1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
69 #include <net/tcp_memcontrol.h>
72 #include <asm/uaccess.h>
74 #include <trace/events/vmscan.h>
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
77 EXPORT_SYMBOL(memory_cgrp_subsys
);
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
81 struct cgroup_subsys_state
*mem_cgroup_root_css __read_mostly
;
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly
;
87 #define do_swap_account 0
90 static const char * const mem_cgroup_stat_names
[] = {
100 static const char * const mem_cgroup_events_names
[] = {
107 static const char * const mem_cgroup_lru_names
[] = {
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
124 struct mem_cgroup_tree_per_zone
{
125 struct rb_root rb_root
;
129 struct mem_cgroup_tree_per_node
{
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
133 struct mem_cgroup_tree
{
134 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
140 struct mem_cgroup_eventfd_list
{
141 struct list_head list
;
142 struct eventfd_ctx
*eventfd
;
146 * cgroup_event represents events which userspace want to receive.
148 struct mem_cgroup_event
{
150 * memcg which the event belongs to.
152 struct mem_cgroup
*memcg
;
154 * eventfd to signal userspace about the event.
156 struct eventfd_ctx
*eventfd
;
158 * Each of these stored in a list by the cgroup.
160 struct list_head list
;
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
166 int (*register_event
)(struct mem_cgroup
*memcg
,
167 struct eventfd_ctx
*eventfd
, const char *args
);
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
173 void (*unregister_event
)(struct mem_cgroup
*memcg
,
174 struct eventfd_ctx
*eventfd
);
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
180 wait_queue_head_t
*wqh
;
182 struct work_struct remove
;
185 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
186 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
188 /* Stuffs for move charges at task migration. */
190 * Types of charges to be moved.
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct
{
198 spinlock_t lock
; /* for from, to */
199 struct mm_struct
*mm
;
200 struct mem_cgroup
*from
;
201 struct mem_cgroup
*to
;
203 unsigned long precharge
;
204 unsigned long moved_charge
;
205 unsigned long moved_swap
;
206 struct task_struct
*moving_task
; /* a task moving charges */
207 wait_queue_head_t waitq
; /* a waitq for other context */
209 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
210 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
217 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
218 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
221 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
222 MEM_CGROUP_CHARGE_TYPE_ANON
,
223 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
224 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
228 /* for encoding cft->private value on file */
236 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
237 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
238 #define MEMFILE_ATTR(val) ((val) & 0xffff)
239 /* Used for OOM nofiier */
240 #define OOM_CONTROL (0)
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
247 static DEFINE_MUTEX(memcg_create_mutex
);
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
253 memcg
= root_mem_cgroup
;
254 return &memcg
->vmpressure
;
257 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
259 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
262 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
264 return (memcg
== root_mem_cgroup
);
268 * We restrict the id in the range of [1, 65535], so it can fit into
271 #define MEM_CGROUP_ID_MAX USHRT_MAX
273 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
278 /* Writing them here to avoid exposing memcg's inner layout */
279 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
281 void sock_update_memcg(struct sock
*sk
)
283 if (mem_cgroup_sockets_enabled
) {
284 struct mem_cgroup
*memcg
;
285 struct cg_proto
*cg_proto
;
287 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
289 /* Socket cloning can throw us here with sk_cgrp already
290 * filled. It won't however, necessarily happen from
291 * process context. So the test for root memcg given
292 * the current task's memcg won't help us in this case.
294 * Respecting the original socket's memcg is a better
295 * decision in this case.
298 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
299 css_get(&sk
->sk_cgrp
->memcg
->css
);
304 memcg
= mem_cgroup_from_task(current
);
305 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
306 if (cg_proto
&& test_bit(MEMCG_SOCK_ACTIVE
, &cg_proto
->flags
) &&
307 css_tryget_online(&memcg
->css
)) {
308 sk
->sk_cgrp
= cg_proto
;
313 EXPORT_SYMBOL(sock_update_memcg
);
315 void sock_release_memcg(struct sock
*sk
)
317 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
318 struct mem_cgroup
*memcg
;
319 WARN_ON(!sk
->sk_cgrp
->memcg
);
320 memcg
= sk
->sk_cgrp
->memcg
;
321 css_put(&sk
->sk_cgrp
->memcg
->css
);
325 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
327 if (!memcg
|| mem_cgroup_is_root(memcg
))
330 return &memcg
->tcp_mem
;
332 EXPORT_SYMBOL(tcp_proto_cgroup
);
336 #ifdef CONFIG_MEMCG_KMEM
338 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
339 * The main reason for not using cgroup id for this:
340 * this works better in sparse environments, where we have a lot of memcgs,
341 * but only a few kmem-limited. Or also, if we have, for instance, 200
342 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
343 * 200 entry array for that.
345 * The current size of the caches array is stored in memcg_nr_cache_ids. It
346 * will double each time we have to increase it.
348 static DEFINE_IDA(memcg_cache_ida
);
349 int memcg_nr_cache_ids
;
351 /* Protects memcg_nr_cache_ids */
352 static DECLARE_RWSEM(memcg_cache_ids_sem
);
354 void memcg_get_cache_ids(void)
356 down_read(&memcg_cache_ids_sem
);
359 void memcg_put_cache_ids(void)
361 up_read(&memcg_cache_ids_sem
);
365 * MIN_SIZE is different than 1, because we would like to avoid going through
366 * the alloc/free process all the time. In a small machine, 4 kmem-limited
367 * cgroups is a reasonable guess. In the future, it could be a parameter or
368 * tunable, but that is strictly not necessary.
370 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
371 * this constant directly from cgroup, but it is understandable that this is
372 * better kept as an internal representation in cgroup.c. In any case, the
373 * cgrp_id space is not getting any smaller, and we don't have to necessarily
374 * increase ours as well if it increases.
376 #define MEMCG_CACHES_MIN_SIZE 4
377 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
380 * A lot of the calls to the cache allocation functions are expected to be
381 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
382 * conditional to this static branch, we'll have to allow modules that does
383 * kmem_cache_alloc and the such to see this symbol as well
385 struct static_key memcg_kmem_enabled_key
;
386 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
388 #endif /* CONFIG_MEMCG_KMEM */
390 static struct mem_cgroup_per_zone
*
391 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
393 int nid
= zone_to_nid(zone
);
394 int zid
= zone_idx(zone
);
396 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
400 * mem_cgroup_css_from_page - css of the memcg associated with a page
401 * @page: page of interest
403 * If memcg is bound to the default hierarchy, css of the memcg associated
404 * with @page is returned. The returned css remains associated with @page
405 * until it is released.
