2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
17 #include <linux/module.h>
19 #include "tick-internal.h"
22 * NTP timekeeping variables:
25 DEFINE_SPINLOCK(ntp_lock
);
28 /* USER_HZ period (usecs): */
29 unsigned long tick_usec
= TICK_USEC
;
31 /* ACTHZ period (nsecs): */
32 unsigned long tick_nsec
;
34 static u64 tick_length
;
35 static u64 tick_length_base
;
37 #define MAX_TICKADJ 500LL /* usecs */
38 #define MAX_TICKADJ_SCALED \
39 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 * phase-lock loop variables
46 * clock synchronization status
48 * (TIME_ERROR prevents overwriting the CMOS clock)
50 static int time_state
= TIME_OK
;
52 /* clock status bits: */
53 static int time_status
= STA_UNSYNC
;
55 /* TAI offset (secs): */
58 /* time adjustment (nsecs): */
59 static s64 time_offset
;
61 /* pll time constant: */
62 static long time_constant
= 2;
64 /* maximum error (usecs): */
65 static long time_maxerror
= NTP_PHASE_LIMIT
;
67 /* estimated error (usecs): */
68 static long time_esterror
= NTP_PHASE_LIMIT
;
70 /* frequency offset (scaled nsecs/secs): */
73 /* time at last adjustment (secs): */
74 static long time_reftime
;
76 static long time_adjust
;
78 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
79 static s64 ntp_tick_adj
;
84 * The following variables are used when a pulse-per-second (PPS) signal
85 * is available. They establish the engineering parameters of the clock
86 * discipline loop when controlled by the PPS signal.
88 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
89 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
90 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
91 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
92 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
93 increase pps_shift or consecutive bad
94 intervals to decrease it */
95 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
97 static int pps_valid
; /* signal watchdog counter */
98 static long pps_tf
[3]; /* phase median filter */
99 static long pps_jitter
; /* current jitter (ns) */
100 static struct timespec pps_fbase
; /* beginning of the last freq interval */
101 static int pps_shift
; /* current interval duration (s) (shift) */
102 static int pps_intcnt
; /* interval counter */
103 static s64 pps_freq
; /* frequency offset (scaled ns/s) */
104 static long pps_stabil
; /* current stability (scaled ns/s) */
107 * PPS signal quality monitors
109 static long pps_calcnt
; /* calibration intervals */
110 static long pps_jitcnt
; /* jitter limit exceeded */
111 static long pps_stbcnt
; /* stability limit exceeded */
112 static long pps_errcnt
; /* calibration errors */
115 /* PPS kernel consumer compensates the whole phase error immediately.
116 * Otherwise, reduce the offset by a fixed factor times the time constant.
118 static inline s64
ntp_offset_chunk(s64 offset
)
120 if (time_status
& STA_PPSTIME
&& time_status
& STA_PPSSIGNAL
)
123 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
126 static inline void pps_reset_freq_interval(void)
128 /* the PPS calibration interval may end
129 surprisingly early */
130 pps_shift
= PPS_INTMIN
;
135 * pps_clear - Clears the PPS state variables
137 * Must be called while holding a write on the ntp_lock
139 static inline void pps_clear(void)
141 pps_reset_freq_interval();
145 pps_fbase
.tv_sec
= pps_fbase
.tv_nsec
= 0;
149 /* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
153 * Must be called while holding a write on the ntp_lock
155 static inline void pps_dec_valid(void)
