2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
);
70 static void lower_barrier(struct r1conf
*conf
);
72 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
74 struct pool_info
*pi
= data
;
75 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size
, gfp_flags
);
81 static void r1bio_pool_free(void *r1_bio
, void *data
)
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
92 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
94 struct pool_info
*pi
= data
;
100 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
105 * Allocate bios : 1 for reading, n-1 for writing
107 for (j
= pi
->raid_disks
; j
-- ; ) {
108 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
111 r1_bio
->bios
[j
] = bio
;
114 * Allocate RESYNC_PAGES data pages and attach them to
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
119 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
120 need_pages
= pi
->raid_disks
;
123 for (j
= 0; j
< need_pages
; j
++) {
124 bio
= r1_bio
->bios
[j
];
125 bio
->bi_vcnt
= RESYNC_PAGES
;
127 if (bio_alloc_pages(bio
, gfp_flags
))
130 /* If not user-requests, copy the page pointers to all bios */
131 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
132 for (i
=0; i
<RESYNC_PAGES
; i
++)
133 for (j
=1; j
<pi
->raid_disks
; j
++)
134 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
135 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
138 r1_bio
->master_bio
= NULL
;
146 bio_for_each_segment_all(bv
, r1_bio
->bios
[j
], i
)
147 __free_page(bv
->bv_page
);
151 while (++j
< pi
->raid_disks
)
152 bio_put(r1_bio
->bios
[j
]);
153 r1bio_pool_free(r1_bio
, data
);
157 static void r1buf_pool_free(void *__r1_bio
, void *data
)
159 struct pool_info
*pi
= data
;
161 struct r1bio
*r1bio
= __r1_bio
;
163 for (i
= 0; i
< RESYNC_PAGES
; i
++)
164 for (j
= pi
->raid_disks
; j
-- ;) {
166 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
167 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
168 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
170 for (i
=0 ; i
< pi
->raid_disks
; i
++)
171 bio_put(r1bio
->bios
[i
]);
173 r1bio_pool_free(r1bio
, data
);
176 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
180 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
181 struct bio
**bio
= r1_bio
->bios
+ i
;
182 if (!BIO_SPECIAL(*bio
))
188 static void free_r1bio(struct r1bio
*r1_bio
)
190 struct r1conf
*conf
= r1_bio
->mddev
->private;
192 put_all_bios(conf
, r1_bio
);
193 mempool_free(r1_bio
, conf
->r1bio_pool
);
196 static void put_buf(struct r1bio
*r1_bio
)
198 struct r1conf
*conf
= r1_bio
->mddev
->private;
201 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
202 struct bio
*bio
= r1_bio
->bios
[i
];
204 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
207 mempool_free(r1_bio
, conf
->r1buf_pool
);
212 static void reschedule_retry(struct r1bio
*r1_bio
)
215 struct mddev
*mddev
= r1_bio
->mddev
;
216 struct r1conf
*conf
= mddev
->private;
218 spin_lock_irqsave(&conf
->device_lock
, flags
);
219 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
221 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
223 wake_up(&conf
->wait_barrier
);
224 md_wakeup_thread(mddev
->thread
);
228 * raid_end_bio_io() is called when we have finished servicing a mirrored
229 * operation and are ready to return a success/failure code to the buffer
232 static void call_bio_endio(struct r1bio
*r1_bio
)
234 struct bio
*bio
= r1_bio
->master_bio
;
236 struct r1conf
*conf
= r1_bio
->mddev
->private;
238 if (bio
->bi_phys_segments
) {
240 spin_lock_irqsave(&conf
->device_lock
, flags
);
241 bio
->bi_phys_segments
--;
242 done
= (bio
->bi_phys_segments
== 0);
243 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
247 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
248 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
252 * Wake up any possible resync thread that waits for the device
259 static void raid_end_bio_io(struct r1bio
*r1_bio
)
261 struct bio
*bio
= r1_bio
->master_bio
;
263 /* if nobody has done the final endio yet, do it now */
264 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
265 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
266 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
267 (unsigned long long) bio
->bi_sector
,
268 (unsigned long long) bio
->bi_sector
+
269 bio_sectors(bio
) - 1);
271 call_bio_endio(r1_bio
);
277 * Update disk head position estimator based on IRQ completion info.
279 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
281 struct r1conf
*conf
= r1_bio
->mddev
->private;
283 conf
->mirrors
[disk
].head_position
=
284 r1_bio
->sector
+ (r1_bio
->sectors
);
288 * Find the disk number which triggered given bio
290 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
293 struct r1conf
*conf
= r1_bio
->mddev
->private;
294 int raid_disks
= conf
->raid_disks
;
296 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
297 if (r1_bio
->bios
[mirror
] == bio
)
300 BUG_ON(mirror
== raid_disks
* 2);
301 update_head_pos(mirror
, r1_bio
);
306 static void raid1_end_read_request(struct bio
*bio
, int error
)
308 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
309 struct r1bio
*r1_bio
= bio
->bi_private
;
311 struct r1conf
*conf
= r1_bio
->mddev
->private;
313 mirror
= r1_bio
->read_disk
;
315 * this branch is our 'one mirror IO has finished' event handler:
317 update_head_pos(mirror
, r1_bio
);
320 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
327 spin_lock_irqsave(&conf
->device_lock
, flags
);
328 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
329 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
330 test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
)))
332 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
336 raid_end_bio_io(r1_bio
);
337 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
342 char b
[BDEVNAME_SIZE
];
344 KERN_ERR
"md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
347 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
349 (unsigned long long)r1_bio
->sector
);
350 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
351 reschedule_retry(r1_bio
);
352 /* don't drop the reference on read_disk yet */
356 static void close_write(struct r1bio
*r1_bio
)
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
360 /* free extra copy of the data pages */
361 int i
= r1_bio
->behind_page_count
;
363 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
364 kfree(r1_bio
->behind_bvecs
);
365 r1_bio
->behind_bvecs
= NULL
;
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
370 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
371 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
372 md_write_end(r1_bio
->mddev
);
375 static void r1_bio_write_done(struct r1bio
*r1_bio
)
377 if (!atomic_dec_and_test(&r1_bio
->remaining
))
380 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
381 reschedule_retry(r1_bio
);
384 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
385 reschedule_retry(r1_bio
);
387 raid_end_bio_io(r1_bio
);
391 static void raid1_end_write_request(struct bio
*bio
, int error
)
393 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
394 struct r1bio
*r1_bio
= bio
->bi_private
;
395 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
396 struct r1conf
*conf
= r1_bio
->mddev
->private;
397 struct bio
*to_put
= NULL
;
399 mirror
= find_bio_disk(r1_bio
, bio
);
402 * 'one mirror IO has finished' event handler:
405 set_bit(WriteErrorSeen
,
406 &conf
->mirrors
[mirror
].rdev
->flags
);
407 if (!test_and_set_bit(WantReplacement
,
408 &conf
->mirrors
[mirror
].rdev
->flags
))
409 set_bit(MD_RECOVERY_NEEDED
, &
410 conf
->mddev
->recovery
);
412 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
427 r1_bio
->bios
[mirror
] = NULL
;
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
437 if (test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
) &&
438 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
))
439 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
443 r1_bio
->sector
, r1_bio
->sectors
,
444 &first_bad
, &bad_sectors
)) {
445 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
446 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
451 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
452 atomic_dec(&r1_bio
->behind_remaining
);
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
461 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
462 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
465 struct bio
*mbio
= r1_bio
->master_bio
;
466 pr_debug("raid1: behind end write sectors"
468 (unsigned long long) mbio
->bi_sector
,
469 (unsigned long long) mbio
->bi_sector
+
470 bio_sectors(mbio
) - 1);
471 call_bio_endio(r1_bio
);
475 if (r1_bio
->bios
[mirror
] == NULL
)
476 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
480 * Let's see if all mirrored write operations have finished
483 r1_bio_write_done(r1_bio
);
491 * This routine returns the disk from which the requested read should
492 * be done. There is a per-array 'next expected sequential IO' sector
493 * number - if this matches on the next IO then we use the last disk.
494 * There is also a per-disk 'last know head position' sector that is
495 * maintained from IRQ contexts, both the normal and the resync IO
496 * completion handlers update this position correctly. If there is no
497 * perfect sequential match then we pick the disk whose head is closest.
499 * If there are 2 mirrors in the same 2 devices, performance degrades
500 * because position is mirror, not device based.
502 * The rdev for the device selected will have nr_pending incremented.
504 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
506 const sector_t this_sector
= r1_bio
->sector
;
508 int best_good_sectors
;
509 int best_disk
, best_dist_disk
, best_pending_disk
;
513 unsigned int min_pending
;
514 struct md_rdev
*rdev
;
516 int choose_next_idle
;
520 * Check if we can balance. We can balance on the whole
521 * device if no resync is going on, or below the resync window.
522 * We take the first readable disk when above the resync window.