407 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
410 * XXX: The above description of behavior on the default hierarchy isn't
411 * strictly true yet as replace_page_cache_page() can modify the
412 * association before @page is released even on the default hierarchy;
413 * however, the current and planned usages don't mix the the two functions
414 * and replace_page_cache_page() will soon be updated to make the invariant
417 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
419 struct mem_cgroup
*memcg
;
423 memcg
= page
->mem_cgroup
;
425 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
426 memcg
= root_mem_cgroup
;
433 * page_cgroup_ino - return inode number of the memcg a page is charged to
436 * Look up the closest online ancestor of the memory cgroup @page is charged to
437 * and return its inode number or 0 if @page is not charged to any cgroup. It
438 * is safe to call this function without holding a reference to @page.
440 * Note, this function is inherently racy, because there is nothing to prevent
441 * the cgroup inode from getting torn down and potentially reallocated a moment
442 * after page_cgroup_ino() returns, so it only should be used by callers that
443 * do not care (such as procfs interfaces).
445 ino_t
page_cgroup_ino(struct page
*page
)
447 struct mem_cgroup
*memcg
;
448 unsigned long ino
= 0;
451 memcg
= READ_ONCE(page
->mem_cgroup
);
452 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
453 memcg
= parent_mem_cgroup(memcg
);
455 ino
= cgroup_ino(memcg
->css
.cgroup
);
460 static struct mem_cgroup_per_zone
*
461 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
463 int nid
= page_to_nid(page
);
464 int zid
= page_zonenum(page
);
466 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
469 static struct mem_cgroup_tree_per_zone
*
470 soft_limit_tree_node_zone(int nid
, int zid
)
472 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
475 static struct mem_cgroup_tree_per_zone
*
476 soft_limit_tree_from_page(struct page
*page
)
478 int nid
= page_to_nid(page
);
479 int zid
= page_zonenum(page
);
481 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
485 struct mem_cgroup_tree_per_zone
*mctz
,
486 unsigned long new_usage_in_excess
)
488 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
489 struct rb_node
*parent
= NULL
;
490 struct mem_cgroup_per_zone
*mz_node
;
495 mz
->usage_in_excess
= new_usage_in_excess
;
496 if (!mz
->usage_in_excess
)
500 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
502 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
505 * We can't avoid mem cgroups that are over their soft
506 * limit by the same amount
508 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
511 rb_link_node(&mz
->tree_node
, parent
, p
);
512 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
516 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
517 struct mem_cgroup_tree_per_zone
*mctz
)
521 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
526 struct mem_cgroup_tree_per_zone
*mctz
)
530 spin_lock_irqsave(&mctz
->lock
, flags
);
531 __mem_cgroup_remove_exceeded(mz
, mctz
);
532 spin_unlock_irqrestore(&mctz
->lock
, flags
);
535 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
537 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
538 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
539 unsigned long excess
= 0;
541 if (nr_pages
> soft_limit
)
542 excess
= nr_pages
- soft_limit
;
547 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
549 unsigned long excess
;
550 struct mem_cgroup_per_zone
*mz
;
551 struct mem_cgroup_tree_per_zone
*mctz
;
553 mctz
= soft_limit_tree_from_page(page
);
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
558 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
559 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
560 excess
= soft_limit_excess(memcg
);
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
565 if (excess
|| mz
->on_tree
) {
568 spin_lock_irqsave(&mctz
->lock
, flags
);
569 /* if on-tree, remove it */
571 __mem_cgroup_remove_exceeded(mz
, mctz
);
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
576 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
577 spin_unlock_irqrestore(&mctz
->lock
, flags
);
582 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
584 struct mem_cgroup_tree_per_zone
*mctz
;
585 struct mem_cgroup_per_zone
*mz
;
589 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
590 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
591 mctz
= soft_limit_tree_node_zone(nid
, zid
);
592 mem_cgroup_remove_exceeded(mz
, mctz
);
597 static struct mem_cgroup_per_zone
*
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
600 struct rb_node
*rightmost
= NULL
;
601 struct mem_cgroup_per_zone
*mz
;
605 rightmost
= rb_last(&mctz
->rb_root
);
607 goto done
; /* Nothing to reclaim from */
609 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
615 __mem_cgroup_remove_exceeded(mz
, mctz
);
616 if (!soft_limit_excess(mz
->memcg
) ||
617 !css_tryget_online(&mz
->memcg
->css
))
623 static struct mem_cgroup_per_zone
*
624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
626 struct mem_cgroup_per_zone
*mz
;
628 spin_lock_irq(&mctz
->lock
);
629 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
630 spin_unlock_irq(&mctz
->lock
);
635 * Return page count for single (non recursive) @memcg.
637 * Implementation Note: reading percpu statistics for memcg.
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronization of counter in memcg's counter.
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threshold and synchronization as vmstat[] should be
656 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
661 /* Per-cpu values can be negative, use a signed accumulator */
662 for_each_possible_cpu(cpu
)
663 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
665 * Summing races with updates, so val may be negative. Avoid exposing
666 * transient negative values.
673 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
674 enum mem_cgroup_events_index idx
)
676 unsigned long val
= 0;
679 for_each_possible_cpu(cpu
)
680 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
684 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
689 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
690 * counted as CACHE even if it's on ANON LRU.
693 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
696 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
699 if (PageTransHuge(page
))
700 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
703 /* pagein of a big page is an event. So, ignore page size */
705 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
707 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
708 nr_pages
= -nr_pages
; /* for event */
711 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
714 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
716 unsigned int lru_mask
)
718 unsigned long nr
= 0;
721 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
723 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
724 struct mem_cgroup_per_zone
*mz
;
728 if (!(BIT(lru
) & lru_mask
))
730 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
731 nr
+= mz
->lru_size
[lru
];
737 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
738 unsigned int lru_mask
)
740 unsigned long nr
= 0;
743 for_each_node_state(nid
, N_MEMORY
)
744 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
748 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
749 enum mem_cgroup_events_target target
)
751 unsigned long val
, next
;
753 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
754 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
755 /* from time_after() in jiffies.h */
756 if ((long)next
- (long)val
< 0) {
758 case MEM_CGROUP_TARGET_THRESH
:
759 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
761 case MEM_CGROUP_TARGET_SOFTLIMIT
:
762 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
764 case MEM_CGROUP_TARGET_NUMAINFO
:
765 next
= val
+ NUMAINFO_EVENTS_TARGET
;
770 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
777 * Check events in order.