160 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
161 STA_PPSWANDER
| STA_PPSERROR
);
166 static inline void pps_set_freq(s64 freq
)
171 static inline int is_error_status(int status
)
173 return (time_status
& (STA_UNSYNC
|STA_CLOCKERR
))
174 /* PPS signal lost when either PPS time or
175 * PPS frequency synchronization requested
177 || ((time_status
& (STA_PPSFREQ
|STA_PPSTIME
))
178 && !(time_status
& STA_PPSSIGNAL
))
179 /* PPS jitter exceeded when
180 * PPS time synchronization requested */
181 || ((time_status
& (STA_PPSTIME
|STA_PPSJITTER
))
182 == (STA_PPSTIME
|STA_PPSJITTER
))
183 /* PPS wander exceeded or calibration error when
184 * PPS frequency synchronization requested
186 || ((time_status
& STA_PPSFREQ
)
187 && (time_status
& (STA_PPSWANDER
|STA_PPSERROR
)));
190 static inline void pps_fill_timex(struct timex
*txc
)
192 txc
->ppsfreq
= shift_right((pps_freq
>> PPM_SCALE_INV_SHIFT
) *
193 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
194 txc
->jitter
= pps_jitter
;
195 if (!(time_status
& STA_NANO
))
196 txc
->jitter
/= NSEC_PER_USEC
;
197 txc
->shift
= pps_shift
;
198 txc
->stabil
= pps_stabil
;
199 txc
->jitcnt
= pps_jitcnt
;
200 txc
->calcnt
= pps_calcnt
;
201 txc
->errcnt
= pps_errcnt
;
202 txc
->stbcnt
= pps_stbcnt
;
205 #else /* !CONFIG_NTP_PPS */
207 static inline s64
ntp_offset_chunk(s64 offset
)
209 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
212 static inline void pps_reset_freq_interval(void) {}
213 static inline void pps_clear(void) {}
214 static inline void pps_dec_valid(void) {}
215 static inline void pps_set_freq(s64 freq
) {}
217 static inline int is_error_status(int status
)
219 return status
& (STA_UNSYNC
|STA_CLOCKERR
);
222 static inline void pps_fill_timex(struct timex
*txc
)
224 /* PPS is not implemented, so these are zero */
235 #endif /* CONFIG_NTP_PPS */
239 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
242 static inline int ntp_synced(void)
244 return !(time_status
& STA_UNSYNC
);
253 * Update (tick_length, tick_length_base, tick_nsec), based
254 * on (tick_usec, ntp_tick_adj, time_freq):
256 static void ntp_update_frequency(void)
261 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
264 second_length
+= ntp_tick_adj
;
265 second_length
+= time_freq
;
267 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
268 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
271 * Don't wait for the next second_overflow, apply
272 * the change to the tick length immediately:
274 tick_length
+= new_base
- tick_length_base
;
275 tick_length_base
= new_base
;
278 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
280 time_status
&= ~STA_MODE
;
285 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
288 time_status
|= STA_MODE
;
290 return div64_long(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
293 static void ntp_update_offset(long offset
)
299 if (!(time_status
& STA_PLL
))
302 if (!(time_status
& STA_NANO
))
303 offset
*= NSEC_PER_USEC
;
306 * Scale the phase adjustment and
307 * clamp to the operating range.
309 offset
= min(offset
, MAXPHASE
);
310 offset
= max(offset
, -MAXPHASE
);
313 * Select how the frequency is to be controlled
314 * and in which mode (PLL or FLL).
316 secs
= get_seconds() - time_reftime
;
317 if (unlikely(time_status
& STA_FREQHOLD
))
320 time_reftime
= get_seconds();
323 freq_adj
= ntp_update_offset_fll(offset64
, secs
);
326 * Clamp update interval to reduce PLL gain with low
327 * sampling rate (e.g. intermittent network connection)
328 * to avoid instability.