525 sectors
= r1_bio
->sectors
;
528 best_dist
= MaxSector
;
529 best_pending_disk
= -1;
530 min_pending
= UINT_MAX
;
531 best_good_sectors
= 0;
533 choose_next_idle
= 0;
535 if (conf
->mddev
->recovery_cp
< MaxSector
&&
536 (this_sector
+ sectors
>= conf
->next_resync
))
541 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
545 unsigned int pending
;
548 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
549 if (r1_bio
->bios
[disk
] == IO_BLOCKED
551 || test_bit(Unmerged
, &rdev
->flags
)
552 || test_bit(Faulty
, &rdev
->flags
))
554 if (!test_bit(In_sync
, &rdev
->flags
) &&
555 rdev
->recovery_offset
< this_sector
+ sectors
)
557 if (test_bit(WriteMostly
, &rdev
->flags
)) {
558 /* Don't balance among write-mostly, just
559 * use the first as a last resort */
560 if (best_dist_disk
< 0) {
561 if (is_badblock(rdev
, this_sector
, sectors
,
562 &first_bad
, &bad_sectors
)) {
563 if (first_bad
< this_sector
)
564 /* Cannot use this */
566 best_good_sectors
= first_bad
- this_sector
;
568 best_good_sectors
= sectors
;
569 best_dist_disk
= disk
;
570 best_pending_disk
= disk
;
574 /* This is a reasonable device to use. It might
577 if (is_badblock(rdev
, this_sector
, sectors
,
578 &first_bad
, &bad_sectors
)) {
579 if (best_dist
< MaxSector
)
580 /* already have a better device */
582 if (first_bad
<= this_sector
) {
583 /* cannot read here. If this is the 'primary'
584 * device, then we must not read beyond
585 * bad_sectors from another device..
587 bad_sectors
-= (this_sector
- first_bad
);
588 if (choose_first
&& sectors
> bad_sectors
)
589 sectors
= bad_sectors
;
590 if (best_good_sectors
> sectors
)
591 best_good_sectors
= sectors
;
594 sector_t good_sectors
= first_bad
- this_sector
;
595 if (good_sectors
> best_good_sectors
) {
596 best_good_sectors
= good_sectors
;
604 best_good_sectors
= sectors
;
606 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
607 has_nonrot_disk
|= nonrot
;
608 pending
= atomic_read(&rdev
->nr_pending
);
609 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
614 /* Don't change to another disk for sequential reads */
615 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
617 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
618 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
622 * If buffered sequential IO size exceeds optimal
623 * iosize, check if there is idle disk. If yes, choose
624 * the idle disk. read_balance could already choose an
625 * idle disk before noticing it's a sequential IO in
626 * this disk. This doesn't matter because this disk
627 * will idle, next time it will be utilized after the
628 * first disk has IO size exceeds optimal iosize. In
629 * this way, iosize of the first disk will be optimal
630 * iosize at least. iosize of the second disk might be
631 * small, but not a big deal since when the second disk
632 * starts IO, the first disk is likely still busy.
634 if (nonrot
&& opt_iosize
> 0 &&
635 mirror
->seq_start
!= MaxSector
&&
636 mirror
->next_seq_sect
> opt_iosize
&&
637 mirror
->next_seq_sect
- opt_iosize
>=
639 choose_next_idle
= 1;
644 /* If device is idle, use it */
650 if (choose_next_idle
)
653 if (min_pending
> pending
) {
654 min_pending
= pending
;
655 best_pending_disk
= disk
;
658 if (dist
< best_dist
) {
660 best_dist_disk
= disk
;
665 * If all disks are rotational, choose the closest disk. If any disk is
666 * non-rotational, choose the disk with less pending request even the
667 * disk is rotational, which might/might not be optimal for raids with
668 * mixed ratation/non-rotational disks depending on workload.
670 if (best_disk
== -1) {
672 best_disk
= best_pending_disk
;
674 best_disk
= best_dist_disk
;
677 if (best_disk
>= 0) {
678 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
681 atomic_inc(&rdev
->nr_pending
);
682 if (test_bit(Faulty
, &rdev
->flags
)) {
683 /* cannot risk returning a device that failed
684 * before we inc'ed nr_pending
686 rdev_dec_pending(rdev
, conf
->mddev
);
689 sectors
= best_good_sectors
;
691 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
692 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
694 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
697 *max_sectors
= sectors
;
702 static int raid1_mergeable_bvec(struct request_queue
*q
,
703 struct bvec_merge_data
*bvm
,
704 struct bio_vec
*biovec
)
706 struct mddev
*mddev
= q
->queuedata
;
707 struct r1conf
*conf
= mddev
->private;
708 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
709 int max
= biovec
->bv_len
;
711 if (mddev
->merge_check_needed
) {
714 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
715 struct md_rdev
*rdev
= rcu_dereference(
716 conf
->mirrors
[disk
].rdev
);
717 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
718 struct request_queue
*q
=
719 bdev_get_queue(rdev
->bdev
);
720 if (q
->merge_bvec_fn
) {
721 bvm
->bi_sector
= sector
+
723 bvm
->bi_bdev
= rdev
->bdev
;
724 max
= min(max
, q
->merge_bvec_fn(
735 int md_raid1_congested(struct mddev
*mddev
, int bits
)
737 struct r1conf
*conf
= mddev
->private;
740 if ((bits
& (1 << BDI_async_congested
)) &&
741 conf
->pending_count
>= max_queued_requests
)
745 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
746 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
747 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
748 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
752 /* Note the '|| 1' - when read_balance prefers
753 * non-congested targets, it can be removed
755 if ((bits
& (1<<BDI_async_congested
)) || 1)
756 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
758 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
764 EXPORT_SYMBOL_GPL(md_raid1_congested
);
766 static int raid1_congested(void *data
, int bits
)
768 struct mddev
*mddev
= data
;
770 return mddev_congested(mddev
, bits
) ||
771 md_raid1_congested(mddev
, bits
);
774 static void flush_pending_writes(struct r1conf
*conf
)
776 /* Any writes that have been queued but are awaiting
777 * bitmap updates get flushed here.
779 spin_lock_irq(&conf
->device_lock
);
781 if (conf
->pending_bio_list
.head
) {
783 bio
= bio_list_get(&conf
->pending_bio_list
);
784 conf
->pending_count
= 0;
785 spin_unlock_irq(&conf
->device_lock
);
786 /* flush any pending bitmap writes to
787 * disk before proceeding w/ I/O */
788 bitmap_unplug(conf
->mddev
->bitmap
);
789 wake_up(&conf
->wait_barrier
);
791 while (bio
) { /* submit pending writes */
792 struct bio
*next
= bio
->bi_next
;
794 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
795 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
799 generic_make_request(bio
);
803 spin_unlock_irq(&conf
->device_lock
);
807 * Sometimes we need to suspend IO while we do something else,
808 * either some resync/recovery, or reconfigure the array.
809 * To do this we raise a 'barrier'.
810 * The 'barrier' is a counter that can be raised multiple times
811 * to count how many activities are happening which preclude
813 * We can only raise the barrier if there is no pending IO.
814 * i.e. if nr_pending == 0.
815 * We choose only to raise the barrier if no-one is waiting for the
816 * barrier to go down. This means that as soon as an IO request
817 * is ready, no other operations which require a barrier will start
818 * until the IO request has had a chance.
820 * So: regular IO calls 'wait_barrier'. When that returns there
821 * is no backgroup IO happening, It must arrange to call
822 * allow_barrier when it has finished its IO.
823 * backgroup IO calls must call raise_barrier. Once that returns
824 * there is no normal IO happeing. It must arrange to call
825 * lower_barrier when the particular background IO completes.
827 #define RESYNC_DEPTH 32
829 static void raise_barrier(struct r1conf
*conf
)
831 spin_lock_irq(&conf
->resync_lock
);
833 /* Wait until no block IO is waiting */
834 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
837 /* block any new IO from starting */
840 /* Now wait for all pending IO to complete */
841 wait_event_lock_irq(conf
->wait_barrier
,
842 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
845 spin_unlock_irq(&conf
->resync_lock
);
848 static void lower_barrier(struct r1conf
*conf
)
851 BUG_ON(conf
->barrier
<= 0);
852 spin_lock_irqsave(&conf
->resync_lock
, flags
);
854 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
855 wake_up(&conf
->wait_barrier
);
858 static void wait_barrier(struct r1conf
*conf
)
860 spin_lock_irq(&conf
->resync_lock
);
863 /* Wait for the barrier to drop.