780 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
782 /* threshold event is triggered in finer grain than soft limit */
783 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
784 MEM_CGROUP_TARGET_THRESH
))) {
786 bool do_numainfo __maybe_unused
;
788 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
789 MEM_CGROUP_TARGET_SOFTLIMIT
);
791 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
792 MEM_CGROUP_TARGET_NUMAINFO
);
794 mem_cgroup_threshold(memcg
);
795 if (unlikely(do_softlimit
))
796 mem_cgroup_update_tree(memcg
, page
);
798 if (unlikely(do_numainfo
))
799 atomic_inc(&memcg
->numainfo_events
);
804 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
807 * mm_update_next_owner() may clear mm->owner to NULL
808 * if it races with swapoff, page migration, etc.
809 * So this can be called with p == NULL.
814 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
816 EXPORT_SYMBOL(mem_cgroup_from_task
);
818 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
820 struct mem_cgroup
*memcg
= NULL
;
825 * Page cache insertions can happen withou an
826 * actual mm context, e.g. during disk probing
827 * on boot, loopback IO, acct() writes etc.
830 memcg
= root_mem_cgroup
;
832 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
833 if (unlikely(!memcg
))
834 memcg
= root_mem_cgroup
;
836 } while (!css_tryget_online(&memcg
->css
));
842 * mem_cgroup_iter - iterate over memory cgroup hierarchy
843 * @root: hierarchy root
844 * @prev: previously returned memcg, NULL on first invocation
845 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 * Returns references to children of the hierarchy below @root, or
848 * @root itself, or %NULL after a full round-trip.
850 * Caller must pass the return value in @prev on subsequent
851 * invocations for reference counting, or use mem_cgroup_iter_break()
852 * to cancel a hierarchy walk before the round-trip is complete.
854 * Reclaimers can specify a zone and a priority level in @reclaim to
855 * divide up the memcgs in the hierarchy among all concurrent
856 * reclaimers operating on the same zone and priority.
858 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
859 struct mem_cgroup
*prev
,
860 struct mem_cgroup_reclaim_cookie
*reclaim
)
862 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
863 struct cgroup_subsys_state
*css
= NULL
;
864 struct mem_cgroup
*memcg
= NULL
;
865 struct mem_cgroup
*pos
= NULL
;
867 if (mem_cgroup_disabled())
871 root
= root_mem_cgroup
;
873 if (prev
&& !reclaim
)
876 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
885 struct mem_cgroup_per_zone
*mz
;
887 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
888 iter
= &mz
->iter
[reclaim
->priority
];
890 if (prev
&& reclaim
->generation
!= iter
->generation
)
894 pos
= READ_ONCE(iter
->position
);
895 if (!pos
|| css_tryget(&pos
->css
))
898 * css reference reached zero, so iter->position will
899 * be cleared by ->css_released. However, we should not
900 * rely on this happening soon, because ->css_released
901 * is called from a work queue, and by busy-waiting we
902 * might block it. So we clear iter->position right
905 (void)cmpxchg(&iter
->position
, pos
, NULL
);
913 css
= css_next_descendant_pre(css
, &root
->css
);
916 * Reclaimers share the hierarchy walk, and a
917 * new one might jump in right at the end of
918 * the hierarchy - make sure they see at least
919 * one group and restart from the beginning.
927 * Verify the css and acquire a reference. The root
928 * is provided by the caller, so we know it's alive
929 * and kicking, and don't take an extra reference.
931 memcg
= mem_cgroup_from_css(css
);
933 if (css
== &root
->css
)
936 if (css_tryget(css
)) {
938 * Make sure the memcg is initialized:
939 * mem_cgroup_css_online() orders the the
940 * initialization against setting the flag.
942 if (smp_load_acquire(&memcg
->initialized
))
953 * The position could have already been updated by a competing
954 * thread, so check that the value hasn't changed since we read
955 * it to avoid reclaiming from the same cgroup twice.
957 (void)cmpxchg(&iter
->position
, pos
, memcg
);
965 reclaim
->generation
= iter
->generation
;
971 if (prev
&& prev
!= root
)
978 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
979 * @root: hierarchy root
980 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
982 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
983 struct mem_cgroup
*prev
)
986 root
= root_mem_cgroup
;
987 if (prev
&& prev
!= root
)
991 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
993 struct mem_cgroup
*memcg
= dead_memcg
;
994 struct mem_cgroup_reclaim_iter
*iter
;
995 struct mem_cgroup_per_zone
*mz
;
999 while ((memcg
= parent_mem_cgroup(memcg
))) {
1000 for_each_node(nid
) {
1001 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1002 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
1003 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
1004 iter
= &mz
->iter
[i
];
1005 cmpxchg(&iter
->position
,
1014 * Iteration constructs for visiting all cgroups (under a tree). If
1015 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1016 * be used for reference counting.
1018 #define for_each_mem_cgroup_tree(iter, root) \
1019 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1021 iter = mem_cgroup_iter(root, iter, NULL))
1023 #define for_each_mem_cgroup(iter) \
1024 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1026 iter = mem_cgroup_iter(NULL, iter, NULL))
1029 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1030 * @zone: zone of the wanted lruvec
1031 * @memcg: memcg of the wanted lruvec
1033 * Returns the lru list vector holding pages for the given @zone and
1034 * @mem. This can be the global zone lruvec, if the memory controller
1037 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1038 struct mem_cgroup
*memcg
)
1040 struct mem_cgroup_per_zone
*mz
;
1041 struct lruvec
*lruvec
;
1043 if (mem_cgroup_disabled()) {
1044 lruvec
= &zone
->lruvec
;
1048 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
1049 lruvec
= &mz
->lruvec
;
1052 * Since a node can be onlined after the mem_cgroup was created,
1053 * we have to be prepared to initialize lruvec->zone here;
1054 * and if offlined then reonlined, we need to reinitialize it.
1056 if (unlikely(lruvec
->zone
!= zone
))
1057 lruvec
->zone
= zone
;
1062 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1064 * @zone: zone of the page
1066 * This function is only safe when following the LRU page isolation
1067 * and putback protocol: the LRU lock must be held, and the page must
1068 * either be PageLRU() or the caller must have isolated/allocated it.
1070 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1072 struct mem_cgroup_per_zone
*mz
;
1073 struct mem_cgroup
*memcg
;
1074 struct lruvec
*lruvec
;
1076 if (mem_cgroup_disabled()) {
1077 lruvec
= &zone
->lruvec
;
1081 memcg
= page
->mem_cgroup
;
1083 * Swapcache readahead pages are added to the LRU - and
1084 * possibly migrated - before they are charged.
1087 memcg
= root_mem_cgroup
;
1089 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1090 lruvec
= &mz
->lruvec
;
1093 * Since a node can be onlined after the mem_cgroup was created,
1094 * we have to be prepared to initialize lruvec->zone here;
1095 * and if offlined then reonlined, we need to reinitialize it.
