2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
21 #define DM_MSG_PREFIX "thin"
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
32 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
35 "A percentage of time allocated for copy on write");
38 * The block size of the device holding pool data must be
39 * between 64KB and 1GB.
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
45 * Device id is restricted to 24 bits.
47 #define MAX_DEV_ID ((1 << 24) - 1)
50 * How do we handle breaking sharing of data blocks?
51 * =================================================
53 * We use a standard copy-on-write btree to store the mappings for the
54 * devices (note I'm talking about copy-on-write of the metadata here, not
55 * the data). When you take an internal snapshot you clone the root node
56 * of the origin btree. After this there is no concept of an origin or a
57 * snapshot. They are just two device trees that happen to point to the
60 * When we get a write in we decide if it's to a shared data block using
61 * some timestamp magic. If it is, we have to break sharing.
63 * Let's say we write to a shared block in what was the origin. The
66 * i) plug io further to this physical block. (see bio_prison code).
68 * ii) quiesce any read io to that shared data block. Obviously
69 * including all devices that share this block. (see dm_deferred_set code)
71 * iii) copy the data block to a newly allocate block. This step can be
72 * missed out if the io covers the block. (schedule_copy).
74 * iv) insert the new mapping into the origin's btree
75 * (process_prepared_mapping). This act of inserting breaks some
76 * sharing of btree nodes between the two devices. Breaking sharing only
77 * effects the btree of that specific device. Btrees for the other
78 * devices that share the block never change. The btree for the origin
79 * device as it was after the last commit is untouched, ie. we're using
80 * persistent data structures in the functional programming sense.
82 * v) unplug io to this physical block, including the io that triggered
83 * the breaking of sharing.
85 * Steps (ii) and (iii) occur in parallel.
87 * The metadata _doesn't_ need to be committed before the io continues. We
88 * get away with this because the io is always written to a _new_ block.
89 * If there's a crash, then:
91 * - The origin mapping will point to the old origin block (the shared
92 * one). This will contain the data as it was before the io that triggered
93 * the breaking of sharing came in.
95 * - The snap mapping still points to the old block. As it would after
98 * The downside of this scheme is the timestamp magic isn't perfect, and
99 * will continue to think that data block in the snapshot device is shared
100 * even after the write to the origin has broken sharing. I suspect data
101 * blocks will typically be shared by many different devices, so we're
102 * breaking sharing n + 1 times, rather than n, where n is the number of
103 * devices that reference this data block. At the moment I think the
104 * benefits far, far outweigh the disadvantages.
107 /*----------------------------------------------------------------*/
112 static void build_data_key(struct dm_thin_device
*td
,
113 dm_block_t b
, struct dm_cell_key
*key
)
116 key
->dev
= dm_thin_dev_id(td
);
120 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
121 struct dm_cell_key
*key
)
124 key
->dev
= dm_thin_dev_id(td
);
128 /*----------------------------------------------------------------*/
131 * A pool device ties together a metadata device and a data device. It
132 * also provides the interface for creating and destroying internal
135 struct dm_thin_new_mapping
;
138 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
141 PM_WRITE
, /* metadata may be changed */
142 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
143 PM_READ_ONLY
, /* metadata may not be changed */
144 PM_FAIL
, /* all I/O fails */
147 struct pool_features
{
150 bool zero_new_blocks
:1;
151 bool discard_enabled
:1;
152 bool discard_passdown
:1;
153 bool error_if_no_space
:1;
157 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
158 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
161 struct list_head list
;
162 struct dm_target
*ti
; /* Only set if a pool target is bound */
164 struct mapped_device
*pool_md
;
165 struct block_device
*md_dev
;
166 struct dm_pool_metadata
*pmd
;
168 dm_block_t low_water_blocks
;
169 uint32_t sectors_per_block
;
170 int sectors_per_block_shift
;
172 struct pool_features pf
;
173 bool low_water_triggered
:1; /* A dm event has been sent */
175 struct dm_bio_prison
*prison
;
176 struct dm_kcopyd_client
*copier
;
178 struct workqueue_struct
*wq
;
179 struct work_struct worker
;
180 struct delayed_work waker
;
181 struct delayed_work no_space_timeout
;
183 unsigned long last_commit_jiffies
;
187 struct bio_list deferred_flush_bios
;
188 struct list_head prepared_mappings
;
189 struct list_head prepared_discards
;
190 struct list_head active_thins
;
192 struct dm_deferred_set
*shared_read_ds
;
193 struct dm_deferred_set
*all_io_ds
;
195 struct dm_thin_new_mapping
*next_mapping
;
196 mempool_t
*mapping_pool
;
198 process_bio_fn process_bio
;
199 process_bio_fn process_discard
;
201 process_mapping_fn process_prepared_mapping
;
202 process_mapping_fn process_prepared_discard
;
205 static enum pool_mode
get_pool_mode(struct pool
*pool
);
206 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
209 * Target context for a pool.
212 struct dm_target
*ti
;
214 struct dm_dev
*data_dev
;
215 struct dm_dev
*metadata_dev
;
216 struct dm_target_callbacks callbacks
;
218 dm_block_t low_water_blocks
;
219 struct pool_features requested_pf
; /* Features requested during table load */
220 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
224 * Target context for a thin.
227 struct list_head list
;
228 struct dm_dev
*pool_dev
;
229 struct dm_dev
*origin_dev
;
233 struct dm_thin_device
*td
;
236 struct bio_list deferred_bio_list
;
237 struct bio_list retry_on_resume_list
;
238 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
241 * Ensures the thin is not destroyed until the worker has finished
242 * iterating the active_thins list.
245 struct completion can_destroy
;
248 /*----------------------------------------------------------------*/
251 * wake_worker() is used when new work is queued and when pool_resume is
252 * ready to continue deferred IO processing.
254 static void wake_worker(struct pool
*pool
)
256 queue_work(pool
->wq
, &pool
->worker
);
259 /*----------------------------------------------------------------*/
261 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
262 struct dm_bio_prison_cell
**cell_result
)
265 struct dm_bio_prison_cell
*cell_prealloc
;
268 * Allocate a cell from the prison's mempool.
269 * This might block but it can't fail.
271 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
273 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
276 * We reused an old cell; we can get rid of
279 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
284 static void cell_release(struct pool
*pool
,
285 struct dm_bio_prison_cell
*cell
,
286 struct bio_list
*bios
)
288 dm_cell_release(pool
->prison
, cell
, bios
);
289 dm_bio_prison_free_cell(pool
->prison
, cell
);
292 static void cell_release_no_holder(struct pool
*pool
,
293 struct dm_bio_prison_cell
*cell
,
294 struct bio_list
*bios
)
296 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
297 dm_bio_prison_free_cell(pool
->prison
, cell
);
300 static void cell_defer_no_holder_no_free(struct thin_c
*tc
,
301 struct dm_bio_prison_cell
*cell
)
303 struct pool
*pool
= tc
->pool
;
306 spin_lock_irqsave(&tc
->lock
, flags
);
307 dm_cell_release_no_holder(pool
->prison
, cell
, &tc
->deferred_bio_list
);
308 spin_unlock_irqrestore(&tc
->lock
, flags
);
313 static void cell_error_with_code(struct pool
*pool
,
314 struct dm_bio_prison_cell
*cell
, int error_code
)
316 dm_cell_error(pool
->prison
, cell
, error_code
);
317 dm_bio_prison_free_cell(pool
->prison
, cell
);
320 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
322 cell_error_with_code(pool
, cell
, -EIO
);
325 /*----------------------------------------------------------------*/
328 * A global list of pools that uses a struct mapped_device as a key.
330 static struct dm_thin_pool_table
{
332 struct list_head pools
;
333 } dm_thin_pool_table
;
335 static void pool_table_init(void)
337 mutex_init(&dm_thin_pool_table
.mutex
);
338 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
341 static void __pool_table_insert(struct pool
*pool
)
343 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
344 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
347 static void __pool_table_remove(struct pool
*pool
)
349 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
350 list_del(&pool
->list
);
353 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
355 struct pool
*pool
= NULL
, *tmp
;
357 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
359 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
360 if (tmp
->pool_md
== md
) {
369 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
371 struct pool
*pool
= NULL
, *tmp
;
373 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
375 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
376 if (tmp
->md_dev
== md_dev
) {
385 /*----------------------------------------------------------------*/
387 struct dm_thin_endio_hook
{
389 struct dm_deferred_entry
*shared_read_entry
;
390 struct dm_deferred_entry
*all_io_entry
;
391 struct dm_thin_new_mapping
*overwrite_mapping
;
392 struct rb_node rb_node
;
395 static void requeue_bio_list(struct thin_c
*tc
, struct bio_list
*master
)
398 struct bio_list bios
;
401 bio_list_init(&bios
);
403 spin_lock_irqsave(&tc
->lock
, flags
);
404 bio_list_merge(&bios
, master
);
405 bio_list_init(master
);
406 spin_unlock_irqrestore(&tc
->lock
, flags
);
408 while ((bio
= bio_list_pop(&bios
)))
409 bio_endio(bio
, DM_ENDIO_REQUEUE
);
412 static void requeue_io(struct thin_c
*tc
)
414 requeue_bio_list(tc
, &tc
->deferred_bio_list
);
415 requeue_bio_list(tc
, &tc
->retry_on_resume_list
);
418 static void error_thin_retry_list(struct thin_c
*tc
)
422 struct bio_list bios
;
424 bio_list_init(&bios
);
426 spin_lock_irqsave(&tc
->lock
, flags
);
427 bio_list_merge(&bios
, &tc
->retry_on_resume_list
);
428 bio_list_init(&tc
->retry_on_resume_list
);
429 spin_unlock_irqrestore(&tc
->lock
, flags
);
431 while ((bio
= bio_list_pop(&bios
)))
435 static void error_retry_list(struct pool
*pool
)
440 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
441 error_thin_retry_list(tc
);
446 * This section of code contains the logic for processing a thin device's IO.