864 * However if there are already pending
865 * requests (preventing the barrier from
866 * rising completely), and the
867 * pre-process bio queue isn't empty,
868 * then don't wait, as we need to empty
869 * that queue to get the nr_pending
872 wait_event_lock_irq(conf
->wait_barrier
,
876 !bio_list_empty(current
->bio_list
)),
881 spin_unlock_irq(&conf
->resync_lock
);
884 static void allow_barrier(struct r1conf
*conf
)
887 spin_lock_irqsave(&conf
->resync_lock
, flags
);
889 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
890 wake_up(&conf
->wait_barrier
);
893 static void freeze_array(struct r1conf
*conf
, int extra
)
895 /* stop syncio and normal IO and wait for everything to
897 * We increment barrier and nr_waiting, and then
898 * wait until nr_pending match nr_queued+extra
899 * This is called in the context of one normal IO request
900 * that has failed. Thus any sync request that might be pending
901 * will be blocked by nr_pending, and we need to wait for
902 * pending IO requests to complete or be queued for re-try.
903 * Thus the number queued (nr_queued) plus this request (extra)
904 * must match the number of pending IOs (nr_pending) before
907 spin_lock_irq(&conf
->resync_lock
);
910 wait_event_lock_irq_cmd(conf
->wait_barrier
,
911 conf
->nr_pending
== conf
->nr_queued
+extra
,
913 flush_pending_writes(conf
));
914 spin_unlock_irq(&conf
->resync_lock
);
916 static void unfreeze_array(struct r1conf
*conf
)
918 /* reverse the effect of the freeze */
919 spin_lock_irq(&conf
->resync_lock
);
922 wake_up(&conf
->wait_barrier
);
923 spin_unlock_irq(&conf
->resync_lock
);
927 /* duplicate the data pages for behind I/O
929 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
932 struct bio_vec
*bvec
;
933 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
935 if (unlikely(!bvecs
))
938 bio_for_each_segment_all(bvec
, bio
, i
) {
940 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
941 if (unlikely(!bvecs
[i
].bv_page
))
943 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
944 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
945 kunmap(bvecs
[i
].bv_page
);
946 kunmap(bvec
->bv_page
);
948 r1_bio
->behind_bvecs
= bvecs
;
949 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
950 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
954 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
955 if (bvecs
[i
].bv_page
)
956 put_page(bvecs
[i
].bv_page
);
958 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
961 struct raid1_plug_cb
{
962 struct blk_plug_cb cb
;
963 struct bio_list pending
;
967 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
969 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
971 struct mddev
*mddev
= plug
->cb
.data
;
972 struct r1conf
*conf
= mddev
->private;
975 if (from_schedule
|| current
->bio_list
) {
976 spin_lock_irq(&conf
->device_lock
);
977 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
978 conf
->pending_count
+= plug
->pending_cnt
;
979 spin_unlock_irq(&conf
->device_lock
);
980 wake_up(&conf
->wait_barrier
);
981 md_wakeup_thread(mddev
->thread
);
986 /* we aren't scheduling, so we can do the write-out directly. */
987 bio
= bio_list_get(&plug
->pending
);
988 bitmap_unplug(mddev
->bitmap
);
989 wake_up(&conf
->wait_barrier
);
991 while (bio
) { /* submit pending writes */
992 struct bio
*next
= bio
->bi_next
;
994 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
995 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
999 generic_make_request(bio
);
1005 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1007 struct r1conf
*conf
= mddev
->private;
1008 struct raid1_info
*mirror
;
1009 struct r1bio
*r1_bio
;
1010 struct bio
*read_bio
;
1012 struct bitmap
*bitmap
;
1013 unsigned long flags
;
1014 const int rw
= bio_data_dir(bio
);
1015 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1016 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
1017 const unsigned long do_discard
= (bio
->bi_rw
1018 & (REQ_DISCARD
| REQ_SECURE
));
1019 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1020 struct md_rdev
*blocked_rdev
;
1021 struct blk_plug_cb
*cb
;
1022 struct raid1_plug_cb
*plug
= NULL
;
1024 int sectors_handled
;
1028 * Register the new request and wait if the reconstruction
1029 * thread has put up a bar for new requests.
1030 * Continue immediately if no resync is active currently.
1033 md_write_start(mddev
, bio
); /* wait on superblock update early */
1035 if (bio_data_dir(bio
) == WRITE
&&
1036 bio_end_sector(bio
) > mddev
->suspend_lo
&&
1037 bio
->bi_sector
< mddev
->suspend_hi
) {
1038 /* As the suspend_* range is controlled by
1039 * userspace, we want an interruptible
1044 flush_signals(current
);
1045 prepare_to_wait(&conf
->wait_barrier
,
1046 &w
, TASK_INTERRUPTIBLE
);
1047 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1048 bio
->bi_sector
>= mddev
->suspend_hi
)
1052 finish_wait(&conf
->wait_barrier
, &w
);
1057 bitmap
= mddev
->bitmap
;
1060 * make_request() can abort the operation when READA is being
1061 * used and no empty request is available.
1064 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1066 r1_bio
->master_bio
= bio
;
1067 r1_bio
->sectors
= bio_sectors(bio
);
1069 r1_bio
->mddev
= mddev
;
1070 r1_bio
->sector
= bio
->bi_sector
;
1072 /* We might need to issue multiple reads to different
1073 * devices if there are bad blocks around, so we keep
1074 * track of the number of reads in bio->bi_phys_segments.
1075 * If this is 0, there is only one r1_bio and no locking
1076 * will be needed when requests complete. If it is
1077 * non-zero, then it is the number of not-completed requests.
1079 bio
->bi_phys_segments
= 0;
1080 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1084 * read balancing logic:
1089 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1092 /* couldn't find anywhere to read from */
1093 raid_end_bio_io(r1_bio
);
1096 mirror
= conf
->mirrors
+ rdisk
;
1098 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1100 /* Reading from a write-mostly device must
1101 * take care not to over-take any writes
1104 wait_event(bitmap
->behind_wait
,
1105 atomic_read(&bitmap
->behind_writes
) == 0);
1107 r1_bio
->read_disk
= rdisk
;
1109 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1110 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
1113 r1_bio
->bios
[rdisk
] = read_bio
;
1115 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
1116 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1117 read_bio
->bi_end_io
= raid1_end_read_request
;
1118 read_bio
->bi_rw
= READ
| do_sync
;
1119 read_bio
->bi_private
= r1_bio
;
1121 if (max_sectors
< r1_bio
->sectors
) {
1122 /* could not read all from this device, so we will
1123 * need another r1_bio.
1126 sectors_handled
= (r1_bio
->sector
+ max_sectors
1128 r1_bio
->sectors
= max_sectors
;
1129 spin_lock_irq(&conf
->device_lock
);
1130 if (bio
->bi_phys_segments
== 0)
1131 bio
->bi_phys_segments
= 2;
1133 bio
->bi_phys_segments
++;
1134 spin_unlock_irq(&conf
->device_lock
);
1135 /* Cannot call generic_make_request directly
1136 * as that will be queued in __make_request
1137 * and subsequent mempool_alloc might block waiting
1138 * for it. So hand bio over to raid1d.
1140 reschedule_retry(r1_bio
);
1142 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1144 r1_bio
->master_bio
= bio
;
1145 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1147 r1_bio
->mddev
= mddev
;
1148 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1151 generic_make_request(read_bio
);
1158 if (conf
->pending_count
>= max_queued_requests
) {
1159 md_wakeup_thread(mddev
->thread
);
1160 wait_event(conf
->wait_barrier
,
1161 conf
->pending_count
< max_queued_requests
);
1163 /* first select target devices under rcu_lock and
1164 * inc refcount on their rdev. Record them by setting
1166 * If there are known/acknowledged bad blocks on any device on
1167 * which we have seen a write error, we want to avoid writing those
1169 * This potentially requires several writes to write around
1170 * the bad blocks. Each set of writes gets it's own r1bio
1171 * with a set of bios attached.
1174 disks
= conf
->raid_disks
* 2;
1176 blocked_rdev
= NULL
;
1178 max_sectors
= r1_bio
->sectors
;
1179 for (i
= 0; i
< disks
; i
++) {
1180 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1181 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1182 atomic_inc(&rdev
->nr_pending
);
1183 blocked_rdev
= rdev
;
1186 r1_bio
->bios
[i
] = NULL
;
1187 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1188 || test_bit(Unmerged
, &rdev
->flags
)) {
1189 if (i
< conf
->raid_disks
)
1190 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1194 atomic_inc(&rdev
->nr_pending
);
1195 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1200 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1202 &first_bad
, &bad_sectors
);
1204 /* mustn't write here until the bad block is
1206 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1207 blocked_rdev
= rdev
;
1210 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1211 /* Cannot write here at all */
1212 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1213 if (bad_sectors
< max_sectors
)
1214 /* mustn't write more than bad_sectors
1215 * to other devices yet
1217 max_sectors
= bad_sectors
;
1218 rdev_dec_pending(rdev
, mddev
);
1219 /* We don't set R1BIO_Degraded as that
1220 * only applies if the disk is
1221 * missing, so it might be re-added,
1222 * and we want to know to recover this
1224 * In this case the device is here,
1225 * and the fact that this chunk is not
1226 * in-sync is recorded in the bad
1232 int good_sectors
= first_bad
- r1_bio
->sector
;
1233 if (good_sectors
< max_sectors
)
1234 max_sectors
= good_sectors
;
1237 r1_bio
->bios
[i
] = bio
;
1241 if (unlikely(blocked_rdev
)) {
1242 /* Wait for this device to become unblocked */
1245 for (j
= 0; j
< i
; j
++)
1246 if (r1_bio
->bios
[j
])
1247 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1249 allow_barrier(conf
);
1250 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1255 if (max_sectors
< r1_bio
->sectors
) {
1256 /* We are splitting this write into multiple parts, so
1257 * we need to prepare for allocating another r1_bio.