330 if (unlikely(secs
> 1 << (SHIFT_PLL
+ 1 + time_constant
)))
331 secs
= 1 << (SHIFT_PLL
+ 1 + time_constant
);
333 freq_adj
+= (offset64
* secs
) <<
334 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
336 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
338 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
340 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
344 * ntp_clear - Clears the NTP state variables
350 spin_lock_irqsave(&ntp_lock
, flags
);
352 time_adjust
= 0; /* stop active adjtime() */
353 time_status
|= STA_UNSYNC
;
354 time_maxerror
= NTP_PHASE_LIMIT
;
355 time_esterror
= NTP_PHASE_LIMIT
;
357 ntp_update_frequency();
359 tick_length
= tick_length_base
;
362 /* Clear PPS state variables */
364 spin_unlock_irqrestore(&ntp_lock
, flags
);
369 u64
ntp_tick_length(void)
374 spin_lock_irqsave(&ntp_lock
, flags
);
376 spin_unlock_irqrestore(&ntp_lock
, flags
);
382 * this routine handles the overflow of the microsecond field
384 * The tricky bits of code to handle the accurate clock support
385 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
386 * They were originally developed for SUN and DEC kernels.
387 * All the kudos should go to Dave for this stuff.
389 * Also handles leap second processing, and returns leap offset
391 int second_overflow(unsigned long secs
)
397 spin_lock_irqsave(&ntp_lock
, flags
);
400 * Leap second processing. If in leap-insert state at the end of the
401 * day, the system clock is set back one second; if in leap-delete
402 * state, the system clock is set ahead one second.
404 switch (time_state
) {
406 if (time_status
& STA_INS
)
407 time_state
= TIME_INS
;
408 else if (time_status
& STA_DEL
)
409 time_state
= TIME_DEL
;
412 if (secs
% 86400 == 0) {
414 time_state
= TIME_OOP
;
417 "Clock: inserting leap second 23:59:60 UTC\n");
421 if ((secs
+ 1) % 86400 == 0) {
424 time_state
= TIME_WAIT
;
426 "Clock: deleting leap second 23:59:59 UTC\n");
430 time_state
= TIME_WAIT
;
434 if (!(time_status
& (STA_INS
| STA_DEL
)))
435 time_state
= TIME_OK
;
440 /* Bump the maxerror field */
441 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
442 if (time_maxerror
> NTP_PHASE_LIMIT
) {
443 time_maxerror
= NTP_PHASE_LIMIT
;
444 time_status
|= STA_UNSYNC
;
447 /* Compute the phase adjustment for the next second */
448 tick_length
= tick_length_base
;
450 delta
= ntp_offset_chunk(time_offset
);
451 time_offset
-= delta
;
452 tick_length
+= delta
;
454 /* Check PPS signal */
460 if (time_adjust
> MAX_TICKADJ
) {
461 time_adjust
-= MAX_TICKADJ
;
462 tick_length
+= MAX_TICKADJ_SCALED
;
466 if (time_adjust
< -MAX_TICKADJ
) {
467 time_adjust
+= MAX_TICKADJ
;
468 tick_length
-= MAX_TICKADJ_SCALED
;
472 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
477 spin_unlock_irqrestore(&ntp_lock
, flags
);
482 #ifdef CONFIG_GENERIC_CMOS_UPDATE
484 static void sync_cmos_clock(struct work_struct
*work
);
486 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
488 static void sync_cmos_clock(struct work_struct
*work
)
490 struct timespec now
, next
;
494 * If we have an externally synchronized Linux clock, then update
495 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
496 * called as close as possible to 500 ms before the new second starts.
497 * This code is run on a timer. If the clock is set, that timer
498 * may not expire at the correct time. Thus, we adjust...
502 * Not synced, exit, do not restart a timer (if one is
503 * running, let it run out).
508 getnstimeofday(&now
);
509 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
510 fail
= update_persistent_clock(now
);
512 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
513 if (next
.tv_nsec
<= 0)
514 next
.tv_nsec
+= NSEC_PER_SEC
;
521 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
523 next
.tv_nsec
-= NSEC_PER_SEC
;
525 schedule_delayed_work(&sync_cmos_work
, timespec_to_jiffies(&next
));
528 static void notify_cmos_timer(void)
530 schedule_delayed_work(&sync_cmos_work
, 0);
534 static inline void notify_cmos_timer(void) { }
539 * Propagate a new txc->status value into the NTP state:
541 static inline void process_adj_status(struct timex
*txc
, struct timespec
*ts
)
543 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
544 time_state
= TIME_OK
;
545 time_status
= STA_UNSYNC
;
546 /* restart PPS frequency calibration */
547 pps_reset_freq_interval();
551 * If we turn on PLL adjustments then reset the
552 * reference time to current time.