447 * Much of the code depends on pool object resources (lists, workqueues, etc)
448 * but most is exclusively called from the thin target rather than the thin-pool
452 static bool block_size_is_power_of_two(struct pool
*pool
)
454 return pool
->sectors_per_block_shift
>= 0;
457 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
459 struct pool
*pool
= tc
->pool
;
460 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
462 if (block_size_is_power_of_two(pool
))
463 block_nr
>>= pool
->sectors_per_block_shift
;
465 (void) sector_div(block_nr
, pool
->sectors_per_block
);
470 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
472 struct pool
*pool
= tc
->pool
;
473 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
475 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
476 if (block_size_is_power_of_two(pool
))
477 bio
->bi_iter
.bi_sector
=
478 (block
<< pool
->sectors_per_block_shift
) |
479 (bi_sector
& (pool
->sectors_per_block
- 1));
481 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
482 sector_div(bi_sector
, pool
->sectors_per_block
);
485 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
487 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
490 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
492 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
493 dm_thin_changed_this_transaction(tc
->td
);
496 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
498 struct dm_thin_endio_hook
*h
;
500 if (bio
->bi_rw
& REQ_DISCARD
)
503 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
504 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
507 static void issue(struct thin_c
*tc
, struct bio
*bio
)
509 struct pool
*pool
= tc
->pool
;
512 if (!bio_triggers_commit(tc
, bio
)) {
513 generic_make_request(bio
);
518 * Complete bio with an error if earlier I/O caused changes to
519 * the metadata that can't be committed e.g, due to I/O errors
520 * on the metadata device.
522 if (dm_thin_aborted_changes(tc
->td
)) {
528 * Batch together any bios that trigger commits and then issue a
529 * single commit for them in process_deferred_bios().
531 spin_lock_irqsave(&pool
->lock
, flags
);
532 bio_list_add(&pool
->deferred_flush_bios
, bio
);
533 spin_unlock_irqrestore(&pool
->lock
, flags
);
536 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
538 remap_to_origin(tc
, bio
);
542 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
545 remap(tc
, bio
, block
);
549 /*----------------------------------------------------------------*/
552 * Bio endio functions.
554 struct dm_thin_new_mapping
{
555 struct list_head list
;
560 bool definitely_not_shared
:1;
564 dm_block_t virt_block
;
565 dm_block_t data_block
;
566 struct dm_bio_prison_cell
*cell
, *cell2
;
569 * If the bio covers the whole area of a block then we can avoid
570 * zeroing or copying. Instead this bio is hooked. The bio will
571 * still be in the cell, so care has to be taken to avoid issuing
575 bio_end_io_t
*saved_bi_end_io
;
578 static void __maybe_add_mapping(struct dm_thin_new_mapping
*m
)
580 struct pool
*pool
= m
->tc
->pool
;
582 if (m
->quiesced
&& m
->prepared
) {
583 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
588 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
591 struct dm_thin_new_mapping
*m
= context
;
592 struct pool
*pool
= m
->tc
->pool
;
594 m
->err
= read_err
|| write_err
? -EIO
: 0;
596 spin_lock_irqsave(&pool
->lock
, flags
);
598 __maybe_add_mapping(m
);
599 spin_unlock_irqrestore(&pool
->lock
, flags
);
602 static void overwrite_endio(struct bio
*bio
, int err
)
605 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
606 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
607 struct pool
*pool
= m
->tc
->pool
;
611 spin_lock_irqsave(&pool
->lock
, flags
);
613 __maybe_add_mapping(m
);
614 spin_unlock_irqrestore(&pool
->lock
, flags
);
617 /*----------------------------------------------------------------*/
624 * Prepared mapping jobs.
628 * This sends the bios in the cell back to the deferred_bios list.
630 static void cell_defer(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
632 struct pool
*pool
= tc
->pool
;
635 spin_lock_irqsave(&tc
->lock
, flags
);
636 cell_release(pool
, cell
, &tc
->deferred_bio_list
);
637 spin_unlock_irqrestore(&tc
->lock
, flags
);
643 * Same as cell_defer above, except it omits the original holder of the cell.
645 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
647 struct pool
*pool
= tc
->pool
;
650 spin_lock_irqsave(&tc
->lock
, flags
);
651 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
652 spin_unlock_irqrestore(&tc
->lock
, flags
);
657 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
660 m
->bio
->bi_end_io
= m
->saved_bi_end_io
;
661 atomic_inc(&m
->bio
->bi_remaining
);
663 cell_error(m
->tc
->pool
, m
->cell
);
665 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
668 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
670 struct thin_c
*tc
= m
->tc
;
671 struct pool
*pool
= tc
->pool
;
677 bio
->bi_end_io
= m
->saved_bi_end_io
;
678 atomic_inc(&bio
->bi_remaining
);
682 cell_error(pool
, m
->cell
);
687 * Commit the prepared block into the mapping btree.
688 * Any I/O for this block arriving after this point will get
689 * remapped to it directly.
691 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
693 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
694 cell_error(pool
, m
->cell
);
699 * Release any bios held while the block was being provisioned.
700 * If we are processing a write bio that completely covers the block,
701 * we already processed it so can ignore it now when processing
702 * the bios in the cell.
705 cell_defer_no_holder(tc
, m
->cell
);
708 cell_defer(tc
, m
->cell
);
712 mempool_free(m
, pool
->mapping_pool
);
715 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
717 struct thin_c
*tc
= m
->tc
;
719 bio_io_error(m
->bio
);
720 cell_defer_no_holder(tc
, m
->cell
);
721 cell_defer_no_holder(tc
, m
->cell2
);
722 mempool_free(m
, tc
->pool
->mapping_pool
);
725 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
727 struct thin_c
*tc
= m
->tc
;
729 inc_all_io_entry(tc
->pool
, m
->bio
);
730 cell_defer_no_holder(tc
, m
->cell
);
731 cell_defer_no_holder(tc
, m
->cell2
);
734 if (m
->definitely_not_shared
)
735 remap_and_issue(tc
, m
->bio
, m
->data_block
);
738 if (dm_pool_block_is_used(tc
->pool
->pmd
, m
->data_block
, &used
) || used
)
739 bio_endio(m
->bio
, 0);
741 remap_and_issue(tc
, m
->bio
, m
->data_block
);
744 bio_endio(m
->bio
, 0);
746 mempool_free(m
, tc
->pool
->mapping_pool
);
749 static void process_prepared_discard(struct dm_thin_new_mapping
*m
)
752 struct thin_c
*tc
= m
->tc
;
754 r
= dm_thin_remove_block(tc
->td
, m
->virt_block
);
756 DMERR_LIMIT("dm_thin_remove_block() failed");
758 process_prepared_discard_passdown(m
);
761 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
762 process_mapping_fn
*fn
)
765 struct list_head maps
;
766 struct dm_thin_new_mapping
*m
, *tmp
;
768 INIT_LIST_HEAD(&maps
);
769 spin_lock_irqsave(&pool
->lock
, flags
);
770 list_splice_init(head
, &maps
);
771 spin_unlock_irqrestore(&pool
->lock
, flags
);
773 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
780 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
782 return bio
->bi_iter
.bi_size
==
783 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
786 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
788 return (bio_data_dir(bio
) == WRITE
) &&
789 io_overlaps_block(pool
, bio
);
792 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
795 *save
= bio
->bi_end_io
;
799 static int ensure_next_mapping(struct pool
*pool
)
801 if (pool
->next_mapping
)
804 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
806 return pool
->next_mapping
? 0 : -ENOMEM
;
809 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
811 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
813 BUG_ON(!pool
->next_mapping
);
815 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
816 INIT_LIST_HEAD(&m
->list
);
819 pool
->next_mapping
= NULL
;
824 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
825 struct dm_dev
*origin
, dm_block_t data_origin
,
826 dm_block_t data_dest
,
827 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
830 struct pool
*pool
= tc
->pool
;
831 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
834 m
->virt_block
= virt_block
;
835 m
->data_block
= data_dest
;
838 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
842 * IO to pool_dev remaps to the pool target's data_dev.
844 * If the whole block of data is being overwritten, we can issue the
845 * bio immediately. Otherwise we use kcopyd to clone the data first.
847 if (io_overwrites_block(pool
, bio
)) {
848 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
850 h
->overwrite_mapping
= m
;
852 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
853 inc_all_io_entry(pool
, bio
);
854 remap_and_issue(tc
, bio
, data_dest
);
856 struct dm_io_region from
, to
;
858 from
.bdev
= origin
->bdev
;
859 from
.sector
= data_origin
* pool
->sectors_per_block
;
860 from
.count
= pool
->sectors_per_block
;
862 to
.bdev
= tc
->pool_dev
->bdev
;
863 to
.sector
= data_dest
* pool
->sectors_per_block
;
864 to
.count
= pool
->sectors_per_block
;
866 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
867 0, copy_complete
, m
);
869 mempool_free(m
, pool
->mapping_pool
);
870 DMERR_LIMIT("dm_kcopyd_copy() failed");
871 cell_error(pool
, cell
);
876 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
877 dm_block_t data_origin
, dm_block_t data_dest
,
878 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
880 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
881 data_origin
, data_dest
, cell
, bio
);
884 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
885 dm_block_t data_dest
,
886 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
888 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
889 virt_block
, data_dest
, cell
, bio
);
892 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
893 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
896 struct pool
*pool
= tc
->pool
;
897 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
902 m
->virt_block
= virt_block
;
903 m
->data_block
= data_block
;
907 * If the whole block of data is being overwritten or we are not
908 * zeroing pre-existing data, we can issue the bio immediately.