1259 r1_bio
->sectors
= max_sectors
;
1260 spin_lock_irq(&conf
->device_lock
);
1261 if (bio
->bi_phys_segments
== 0)
1262 bio
->bi_phys_segments
= 2;
1264 bio
->bi_phys_segments
++;
1265 spin_unlock_irq(&conf
->device_lock
);
1267 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1269 atomic_set(&r1_bio
->remaining
, 1);
1270 atomic_set(&r1_bio
->behind_remaining
, 0);
1273 for (i
= 0; i
< disks
; i
++) {
1275 if (!r1_bio
->bios
[i
])
1278 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1279 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1283 * Not if there are too many, or cannot
1284 * allocate memory, or a reader on WriteMostly
1285 * is waiting for behind writes to flush */
1287 (atomic_read(&bitmap
->behind_writes
)
1288 < mddev
->bitmap_info
.max_write_behind
) &&
1289 !waitqueue_active(&bitmap
->behind_wait
))
1290 alloc_behind_pages(mbio
, r1_bio
);
1292 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1294 test_bit(R1BIO_BehindIO
,
1298 if (r1_bio
->behind_bvecs
) {
1299 struct bio_vec
*bvec
;
1303 * We trimmed the bio, so _all is legit
1305 bio_for_each_segment_all(bvec
, mbio
, j
)
1306 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1307 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1308 atomic_inc(&r1_bio
->behind_remaining
);
1311 r1_bio
->bios
[i
] = mbio
;
1313 mbio
->bi_sector
= (r1_bio
->sector
+
1314 conf
->mirrors
[i
].rdev
->data_offset
);
1315 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1316 mbio
->bi_end_io
= raid1_end_write_request
;
1318 WRITE
| do_flush_fua
| do_sync
| do_discard
| do_same
;
1319 mbio
->bi_private
= r1_bio
;
1321 atomic_inc(&r1_bio
->remaining
);
1323 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1325 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1328 spin_lock_irqsave(&conf
->device_lock
, flags
);
1330 bio_list_add(&plug
->pending
, mbio
);
1331 plug
->pending_cnt
++;
1333 bio_list_add(&conf
->pending_bio_list
, mbio
);
1334 conf
->pending_count
++;
1336 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1338 md_wakeup_thread(mddev
->thread
);
1340 /* Mustn't call r1_bio_write_done before this next test,
1341 * as it could result in the bio being freed.
1343 if (sectors_handled
< bio_sectors(bio
)) {
1344 r1_bio_write_done(r1_bio
);
1345 /* We need another r1_bio. It has already been counted
1346 * in bio->bi_phys_segments
1348 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1349 r1_bio
->master_bio
= bio
;
1350 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1352 r1_bio
->mddev
= mddev
;
1353 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1357 r1_bio_write_done(r1_bio
);
1359 /* In case raid1d snuck in to freeze_array */
1360 wake_up(&conf
->wait_barrier
);
1363 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1365 struct r1conf
*conf
= mddev
->private;
1368 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1369 conf
->raid_disks
- mddev
->degraded
);
1371 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1372 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1373 seq_printf(seq
, "%s",
1374 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1377 seq_printf(seq
, "]");
1381 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1383 char b
[BDEVNAME_SIZE
];
1384 struct r1conf
*conf
= mddev
->private;
1385 unsigned long flags
;
1388 * If it is not operational, then we have already marked it as dead
1389 * else if it is the last working disks, ignore the error, let the
1390 * next level up know.
1391 * else mark the drive as failed
1393 if (test_bit(In_sync
, &rdev
->flags
)
1394 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1396 * Don't fail the drive, act as though we were just a
1397 * normal single drive.
1398 * However don't try a recovery from this drive as
1399 * it is very likely to fail.
1401 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1404 set_bit(Blocked
, &rdev
->flags
);
1405 spin_lock_irqsave(&conf
->device_lock
, flags
);
1406 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1408 set_bit(Faulty
, &rdev
->flags
);
1410 set_bit(Faulty
, &rdev
->flags
);
1411 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1413 * if recovery is running, make sure it aborts.
1415 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1416 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1418 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1419 "md/raid1:%s: Operation continuing on %d devices.\n",
1420 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1421 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1424 static void print_conf(struct r1conf
*conf
)
1428 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1430 printk(KERN_DEBUG
"(!conf)\n");
1433 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1437 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1438 char b
[BDEVNAME_SIZE
];
1439 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1441 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1442 i
, !test_bit(In_sync
, &rdev
->flags
),
1443 !test_bit(Faulty
, &rdev
->flags
),
1444 bdevname(rdev
->bdev
,b
));
1449 static void close_sync(struct r1conf
*conf
)
1452 allow_barrier(conf
);
1454 mempool_destroy(conf
->r1buf_pool
);
1455 conf
->r1buf_pool
= NULL
;
1458 static int raid1_spare_active(struct mddev
*mddev
)
1461 struct r1conf
*conf
= mddev
->private;
1463 unsigned long flags
;
1466 * Find all failed disks within the RAID1 configuration
1467 * and mark them readable.
1468 * Called under mddev lock, so rcu protection not needed.
1469 * device_lock used to avoid races with raid1_end_read_request
1470 * which expects 'In_sync' flags and ->degraded to be consistent.
1472 spin_lock_irqsave(&conf
->device_lock
, flags
);
1473 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1474 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1475 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1477 && repl
->recovery_offset
== MaxSector
1478 && !test_bit(Faulty
, &repl
->flags
)
1479 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1480 /* replacement has just become active */
1482 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1485 /* Replaced device not technically
1486 * faulty, but we need to be sure
1487 * it gets removed and never re-added
1489 set_bit(Faulty
, &rdev
->flags
);
1490 sysfs_notify_dirent_safe(
1495 && rdev
->recovery_offset
== MaxSector
1496 && !test_bit(Faulty
, &rdev
->flags
)
1497 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1499 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1502 mddev
->degraded
-= count
;
1503 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1510 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1512 struct r1conf
*conf
= mddev
->private;
1515 struct raid1_info
*p
;
1517 int last
= conf
->raid_disks
- 1;
1518 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1520 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1523 if (rdev
->raid_disk
>= 0)
1524 first
= last
= rdev
->raid_disk
;
1526 if (q
->merge_bvec_fn
) {
1527 set_bit(Unmerged
, &rdev
->flags
);
1528 mddev
->merge_check_needed
= 1;
1531 for (mirror
= first
; mirror
<= last
; mirror
++) {
1532 p
= conf
->mirrors
+mirror
;
1535 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1536 rdev
->data_offset
<< 9);
1538 p
->head_position
= 0;
1539 rdev
->raid_disk
= mirror
;
1541 /* As all devices are equivalent, we don't need a full recovery
1542 * if this was recently any drive of the array
1544 if (rdev
->saved_raid_disk
< 0)
1546 rcu_assign_pointer(p
->rdev
, rdev
);
1549 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1550 p
[conf
->raid_disks
].rdev
== NULL
) {
1551 /* Add this device as a replacement */
1552 clear_bit(In_sync
, &rdev
->flags
);
1553 set_bit(Replacement
, &rdev
->flags
);
1554 rdev
->raid_disk
= mirror
;
1557 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1561 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1562 /* Some requests might not have seen this new
1563 * merge_bvec_fn. We must wait for them to complete
1564 * before merging the device fully.
1565 * First we make sure any code which has tested
1566 * our function has submitted the request, then
1567 * we wait for all outstanding requests to complete.
1569 synchronize_sched();
1570 freeze_array(conf
, 0);
1571 unfreeze_array(conf
);
1572 clear_bit(Unmerged
, &rdev
->flags
);
1574 md_integrity_add_rdev(rdev
, mddev
);
1575 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1576 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1581 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1583 struct r1conf
*conf
= mddev
->private;
1585 int number
= rdev
->raid_disk
;
1586 struct raid1_info
*p
= conf
->mirrors
+ number
;
1588 if (rdev
!= p
->rdev
)
1589 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1592 if (rdev
== p
->rdev
) {
1593 if (test_bit(In_sync
, &rdev
->flags
) ||
1594 atomic_read(&rdev
->nr_pending
)) {
1598 /* Only remove non-faulty devices if recovery
1601 if (!test_bit(Faulty
, &rdev
->flags
) &&
1602 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1603 mddev
->degraded
< conf
->raid_disks
) {
1609 if (atomic_read(&rdev
->nr_pending
)) {
1610 /* lost the race, try later */
1614 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1615 /* We just removed a device that is being replaced.