1097 if (unlikely(lruvec
->zone
!= zone
))
1098 lruvec
->zone
= zone
;
1103 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1104 * @lruvec: mem_cgroup per zone lru vector
1105 * @lru: index of lru list the page is sitting on
1106 * @nr_pages: positive when adding or negative when removing
1108 * This function must be called when a page is added to or removed from an
1111 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1114 struct mem_cgroup_per_zone
*mz
;
1115 unsigned long *lru_size
;
1117 if (mem_cgroup_disabled())
1120 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1121 lru_size
= mz
->lru_size
+ lru
;
1122 *lru_size
+= nr_pages
;
1123 VM_BUG_ON((long)(*lru_size
) < 0);
1126 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1128 struct mem_cgroup
*task_memcg
;
1129 struct task_struct
*p
;
1132 p
= find_lock_task_mm(task
);
1134 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1138 * All threads may have already detached their mm's, but the oom
1139 * killer still needs to detect if they have already been oom
1140 * killed to prevent needlessly killing additional tasks.
1143 task_memcg
= mem_cgroup_from_task(task
);
1144 css_get(&task_memcg
->css
);
1147 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1148 css_put(&task_memcg
->css
);
1152 #define mem_cgroup_from_counter(counter, member) \
1153 container_of(counter, struct mem_cgroup, member)
1156 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1157 * @memcg: the memory cgroup
1159 * Returns the maximum amount of memory @mem can be charged with, in
1162 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1164 unsigned long margin
= 0;
1165 unsigned long count
;
1166 unsigned long limit
;
1168 count
= page_counter_read(&memcg
->memory
);
1169 limit
= READ_ONCE(memcg
->memory
.limit
);
1171 margin
= limit
- count
;
1173 if (do_swap_account
) {
1174 count
= page_counter_read(&memcg
->memsw
);
1175 limit
= READ_ONCE(memcg
->memsw
.limit
);
1177 margin
= min(margin
, limit
- count
);
1184 * A routine for checking "mem" is under move_account() or not.
1186 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1187 * moving cgroups. This is for waiting at high-memory pressure
1190 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1192 struct mem_cgroup
*from
;
1193 struct mem_cgroup
*to
;
1196 * Unlike task_move routines, we access mc.to, mc.from not under
1197 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1199 spin_lock(&mc
.lock
);
1205 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1206 mem_cgroup_is_descendant(to
, memcg
);
1208 spin_unlock(&mc
.lock
);
1212 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1214 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1215 if (mem_cgroup_under_move(memcg
)) {
1217 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1218 /* moving charge context might have finished. */
1221 finish_wait(&mc
.waitq
, &wait
);
1228 #define K(x) ((x) << (PAGE_SHIFT-10))
1230 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1231 * @memcg: The memory cgroup that went over limit
1232 * @p: Task that is going to be killed
1234 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1237 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1239 /* oom_info_lock ensures that parallel ooms do not interleave */
1240 static DEFINE_MUTEX(oom_info_lock
);
1241 struct mem_cgroup
*iter
;
1244 mutex_lock(&oom_info_lock
);
1248 pr_info("Task in ");
1249 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1250 pr_cont(" killed as a result of limit of ");
1252 pr_info("Memory limit reached of cgroup ");
1255 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1260 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1261 K((u64
)page_counter_read(&memcg
->memory
)),
1262 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1263 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1264 K((u64
)page_counter_read(&memcg
->memsw
)),
1265 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1266 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1267 K((u64
)page_counter_read(&memcg
->kmem
)),
1268 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1270 for_each_mem_cgroup_tree(iter
, memcg
) {
1271 pr_info("Memory cgroup stats for ");
1272 pr_cont_cgroup_path(iter
->css
.cgroup
);
1275 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1276 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1278 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1279 K(mem_cgroup_read_stat(iter
, i
)));
1282 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1283 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1284 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1288 mutex_unlock(&oom_info_lock
);
1292 * This function returns the number of memcg under hierarchy tree. Returns
1293 * 1(self count) if no children.
1295 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1298 struct mem_cgroup
*iter
;
1300 for_each_mem_cgroup_tree(iter
, memcg
)
1306 * Return the memory (and swap, if configured) limit for a memcg.
1308 static unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1310 unsigned long limit
;
1312 limit
= memcg
->memory
.limit
;
1313 if (mem_cgroup_swappiness(memcg
)) {
1314 unsigned long memsw_limit
;
1316 memsw_limit
= memcg
->memsw
.limit
;
1317 limit
= min(limit
+ total_swap_pages
, memsw_limit
);
1322 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1325 struct oom_control oc
= {
1328 .gfp_mask
= gfp_mask
,
1331 struct mem_cgroup
*iter
;
1332 unsigned long chosen_points
= 0;
1333 unsigned long totalpages
;
1334 unsigned int points
= 0;
1335 struct task_struct
*chosen
= NULL
;
1337 mutex_lock(&oom_lock
);
1340 * If current has a pending SIGKILL or is exiting, then automatically
1341 * select it. The goal is to allow it to allocate so that it may
1342 * quickly exit and free its memory.
1344 if (fatal_signal_pending(current
) || task_will_free_mem(current
)) {
1345 mark_oom_victim(current
);
1349 check_panic_on_oom(&oc
, CONSTRAINT_MEMCG
, memcg
);
1350 totalpages
= mem_cgroup_get_limit(memcg
) ? : 1;
1351 for_each_mem_cgroup_tree(iter
, memcg
) {
1352 struct css_task_iter it
;
1353 struct task_struct
*task
;
1355 css_task_iter_start(&iter
->css
, &it
);
1356 while ((task
= css_task_iter_next(&it
))) {
1357 switch (oom_scan_process_thread(&oc
, task
, totalpages
)) {
1358 case OOM_SCAN_SELECT
:
1360 put_task_struct(chosen
);
1362 chosen_points
= ULONG_MAX
;
1363 get_task_struct(chosen
);
1365 case OOM_SCAN_CONTINUE
:
1367 case OOM_SCAN_ABORT
:
1368 css_task_iter_end(&it
);
1369 mem_cgroup_iter_break(memcg
, iter
);
1371 put_task_struct(chosen
);
1376 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1377 if (!points
|| points
< chosen_points
)
1379 /* Prefer thread group leaders for display purposes */
1380 if (points
== chosen_points
&&
1381 thread_group_leader(chosen
))
1385 put_task_struct(chosen
);
1387 chosen_points
= points
;
1388 get_task_struct(chosen
);
1390 css_task_iter_end(&it
);
1394 points
= chosen_points
* 1000 / totalpages
;
1395 oom_kill_process(&oc
, chosen
, points
, totalpages
, memcg
,
1396 "Memory cgroup out of memory");
1399 mutex_unlock(&oom_lock
);
1403 #if MAX_NUMNODES > 1
1406 * test_mem_cgroup_node_reclaimable
1407 * @memcg: the target memcg
1408 * @nid: the node ID to be checked.