909 * Otherwise we use kcopyd to zero the data first.
911 if (!pool
->pf
.zero_new_blocks
)
912 process_prepared_mapping(m
);
914 else if (io_overwrites_block(pool
, bio
)) {
915 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
917 h
->overwrite_mapping
= m
;
919 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
920 inc_all_io_entry(pool
, bio
);
921 remap_and_issue(tc
, bio
, data_block
);
924 struct dm_io_region to
;
926 to
.bdev
= tc
->pool_dev
->bdev
;
927 to
.sector
= data_block
* pool
->sectors_per_block
;
928 to
.count
= pool
->sectors_per_block
;
930 r
= dm_kcopyd_zero(pool
->copier
, 1, &to
, 0, copy_complete
, m
);
932 mempool_free(m
, pool
->mapping_pool
);
933 DMERR_LIMIT("dm_kcopyd_zero() failed");
934 cell_error(pool
, cell
);
940 * A non-zero return indicates read_only or fail_io mode.
941 * Many callers don't care about the return value.
943 static int commit(struct pool
*pool
)
947 if (get_pool_mode(pool
) >= PM_READ_ONLY
)
950 r
= dm_pool_commit_metadata(pool
->pmd
);
952 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
957 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
961 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
962 DMWARN("%s: reached low water mark for data device: sending event.",
963 dm_device_name(pool
->pool_md
));
964 spin_lock_irqsave(&pool
->lock
, flags
);
965 pool
->low_water_triggered
= true;
966 spin_unlock_irqrestore(&pool
->lock
, flags
);
967 dm_table_event(pool
->ti
->table
);
971 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
973 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
976 dm_block_t free_blocks
;
977 struct pool
*pool
= tc
->pool
;
979 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
982 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
984 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
988 check_low_water_mark(pool
, free_blocks
);
992 * Try to commit to see if that will free up some
999 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1001 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1006 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1011 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1013 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1021 * If we have run out of space, queue bios until the device is
1022 * resumed, presumably after having been reloaded with more space.
1024 static void retry_on_resume(struct bio
*bio
)
1026 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1027 struct thin_c
*tc
= h
->tc
;
1028 unsigned long flags
;
1030 spin_lock_irqsave(&tc
->lock
, flags
);
1031 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1032 spin_unlock_irqrestore(&tc
->lock
, flags
);
1035 static int should_error_unserviceable_bio(struct pool
*pool
)
1037 enum pool_mode m
= get_pool_mode(pool
);
1041 /* Shouldn't get here */
1042 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1045 case PM_OUT_OF_DATA_SPACE
:
1046 return pool
->pf
.error_if_no_space
? -ENOSPC
: 0;
1052 /* Shouldn't get here */
1053 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1058 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1060 int error
= should_error_unserviceable_bio(pool
);
1063 bio_endio(bio
, error
);
1065 retry_on_resume(bio
);
1068 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1071 struct bio_list bios
;
1074 error
= should_error_unserviceable_bio(pool
);
1076 cell_error_with_code(pool
, cell
, error
);
1080 bio_list_init(&bios
);
1081 cell_release(pool
, cell
, &bios
);
1083 error
= should_error_unserviceable_bio(pool
);
1085 while ((bio
= bio_list_pop(&bios
)))
1086 bio_endio(bio
, error
);
1088 while ((bio
= bio_list_pop(&bios
)))
1089 retry_on_resume(bio
);
1092 static void process_discard(struct thin_c
*tc
, struct bio
*bio
)
1095 unsigned long flags
;
1096 struct pool
*pool
= tc
->pool
;
1097 struct dm_bio_prison_cell
*cell
, *cell2
;
1098 struct dm_cell_key key
, key2
;
1099 dm_block_t block
= get_bio_block(tc
, bio
);
1100 struct dm_thin_lookup_result lookup_result
;
1101 struct dm_thin_new_mapping
*m
;
1103 build_virtual_key(tc
->td
, block
, &key
);
1104 if (bio_detain(tc
->pool
, &key
, bio
, &cell
))
1107 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1111 * Check nobody is fiddling with this pool block. This can
1112 * happen if someone's in the process of breaking sharing
1115 build_data_key(tc
->td
, lookup_result
.block
, &key2
);
1116 if (bio_detain(tc
->pool
, &key2
, bio
, &cell2
)) {
1117 cell_defer_no_holder(tc
, cell
);
1121 if (io_overlaps_block(pool
, bio
)) {
1123 * IO may still be going to the destination block. We must
1124 * quiesce before we can do the removal.
1126 m
= get_next_mapping(pool
);
1128 m
->pass_discard
= pool
->pf
.discard_passdown
;
1129 m
->definitely_not_shared
= !lookup_result
.shared
;
1130 m
->virt_block
= block
;
1131 m
->data_block
= lookup_result
.block
;
1136 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
)) {
1137 spin_lock_irqsave(&pool
->lock
, flags
);
1138 list_add_tail(&m
->list
, &pool
->prepared_discards
);
1139 spin_unlock_irqrestore(&pool
->lock
, flags
);
1143 inc_all_io_entry(pool
, bio
);
1144 cell_defer_no_holder(tc
, cell
);
1145 cell_defer_no_holder(tc
, cell2
);
1148 * The DM core makes sure that the discard doesn't span
1149 * a block boundary. So we submit the discard of a
1150 * partial block appropriately.
1152 if ((!lookup_result
.shared
) && pool
->pf
.discard_passdown
)
1153 remap_and_issue(tc
, bio
, lookup_result
.block
);
1161 * It isn't provisioned, just forget it.
1163 cell_defer_no_holder(tc
, cell
);
1168 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1170 cell_defer_no_holder(tc
, cell
);
1176 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1177 struct dm_cell_key
*key
,
1178 struct dm_thin_lookup_result
*lookup_result
,
1179 struct dm_bio_prison_cell
*cell
)
1182 dm_block_t data_block
;
1183 struct pool
*pool
= tc
->pool
;
1185 r
= alloc_data_block(tc
, &data_block
);
1188 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1189 data_block
, cell
, bio
);
1193 retry_bios_on_resume(pool
, cell
);
1197 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1199 cell_error(pool
, cell
);
1204 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1206 struct dm_thin_lookup_result
*lookup_result
)
1208 struct dm_bio_prison_cell
*cell
;
1209 struct pool
*pool
= tc
->pool
;
1210 struct dm_cell_key key
;
1213 * If cell is already occupied, then sharing is already in the process
1214 * of being broken so we have nothing further to do here.
1216 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1217 if (bio_detain(pool
, &key
, bio
, &cell
))
1220 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
)
1221 break_sharing(tc
, bio
, block
, &key
, lookup_result
, cell
);
1223 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1225 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1226 inc_all_io_entry(pool
, bio
);
1227 cell_defer_no_holder(tc
, cell
);
1229 remap_and_issue(tc
, bio
, lookup_result
->block
);
1233 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1234 struct dm_bio_prison_cell
*cell
)
1237 dm_block_t data_block
;
1238 struct pool
*pool
= tc
->pool
;
1241 * Remap empty bios (flushes) immediately, without provisioning.
1243 if (!bio
->bi_iter
.bi_size
) {
1244 inc_all_io_entry(pool
, bio
);
1245 cell_defer_no_holder(tc
, cell
);
1247 remap_and_issue(tc
, bio
, 0);
1252 * Fill read bios with zeroes and complete them immediately.
1254 if (bio_data_dir(bio
) == READ
) {
1256 cell_defer_no_holder(tc
, cell
);
1261 r
= alloc_data_block(tc
, &data_block
);
1265 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1267 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1271 retry_bios_on_resume(pool
, cell
);
1275 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1277 cell_error(pool
, cell
);
1282 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1285 struct pool
*pool
= tc
->pool
;
1286 dm_block_t block
= get_bio_block(tc
, bio
);
1287 struct dm_bio_prison_cell
*cell
;
1288 struct dm_cell_key key
;
1289 struct dm_thin_lookup_result lookup_result
;
1292 * If cell is already occupied, then the block is already
1293 * being provisioned so we have nothing further to do here.