1616 * Move down the replacement. We drain all IO before
1617 * doing this to avoid confusion.
1619 struct md_rdev
*repl
=
1620 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1621 freeze_array(conf
, 0);
1622 clear_bit(Replacement
, &repl
->flags
);
1624 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1625 unfreeze_array(conf
);
1626 clear_bit(WantReplacement
, &rdev
->flags
);
1628 clear_bit(WantReplacement
, &rdev
->flags
);
1629 err
= md_integrity_register(mddev
);
1638 static void end_sync_read(struct bio
*bio
, int error
)
1640 struct r1bio
*r1_bio
= bio
->bi_private
;
1642 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1645 * we have read a block, now it needs to be re-written,
1646 * or re-read if the read failed.
1647 * We don't do much here, just schedule handling by raid1d
1649 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1650 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1652 if (atomic_dec_and_test(&r1_bio
->remaining
))
1653 reschedule_retry(r1_bio
);
1656 static void end_sync_write(struct bio
*bio
, int error
)
1658 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1659 struct r1bio
*r1_bio
= bio
->bi_private
;
1660 struct mddev
*mddev
= r1_bio
->mddev
;
1661 struct r1conf
*conf
= mddev
->private;
1666 mirror
= find_bio_disk(r1_bio
, bio
);
1669 sector_t sync_blocks
= 0;
1670 sector_t s
= r1_bio
->sector
;
1671 long sectors_to_go
= r1_bio
->sectors
;
1672 /* make sure these bits doesn't get cleared. */
1674 bitmap_end_sync(mddev
->bitmap
, s
,
1677 sectors_to_go
-= sync_blocks
;
1678 } while (sectors_to_go
> 0);
1679 set_bit(WriteErrorSeen
,
1680 &conf
->mirrors
[mirror
].rdev
->flags
);
1681 if (!test_and_set_bit(WantReplacement
,
1682 &conf
->mirrors
[mirror
].rdev
->flags
))
1683 set_bit(MD_RECOVERY_NEEDED
, &
1685 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1686 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1689 &first_bad
, &bad_sectors
) &&
1690 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1693 &first_bad
, &bad_sectors
)
1695 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1697 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1698 int s
= r1_bio
->sectors
;
1699 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1700 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1701 reschedule_retry(r1_bio
);
1704 md_done_sync(mddev
, s
, uptodate
);
1709 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1710 int sectors
, struct page
*page
, int rw
)
1712 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1716 set_bit(WriteErrorSeen
, &rdev
->flags
);
1717 if (!test_and_set_bit(WantReplacement
,
1719 set_bit(MD_RECOVERY_NEEDED
, &
1720 rdev
->mddev
->recovery
);
1722 /* need to record an error - either for the block or the device */
1723 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1724 md_error(rdev
->mddev
, rdev
);
1728 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1730 /* Try some synchronous reads of other devices to get
1731 * good data, much like with normal read errors. Only
1732 * read into the pages we already have so we don't
1733 * need to re-issue the read request.
1734 * We don't need to freeze the array, because being in an
1735 * active sync request, there is no normal IO, and
1736 * no overlapping syncs.
1737 * We don't need to check is_badblock() again as we
1738 * made sure that anything with a bad block in range
1739 * will have bi_end_io clear.
1741 struct mddev
*mddev
= r1_bio
->mddev
;
1742 struct r1conf
*conf
= mddev
->private;
1743 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1744 sector_t sect
= r1_bio
->sector
;
1745 int sectors
= r1_bio
->sectors
;
1750 int d
= r1_bio
->read_disk
;
1752 struct md_rdev
*rdev
;
1755 if (s
> (PAGE_SIZE
>>9))
1758 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1759 /* No rcu protection needed here devices
1760 * can only be removed when no resync is
1761 * active, and resync is currently active
1763 rdev
= conf
->mirrors
[d
].rdev
;
1764 if (sync_page_io(rdev
, sect
, s
<<9,
1765 bio
->bi_io_vec
[idx
].bv_page
,
1772 if (d
== conf
->raid_disks
* 2)
1774 } while (!success
&& d
!= r1_bio
->read_disk
);
1777 char b
[BDEVNAME_SIZE
];
1779 /* Cannot read from anywhere, this block is lost.
1780 * Record a bad block on each device. If that doesn't
1781 * work just disable and interrupt the recovery.
1782 * Don't fail devices as that won't really help.
1784 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1785 " for block %llu\n",
1787 bdevname(bio
->bi_bdev
, b
),
1788 (unsigned long long)r1_bio
->sector
);
1789 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1790 rdev
= conf
->mirrors
[d
].rdev
;
1791 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1793 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1797 conf
->recovery_disabled
=
1798 mddev
->recovery_disabled
;
1799 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1800 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1812 /* write it back and re-read */
1813 while (d
!= r1_bio
->read_disk
) {
1815 d
= conf
->raid_disks
* 2;
1817 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1819 rdev
= conf
->mirrors
[d
].rdev
;
1820 if (r1_sync_page_io(rdev
, sect
, s
,
1821 bio
->bi_io_vec
[idx
].bv_page
,
1823 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1824 rdev_dec_pending(rdev
, mddev
);
1828 while (d
!= r1_bio
->read_disk
) {
1830 d
= conf
->raid_disks
* 2;
1832 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1834 rdev
= conf
->mirrors
[d
].rdev
;
1835 if (r1_sync_page_io(rdev
, sect
, s
,
1836 bio
->bi_io_vec
[idx
].bv_page
,
1838 atomic_add(s
, &rdev
->corrected_errors
);
1844 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1845 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1849 static int process_checks(struct r1bio
*r1_bio
)
1851 /* We have read all readable devices. If we haven't
1852 * got the block, then there is no hope left.
1853 * If we have, then we want to do a comparison
1854 * and skip the write if everything is the same.
1855 * If any blocks failed to read, then we need to
1856 * attempt an over-write
1858 struct mddev
*mddev
= r1_bio
->mddev
;
1859 struct r1conf
*conf
= mddev
->private;
1864 /* Fix variable parts of all bios */
1865 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1866 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1870 struct bio
*b
= r1_bio
->bios
[i
];
1871 if (b
->bi_end_io
!= end_sync_read
)
1873 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1874 uptodate
= test_bit(BIO_UPTODATE
, &b
->bi_flags
);
1877 clear_bit(BIO_UPTODATE
, &b
->bi_flags
);
1879 b
->bi_size
= r1_bio
->sectors
<< 9;
1880 b
->bi_sector
= r1_bio
->sector
+
1881 conf
->mirrors
[i
].rdev
->data_offset
;
1882 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1883 b
->bi_end_io
= end_sync_read
;
1884 b
->bi_private
= r1_bio
;
1887 for (j
= 0; j
< vcnt
; j
++) {
1889 bi
= &b
->bi_io_vec
[j
];
1891 if (size
> PAGE_SIZE
)
1892 bi
->bv_len
= PAGE_SIZE
;
1898 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1899 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1900 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1901 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1902 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1905 r1_bio
->read_disk
= primary
;
1906 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1908 struct bio
*pbio
= r1_bio
->bios
[primary
];
1909 struct bio
*sbio
= r1_bio
->bios
[i
];
1910 int uptodate
= test_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
1912 if (sbio
->bi_end_io
!= end_sync_read
)
1914 /* Now we can 'fixup' the BIO_UPTODATE flag */
1915 set_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
1918 for (j
= vcnt
; j
-- ; ) {
1920 p
= pbio
->bi_io_vec
[j
].bv_page
;
1921 s
= sbio
->bi_io_vec
[j
].bv_page
;
1922 if (memcmp(page_address(p
),
1924 sbio
->bi_io_vec
[j
].bv_len
))
1930 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
1931 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1933 /* No need to write to this device. */
1934 sbio
->bi_end_io
= NULL
;
1935 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1939 bio_copy_data(sbio
, pbio
);
1944 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1946 struct r1conf
*conf
= mddev
->private;
1948 int disks
= conf
->raid_disks
* 2;
1949 struct bio
*bio
, *wbio
;
1951 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1953 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1954 /* ouch - failed to read all of that. */
1955 if (!fix_sync_read_error(r1_bio
))
1958 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1959 if (process_checks(r1_bio
) < 0)
1964 atomic_set(&r1_bio
->remaining
, 1);
1965 for (i
= 0; i
< disks
; i
++) {
1966 wbio
= r1_bio
->bios
[i
];
1967 if (wbio
->bi_end_io
== NULL
||
1968 (wbio
->bi_end_io
== end_sync_read
&&
1969 (i
== r1_bio
->read_disk
||
1970 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1973 wbio
->bi_rw
= WRITE
;
1974 wbio
->bi_end_io
= end_sync_write
;
1975 atomic_inc(&r1_bio
->remaining
);
1976 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
1978 generic_make_request(wbio
);
1981 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1982 /* if we're here, all write(s) have completed, so clean up */
1983 int s
= r1_bio
->sectors
;
1984 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1985 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1986 reschedule_retry(r1_bio
);
1989 md_done_sync(mddev
, s
, 1);
1995 * This is a kernel thread which:
1997 * 1. Retries failed read operations on working mirrors.