554 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
555 time_reftime
= get_seconds();
557 /* only set allowed bits */
558 time_status
&= STA_RONLY
;
559 time_status
|= txc
->status
& ~STA_RONLY
;
563 * Called with ntp_lock held, so we can access and modify
564 * all the global NTP state:
566 static inline void process_adjtimex_modes(struct timex
*txc
, struct timespec
*ts
)
568 if (txc
->modes
& ADJ_STATUS
)
569 process_adj_status(txc
, ts
);
571 if (txc
->modes
& ADJ_NANO
)
572 time_status
|= STA_NANO
;
574 if (txc
->modes
& ADJ_MICRO
)
575 time_status
&= ~STA_NANO
;
577 if (txc
->modes
& ADJ_FREQUENCY
) {
578 time_freq
= txc
->freq
* PPM_SCALE
;
579 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
580 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
581 /* update pps_freq */
582 pps_set_freq(time_freq
);
585 if (txc
->modes
& ADJ_MAXERROR
)
586 time_maxerror
= txc
->maxerror
;
588 if (txc
->modes
& ADJ_ESTERROR
)
589 time_esterror
= txc
->esterror
;
591 if (txc
->modes
& ADJ_TIMECONST
) {
592 time_constant
= txc
->constant
;
593 if (!(time_status
& STA_NANO
))
595 time_constant
= min(time_constant
, (long)MAXTC
);
596 time_constant
= max(time_constant
, 0l);
599 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
600 time_tai
= txc
->constant
;
602 if (txc
->modes
& ADJ_OFFSET
)
603 ntp_update_offset(txc
->offset
);
605 if (txc
->modes
& ADJ_TICK
)
606 tick_usec
= txc
->tick
;
608 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
609 ntp_update_frequency();
613 * adjtimex mainly allows reading (and writing, if superuser) of
614 * kernel time-keeping variables. used by xntpd.
616 int do_adjtimex(struct timex
*txc
)
621 /* Validate the data before disabling interrupts */
622 if (txc
->modes
& ADJ_ADJTIME
) {
623 /* singleshot must not be used with any other mode bits */
624 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
626 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
627 !capable(CAP_SYS_TIME
))
630 /* In order to modify anything, you gotta be super-user! */
631 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
635 * if the quartz is off by more than 10% then
636 * something is VERY wrong!
638 if (txc
->modes
& ADJ_TICK
&&
639 (txc
->tick
< 900000/USER_HZ
||
640 txc
->tick
> 1100000/USER_HZ
))
644 if (txc
->modes
& ADJ_SETOFFSET
) {
645 struct timespec delta
;
646 delta
.tv_sec
= txc
->time
.tv_sec
;
647 delta
.tv_nsec
= txc
->time
.tv_usec
;
648 if (!capable(CAP_SYS_TIME
))
650 if (!(txc
->modes
& ADJ_NANO
))
651 delta
.tv_nsec
*= 1000;
652 result
= timekeeping_inject_offset(&delta
);
659 spin_lock_irq(&ntp_lock
);
661 if (txc
->modes
& ADJ_ADJTIME
) {
662 long save_adjust
= time_adjust
;
664 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
665 /* adjtime() is independent from ntp_adjtime() */
666 time_adjust
= txc
->offset
;
667 ntp_update_frequency();
669 txc
->offset
= save_adjust
;
672 /* If there are input parameters, then process them: */
674 process_adjtimex_modes(txc
, &ts
);
676 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
678 if (!(time_status
& STA_NANO
))
679 txc
->offset
/= NSEC_PER_USEC
;
682 result
= time_state
; /* mostly `TIME_OK' */
683 /* check for errors */
684 if (is_error_status(time_status
))
687 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
688 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
689 txc
->maxerror
= time_maxerror
;
690 txc
->esterror
= time_esterror
;
691 txc
->status
= time_status
;
692 txc
->constant
= time_constant
;
694 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
695 txc
->tick
= tick_usec
;
698 /* fill PPS status fields */
701 spin_unlock_irq(&ntp_lock
);
703 txc
->time
.tv_sec
= ts
.tv_sec
;
704 txc
->time
.tv_usec
= ts
.tv_nsec
;
705 if (!(time_status
& STA_NANO
))
706 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