1295 build_virtual_key(tc
->td
, block
, &key
);
1296 if (bio_detain(pool
, &key
, bio
, &cell
))
1299 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1302 if (lookup_result
.shared
) {
1303 process_shared_bio(tc
, bio
, block
, &lookup_result
);
1304 cell_defer_no_holder(tc
, cell
); /* FIXME: pass this cell into process_shared? */
1306 inc_all_io_entry(pool
, bio
);
1307 cell_defer_no_holder(tc
, cell
);
1309 remap_and_issue(tc
, bio
, lookup_result
.block
);
1314 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1315 inc_all_io_entry(pool
, bio
);
1316 cell_defer_no_holder(tc
, cell
);
1318 remap_to_origin_and_issue(tc
, bio
);
1320 provision_block(tc
, bio
, block
, cell
);
1324 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1326 cell_defer_no_holder(tc
, cell
);
1332 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1335 int rw
= bio_data_dir(bio
);
1336 dm_block_t block
= get_bio_block(tc
, bio
);
1337 struct dm_thin_lookup_result lookup_result
;
1339 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1342 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
)
1343 handle_unserviceable_bio(tc
->pool
, bio
);
1345 inc_all_io_entry(tc
->pool
, bio
);
1346 remap_and_issue(tc
, bio
, lookup_result
.block
);
1352 handle_unserviceable_bio(tc
->pool
, bio
);
1356 if (tc
->origin_dev
) {
1357 inc_all_io_entry(tc
->pool
, bio
);
1358 remap_to_origin_and_issue(tc
, bio
);
1367 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1374 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
1379 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1385 * FIXME: should we also commit due to size of transaction, measured in
1388 static int need_commit_due_to_time(struct pool
*pool
)
1390 return jiffies
< pool
->last_commit_jiffies
||
1391 jiffies
> pool
->last_commit_jiffies
+ COMMIT_PERIOD
;
1394 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1395 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1397 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
1399 struct rb_node
**rbp
, *parent
;
1400 struct dm_thin_endio_hook
*pbd
;
1401 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
1403 rbp
= &tc
->sort_bio_list
.rb_node
;
1407 pbd
= thin_pbd(parent
);
1409 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
1410 rbp
= &(*rbp
)->rb_left
;
1412 rbp
= &(*rbp
)->rb_right
;
1415 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1416 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
1417 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
1420 static void __extract_sorted_bios(struct thin_c
*tc
)
1422 struct rb_node
*node
;
1423 struct dm_thin_endio_hook
*pbd
;
1426 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
1427 pbd
= thin_pbd(node
);
1428 bio
= thin_bio(pbd
);
1430 bio_list_add(&tc
->deferred_bio_list
, bio
);
1431 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
1434 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
1437 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
1440 struct bio_list bios
;
1442 bio_list_init(&bios
);
1443 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
1444 bio_list_init(&tc
->deferred_bio_list
);
1446 /* Sort deferred_bio_list using rb-tree */
1447 while ((bio
= bio_list_pop(&bios
)))
1448 __thin_bio_rb_add(tc
, bio
);
1451 * Transfer the sorted bios in sort_bio_list back to
1452 * deferred_bio_list to allow lockless submission of
1455 __extract_sorted_bios(tc
);
1458 static void process_thin_deferred_bios(struct thin_c
*tc
)
1460 struct pool
*pool
= tc
->pool
;
1461 unsigned long flags
;
1463 struct bio_list bios
;
1464 struct blk_plug plug
;
1466 if (tc
->requeue_mode
) {
1467 requeue_bio_list(tc
, &tc
->deferred_bio_list
);
1471 bio_list_init(&bios
);
1473 spin_lock_irqsave(&tc
->lock
, flags
);
1475 if (bio_list_empty(&tc
->deferred_bio_list
)) {
1476 spin_unlock_irqrestore(&tc
->lock
, flags
);
1480 __sort_thin_deferred_bios(tc
);
1482 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
1483 bio_list_init(&tc
->deferred_bio_list
);
1485 spin_unlock_irqrestore(&tc
->lock
, flags
);
1487 blk_start_plug(&plug
);
1488 while ((bio
= bio_list_pop(&bios
))) {
1490 * If we've got no free new_mapping structs, and processing
1491 * this bio might require one, we pause until there are some
1492 * prepared mappings to process.
1494 if (ensure_next_mapping(pool
)) {
1495 spin_lock_irqsave(&tc
->lock
, flags
);
1496 bio_list_add(&tc
->deferred_bio_list
, bio
);
1497 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
1498 spin_unlock_irqrestore(&tc
->lock
, flags
);
1502 if (bio
->bi_rw
& REQ_DISCARD
)
1503 pool
->process_discard(tc
, bio
);
1505 pool
->process_bio(tc
, bio
);
1507 blk_finish_plug(&plug
);
1510 static void thin_get(struct thin_c
*tc
);
1511 static void thin_put(struct thin_c
*tc
);
1514 * We can't hold rcu_read_lock() around code that can block. So we
1515 * find a thin with the rcu lock held; bump a refcount; then drop
1518 static struct thin_c
*get_first_thin(struct pool
*pool
)
1520 struct thin_c
*tc
= NULL
;
1523 if (!list_empty(&pool
->active_thins
)) {
1524 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
1532 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
1534 struct thin_c
*old_tc
= tc
;
1537 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
1549 static void process_deferred_bios(struct pool
*pool
)
1551 unsigned long flags
;
1553 struct bio_list bios
;
1556 tc
= get_first_thin(pool
);
1558 process_thin_deferred_bios(tc
);
1559 tc
= get_next_thin(pool
, tc
);
1563 * If there are any deferred flush bios, we must commit
1564 * the metadata before issuing them.
1566 bio_list_init(&bios
);
1567 spin_lock_irqsave(&pool
->lock
, flags
);
1568 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1569 bio_list_init(&pool
->deferred_flush_bios
);
1570 spin_unlock_irqrestore(&pool
->lock
, flags
);
1572 if (bio_list_empty(&bios
) &&
1573 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
1577 while ((bio
= bio_list_pop(&bios
)))
1581 pool
->last_commit_jiffies
= jiffies
;
1583 while ((bio
= bio_list_pop(&bios
)))
1584 generic_make_request(bio
);
1587 static void do_worker(struct work_struct
*ws
)
1589 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1591 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
1592 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
1593 process_deferred_bios(pool
);
1597 * We want to commit periodically so that not too much
1598 * unwritten data builds up.
1600 static void do_waker(struct work_struct
*ws
)
1602 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
1604 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
1608 * We're holding onto IO to allow userland time to react. After the
1609 * timeout either the pool will have been resized (and thus back in
1610 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1612 static void do_no_space_timeout(struct work_struct
*ws
)
1614 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
1617 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
)
1618 set_pool_mode(pool
, PM_READ_ONLY
);
1621 /*----------------------------------------------------------------*/
1624 struct work_struct worker
;
1625 struct completion complete
;
1628 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
1630 return container_of(ws
, struct pool_work
, worker
);
1633 static void pool_work_complete(struct pool_work
*pw
)
1635 complete(&pw
->complete
);
1638 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
1639 void (*fn
)(struct work_struct
*))
1641 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
1642 init_completion(&pw
->complete
);
1643 queue_work(pool
->wq
, &pw
->worker
);
1644 wait_for_completion(&pw
->complete
);
1647 /*----------------------------------------------------------------*/
1649 struct noflush_work
{
1650 struct pool_work pw
;
1654 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
1656 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
1659 static void do_noflush_start(struct work_struct
*ws
)
1661 struct noflush_work
*w
= to_noflush(ws
);
1662 w
->tc
->requeue_mode
= true;
1664 pool_work_complete(&w
->pw
);
1667 static void do_noflush_stop(struct work_struct
*ws
)
1669 struct noflush_work
*w
= to_noflush(ws
);
1670 w
->tc
->requeue_mode
= false;
1671 pool_work_complete(&w
->pw
);
1674 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
1676 struct noflush_work w
;
1679 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
1682 /*----------------------------------------------------------------*/
1684 static enum pool_mode
get_pool_mode(struct pool
*pool
)
1686 return pool
->pf
.mode
;
1689 static void notify_of_pool_mode_change(struct pool
*pool
, const char *new_mode
)
1691 dm_table_event(pool
->ti
->table
);
1692 DMINFO("%s: switching pool to %s mode",
1693 dm_device_name(pool
->pool_md
), new_mode
);
1696 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
1698 struct pool_c
*pt
= pool
->ti
->private;
1699 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
1700 enum pool_mode old_mode
= get_pool_mode(pool
);
1701 unsigned long no_space_timeout
= ACCESS_ONCE(no_space_timeout_secs
) * HZ
;
1704 * Never allow the pool to transition to PM_WRITE mode if user
1705 * intervention is required to verify metadata and data consistency.
1707 if (new_mode
== PM_WRITE
&& needs_check
) {
1708 DMERR("%s: unable to switch pool to write mode until repaired.",
1709 dm_device_name(pool
->pool_md
));
1710 if (old_mode
!= new_mode
)
1711 new_mode
= old_mode
;
1713 new_mode
= PM_READ_ONLY
;
1716 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1717 * not going to recover without a thin_repair. So we never let the
1718 * pool move out of the old mode.
1720 if (old_mode
== PM_FAIL
)
1721 new_mode
= old_mode
;
1725 if (old_mode
!= new_mode
)
1726 notify_of_pool_mode_change(pool
, "failure");
1727 dm_pool_metadata_read_only(pool
->pmd
);
1728 pool
->process_bio
= process_bio_fail
;
1729 pool
->process_discard
= process_bio_fail
;
1730 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1731 pool
->process_prepared_discard
= process_prepared_discard_fail
;
1733 error_retry_list(pool
);
1737 if (old_mode
!= new_mode
)
1738 notify_of_pool_mode_change(pool
, "read-only");
1739 dm_pool_metadata_read_only(pool
->pmd
);
1740 pool
->process_bio
= process_bio_read_only
;
1741 pool
->process_discard
= process_bio_success
;
1742 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1743 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
1745 error_retry_list(pool
);
1748 case PM_OUT_OF_DATA_SPACE
:
1750 * Ideally we'd never hit this state; the low water mark
1751 * would trigger userland to extend the pool before we
1752 * completely run out of data space. However, many small
1753 * IOs to unprovisioned space can consume data space at an
1754 * alarming rate. Adjust your low water mark if you're
1755 * frequently seeing this mode.
1757 if (old_mode
!= new_mode
)
1758 notify_of_pool_mode_change(pool
, "out-of-data-space");
1759 pool
->process_bio
= process_bio_read_only
;
1760 pool
->process_discard
= process_discard
;
1761 pool
->process_prepared_mapping
= process_prepared_mapping
;
1762 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
1764 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
1765 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
1769 if (old_mode
!= new_mode
)
1770 notify_of_pool_mode_change(pool
, "write");
1771 dm_pool_metadata_read_write(pool
->pmd
);
1772 pool
->process_bio
= process_bio
;
1773 pool
->process_discard
= process_discard
;
1774 pool
->process_prepared_mapping
= process_prepared_mapping
;
1775 pool
->process_prepared_discard
= process_prepared_discard
;
1779 pool
->pf
.mode
= new_mode
;
1781 * The pool mode may have changed, sync it so bind_control_target()
1782 * doesn't cause an unexpected mode transition on resume.