1998 * 2. Updates the raid superblock when problems encounter.
1999 * 3. Performs writes following reads for array synchronising.
2002 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2003 sector_t sect
, int sectors
)
2005 struct mddev
*mddev
= conf
->mddev
;
2011 struct md_rdev
*rdev
;
2013 if (s
> (PAGE_SIZE
>>9))
2017 /* Note: no rcu protection needed here
2018 * as this is synchronous in the raid1d thread
2019 * which is the thread that might remove
2020 * a device. If raid1d ever becomes multi-threaded....
2025 rdev
= conf
->mirrors
[d
].rdev
;
2027 (test_bit(In_sync
, &rdev
->flags
) ||
2028 (!test_bit(Faulty
, &rdev
->flags
) &&
2029 rdev
->recovery_offset
>= sect
+ s
)) &&
2030 is_badblock(rdev
, sect
, s
,
2031 &first_bad
, &bad_sectors
) == 0 &&
2032 sync_page_io(rdev
, sect
, s
<<9,
2033 conf
->tmppage
, READ
, false))
2037 if (d
== conf
->raid_disks
* 2)
2040 } while (!success
&& d
!= read_disk
);
2043 /* Cannot read from anywhere - mark it bad */
2044 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2045 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2046 md_error(mddev
, rdev
);
2049 /* write it back and re-read */
2051 while (d
!= read_disk
) {
2053 d
= conf
->raid_disks
* 2;
2055 rdev
= conf
->mirrors
[d
].rdev
;
2057 !test_bit(Faulty
, &rdev
->flags
))
2058 r1_sync_page_io(rdev
, sect
, s
,
2059 conf
->tmppage
, WRITE
);
2062 while (d
!= read_disk
) {
2063 char b
[BDEVNAME_SIZE
];
2065 d
= conf
->raid_disks
* 2;
2067 rdev
= conf
->mirrors
[d
].rdev
;
2069 !test_bit(Faulty
, &rdev
->flags
)) {
2070 if (r1_sync_page_io(rdev
, sect
, s
,
2071 conf
->tmppage
, READ
)) {
2072 atomic_add(s
, &rdev
->corrected_errors
);
2074 "md/raid1:%s: read error corrected "
2075 "(%d sectors at %llu on %s)\n",
2077 (unsigned long long)(sect
+
2079 bdevname(rdev
->bdev
, b
));
2088 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2090 struct mddev
*mddev
= r1_bio
->mddev
;
2091 struct r1conf
*conf
= mddev
->private;
2092 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2094 /* bio has the data to be written to device 'i' where
2095 * we just recently had a write error.
2096 * We repeatedly clone the bio and trim down to one block,
2097 * then try the write. Where the write fails we record
2099 * It is conceivable that the bio doesn't exactly align with
2100 * blocks. We must handle this somehow.
2102 * We currently own a reference on the rdev.
2108 int sect_to_write
= r1_bio
->sectors
;
2111 if (rdev
->badblocks
.shift
< 0)
2114 block_sectors
= 1 << rdev
->badblocks
.shift
;
2115 sector
= r1_bio
->sector
;
2116 sectors
= ((sector
+ block_sectors
)
2117 & ~(sector_t
)(block_sectors
- 1))
2120 while (sect_to_write
) {
2122 if (sectors
> sect_to_write
)
2123 sectors
= sect_to_write
;
2124 /* Write at 'sector' for 'sectors'*/
2126 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2127 unsigned vcnt
= r1_bio
->behind_page_count
;
2128 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2130 while (!vec
->bv_page
) {
2135 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2136 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2138 wbio
->bi_vcnt
= vcnt
;
2140 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2143 wbio
->bi_rw
= WRITE
;
2144 wbio
->bi_sector
= r1_bio
->sector
;
2145 wbio
->bi_size
= r1_bio
->sectors
<< 9;
2147 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
2148 wbio
->bi_sector
+= rdev
->data_offset
;
2149 wbio
->bi_bdev
= rdev
->bdev
;
2150 if (submit_bio_wait(WRITE
, wbio
) < 0)
2152 ok
= rdev_set_badblocks(rdev
, sector
,
2157 sect_to_write
-= sectors
;
2159 sectors
= block_sectors
;
2164 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2167 int s
= r1_bio
->sectors
;
2168 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2169 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2170 struct bio
*bio
= r1_bio
->bios
[m
];
2171 if (bio
->bi_end_io
== NULL
)
2173 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2174 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2175 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2177 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2178 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2179 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2180 md_error(conf
->mddev
, rdev
);
2184 md_done_sync(conf
->mddev
, s
, 1);
2187 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2190 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2191 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2192 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2193 rdev_clear_badblocks(rdev
,
2195 r1_bio
->sectors
, 0);
2196 rdev_dec_pending(rdev
, conf
->mddev
);
2197 } else if (r1_bio
->bios
[m
] != NULL
) {
2198 /* This drive got a write error. We need to
2199 * narrow down and record precise write
2202 if (!narrow_write_error(r1_bio
, m
)) {
2203 md_error(conf
->mddev
,
2204 conf
->mirrors
[m
].rdev
);
2205 /* an I/O failed, we can't clear the bitmap */
2206 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2208 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2211 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2212 close_write(r1_bio
);
2213 raid_end_bio_io(r1_bio
);
2216 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2220 struct mddev
*mddev
= conf
->mddev
;
2222 char b
[BDEVNAME_SIZE
];
2223 struct md_rdev
*rdev
;
2225 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2226 /* we got a read error. Maybe the drive is bad. Maybe just
2227 * the block and we can fix it.
2228 * We freeze all other IO, and try reading the block from
2229 * other devices. When we find one, we re-write
2230 * and check it that fixes the read error.
2231 * This is all done synchronously while the array is
2234 if (mddev
->ro
== 0) {
2235 freeze_array(conf
, 1);
2236 fix_read_error(conf
, r1_bio
->read_disk
,
2237 r1_bio
->sector
, r1_bio
->sectors
);
2238 unfreeze_array(conf
);
2240 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2241 rdev_dec_pending(conf
->mirrors
[r1_bio
->read_disk
].rdev
, conf
->mddev
);
2243 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2244 bdevname(bio
->bi_bdev
, b
);
2246 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2248 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2249 " read error for block %llu\n",
2250 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2251 raid_end_bio_io(r1_bio
);
2253 const unsigned long do_sync
2254 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2256 r1_bio
->bios
[r1_bio
->read_disk
] =
2257 mddev
->ro
? IO_BLOCKED
: NULL
;
2260 r1_bio
->read_disk
= disk
;
2261 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2262 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
2263 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2264 rdev
= conf
->mirrors
[disk
].rdev
;
2265 printk_ratelimited(KERN_ERR
2266 "md/raid1:%s: redirecting sector %llu"
2267 " to other mirror: %s\n",
2269 (unsigned long long)r1_bio
->sector
,
2270 bdevname(rdev
->bdev
, b
));
2271 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2272 bio
->bi_bdev
= rdev
->bdev
;
2273 bio
->bi_end_io
= raid1_end_read_request
;
2274 bio
->bi_rw
= READ
| do_sync
;
2275 bio
->bi_private
= r1_bio
;
2276 if (max_sectors
< r1_bio
->sectors
) {
2277 /* Drat - have to split this up more */
2278 struct bio
*mbio
= r1_bio
->master_bio
;
2279 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2281 r1_bio
->sectors
= max_sectors
;
2282 spin_lock_irq(&conf
->device_lock
);
2283 if (mbio
->bi_phys_segments
== 0)
2284 mbio
->bi_phys_segments
= 2;
2286 mbio
->bi_phys_segments
++;
2287 spin_unlock_irq(&conf
->device_lock
);
2288 generic_make_request(bio
);
2291 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2293 r1_bio
->master_bio
= mbio
;
2294 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2296 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2297 r1_bio
->mddev
= mddev
;
2298 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2302 generic_make_request(bio
);
2306 static void raid1d(struct md_thread
*thread
)
2308 struct mddev
*mddev
= thread
->mddev
;
2309 struct r1bio
*r1_bio
;
2310 unsigned long flags
;
2311 struct r1conf
*conf
= mddev
->private;
2312 struct list_head
*head
= &conf
->retry_list
;
2313 struct blk_plug plug
;
2315 md_check_recovery(mddev
);
2317 blk_start_plug(&plug
);
2320 flush_pending_writes(conf
);
2322 spin_lock_irqsave(&conf
->device_lock
, flags
);
2323 if (list_empty(head
)) {
2324 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2327 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2328 list_del(head
->prev
);
2330 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2332 mddev
= r1_bio
->mddev
;
2333 conf
= mddev
->private;
2334 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2335 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2336 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2337 handle_sync_write_finished(conf
, r1_bio
);
2339 sync_request_write(mddev
, r1_bio
);
2340 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2341 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2342 handle_write_finished(conf
, r1_bio
);
2343 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2344 handle_read_error(conf
, r1_bio
);
2346 /* just a partial read to be scheduled from separate
2349 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2352 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2353 md_check_recovery(mddev
);
2355 blk_finish_plug(&plug
);
2359 static int init_resync(struct r1conf
*conf
)
2363 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2364 BUG_ON(conf
->r1buf_pool
);
2365 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2367 if (!conf
->r1buf_pool
)
2369 conf
->next_resync
= 0;
2374 * perform a "sync" on one "block"
2376 * We need to make sure that no normal I/O request - particularly write
2377 * requests - conflict with active sync requests.