713 #ifdef CONFIG_NTP_PPS
715 /* actually struct pps_normtime is good old struct timespec, but it is
716 * semantically different (and it is the reason why it was invented):
717 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
718 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
719 struct pps_normtime
{
720 __kernel_time_t sec
; /* seconds */
721 long nsec
; /* nanoseconds */
724 /* normalize the timestamp so that nsec is in the
725 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
726 static inline struct pps_normtime
pps_normalize_ts(struct timespec ts
)
728 struct pps_normtime norm
= {
733 if (norm
.nsec
> (NSEC_PER_SEC
>> 1)) {
734 norm
.nsec
-= NSEC_PER_SEC
;
741 /* get current phase correction and jitter */
742 static inline long pps_phase_filter_get(long *jitter
)
744 *jitter
= pps_tf
[0] - pps_tf
[1];
748 /* TODO: test various filters */
752 /* add the sample to the phase filter */
753 static inline void pps_phase_filter_add(long err
)
755 pps_tf
[2] = pps_tf
[1];
756 pps_tf
[1] = pps_tf
[0];
760 /* decrease frequency calibration interval length.
761 * It is halved after four consecutive unstable intervals.
763 static inline void pps_dec_freq_interval(void)
765 if (--pps_intcnt
<= -PPS_INTCOUNT
) {
766 pps_intcnt
= -PPS_INTCOUNT
;
767 if (pps_shift
> PPS_INTMIN
) {
774 /* increase frequency calibration interval length.
775 * It is doubled after four consecutive stable intervals.
777 static inline void pps_inc_freq_interval(void)
779 if (++pps_intcnt
>= PPS_INTCOUNT
) {
780 pps_intcnt
= PPS_INTCOUNT
;
781 if (pps_shift
< PPS_INTMAX
) {
788 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
791 * At the end of the calibration interval the difference between the
792 * first and last MONOTONIC_RAW clock timestamps divided by the length
793 * of the interval becomes the frequency update. If the interval was
794 * too long, the data are discarded.
795 * Returns the difference between old and new frequency values.
797 static long hardpps_update_freq(struct pps_normtime freq_norm
)
799 long delta
, delta_mod
;
802 /* check if the frequency interval was too long */
803 if (freq_norm
.sec
> (2 << pps_shift
)) {
804 time_status
|= STA_PPSERROR
;
806 pps_dec_freq_interval();
807 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
812 /* here the raw frequency offset and wander (stability) is
813 * calculated. If the wander is less than the wander threshold
814 * the interval is increased; otherwise it is decreased.
816 ftemp
= div_s64(((s64
)(-freq_norm
.nsec
)) << NTP_SCALE_SHIFT
,
818 delta
= shift_right(ftemp
- pps_freq
, NTP_SCALE_SHIFT
);
820 if (delta
> PPS_MAXWANDER
|| delta
< -PPS_MAXWANDER
) {
821 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta
);
822 time_status
|= STA_PPSWANDER
;
824 pps_dec_freq_interval();
825 } else { /* good sample */
826 pps_inc_freq_interval();
829 /* the stability metric is calculated as the average of recent
830 * frequency changes, but is used only for performance
835 delta_mod
= -delta_mod
;
836 pps_stabil
+= (div_s64(((s64
)delta_mod
) <<
837 (NTP_SCALE_SHIFT
- SHIFT_USEC
),
838 NSEC_PER_USEC
) - pps_stabil
) >> PPS_INTMIN
;
840 /* if enabled, the system clock frequency is updated */
841 if ((time_status
& STA_PPSFREQ
) != 0 &&
842 (time_status
& STA_FREQHOLD
) == 0) {
843 time_freq
= pps_freq
;
844 ntp_update_frequency();
850 /* correct REALTIME clock phase error against PPS signal */
851 static void hardpps_update_phase(long error
)
853 long correction
= -error
;
856 /* add the sample to the median filter */
857 pps_phase_filter_add(correction
);
858 correction
= pps_phase_filter_get(&jitter
);
860 /* Nominal jitter is due to PPS signal noise. If it exceeds the
861 * threshold, the sample is discarded; otherwise, if so enabled,
862 * the time offset is updated.