1784 pt
->adjusted_pf
.mode
= new_mode
;
1787 static void abort_transaction(struct pool
*pool
)
1789 const char *dev_name
= dm_device_name(pool
->pool_md
);
1791 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
1792 if (dm_pool_abort_metadata(pool
->pmd
)) {
1793 DMERR("%s: failed to abort metadata transaction", dev_name
);
1794 set_pool_mode(pool
, PM_FAIL
);
1797 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
1798 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
1799 set_pool_mode(pool
, PM_FAIL
);
1803 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
1805 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1806 dm_device_name(pool
->pool_md
), op
, r
);
1808 abort_transaction(pool
);
1809 set_pool_mode(pool
, PM_READ_ONLY
);
1812 /*----------------------------------------------------------------*/
1815 * Mapping functions.
1819 * Called only while mapping a thin bio to hand it over to the workqueue.
1821 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
1823 unsigned long flags
;
1824 struct pool
*pool
= tc
->pool
;
1826 spin_lock_irqsave(&tc
->lock
, flags
);
1827 bio_list_add(&tc
->deferred_bio_list
, bio
);
1828 spin_unlock_irqrestore(&tc
->lock
, flags
);
1833 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
1835 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1838 h
->shared_read_entry
= NULL
;
1839 h
->all_io_entry
= NULL
;
1840 h
->overwrite_mapping
= NULL
;
1844 * Non-blocking function called from the thin target's map function.
1846 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
1849 struct thin_c
*tc
= ti
->private;
1850 dm_block_t block
= get_bio_block(tc
, bio
);
1851 struct dm_thin_device
*td
= tc
->td
;
1852 struct dm_thin_lookup_result result
;
1853 struct dm_bio_prison_cell cell1
, cell2
;
1854 struct dm_bio_prison_cell
*cell_result
;
1855 struct dm_cell_key key
;
1857 thin_hook_bio(tc
, bio
);
1859 if (tc
->requeue_mode
) {
1860 bio_endio(bio
, DM_ENDIO_REQUEUE
);
1861 return DM_MAPIO_SUBMITTED
;
1864 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
1866 return DM_MAPIO_SUBMITTED
;
1869 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
1870 thin_defer_bio(tc
, bio
);
1871 return DM_MAPIO_SUBMITTED
;
1874 r
= dm_thin_find_block(td
, block
, 0, &result
);
1877 * Note that we defer readahead too.
1881 if (unlikely(result
.shared
)) {
1883 * We have a race condition here between the
1884 * result.shared value returned by the lookup and
1885 * snapshot creation, which may cause new
1888 * To avoid this always quiesce the origin before
1889 * taking the snap. You want to do this anyway to
1890 * ensure a consistent application view
1893 * More distant ancestors are irrelevant. The
1894 * shared flag will be set in their case.
1896 thin_defer_bio(tc
, bio
);
1897 return DM_MAPIO_SUBMITTED
;
1900 build_virtual_key(tc
->td
, block
, &key
);
1901 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell1
, &cell_result
))
1902 return DM_MAPIO_SUBMITTED
;
1904 build_data_key(tc
->td
, result
.block
, &key
);
1905 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell2
, &cell_result
)) {
1906 cell_defer_no_holder_no_free(tc
, &cell1
);
1907 return DM_MAPIO_SUBMITTED
;
1910 inc_all_io_entry(tc
->pool
, bio
);
1911 cell_defer_no_holder_no_free(tc
, &cell2
);
1912 cell_defer_no_holder_no_free(tc
, &cell1
);
1914 remap(tc
, bio
, result
.block
);
1915 return DM_MAPIO_REMAPPED
;
1918 if (get_pool_mode(tc
->pool
) == PM_READ_ONLY
) {
1920 * This block isn't provisioned, and we have no way
1923 handle_unserviceable_bio(tc
->pool
, bio
);
1924 return DM_MAPIO_SUBMITTED
;
1930 * In future, the failed dm_thin_find_block above could
1931 * provide the hint to load the metadata into cache.
1933 thin_defer_bio(tc
, bio
);
1934 return DM_MAPIO_SUBMITTED
;
1938 * Must always call bio_io_error on failure.
1939 * dm_thin_find_block can fail with -EINVAL if the
1940 * pool is switched to fail-io mode.
1943 return DM_MAPIO_SUBMITTED
;
1947 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
1949 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
1950 struct request_queue
*q
;
1952 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
1955 q
= bdev_get_queue(pt
->data_dev
->bdev
);
1956 return bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1959 static void requeue_bios(struct pool
*pool
)
1961 unsigned long flags
;
1965 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
1966 spin_lock_irqsave(&tc
->lock
, flags
);
1967 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
1968 bio_list_init(&tc
->retry_on_resume_list
);
1969 spin_unlock_irqrestore(&tc
->lock
, flags
);
1974 /*----------------------------------------------------------------
1975 * Binding of control targets to a pool object
1976 *--------------------------------------------------------------*/
1977 static bool data_dev_supports_discard(struct pool_c
*pt
)
1979 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1981 return q
&& blk_queue_discard(q
);
1984 static bool is_factor(sector_t block_size
, uint32_t n
)
1986 return !sector_div(block_size
, n
);
1990 * If discard_passdown was enabled verify that the data device
1991 * supports discards. Disable discard_passdown if not.
1993 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
1995 struct pool
*pool
= pt
->pool
;
1996 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
1997 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
1998 sector_t block_size
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
1999 const char *reason
= NULL
;
2000 char buf
[BDEVNAME_SIZE
];
2002 if (!pt
->adjusted_pf
.discard_passdown
)
2005 if (!data_dev_supports_discard(pt
))
2006 reason
= "discard unsupported";
2008 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2009 reason
= "max discard sectors smaller than a block";
2011 else if (data_limits
->discard_granularity
> block_size
)
2012 reason
= "discard granularity larger than a block";
2014 else if (!is_factor(block_size
, data_limits
->discard_granularity
))
2015 reason
= "discard granularity not a factor of block size";
2018 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2019 pt
->adjusted_pf
.discard_passdown
= false;
2023 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2025 struct pool_c
*pt
= ti
->private;
2028 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2030 enum pool_mode old_mode
= get_pool_mode(pool
);
2031 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2034 * Don't change the pool's mode until set_pool_mode() below.
2035 * Otherwise the pool's process_* function pointers may
2036 * not match the desired pool mode.
2038 pt
->adjusted_pf
.mode
= old_mode
;
2041 pool
->pf
= pt
->adjusted_pf
;
2042 pool
->low_water_blocks
= pt
->low_water_blocks
;
2044 set_pool_mode(pool
, new_mode
);
2049 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2055 /*----------------------------------------------------------------
2057 *--------------------------------------------------------------*/
2058 /* Initialize pool features. */
2059 static void pool_features_init(struct pool_features
*pf
)
2061 pf
->mode
= PM_WRITE
;
2062 pf
->zero_new_blocks
= true;
2063 pf
->discard_enabled
= true;
2064 pf
->discard_passdown
= true;
2065 pf
->error_if_no_space
= false;
2068 static void __pool_destroy(struct pool
*pool
)
2070 __pool_table_remove(pool
);
2072 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2073 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2075 dm_bio_prison_destroy(pool
->prison
);
2076 dm_kcopyd_client_destroy(pool
->copier
);
2079 destroy_workqueue(pool
->wq
);
2081 if (pool
->next_mapping
)
2082 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
2083 mempool_destroy(pool
->mapping_pool
);
2084 dm_deferred_set_destroy(pool
->shared_read_ds
);
2085 dm_deferred_set_destroy(pool
->all_io_ds
);
2089 static struct kmem_cache
*_new_mapping_cache
;
2091 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2092 struct block_device
*metadata_dev
,
2093 unsigned long block_size
,
2094 int read_only
, char **error
)
2099 struct dm_pool_metadata
*pmd
;
2100 bool format_device
= read_only
? false : true;
2102 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2104 *error
= "Error creating metadata object";
2105 return (struct pool
*)pmd
;
2108 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
2110 *error
= "Error allocating memory for pool";
2111 err_p
= ERR_PTR(-ENOMEM
);
2116 pool
->sectors_per_block
= block_size
;
2117 if (block_size
& (block_size
- 1))
2118 pool
->sectors_per_block_shift
= -1;
2120 pool
->sectors_per_block_shift
= __ffs(block_size
);
2121 pool
->low_water_blocks
= 0;
2122 pool_features_init(&pool
->pf
);
2123 pool
->prison
= dm_bio_prison_create(PRISON_CELLS
);
2124 if (!pool
->prison
) {
2125 *error
= "Error creating pool's bio prison";
2126 err_p
= ERR_PTR(-ENOMEM
);
2130 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2131 if (IS_ERR(pool
->copier
)) {
2132 r
= PTR_ERR(pool
->copier
);
2133 *error
= "Error creating pool's kcopyd client";
2135 goto bad_kcopyd_client
;
2139 * Create singlethreaded workqueue that will service all devices
2140 * that use this metadata.