2379 * This is achieved by tracking pending requests and a 'barrier' concept
2380 * that can be installed to exclude normal IO requests.
2383 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2385 struct r1conf
*conf
= mddev
->private;
2386 struct r1bio
*r1_bio
;
2388 sector_t max_sector
, nr_sectors
;
2392 int write_targets
= 0, read_targets
= 0;
2393 sector_t sync_blocks
;
2394 int still_degraded
= 0;
2395 int good_sectors
= RESYNC_SECTORS
;
2396 int min_bad
= 0; /* number of sectors that are bad in all devices */
2398 if (!conf
->r1buf_pool
)
2399 if (init_resync(conf
))
2402 max_sector
= mddev
->dev_sectors
;
2403 if (sector_nr
>= max_sector
) {
2404 /* If we aborted, we need to abort the
2405 * sync on the 'current' bitmap chunk (there will
2406 * only be one in raid1 resync.
2407 * We can find the current addess in mddev->curr_resync
2409 if (mddev
->curr_resync
< max_sector
) /* aborted */
2410 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2412 else /* completed sync */
2415 bitmap_close_sync(mddev
->bitmap
);
2420 if (mddev
->bitmap
== NULL
&&
2421 mddev
->recovery_cp
== MaxSector
&&
2422 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2423 conf
->fullsync
== 0) {
2425 return max_sector
- sector_nr
;
2427 /* before building a request, check if we can skip these blocks..
2428 * This call the bitmap_start_sync doesn't actually record anything
2430 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2431 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2432 /* We can skip this block, and probably several more */
2437 * If there is non-resync activity waiting for a turn,
2438 * and resync is going fast enough,
2439 * then let it though before starting on this new sync request.
2441 if (!go_faster
&& conf
->nr_waiting
)
2442 msleep_interruptible(1000);
2444 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2445 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2446 raise_barrier(conf
);
2448 conf
->next_resync
= sector_nr
;
2452 * If we get a correctably read error during resync or recovery,
2453 * we might want to read from a different device. So we
2454 * flag all drives that could conceivably be read from for READ,
2455 * and any others (which will be non-In_sync devices) for WRITE.
2456 * If a read fails, we try reading from something else for which READ
2460 r1_bio
->mddev
= mddev
;
2461 r1_bio
->sector
= sector_nr
;
2463 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2465 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2466 struct md_rdev
*rdev
;
2467 bio
= r1_bio
->bios
[i
];
2470 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2472 test_bit(Faulty
, &rdev
->flags
)) {
2473 if (i
< conf
->raid_disks
)
2475 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2477 bio
->bi_end_io
= end_sync_write
;
2480 /* may need to read from here */
2481 sector_t first_bad
= MaxSector
;
2484 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2485 &first_bad
, &bad_sectors
)) {
2486 if (first_bad
> sector_nr
)
2487 good_sectors
= first_bad
- sector_nr
;
2489 bad_sectors
-= (sector_nr
- first_bad
);
2491 min_bad
> bad_sectors
)
2492 min_bad
= bad_sectors
;
2495 if (sector_nr
< first_bad
) {
2496 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2504 bio
->bi_end_io
= end_sync_read
;
2506 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2507 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2508 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2510 * The device is suitable for reading (InSync),
2511 * but has bad block(s) here. Let's try to correct them,
2512 * if we are doing resync or repair. Otherwise, leave
2513 * this device alone for this sync request.
2516 bio
->bi_end_io
= end_sync_write
;
2520 if (bio
->bi_end_io
) {
2521 atomic_inc(&rdev
->nr_pending
);
2522 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2523 bio
->bi_bdev
= rdev
->bdev
;
2524 bio
->bi_private
= r1_bio
;
2530 r1_bio
->read_disk
= disk
;
2532 if (read_targets
== 0 && min_bad
> 0) {
2533 /* These sectors are bad on all InSync devices, so we
2534 * need to mark them bad on all write targets
2537 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2538 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2539 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2540 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2544 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2549 /* Cannot record the badblocks, so need to
2551 * If there are multiple read targets, could just
2552 * fail the really bad ones ???
2554 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2555 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2561 if (min_bad
> 0 && min_bad
< good_sectors
) {
2562 /* only resync enough to reach the next bad->good
2564 good_sectors
= min_bad
;
2567 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2568 /* extra read targets are also write targets */
2569 write_targets
+= read_targets
-1;
2571 if (write_targets
== 0 || read_targets
== 0) {
2572 /* There is nowhere to write, so all non-sync
2573 * drives must be failed - so we are finished
2577 max_sector
= sector_nr
+ min_bad
;
2578 rv
= max_sector
- sector_nr
;
2584 if (max_sector
> mddev
->resync_max
)
2585 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2586 if (max_sector
> sector_nr
+ good_sectors
)
2587 max_sector
= sector_nr
+ good_sectors
;
2592 int len
= PAGE_SIZE
;
2593 if (sector_nr
+ (len
>>9) > max_sector
)
2594 len
= (max_sector
- sector_nr
) << 9;
2597 if (sync_blocks
== 0) {
2598 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2599 &sync_blocks
, still_degraded
) &&
2601 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2603 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2604 if ((len
>> 9) > sync_blocks
)
2605 len
= sync_blocks
<<9;
2608 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2609 bio
= r1_bio
->bios
[i
];
2610 if (bio
->bi_end_io
) {
2611 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2612 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2614 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2617 bio
= r1_bio
->bios
[i
];
2618 if (bio
->bi_end_io
==NULL
)
2620 /* remove last page from this bio */
2622 bio
->bi_size
-= len
;
2623 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2629 nr_sectors
+= len
>>9;
2630 sector_nr
+= len
>>9;
2631 sync_blocks
-= (len
>>9);
2632 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2634 r1_bio
->sectors
= nr_sectors
;
2636 /* For a user-requested sync, we read all readable devices and do a
2639 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2640 atomic_set(&r1_bio
->remaining
, read_targets
);
2641 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2642 bio
= r1_bio
->bios
[i
];
2643 if (bio
->bi_end_io
== end_sync_read
) {
2645 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2646 generic_make_request(bio
);
2650 atomic_set(&r1_bio
->remaining
, 1);
2651 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2652 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2653 generic_make_request(bio
);
2659 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2664 return mddev
->dev_sectors
;
2667 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2669 struct r1conf
*conf
;
2671 struct raid1_info
*disk
;
2672 struct md_rdev
*rdev
;
2675 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2679 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2680 * mddev
->raid_disks
* 2,
2685 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2689 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2690 if (!conf
->poolinfo
)
2692 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2693 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2696 if (!conf
->r1bio_pool
)
2699 conf
->poolinfo
->mddev
= mddev
;
2702 spin_lock_init(&conf
->device_lock
);
2703 rdev_for_each(rdev
, mddev
) {
2704 struct request_queue
*q
;
2705 int disk_idx
= rdev
->raid_disk
;
2706 if (disk_idx
>= mddev
->raid_disks
2709 if (test_bit(Replacement
, &rdev
->flags
))
2710 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2712 disk
= conf
->mirrors
+ disk_idx
;
2717 q
= bdev_get_queue(rdev
->bdev
);
2718 if (q
->merge_bvec_fn
)
2719 mddev
->merge_check_needed
= 1;
2721 disk
->head_position
= 0;
2722 disk
->seq_start
= MaxSector
;
2724 conf
->raid_disks
= mddev
->raid_disks
;
2725 conf
->mddev
= mddev
;
2726 INIT_LIST_HEAD(&conf
->retry_list
);
2728 spin_lock_init(&conf
->resync_lock
);
2729 init_waitqueue_head(&conf
->wait_barrier
);
2731 bio_list_init(&conf
->pending_bio_list
);
2732 conf
->pending_count
= 0;
2733 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2736 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2738 disk
= conf
->mirrors
+ i
;
2740 if (i
< conf
->raid_disks
&&
2741 disk
[conf
->raid_disks
].rdev
) {
2742 /* This slot has a replacement. */