1409 * @noswap : specify true here if the user wants flle only information.
1411 * This function returns whether the specified memcg contains any
1412 * reclaimable pages on a node. Returns true if there are any reclaimable
1413 * pages in the node.
1415 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1416 int nid
, bool noswap
)
1418 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1420 if (noswap
|| !total_swap_pages
)
1422 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1429 * Always updating the nodemask is not very good - even if we have an empty
1430 * list or the wrong list here, we can start from some node and traverse all
1431 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1434 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1438 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1439 * pagein/pageout changes since the last update.
1441 if (!atomic_read(&memcg
->numainfo_events
))
1443 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1446 /* make a nodemask where this memcg uses memory from */
1447 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1449 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1451 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1452 node_clear(nid
, memcg
->scan_nodes
);
1455 atomic_set(&memcg
->numainfo_events
, 0);
1456 atomic_set(&memcg
->numainfo_updating
, 0);
1460 * Selecting a node where we start reclaim from. Because what we need is just
1461 * reducing usage counter, start from anywhere is O,K. Considering
1462 * memory reclaim from current node, there are pros. and cons.
1464 * Freeing memory from current node means freeing memory from a node which
1465 * we'll use or we've used. So, it may make LRU bad. And if several threads
1466 * hit limits, it will see a contention on a node. But freeing from remote
1467 * node means more costs for memory reclaim because of memory latency.
1469 * Now, we use round-robin. Better algorithm is welcomed.
1471 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1475 mem_cgroup_may_update_nodemask(memcg
);
1476 node
= memcg
->last_scanned_node
;
1478 node
= next_node(node
, memcg
->scan_nodes
);
1479 if (node
== MAX_NUMNODES
)
1480 node
= first_node(memcg
->scan_nodes
);
1482 * We call this when we hit limit, not when pages are added to LRU.
1483 * No LRU may hold pages because all pages are UNEVICTABLE or
1484 * memcg is too small and all pages are not on LRU. In that case,
1485 * we use curret node.
1487 if (unlikely(node
== MAX_NUMNODES
))
1488 node
= numa_node_id();
1490 memcg
->last_scanned_node
= node
;
1494 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1500 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1503 unsigned long *total_scanned
)
1505 struct mem_cgroup
*victim
= NULL
;
1508 unsigned long excess
;
1509 unsigned long nr_scanned
;
1510 struct mem_cgroup_reclaim_cookie reclaim
= {
1515 excess
= soft_limit_excess(root_memcg
);
1518 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1523 * If we have not been able to reclaim
1524 * anything, it might because there are
1525 * no reclaimable pages under this hierarchy
1530 * We want to do more targeted reclaim.
1531 * excess >> 2 is not to excessive so as to
1532 * reclaim too much, nor too less that we keep
1533 * coming back to reclaim from this cgroup
1535 if (total
>= (excess
>> 2) ||
1536 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1541 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1543 *total_scanned
+= nr_scanned
;
1544 if (!soft_limit_excess(root_memcg
))
1547 mem_cgroup_iter_break(root_memcg
, victim
);
1551 #ifdef CONFIG_LOCKDEP
1552 static struct lockdep_map memcg_oom_lock_dep_map
= {
1553 .name
= "memcg_oom_lock",
1557 static DEFINE_SPINLOCK(memcg_oom_lock
);
1560 * Check OOM-Killer is already running under our hierarchy.
1561 * If someone is running, return false.
1563 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1565 struct mem_cgroup
*iter
, *failed
= NULL
;
1567 spin_lock(&memcg_oom_lock
);
1569 for_each_mem_cgroup_tree(iter
, memcg
) {
1570 if (iter
->oom_lock
) {
1572 * this subtree of our hierarchy is already locked
1573 * so we cannot give a lock.
1576 mem_cgroup_iter_break(memcg
, iter
);
1579 iter
->oom_lock
= true;
1584 * OK, we failed to lock the whole subtree so we have
1585 * to clean up what we set up to the failing subtree
1587 for_each_mem_cgroup_tree(iter
, memcg
) {
1588 if (iter
== failed
) {
1589 mem_cgroup_iter_break(memcg
, iter
);
1592 iter
->oom_lock
= false;
1595 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1597 spin_unlock(&memcg_oom_lock
);
1602 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1604 struct mem_cgroup
*iter
;
1606 spin_lock(&memcg_oom_lock
);
1607 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1608 for_each_mem_cgroup_tree(iter
, memcg
)
1609 iter
->oom_lock
= false;
1610 spin_unlock(&memcg_oom_lock
);
1613 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1615 struct mem_cgroup
*iter
;
1617 spin_lock(&memcg_oom_lock
);
1618 for_each_mem_cgroup_tree(iter
, memcg
)
1620 spin_unlock(&memcg_oom_lock
);
1623 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1625 struct mem_cgroup
*iter
;
1628 * When a new child is created while the hierarchy is under oom,
1629 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1631 spin_lock(&memcg_oom_lock
);
1632 for_each_mem_cgroup_tree(iter
, memcg
)
1633 if (iter
->under_oom
> 0)
1635 spin_unlock(&memcg_oom_lock
);
1638 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1640 struct oom_wait_info
{
1641 struct mem_cgroup
*memcg
;
1645 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1646 unsigned mode
, int sync
, void *arg
)
1648 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1649 struct mem_cgroup
*oom_wait_memcg
;
1650 struct oom_wait_info
*oom_wait_info
;
1652 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1653 oom_wait_memcg
= oom_wait_info
->memcg
;
1655 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1656 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1658 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1661 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1664 * For the following lockless ->under_oom test, the only required
1665 * guarantee is that it must see the state asserted by an OOM when
1666 * this function is called as a result of userland actions
1667 * triggered by the notification of the OOM. This is trivially
1668 * achieved by invoking mem_cgroup_mark_under_oom() before
1669 * triggering notification.
1671 if (memcg
&& memcg
->under_oom
)
1672 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1675 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1677 if (!current
->memcg_may_oom
)
1680 * We are in the middle of the charge context here, so we
1681 * don't want to block when potentially sitting on a callstack
1682 * that holds all kinds of filesystem and mm locks.
