\n", cpu_id);
216 return -ENXIO;
219 /* Cluster Dormant Control command to bring CPU into a running state */
220 #define CDC_CMD 6
221 #define CDC_CMD_OFFSET 0
222 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
225 * BCM23550 has a Cluster Dormant Control block that keeps the core in
226 * idle state. A command needs to be sent to the block to bring the CPU
227 * into running state.
229 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
231 void __iomem *cdc_base;
232 struct device_node *dn;
233 char *name;
234 int ret;
236 /* Make sure a CDC node exists before booting the
237 * secondary core.
239 name = "brcm,bcm23550-cdc";
240 dn = of_find_compatible_node(NULL, NULL, name);
241 if (!dn) {
242 pr_err("unable to find cdc node\n");
243 return -ENODEV;
246 cdc_base = of_iomap(dn, 0);
247 of_node_put(dn);
249 if (!cdc_base) {
250 pr_err("unable to remap cdc base register\n");
251 return -ENOMEM;
254 /* Boot the secondary core */
255 ret = kona_boot_secondary(cpu, idle);
256 if (ret)
257 goto out;
259 /* Bring this CPU to RUN state so that nIRQ nFIQ
260 * signals are unblocked.
262 writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
264 out:
265 iounmap(cdc_base);
267 return ret;
270 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
272 int ret;
275 * After wake up, secondary core branches to the startup
276 * address programmed at SKU ROM LUT location.
278 ret = nsp_write_lut(cpu);
279 if (ret) {
280 pr_err("unable to write startup addr to SKU ROM LUT\n");
281 goto out;
284 /* Send a CPU wakeup interrupt to the secondary core */
285 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
287 out:
288 return ret;
291 static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
293 void __iomem *intc_base;
294 struct device_node *dn;
295 char *name;
297 name = "brcm,bcm2836-l1-intc";
298 dn = of_find_compatible_node(NULL, NULL, name);
299 if (!dn) {
300 pr_err("unable to find intc node\n");
301 return -ENODEV;
304 intc_base = of_iomap(dn, 0);
305 of_node_put(dn);
307 if (!intc_base) {
308 pr_err("unable to remap intc base register\n");
309 return -ENOMEM;
312 writel(virt_to_phys(secondary_startup),
313 intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
315 dsb(sy);
316 sev();
318 iounmap(intc_base);
320 return 0;
323 static const struct smp_operations kona_smp_ops __initconst = {
324 .smp_prepare_cpus = bcm_smp_prepare_cpus,
325 .smp_boot_secondary = kona_boot_secondary,
327 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
328 &kona_smp_ops);
330 static const struct smp_operations bcm23550_smp_ops __initconst = {
331 .smp_boot_secondary = bcm23550_boot_secondary,
333 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
334 &bcm23550_smp_ops);
336 static const struct smp_operations nsp_smp_ops __initconst = {
337 .smp_prepare_cpus = bcm_smp_prepare_cpus,
338 .smp_boot_secondary = nsp_boot_secondary,
340 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
342 const struct smp_operations bcm2836_smp_ops __initconst = {
343 .smp_boot_secondary = bcm2836_boot_secondary,
345 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);