2744 /* No original, just make the replacement
2745 * a recovering spare
2748 disk
[conf
->raid_disks
].rdev
;
2749 disk
[conf
->raid_disks
].rdev
= NULL
;
2750 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2751 /* Original is not in_sync - bad */
2756 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2757 disk
->head_position
= 0;
2759 (disk
->rdev
->saved_raid_disk
< 0))
2765 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2766 if (!conf
->thread
) {
2768 "md/raid1:%s: couldn't allocate thread\n",
2777 if (conf
->r1bio_pool
)
2778 mempool_destroy(conf
->r1bio_pool
);
2779 kfree(conf
->mirrors
);
2780 safe_put_page(conf
->tmppage
);
2781 kfree(conf
->poolinfo
);
2784 return ERR_PTR(err
);
2787 static int stop(struct mddev
*mddev
);
2788 static int run(struct mddev
*mddev
)
2790 struct r1conf
*conf
;
2792 struct md_rdev
*rdev
;
2794 bool discard_supported
= false;
2796 if (mddev
->level
!= 1) {
2797 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2798 mdname(mddev
), mddev
->level
);
2801 if (mddev
->reshape_position
!= MaxSector
) {
2802 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2807 * copy the already verified devices into our private RAID1
2808 * bookkeeping area. [whatever we allocate in run(),
2809 * should be freed in stop()]
2811 if (mddev
->private == NULL
)
2812 conf
= setup_conf(mddev
);
2814 conf
= mddev
->private;
2817 return PTR_ERR(conf
);
2820 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
2822 rdev_for_each(rdev
, mddev
) {
2823 if (!mddev
->gendisk
)
2825 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2826 rdev
->data_offset
<< 9);
2827 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
2828 discard_supported
= true;
2831 mddev
->degraded
= 0;
2832 for (i
=0; i
< conf
->raid_disks
; i
++)
2833 if (conf
->mirrors
[i
].rdev
== NULL
||
2834 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2835 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2838 if (conf
->raid_disks
- mddev
->degraded
== 1)
2839 mddev
->recovery_cp
= MaxSector
;
2841 if (mddev
->recovery_cp
!= MaxSector
)
2842 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2843 " -- starting background reconstruction\n",
2846 "md/raid1:%s: active with %d out of %d mirrors\n",
2847 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2851 * Ok, everything is just fine now
2853 mddev
->thread
= conf
->thread
;
2854 conf
->thread
= NULL
;
2855 mddev
->private = conf
;
2857 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2860 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2861 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2862 blk_queue_merge_bvec(mddev
->queue
, raid1_mergeable_bvec
);
2864 if (discard_supported
)
2865 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
2868 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
2872 ret
= md_integrity_register(mddev
);
2878 static int stop(struct mddev
*mddev
)
2880 struct r1conf
*conf
= mddev
->private;
2881 struct bitmap
*bitmap
= mddev
->bitmap
;
2883 /* wait for behind writes to complete */
2884 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2885 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2887 /* need to kick something here to make sure I/O goes? */
2888 wait_event(bitmap
->behind_wait
,
2889 atomic_read(&bitmap
->behind_writes
) == 0);
2892 raise_barrier(conf
);
2893 lower_barrier(conf
);
2895 md_unregister_thread(&mddev
->thread
);
2896 if (conf
->r1bio_pool
)
2897 mempool_destroy(conf
->r1bio_pool
);
2898 kfree(conf
->mirrors
);
2899 safe_put_page(conf
->tmppage
);
2900 kfree(conf
->poolinfo
);
2902 mddev
->private = NULL
;
2906 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2908 /* no resync is happening, and there is enough space
2909 * on all devices, so we can resize.
2910 * We need to make sure resync covers any new space.
2911 * If the array is shrinking we should possibly wait until
2912 * any io in the removed space completes, but it hardly seems
2915 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
2916 if (mddev
->external_size
&&
2917 mddev
->array_sectors
> newsize
)
2919 if (mddev
->bitmap
) {
2920 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
2924 md_set_array_sectors(mddev
, newsize
);
2925 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2926 revalidate_disk(mddev
->gendisk
);
2927 if (sectors
> mddev
->dev_sectors
&&
2928 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2929 mddev
->recovery_cp
= mddev
->dev_sectors
;
2930 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2932 mddev
->dev_sectors
= sectors
;
2933 mddev
->resync_max_sectors
= sectors
;
2937 static int raid1_reshape(struct mddev
*mddev
)
2940 * 1/ resize the r1bio_pool
2941 * 2/ resize conf->mirrors
2943 * We allocate a new r1bio_pool if we can.
2944 * Then raise a device barrier and wait until all IO stops.
2945 * Then resize conf->mirrors and swap in the new r1bio pool.
2947 * At the same time, we "pack" the devices so that all the missing
2948 * devices have the higher raid_disk numbers.
2950 mempool_t
*newpool
, *oldpool
;
2951 struct pool_info
*newpoolinfo
;
2952 struct raid1_info
*newmirrors
;
2953 struct r1conf
*conf
= mddev
->private;
2954 int cnt
, raid_disks
;
2955 unsigned long flags
;
2958 /* Cannot change chunk_size, layout, or level */
2959 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2960 mddev
->layout
!= mddev
->new_layout
||
2961 mddev
->level
!= mddev
->new_level
) {
2962 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2963 mddev
->new_layout
= mddev
->layout
;
2964 mddev
->new_level
= mddev
->level
;
2968 err
= md_allow_write(mddev
);
2972 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2974 if (raid_disks
< conf
->raid_disks
) {
2976 for (d
= 0; d
< conf
->raid_disks
; d
++)
2977 if (conf
->mirrors
[d
].rdev
)
2979 if (cnt
> raid_disks
)
2983 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2986 newpoolinfo
->mddev
= mddev
;
2987 newpoolinfo
->raid_disks
= raid_disks
* 2;
2989 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2990 r1bio_pool_free
, newpoolinfo
);
2995 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
2999 mempool_destroy(newpool
);
3003 freeze_array(conf
, 0);
3005 /* ok, everything is stopped */
3006 oldpool
= conf
->r1bio_pool
;
3007 conf
->r1bio_pool
= newpool
;
3009 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3010 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3011 if (rdev
&& rdev
->raid_disk
!= d2
) {
3012 sysfs_unlink_rdev(mddev
, rdev
);
3013 rdev
->raid_disk
= d2
;
3014 sysfs_unlink_rdev(mddev
, rdev
);
3015 if (sysfs_link_rdev(mddev
, rdev
))
3017 "md/raid1:%s: cannot register rd%d\n",
3018 mdname(mddev
), rdev
->raid_disk
);
3021 newmirrors
[d2
++].rdev
= rdev
;
3023 kfree(conf
->mirrors
);
3024 conf
->mirrors
= newmirrors
;
3025 kfree(conf
->poolinfo
);
3026 conf
->poolinfo
= newpoolinfo
;
3028 spin_lock_irqsave(&conf
->device_lock
, flags
);
3029 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3030 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3031 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3032 mddev
->delta_disks
= 0;
3034 unfreeze_array(conf
);
3036 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3037 md_wakeup_thread(mddev
->thread
);
3039 mempool_destroy(oldpool
);
3043 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3045 struct r1conf
*conf
= mddev
->private;
3048 case 2: /* wake for suspend */
3049 wake_up(&conf
->wait_barrier
);
3052 raise_barrier(conf
);
3055 lower_barrier(conf
);
3060 static void *raid1_takeover(struct mddev
*mddev
)
3062 /* raid1 can take over:
3063 * raid5 with 2 devices, any layout or chunk size
3065 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3066 struct r1conf
*conf
;
3067 mddev
->new_level
= 1;
3068 mddev
->new_layout
= 0;
3069 mddev
->new_chunk_sectors
= 0;
3070 conf
= setup_conf(mddev
);
3075 return ERR_PTR(-EINVAL
);
3078 static struct md_personality raid1_personality
=
3082 .owner
= THIS_MODULE
,
3083 .make_request
= make_request
,
3087 .error_handler
= error
,
3088 .hot_add_disk
= raid1_add_disk
,
3089 .hot_remove_disk
= raid1_remove_disk
,
3090 .spare_active
= raid1_spare_active
,
3091 .sync_request
= sync_request
,
3092 .resize
= raid1_resize
,
3094 .check_reshape
= raid1_reshape
,
3095 .quiesce
= raid1_quiesce
,
3096 .takeover
= raid1_takeover
,
3099 static int __init
raid_init(void)
3101 return register_md_personality(&raid1_personality
);
3104 static void raid_exit(void)
3106 unregister_md_personality(&raid1_personality
);
3109 module_init(raid_init
);
3110 module_exit(raid_exit
);
3111 MODULE_LICENSE("GPL");
3112 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3113 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3114 MODULE_ALIAS("md-raid1");
3115 MODULE_ALIAS("md-level-1");
3117 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);