1684 * Also, the caller may handle a failed allocation gracefully
1685 * (like optional page cache readahead) and so an OOM killer
1686 * invocation might not even be necessary.
1688 * That's why we don't do anything here except remember the
1689 * OOM context and then deal with it at the end of the page
1690 * fault when the stack is unwound, the locks are released,
1691 * and when we know whether the fault was overall successful.
1693 css_get(&memcg
->css
);
1694 current
->memcg_in_oom
= memcg
;
1695 current
->memcg_oom_gfp_mask
= mask
;
1696 current
->memcg_oom_order
= order
;
1700 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1701 * @handle: actually kill/wait or just clean up the OOM state
1703 * This has to be called at the end of a page fault if the memcg OOM
1704 * handler was enabled.
1706 * Memcg supports userspace OOM handling where failed allocations must
1707 * sleep on a waitqueue until the userspace task resolves the
1708 * situation. Sleeping directly in the charge context with all kinds
1709 * of locks held is not a good idea, instead we remember an OOM state
1710 * in the task and mem_cgroup_oom_synchronize() has to be called at
1711 * the end of the page fault to complete the OOM handling.
1713 * Returns %true if an ongoing memcg OOM situation was detected and
1714 * completed, %false otherwise.
1716 bool mem_cgroup_oom_synchronize(bool handle
)
1718 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1719 struct oom_wait_info owait
;
1722 /* OOM is global, do not handle */
1726 if (!handle
|| oom_killer_disabled
)
1729 owait
.memcg
= memcg
;
1730 owait
.wait
.flags
= 0;
1731 owait
.wait
.func
= memcg_oom_wake_function
;
1732 owait
.wait
.private = current
;
1733 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1735 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1736 mem_cgroup_mark_under_oom(memcg
);
1738 locked
= mem_cgroup_oom_trylock(memcg
);
1741 mem_cgroup_oom_notify(memcg
);
1743 if (locked
&& !memcg
->oom_kill_disable
) {
1744 mem_cgroup_unmark_under_oom(memcg
);
1745 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1746 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1747 current
->memcg_oom_order
);
1750 mem_cgroup_unmark_under_oom(memcg
);
1751 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1755 mem_cgroup_oom_unlock(memcg
);
1757 * There is no guarantee that an OOM-lock contender
1758 * sees the wakeups triggered by the OOM kill
1759 * uncharges. Wake any sleepers explicitely.
1761 memcg_oom_recover(memcg
);
1764 current
->memcg_in_oom
= NULL
;
1765 css_put(&memcg
->css
);
1770 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1771 * @page: page that is going to change accounted state
1773 * This function must mark the beginning of an accounted page state
1774 * change to prevent double accounting when the page is concurrently
1775 * being moved to another memcg:
1777 * memcg = mem_cgroup_begin_page_stat(page);
1778 * if (TestClearPageState(page))
1779 * mem_cgroup_update_page_stat(memcg, state, -1);
1780 * mem_cgroup_end_page_stat(memcg);
1782 struct mem_cgroup
*mem_cgroup_begin_page_stat(struct page
*page
)
1784 struct mem_cgroup
*memcg
;
1785 unsigned long flags
;
1788 * The RCU lock is held throughout the transaction. The fast
1789 * path can get away without acquiring the memcg->move_lock
1790 * because page moving starts with an RCU grace period.
1792 * The RCU lock also protects the memcg from being freed when
1793 * the page state that is going to change is the only thing
1794 * preventing the page from being uncharged.
1795 * E.g. end-writeback clearing PageWriteback(), which allows
1796 * migration to go ahead and uncharge the page before the
1797 * account transaction might be complete.
1801 if (mem_cgroup_disabled())
1804 memcg
= page
->mem_cgroup
;
1805 if (unlikely(!memcg
))
1808 if (atomic_read(&memcg
->moving_account
) <= 0)
1811 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1812 if (memcg
!= page
->mem_cgroup
) {
1813 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1818 * When charge migration first begins, we can have locked and
1819 * unlocked page stat updates happening concurrently. Track
1820 * the task who has the lock for mem_cgroup_end_page_stat().
1822 memcg
->move_lock_task
= current
;
1823 memcg
->move_lock_flags
= flags
;
1827 EXPORT_SYMBOL(mem_cgroup_begin_page_stat
);
1830 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1831 * @memcg: the memcg that was accounted against
1833 void mem_cgroup_end_page_stat(struct mem_cgroup
*memcg
)
1835 if (memcg
&& memcg
->move_lock_task
== current
) {
1836 unsigned long flags
= memcg
->move_lock_flags
;
1838 memcg
->move_lock_task
= NULL
;
1839 memcg
->move_lock_flags
= 0;
1841 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1846 EXPORT_SYMBOL(mem_cgroup_end_page_stat
);
1849 * size of first charge trial. "32" comes from vmscan.c's magic value.
1850 * TODO: maybe necessary to use big numbers in big irons.
1852 #define CHARGE_BATCH 32U
1853 struct memcg_stock_pcp
{
1854 struct mem_cgroup
*cached
; /* this never be root cgroup */
1855 unsigned int nr_pages
;
1856 struct work_struct work
;
1857 unsigned long flags
;
1858 #define FLUSHING_CACHED_CHARGE 0
1860 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1861 static DEFINE_MUTEX(percpu_charge_mutex
);
1864 * consume_stock: Try to consume stocked charge on this cpu.
1865 * @memcg: memcg to consume from.
1866 * @nr_pages: how many pages to charge.
1868 * The charges will only happen if @memcg matches the current cpu's memcg
1869 * stock, and at least @nr_pages are available in that stock. Failure to
1870 * service an allocation will refill the stock.
1872 * returns true if successful, false otherwise.
1874 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1876 struct memcg_stock_pcp
*stock
;
1879 if (nr_pages
> CHARGE_BATCH
)
1882 stock
= &get_cpu_var(memcg_stock
);
1883 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1884 stock
->nr_pages
-= nr_pages
;
1887 put_cpu_var(memcg_stock
);
1892 * Returns stocks cached in percpu and reset cached information.
1894 static void drain_stock(struct memcg_stock_pcp
*stock
)
1896 struct mem_cgroup
*old
= stock
->cached
;
1898 if (stock
->nr_pages
) {
1899 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1900 if (do_swap_account
)
1901 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1902 css_put_many(&old
->css
, stock
->nr_pages
);
1903 stock
->nr_pages
= 0;
1905 stock
->cached
= NULL
;
1909 * This must be called under preempt disabled or must be called by
1910 * a thread which is pinned to local cpu.
1912 static void drain_local_stock(struct work_struct
*dummy
)
1914 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
1916 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1920 * Cache charges(val) to local per_cpu area.