864 if (jitter
> (pps_jitter
<< PPS_POPCORN
)) {
865 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
866 jitter
, (pps_jitter
<< PPS_POPCORN
));
867 time_status
|= STA_PPSJITTER
;
869 } else if (time_status
& STA_PPSTIME
) {
870 /* correct the time using the phase offset */
871 time_offset
= div_s64(((s64
)correction
) << NTP_SCALE_SHIFT
,
873 /* cancel running adjtime() */
877 pps_jitter
+= (jitter
- pps_jitter
) >> PPS_INTMIN
;
881 * hardpps() - discipline CPU clock oscillator to external PPS signal
883 * This routine is called at each PPS signal arrival in order to
884 * discipline the CPU clock oscillator to the PPS signal. It takes two
885 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
886 * is used to correct clock phase error and the latter is used to
887 * correct the frequency.
889 * This code is based on David Mills's reference nanokernel
890 * implementation. It was mostly rewritten but keeps the same idea.
892 void hardpps(const struct timespec
*phase_ts
, const struct timespec
*raw_ts
)
894 struct pps_normtime pts_norm
, freq_norm
;
897 pts_norm
= pps_normalize_ts(*phase_ts
);
899 spin_lock_irqsave(&ntp_lock
, flags
);
901 /* clear the error bits, they will be set again if needed */
902 time_status
&= ~(STA_PPSJITTER
| STA_PPSWANDER
| STA_PPSERROR
);
904 /* indicate signal presence */
905 time_status
|= STA_PPSSIGNAL
;
906 pps_valid
= PPS_VALID
;
908 /* when called for the first time,
909 * just start the frequency interval */
910 if (unlikely(pps_fbase
.tv_sec
== 0)) {
912 spin_unlock_irqrestore(&ntp_lock
, flags
);
916 /* ok, now we have a base for frequency calculation */
917 freq_norm
= pps_normalize_ts(timespec_sub(*raw_ts
, pps_fbase
));
919 /* check that the signal is in the range
920 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
921 if ((freq_norm
.sec
== 0) ||
922 (freq_norm
.nsec
> MAXFREQ
* freq_norm
.sec
) ||
923 (freq_norm
.nsec
< -MAXFREQ
* freq_norm
.sec
)) {
924 time_status
|= STA_PPSJITTER
;
925 /* restart the frequency calibration interval */
927 spin_unlock_irqrestore(&ntp_lock
, flags
);
928 pr_err("hardpps: PPSJITTER: bad pulse\n");
934 /* check if the current frequency interval is finished */
935 if (freq_norm
.sec
>= (1 << pps_shift
)) {
937 /* restart the frequency calibration interval */
939 hardpps_update_freq(freq_norm
);
942 hardpps_update_phase(pts_norm
.nsec
);
944 spin_unlock_irqrestore(&ntp_lock
, flags
);
946 EXPORT_SYMBOL(hardpps
);
948 #endif /* CONFIG_NTP_PPS */
950 static int __init
ntp_tick_adj_setup(char *str
)
952 ntp_tick_adj
= simple_strtol(str
, NULL
, 0);
953 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
958 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
960 void __init
ntp_init(void)