2142 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2144 *error
= "Error creating pool's workqueue";
2145 err_p
= ERR_PTR(-ENOMEM
);
2149 INIT_WORK(&pool
->worker
, do_worker
);
2150 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2151 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2152 spin_lock_init(&pool
->lock
);
2153 bio_list_init(&pool
->deferred_flush_bios
);
2154 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2155 INIT_LIST_HEAD(&pool
->prepared_discards
);
2156 INIT_LIST_HEAD(&pool
->active_thins
);
2157 pool
->low_water_triggered
= false;
2159 pool
->shared_read_ds
= dm_deferred_set_create();
2160 if (!pool
->shared_read_ds
) {
2161 *error
= "Error creating pool's shared read deferred set";
2162 err_p
= ERR_PTR(-ENOMEM
);
2163 goto bad_shared_read_ds
;
2166 pool
->all_io_ds
= dm_deferred_set_create();
2167 if (!pool
->all_io_ds
) {
2168 *error
= "Error creating pool's all io deferred set";
2169 err_p
= ERR_PTR(-ENOMEM
);
2173 pool
->next_mapping
= NULL
;
2174 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
2175 _new_mapping_cache
);
2176 if (!pool
->mapping_pool
) {
2177 *error
= "Error creating pool's mapping mempool";
2178 err_p
= ERR_PTR(-ENOMEM
);
2179 goto bad_mapping_pool
;
2182 pool
->ref_count
= 1;
2183 pool
->last_commit_jiffies
= jiffies
;
2184 pool
->pool_md
= pool_md
;
2185 pool
->md_dev
= metadata_dev
;
2186 __pool_table_insert(pool
);
2191 dm_deferred_set_destroy(pool
->all_io_ds
);
2193 dm_deferred_set_destroy(pool
->shared_read_ds
);
2195 destroy_workqueue(pool
->wq
);
2197 dm_kcopyd_client_destroy(pool
->copier
);
2199 dm_bio_prison_destroy(pool
->prison
);
2203 if (dm_pool_metadata_close(pmd
))
2204 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2209 static void __pool_inc(struct pool
*pool
)
2211 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2215 static void __pool_dec(struct pool
*pool
)
2217 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2218 BUG_ON(!pool
->ref_count
);
2219 if (!--pool
->ref_count
)
2220 __pool_destroy(pool
);
2223 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
2224 struct block_device
*metadata_dev
,
2225 unsigned long block_size
, int read_only
,
2226 char **error
, int *created
)
2228 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
2231 if (pool
->pool_md
!= pool_md
) {
2232 *error
= "metadata device already in use by a pool";
2233 return ERR_PTR(-EBUSY
);
2238 pool
= __pool_table_lookup(pool_md
);
2240 if (pool
->md_dev
!= metadata_dev
) {
2241 *error
= "different pool cannot replace a pool";
2242 return ERR_PTR(-EINVAL
);
2247 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
2255 /*----------------------------------------------------------------
2256 * Pool target methods
2257 *--------------------------------------------------------------*/
2258 static void pool_dtr(struct dm_target
*ti
)
2260 struct pool_c
*pt
= ti
->private;
2262 mutex_lock(&dm_thin_pool_table
.mutex
);
2264 unbind_control_target(pt
->pool
, ti
);
2265 __pool_dec(pt
->pool
);
2266 dm_put_device(ti
, pt
->metadata_dev
);
2267 dm_put_device(ti
, pt
->data_dev
);
2270 mutex_unlock(&dm_thin_pool_table
.mutex
);
2273 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
2274 struct dm_target
*ti
)
2278 const char *arg_name
;
2280 static struct dm_arg _args
[] = {
2281 {0, 4, "Invalid number of pool feature arguments"},
2285 * No feature arguments supplied.
2290 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
2294 while (argc
&& !r
) {
2295 arg_name
= dm_shift_arg(as
);
2298 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
2299 pf
->zero_new_blocks
= false;
2301 else if (!strcasecmp(arg_name
, "ignore_discard"))
2302 pf
->discard_enabled
= false;
2304 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
2305 pf
->discard_passdown
= false;
2307 else if (!strcasecmp(arg_name
, "read_only"))
2308 pf
->mode
= PM_READ_ONLY
;
2310 else if (!strcasecmp(arg_name
, "error_if_no_space"))
2311 pf
->error_if_no_space
= true;
2314 ti
->error
= "Unrecognised pool feature requested";
2323 static void metadata_low_callback(void *context
)
2325 struct pool
*pool
= context
;
2327 DMWARN("%s: reached low water mark for metadata device: sending event.",
2328 dm_device_name(pool
->pool_md
));
2330 dm_table_event(pool
->ti
->table
);
2333 static sector_t
get_dev_size(struct block_device
*bdev
)
2335 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
2338 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
2340 sector_t metadata_dev_size
= get_dev_size(bdev
);
2341 char buffer
[BDEVNAME_SIZE
];
2343 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
2344 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2345 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
2348 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
2350 sector_t metadata_dev_size
= get_dev_size(bdev
);
2352 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
2353 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
2355 return metadata_dev_size
;
2358 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
2360 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
2362 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
2364 return metadata_dev_size
;
2368 * When a metadata threshold is crossed a dm event is triggered, and
2369 * userland should respond by growing the metadata device. We could let
2370 * userland set the threshold, like we do with the data threshold, but I'm
2371 * not sure they know enough to do this well.
2373 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
2376 * 4M is ample for all ops with the possible exception of thin
2377 * device deletion which is harmless if it fails (just retry the
2378 * delete after you've grown the device).
2380 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
2381 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
2385 * thin-pool <metadata dev> <data dev>
2386 * <data block size (sectors)>
2387 * <low water mark (blocks)>
2388 * [<#feature args> [<arg>]*]
2390 * Optional feature arguments are:
2391 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2392 * ignore_discard: disable discard
2393 * no_discard_passdown: don't pass discards down to the data device
2394 * read_only: Don't allow any changes to be made to the pool metadata.
2395 * error_if_no_space: error IOs, instead of queueing, if no space.
2397 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2399 int r
, pool_created
= 0;
2402 struct pool_features pf
;
2403 struct dm_arg_set as
;
2404 struct dm_dev
*data_dev
;
2405 unsigned long block_size
;
2406 dm_block_t low_water_blocks
;
2407 struct dm_dev
*metadata_dev
;
2408 fmode_t metadata_mode
;
2411 * FIXME Remove validation from scope of lock.
2413 mutex_lock(&dm_thin_pool_table
.mutex
);
2416 ti
->error
= "Invalid argument count";
2425 * Set default pool features.
2427 pool_features_init(&pf
);
2429 dm_consume_args(&as
, 4);
2430 r
= parse_pool_features(&as
, &pf
, ti
);
2434 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
2435 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
2437 ti
->error
= "Error opening metadata block device";
2440 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
2442 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
2444 ti
->error
= "Error getting data device";
2448 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
2449 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2450 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2451 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2452 ti
->error
= "Invalid block size";
2457 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
2458 ti
->error
= "Invalid low water mark";
2463 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
2469 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
2470 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
2477 * 'pool_created' reflects whether this is the first table load.
2478 * Top level discard support is not allowed to be changed after
2479 * initial load. This would require a pool reload to trigger thin
2482 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
2483 ti
->error
= "Discard support cannot be disabled once enabled";
2485 goto out_flags_changed
;
2490 pt
->metadata_dev
= metadata_dev
;
2491 pt
->data_dev
= data_dev
;
2492 pt
->low_water_blocks
= low_water_blocks
;
2493 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
2494 ti
->num_flush_bios
= 1;
2497 * Only need to enable discards if the pool should pass
2498 * them down to the data device. The thin device's discard
2499 * processing will cause mappings to be removed from the btree.
2501 ti
->discard_zeroes_data_unsupported
= true;
2502 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
2503 ti
->num_discard_bios
= 1;
2506 * Setting 'discards_supported' circumvents the normal
2507 * stacking of discard limits (this keeps the pool and
2508 * thin devices' discard limits consistent).
2510 ti
->discards_supported
= true;
2514 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
2515 calc_metadata_threshold(pt
),
2516 metadata_low_callback
,
2521 pt
->callbacks
.congested_fn
= pool_is_congested
;
2522 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
2524 mutex_unlock(&dm_thin_pool_table
.mutex
);
2533 dm_put_device(ti
, data_dev
);
2535 dm_put_device(ti
, metadata_dev
);
2537 mutex_unlock(&dm_thin_pool_table
.mutex
);
2542 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
2545 struct pool_c
*pt
= ti
->private;
2546 struct pool
*pool
= pt
->pool
;
2547 unsigned long flags
;
2550 * As this is a singleton target, ti->begin is always zero.
2552 spin_lock_irqsave(&pool
->lock
, flags
);
2553 bio
->bi_bdev
= pt
->data_dev
->bdev
;
2554 r
= DM_MAPIO_REMAPPED
;
2555 spin_unlock_irqrestore(&pool
->lock
, flags
);
2560 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
2563 struct pool_c
*pt
= ti
->private;
2564 struct pool
*pool
= pt
->pool
;
2565 sector_t data_size
= ti
->len
;
2566 dm_block_t sb_data_size
;
2568 *need_commit
= false;
2570 (void) sector_div(data_size
, pool
->sectors_per_block
);
2572 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
2574 DMERR("%s: failed to retrieve data device size",
2575 dm_device_name(pool
->pool_md
));
2579 if (data_size
< sb_data_size
) {
2580 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2581 dm_device_name(pool
->pool_md
),
2582 (unsigned long long)data_size
, sb_data_size
);
2585 } else if (data_size
> sb_data_size
) {
2586 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
2587 DMERR("%s: unable to grow the data device until repaired.",
2588 dm_device_name(pool
->pool_md
));
2593 DMINFO("%s: growing the data device from %llu to %llu blocks",
2594 dm_device_name(pool
->pool_md
),
2595 sb_data_size
, (unsigned long long)data_size
);
2596 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
2598 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
2602 *need_commit
= true;
2608 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
2611 struct pool_c
*pt
= ti
->private;
2612 struct pool
*pool
= pt
->pool
;
2613 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
2615 *need_commit
= false;
2617 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
2619 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
2621 DMERR("%s: failed to retrieve metadata device size",
2622 dm_device_name(pool
->pool_md
));
2626 if (metadata_dev_size
< sb_metadata_dev_size
) {
2627 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2628 dm_device_name(pool
->pool_md
),
2629 metadata_dev_size
, sb_metadata_dev_size
);
2632 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
2633 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
2634 DMERR("%s: unable to grow the metadata device until repaired.",
2635 dm_device_name(pool
->pool_md
));
2639 warn_if_metadata_device_too_big(pool
->md_dev
);
2640 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2641 dm_device_name(pool
->pool_md
),
2642 sb_metadata_dev_size
, metadata_dev_size
);
2643 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
2645 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
2649 *need_commit
= true;
2656 * Retrieves the number of blocks of the data device from
2657 * the superblock and compares it to the actual device size,
2658 * thus resizing the data device in case it has grown.