1921 * This will be consumed by consume_stock() function, later.
1923 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1925 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1927 if (stock
->cached
!= memcg
) { /* reset if necessary */
1929 stock
->cached
= memcg
;
1931 stock
->nr_pages
+= nr_pages
;
1932 put_cpu_var(memcg_stock
);
1936 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1937 * of the hierarchy under it.
1939 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1943 /* If someone's already draining, avoid adding running more workers. */
1944 if (!mutex_trylock(&percpu_charge_mutex
))
1946 /* Notify other cpus that system-wide "drain" is running */
1949 for_each_online_cpu(cpu
) {
1950 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1951 struct mem_cgroup
*memcg
;
1953 memcg
= stock
->cached
;
1954 if (!memcg
|| !stock
->nr_pages
)
1956 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1958 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1960 drain_local_stock(&stock
->work
);
1962 schedule_work_on(cpu
, &stock
->work
);
1967 mutex_unlock(&percpu_charge_mutex
);
1970 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1971 unsigned long action
,
1974 int cpu
= (unsigned long)hcpu
;
1975 struct memcg_stock_pcp
*stock
;
1977 if (action
== CPU_ONLINE
)
1980 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1983 stock
= &per_cpu(memcg_stock
, cpu
);
1989 * Scheduled by try_charge() to be executed from the userland return path
1990 * and reclaims memory over the high limit.
1992 void mem_cgroup_handle_over_high(void)
1994 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1995 struct mem_cgroup
*memcg
, *pos
;
1997 if (likely(!nr_pages
))
2000 pos
= memcg
= get_mem_cgroup_from_mm(current
->mm
);
2003 if (page_counter_read(&pos
->memory
) <= pos
->high
)
2005 mem_cgroup_events(pos
, MEMCG_HIGH
, 1);
2006 try_to_free_mem_cgroup_pages(pos
, nr_pages
, GFP_KERNEL
, true);
2007 } while ((pos
= parent_mem_cgroup(pos
)));
2009 css_put(&memcg
->css
);
2010 current
->memcg_nr_pages_over_high
= 0;
2013 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2014 unsigned int nr_pages
)
2016 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2017 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2018 struct mem_cgroup
*mem_over_limit
;
2019 struct page_counter
*counter
;
2020 unsigned long nr_reclaimed
;
2021 bool may_swap
= true;
2022 bool drained
= false;
2024 if (mem_cgroup_is_root(memcg
))
2027 if (consume_stock(memcg
, nr_pages
))
2030 if (!do_swap_account
||
2031 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2032 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2034 if (do_swap_account
)
2035 page_counter_uncharge(&memcg
->memsw
, batch
);
2036 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2038 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2042 if (batch
> nr_pages
) {
2048 * Unlike in global OOM situations, memcg is not in a physical
2049 * memory shortage. Allow dying and OOM-killed tasks to
2050 * bypass the last charges so that they can exit quickly and
2051 * free their memory.
2053 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
2054 fatal_signal_pending(current
) ||
2055 current
->flags
& PF_EXITING
))
2059 * Prevent unbounded recursion when reclaim operations need to
2060 * allocate memory. This might exceed the limits temporarily,
2061 * but we prefer facilitating memory reclaim and getting back
2062 * under the limit over triggering OOM kills in these cases.
2064 if (unlikely(current
->flags
& PF_MEMALLOC
))
2067 if (unlikely(task_in_memcg_oom(current
)))
2070 if (!gfpflags_allow_blocking(gfp_mask
))
2073 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
2075 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2076 gfp_mask
, may_swap
);
2078 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2082 drain_all_stock(mem_over_limit
);
2087 if (gfp_mask
& __GFP_NORETRY
)
2090 * Even though the limit is exceeded at this point, reclaim
2091 * may have been able to free some pages. Retry the charge
2092 * before killing the task.
2094 * Only for regular pages, though: huge pages are rather
2095 * unlikely to succeed so close to the limit, and we fall back
2096 * to regular pages anyway in case of failure.
2098 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2101 * At task move, charge accounts can be doubly counted. So, it's
2102 * better to wait until the end of task_move if something is going on.
2104 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2110 if (gfp_mask
& __GFP_NOFAIL
)
2113 if (fatal_signal_pending(current
))
2116 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2118 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2119 get_order(nr_pages
* PAGE_SIZE
));
2121 if (!(gfp_mask
& __GFP_NOFAIL
))
2125 * The allocation either can't fail or will lead to more memory
2126 * being freed very soon. Allow memory usage go over the limit
2127 * temporarily by force charging it.
2129 page_counter_charge(&memcg
->memory
, nr_pages
);
2130 if (do_swap_account
)
2131 page_counter_charge(&memcg
->memsw
, nr_pages
);
2132 css_get_many(&memcg
->css
, nr_pages
);
2137 css_get_many(&memcg
->css
, batch
);
2138 if (batch
> nr_pages
)
2139 refill_stock(memcg
, batch
- nr_pages
);
2142 * If the hierarchy is above the normal consumption range, schedule
2143 * reclaim on returning to userland. We can perform reclaim here
2144 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2145 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2146 * not recorded as it most likely matches current's and won't
2147 * change in the meantime. As high limit is checked again before
2148 * reclaim, the cost of mismatch is negligible.
2151 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2152 current
->memcg_nr_pages_over_high
+= batch
;
2153 set_notify_resume(current
);
2156 } while ((memcg
= parent_mem_cgroup(memcg
)));
2161 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2163 if (mem_cgroup_is_root(memcg
))
2166 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2167 if (do_swap_account
)
2168 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2170 css_put_many(&memcg
->css
, nr_pages
);
2173 static void lock_page_lru(struct page
*page
, int *isolated
)
2175 struct zone
*zone
= page_zone(page
);
2177 spin_lock_irq(&zone
->lru_lock
);
2178 if (PageLRU(page
)) {
2179 struct lruvec
*lruvec
;
2181 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2183 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2189 static void unlock_page_lru(struct page
*page
, int isolated
)
2191 struct zone
*zone
= page_zone(page
);
2194 struct lruvec
*lruvec
;
2196 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2197 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2199 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2201 spin_unlock_irq(&zone
->lru_lock
);
2204 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2209 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2212 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2213 * may already be on some other mem_cgroup's LRU. Take care of it.