2660 * This both copes with opening preallocated data devices in the ctr
2661 * being followed by a resume
2663 * calling the resume method individually after userspace has
2664 * grown the data device in reaction to a table event.
2666 static int pool_preresume(struct dm_target
*ti
)
2669 bool need_commit1
, need_commit2
;
2670 struct pool_c
*pt
= ti
->private;
2671 struct pool
*pool
= pt
->pool
;
2674 * Take control of the pool object.
2676 r
= bind_control_target(pool
, ti
);
2680 r
= maybe_resize_data_dev(ti
, &need_commit1
);
2684 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
2688 if (need_commit1
|| need_commit2
)
2689 (void) commit(pool
);
2694 static void pool_resume(struct dm_target
*ti
)
2696 struct pool_c
*pt
= ti
->private;
2697 struct pool
*pool
= pt
->pool
;
2698 unsigned long flags
;
2700 spin_lock_irqsave(&pool
->lock
, flags
);
2701 pool
->low_water_triggered
= false;
2702 spin_unlock_irqrestore(&pool
->lock
, flags
);
2705 do_waker(&pool
->waker
.work
);
2708 static void pool_postsuspend(struct dm_target
*ti
)
2710 struct pool_c
*pt
= ti
->private;
2711 struct pool
*pool
= pt
->pool
;
2713 cancel_delayed_work(&pool
->waker
);
2714 cancel_delayed_work(&pool
->no_space_timeout
);
2715 flush_workqueue(pool
->wq
);
2716 (void) commit(pool
);
2719 static int check_arg_count(unsigned argc
, unsigned args_required
)
2721 if (argc
!= args_required
) {
2722 DMWARN("Message received with %u arguments instead of %u.",
2723 argc
, args_required
);
2730 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
2732 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
2733 *dev_id
<= MAX_DEV_ID
)
2737 DMWARN("Message received with invalid device id: %s", arg
);
2742 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2747 r
= check_arg_count(argc
, 2);
2751 r
= read_dev_id(argv
[1], &dev_id
, 1);
2755 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
2757 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2765 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2768 dm_thin_id origin_dev_id
;
2771 r
= check_arg_count(argc
, 3);
2775 r
= read_dev_id(argv
[1], &dev_id
, 1);
2779 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
2783 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
2785 DMWARN("Creation of new snapshot %s of device %s failed.",
2793 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2798 r
= check_arg_count(argc
, 2);
2802 r
= read_dev_id(argv
[1], &dev_id
, 1);
2806 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
2808 DMWARN("Deletion of thin device %s failed.", argv
[1]);
2813 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2815 dm_thin_id old_id
, new_id
;
2818 r
= check_arg_count(argc
, 3);
2822 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
2823 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
2827 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
2828 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
2832 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
2834 DMWARN("Failed to change transaction id from %s to %s.",
2842 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2846 r
= check_arg_count(argc
, 1);
2850 (void) commit(pool
);
2852 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
2854 DMWARN("reserve_metadata_snap message failed.");
2859 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2863 r
= check_arg_count(argc
, 1);
2867 r
= dm_pool_release_metadata_snap(pool
->pmd
);
2869 DMWARN("release_metadata_snap message failed.");
2875 * Messages supported:
2876 * create_thin <dev_id>
2877 * create_snap <dev_id> <origin_id>
2879 * trim <dev_id> <new_size_in_sectors>
2880 * set_transaction_id <current_trans_id> <new_trans_id>
2881 * reserve_metadata_snap
2882 * release_metadata_snap
2884 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2887 struct pool_c
*pt
= ti
->private;
2888 struct pool
*pool
= pt
->pool
;
2890 if (!strcasecmp(argv
[0], "create_thin"))
2891 r
= process_create_thin_mesg(argc
, argv
, pool
);
2893 else if (!strcasecmp(argv
[0], "create_snap"))
2894 r
= process_create_snap_mesg(argc
, argv
, pool
);
2896 else if (!strcasecmp(argv
[0], "delete"))
2897 r
= process_delete_mesg(argc
, argv
, pool
);
2899 else if (!strcasecmp(argv
[0], "set_transaction_id"))
2900 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
2902 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
2903 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
2905 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
2906 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
2909 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
2912 (void) commit(pool
);
2917 static void emit_flags(struct pool_features
*pf
, char *result
,
2918 unsigned sz
, unsigned maxlen
)
2920 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
2921 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
2922 pf
->error_if_no_space
;
2923 DMEMIT("%u ", count
);
2925 if (!pf
->zero_new_blocks
)
2926 DMEMIT("skip_block_zeroing ");
2928 if (!pf
->discard_enabled
)
2929 DMEMIT("ignore_discard ");
2931 if (!pf
->discard_passdown
)
2932 DMEMIT("no_discard_passdown ");
2934 if (pf
->mode
== PM_READ_ONLY
)
2935 DMEMIT("read_only ");
2937 if (pf
->error_if_no_space
)
2938 DMEMIT("error_if_no_space ");
2943 * <transaction id> <used metadata sectors>/<total metadata sectors>
2944 * <used data sectors>/<total data sectors> <held metadata root>
2946 static void pool_status(struct dm_target
*ti
, status_type_t type
,
2947 unsigned status_flags
, char *result
, unsigned maxlen
)
2951 uint64_t transaction_id
;
2952 dm_block_t nr_free_blocks_data
;
2953 dm_block_t nr_free_blocks_metadata
;
2954 dm_block_t nr_blocks_data
;
2955 dm_block_t nr_blocks_metadata
;
2956 dm_block_t held_root
;
2957 char buf
[BDEVNAME_SIZE
];
2958 char buf2
[BDEVNAME_SIZE
];
2959 struct pool_c
*pt
= ti
->private;
2960 struct pool
*pool
= pt
->pool
;
2963 case STATUSTYPE_INFO
:
2964 if (get_pool_mode(pool
) == PM_FAIL
) {
2969 /* Commit to ensure statistics aren't out-of-date */
2970 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
2971 (void) commit(pool
);
2973 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
2975 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2976 dm_device_name(pool
->pool_md
), r
);
2980 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
2982 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2983 dm_device_name(pool
->pool_md
), r
);
2987 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
2989 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2990 dm_device_name(pool
->pool_md
), r
);
2994 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
2996 DMERR("%s: dm_pool_get_free_block_count returned %d",
2997 dm_device_name(pool
->pool_md
), r
);
3001 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3003 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3004 dm_device_name(pool
->pool_md
), r
);
3008 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3010 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3011 dm_device_name(pool
->pool_md
), r
);
3015 DMEMIT("%llu %llu/%llu %llu/%llu ",
3016 (unsigned long long)transaction_id
,
3017 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3018 (unsigned long long)nr_blocks_metadata
,
3019 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3020 (unsigned long long)nr_blocks_data
);
3023 DMEMIT("%llu ", held_root
);
3027 if (pool
->pf
.mode
== PM_OUT_OF_DATA_SPACE
)
3028 DMEMIT("out_of_data_space ");
3029 else if (pool
->pf
.mode
== PM_READ_ONLY
)
3034 if (!pool
->pf
.discard_enabled
)
3035 DMEMIT("ignore_discard ");
3036 else if (pool
->pf
.discard_passdown
)
3037 DMEMIT("discard_passdown ");
3039 DMEMIT("no_discard_passdown ");
3041 if (pool
->pf
.error_if_no_space
)
3042 DMEMIT("error_if_no_space ");
3044 DMEMIT("queue_if_no_space ");
3048 case STATUSTYPE_TABLE
:
3049 DMEMIT("%s %s %lu %llu ",
3050 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3051 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3052 (unsigned long)pool
->sectors_per_block
,
3053 (unsigned long long)pt
->low_water_blocks
);
3054 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
3063 static int pool_iterate_devices(struct dm_target
*ti
,
3064 iterate_devices_callout_fn fn
, void *data
)
3066 struct pool_c
*pt
= ti
->private;
3068 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
3071 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
3072 struct bio_vec
*biovec
, int max_size
)
3074 struct pool_c
*pt
= ti
->private;
3075 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
3077 if (!q
->merge_bvec_fn
)
3080 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
3082 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
3085 static void set_discard_limits(struct pool_c
*pt
, struct queue_limits
*limits
)
3087 struct pool
*pool
= pt
->pool
;
3088 struct queue_limits
*data_limits
;
3090 limits
->max_discard_sectors
= pool
->sectors_per_block
;
3093 * discard_granularity is just a hint, and not enforced.
3095 if (pt
->adjusted_pf
.discard_passdown
) {
3096 data_limits
= &bdev_get_queue(pt
->data_dev
->bdev
)->limits
;
3097 limits
->discard_granularity
= max(data_limits
->discard_granularity
,
3098 pool
->sectors_per_block
<< SECTOR_SHIFT
);
3100 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
3103 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3105 struct pool_c
*pt
= ti
->private;
3106 struct pool
*pool
= pt
->pool
;
3107 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3110 * If the system-determined stacked limits are compatible with the
3111 * pool's blocksize (io_opt is a factor) do not override them.
3113 if (io_opt_sectors
< pool
->sectors_per_block
||
3114 do_div(io_opt_sectors
, pool
->sectors_per_block
)) {
3115 blk_limits_io_min(limits
, 0);
3116 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3120 * pt->adjusted_pf is a staging area for the actual features to use.
3121 * They get transferred to the live pool in bind_control_target()
3122 * called from pool_preresume().
3124 if (!pt
->adjusted_pf
.discard_enabled
) {
3126 * Must explicitly disallow stacking discard limits otherwise the
3127 * block layer will stack them if pool's data device has support.
3128 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3129 * user to see that, so make sure to set all discard limits to 0.
3131 limits
->discard_granularity
= 0;
3135 disable_passdown_if_not_supported(pt
);
3137 set_discard_limits(pt
, limits
);
3140 static struct target_type pool_target
= {
3141 .name
= "thin-pool",
3142 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
3143 DM_TARGET_IMMUTABLE
,
3144 .version
= {1, 12, 0},
3145 .module
= THIS_MODULE
,
3149 .postsuspend
= pool_postsuspend
,
3150 .preresume
= pool_preresume
,
3151 .resume
= pool_resume
,
3152 .message
= pool_message
,
3153 .status
= pool_status
,
3154 .merge
= pool_merge
,
3155 .iterate_devices
= pool_iterate_devices
,
3156 .io_hints
= pool_io_hints
,
3159 /*----------------------------------------------------------------
3160 * Thin target methods
3161 *--------------------------------------------------------------*/
3162 static void thin_get(struct thin_c
*tc
)
3164 atomic_inc(&tc
->refcount
);
3167 static void thin_put(struct thin_c
*tc
)
3169 if (atomic_dec_and_test(&tc
->refcount
))
3170 complete(&tc
->can_destroy
);
3173 static void thin_dtr(struct dm_target
*ti
)
3175 struct thin_c
*tc
= ti
->private;
3176 unsigned long flags
;
3179 wait_for_completion(&tc
->can_destroy
);
3181 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
3182 list_del_rcu(&tc
->list
);
3183 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3186 mutex_lock(&dm_thin_pool_table
.mutex
);
3188 __pool_dec(tc
->pool
);
3189 dm_pool_close_thin_device(tc
->td
);
3190 dm_put_device(ti
, tc
->pool_dev
);
3192 dm_put_device(ti
, tc
->origin_dev
);
3195 mutex_unlock(&dm_thin_pool_table
.mutex
);
3199 * Thin target parameters:
3201 * <pool_dev> <dev_id> [origin_dev]
3203 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3204 * dev_id: the internal device identifier
3205 * origin_dev: a device external to the pool that should act as the origin
3207 * If the pool device has discards disabled, they get disabled for the thin
3210 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3214 struct dm_dev
*pool_dev
, *origin_dev
;
3215 struct mapped_device
*pool_md
;
3216 unsigned long flags
;
3218 mutex_lock(&dm_thin_pool_table
.mutex
);
3220 if (argc
!= 2 && argc
!= 3) {
3221 ti
->error
= "Invalid argument count";
3226 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
3228 ti
->error
= "Out of memory";
3232 spin_lock_init(&tc
->lock
);
3233 bio_list_init(&tc
->deferred_bio_list
);
3234 bio_list_init(&tc
->retry_on_resume_list
);
3235 tc
->sort_bio_list
= RB_ROOT
;
3238 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
3240 ti
->error
= "Error opening origin device";
3241 goto bad_origin_dev
;
3243 tc
->origin_dev
= origin_dev
;
3246 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
3248 ti
->error
= "Error opening pool device";
3251 tc
->pool_dev
= pool_dev
;
3253 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
3254 ti
->error
= "Invalid device id";
3259 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
3261 ti
->error
= "Couldn't get pool mapped device";
3266 tc
->pool
= __pool_table_lookup(pool_md
);
3268 ti
->error
= "Couldn't find pool object";
3270 goto bad_pool_lookup
;
3272 __pool_inc(tc
->pool
);
3274 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
3275 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
3280 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
3282 ti
->error
= "Couldn't open thin internal device";
3286 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
3288 goto bad_target_max_io_len
;
3290 ti
->num_flush_bios
= 1;
3291 ti
->flush_supported
= true;
3292 ti
->per_bio_data_size
= sizeof(struct dm_thin_endio_hook
);
3294 /* In case the pool supports discards, pass them on. */
3295 ti
->discard_zeroes_data_unsupported
= true;
3296 if (tc
->pool
->pf
.discard_enabled
) {
3297 ti
->discards_supported
= true;
3298 ti
->num_discard_bios
= 1;
3299 /* Discard bios must be split on a block boundary */
3300 ti
->split_discard_bios
= true;
3305 mutex_unlock(&dm_thin_pool_table
.mutex
);
3307 atomic_set(&tc
->refcount
, 1);
3308 init_completion(&tc
->can_destroy
);
3310 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
3311 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
3312 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3314 * This synchronize_rcu() call is needed here otherwise we risk a
3315 * wake_worker() call finding no bios to process (because the newly
3316 * added tc isn't yet visible). So this reduces latency since we
3317 * aren't then dependent on the periodic commit to wake_worker().
3323 bad_target_max_io_len
:
3324 dm_pool_close_thin_device(tc
->td
);
3326 __pool_dec(tc
->pool
);
3330 dm_put_device(ti
, tc
->pool_dev
);
3333 dm_put_device(ti
, tc
->origin_dev
);
3337 mutex_unlock(&dm_thin_pool_table
.mutex
);
3342 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
3344 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
3346 return thin_bio_map(ti
, bio
);
3349 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
3351 unsigned long flags
;
3352 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
3353 struct list_head work
;
3354 struct dm_thin_new_mapping
*m
, *tmp
;
3355 struct pool
*pool
= h
->tc
->pool
;
3357 if (h
->shared_read_entry
) {
3358 INIT_LIST_HEAD(&work
);
3359 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
3361 spin_lock_irqsave(&pool
->lock
, flags
);
3362 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
3365 __maybe_add_mapping(m
);
3367 spin_unlock_irqrestore(&pool
->lock
, flags
);
3370 if (h
->all_io_entry
) {
3371 INIT_LIST_HEAD(&work
);
3372 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
3373 if (!list_empty(&work
)) {
3374 spin_lock_irqsave(&pool
->lock
, flags
);
3375 list_for_each_entry_safe(m
, tmp
, &work
, list
)
3376 list_add_tail(&m
->list
, &pool
->prepared_discards
);
3377 spin_unlock_irqrestore(&pool
->lock
, flags
);
3385 static void thin_presuspend(struct dm_target
*ti
)
3387 struct thin_c
*tc
= ti
->private;
3389 if (dm_noflush_suspending(ti
))
3390 noflush_work(tc
, do_noflush_start
);
3393 static void thin_postsuspend(struct dm_target
*ti
)
3395 struct thin_c
*tc
= ti
->private;
3398 * The dm_noflush_suspending flag has been cleared by now, so
3399 * unfortunately we must always run this.
3401 noflush_work(tc
, do_noflush_stop
);
3405 * <nr mapped sectors> <highest mapped sector>
3407 static void thin_status(struct dm_target
*ti
, status_type_t type
,
3408 unsigned status_flags
, char *result
, unsigned maxlen
)
3412 dm_block_t mapped
, highest
;
3413 char buf
[BDEVNAME_SIZE
];
3414 struct thin_c
*tc
= ti
->private;
3416 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
3425 case STATUSTYPE_INFO
:
3426 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
3428 DMERR("dm_thin_get_mapped_count returned %d", r
);
3432 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
3434 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
3438 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
3440 DMEMIT("%llu", ((highest
+ 1) *
3441 tc
->pool
->sectors_per_block
) - 1);
3446 case STATUSTYPE_TABLE
:
3448 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
3449 (unsigned long) tc
->dev_id
);
3451 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
3462 static int thin_iterate_devices(struct dm_target
*ti
,
3463 iterate_devices_callout_fn fn
, void *data
)
3466 struct thin_c
*tc
= ti
->private;
3467 struct pool
*pool
= tc
->pool
;
3470 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3471 * we follow a more convoluted path through to the pool's target.
3474 return 0; /* nothing is bound */
3476 blocks
= pool
->ti
->len
;
3477 (void) sector_div(blocks
, pool
->sectors_per_block
);
3479 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
3484 static struct target_type thin_target
= {
3486 .version
= {1, 12, 0},
3487 .module
= THIS_MODULE
,
3491 .end_io
= thin_endio
,
3492 .presuspend
= thin_presuspend
,
3493 .postsuspend
= thin_postsuspend
,
3494 .status
= thin_status
,
3495 .iterate_devices
= thin_iterate_devices
,
3498 /*----------------------------------------------------------------*/
3500 static int __init
dm_thin_init(void)
3506 r
= dm_register_target(&thin_target
);
3510 r
= dm_register_target(&pool_target
);
3512 goto bad_pool_target
;
3516 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
3517 if (!_new_mapping_cache
)
3518 goto bad_new_mapping_cache
;
3522 bad_new_mapping_cache
:
3523 dm_unregister_target(&pool_target
);
3525 dm_unregister_target(&thin_target
);
3530 static void dm_thin_exit(void)
3532 dm_unregister_target(&thin_target
);
3533 dm_unregister_target(&pool_target
);
3535 kmem_cache_destroy(_new_mapping_cache
);
3538 module_init(dm_thin_init
);
3539 module_exit(dm_thin_exit
);
3541 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
3542 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
3544 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
3545 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3546 MODULE_LICENSE("GPL");