2216 lock_page_lru(page
, &isolated
);
2219 * Nobody should be changing or seriously looking at
2220 * page->mem_cgroup at this point:
2222 * - the page is uncharged
2224 * - the page is off-LRU
2226 * - an anonymous fault has exclusive page access, except for
2227 * a locked page table
2229 * - a page cache insertion, a swapin fault, or a migration
2230 * have the page locked
2232 page
->mem_cgroup
= memcg
;
2235 unlock_page_lru(page
, isolated
);
2238 #ifdef CONFIG_MEMCG_KMEM
2239 static int memcg_alloc_cache_id(void)
2244 id
= ida_simple_get(&memcg_cache_ida
,
2245 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2249 if (id
< memcg_nr_cache_ids
)
2253 * There's no space for the new id in memcg_caches arrays,
2254 * so we have to grow them.
2256 down_write(&memcg_cache_ids_sem
);
2258 size
= 2 * (id
+ 1);
2259 if (size
< MEMCG_CACHES_MIN_SIZE
)
2260 size
= MEMCG_CACHES_MIN_SIZE
;
2261 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2262 size
= MEMCG_CACHES_MAX_SIZE
;
2264 err
= memcg_update_all_caches(size
);
2266 err
= memcg_update_all_list_lrus(size
);
2268 memcg_nr_cache_ids
= size
;
2270 up_write(&memcg_cache_ids_sem
);
2273 ida_simple_remove(&memcg_cache_ida
, id
);
2279 static void memcg_free_cache_id(int id
)
2281 ida_simple_remove(&memcg_cache_ida
, id
);
2284 struct memcg_kmem_cache_create_work
{
2285 struct mem_cgroup
*memcg
;
2286 struct kmem_cache
*cachep
;
2287 struct work_struct work
;
2290 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2292 struct memcg_kmem_cache_create_work
*cw
=
2293 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2294 struct mem_cgroup
*memcg
= cw
->memcg
;
2295 struct kmem_cache
*cachep
= cw
->cachep
;
2297 memcg_create_kmem_cache(memcg
, cachep
);
2299 css_put(&memcg
->css
);
2304 * Enqueue the creation of a per-memcg kmem_cache.
2306 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2307 struct kmem_cache
*cachep
)
2309 struct memcg_kmem_cache_create_work
*cw
;
2311 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2315 css_get(&memcg
->css
);
2318 cw
->cachep
= cachep
;
2319 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2321 schedule_work(&cw
->work
);
2324 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2325 struct kmem_cache
*cachep
)
2328 * We need to stop accounting when we kmalloc, because if the
2329 * corresponding kmalloc cache is not yet created, the first allocation
2330 * in __memcg_schedule_kmem_cache_create will recurse.
2332 * However, it is better to enclose the whole function. Depending on
2333 * the debugging options enabled, INIT_WORK(), for instance, can
2334 * trigger an allocation. This too, will make us recurse. Because at
2335 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2336 * the safest choice is to do it like this, wrapping the whole function.
2338 current
->memcg_kmem_skip_account
= 1;
2339 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2340 current
->memcg_kmem_skip_account
= 0;
2344 * Return the kmem_cache we're supposed to use for a slab allocation.
2345 * We try to use the current memcg's version of the cache.
2347 * If the cache does not exist yet, if we are the first user of it,
2348 * we either create it immediately, if possible, or create it asynchronously
2350 * In the latter case, we will let the current allocation go through with
2351 * the original cache.
2353 * Can't be called in interrupt context or from kernel threads.
2354 * This function needs to be called with rcu_read_lock() held.
2356 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2358 struct mem_cgroup
*memcg
;
2359 struct kmem_cache
*memcg_cachep
;
2362 VM_BUG_ON(!is_root_cache(cachep
));
2364 if (current
->memcg_kmem_skip_account
)
2367 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2368 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2372 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2373 if (likely(memcg_cachep
))
2374 return memcg_cachep
;
2377 * If we are in a safe context (can wait, and not in interrupt
2378 * context), we could be be predictable and return right away.
2379 * This would guarantee that the allocation being performed
2380 * already belongs in the new cache.
2382 * However, there are some clashes that can arrive from locking.
2383 * For instance, because we acquire the slab_mutex while doing
2384 * memcg_create_kmem_cache, this means no further allocation
2385 * could happen with the slab_mutex held. So it's better to
2388 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2390 css_put(&memcg
->css
);
2394 void __memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2396 if (!is_root_cache(cachep
))
2397 css_put(&cachep
->memcg_params
.memcg
->css
);
2400 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2401 struct mem_cgroup
*memcg
)
2403 unsigned int nr_pages
= 1 << order
;
2404 struct page_counter
*counter
;
2407 if (!memcg_kmem_is_active(memcg
))
2410 if (!page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
))
2413 ret
= try_charge(memcg
, gfp
, nr_pages
);
2415 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2419 page
->mem_cgroup
= memcg
;
2424 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2426 struct mem_cgroup
*memcg
;
2429 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2430 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2431 css_put(&memcg
->css
);
2435 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2437 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2438 unsigned int nr_pages
= 1 << order
;
2443 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2445 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2446 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2447 if (do_swap_account
)
2448 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2450 page
->mem_cgroup
= NULL
;
2451 css_put_many(&memcg
->css
, nr_pages
);
2453 #endif /* CONFIG_MEMCG_KMEM */
2455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2458 * Because tail pages are not marked as "used", set it. We're under
2459 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2460 * charge/uncharge will be never happen and move_account() is done under
2461 * compound_lock(), so we don't have to take care of races.
2463 void mem_cgroup_split_huge_fixup(struct page
*head
)
2467 if (mem_cgroup_disabled())
2470 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2471 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2473 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2478 #ifdef CONFIG_MEMCG_SWAP
2479 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2482 int val
= (charge
) ? 1 : -1;
2483 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2487 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2488 * @entry: swap entry to be moved
2489 * @from: mem_cgroup which the entry is moved from
2490 * @to: mem_cgroup which the entry is moved to
2492 * It succeeds only when the swap_cgroup's record for this entry is the same
2493 * as the mem_cgroup's id of @from.
2495 * Returns 0 on success, -EINVAL on failure.
2497 * The caller must have charged to @to, IOW, called page_counter_charge() about
2498 * both res and memsw, and called css_get().
2500 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2501 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2503 unsigned short old_id
, new_id
;
2505 old_id
= mem_cgroup_id(from
);
2506 new_id
= mem_cgroup_id(to
);
2508 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2509 mem_cgroup_swap_statistics(from
, false);
2510 mem_cgroup_swap_statistics(to
, true);
2516 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2517 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2523 static DEFINE_MUTEX(memcg_limit_mutex
);
2525 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2526 unsigned long limit
)
2528 unsigned long curusage
;
2529 unsigned long oldusage
;
2530 bool enlarge
= false;
2535 * For keeping hierarchical_reclaim simple, how long we should retry
2536 * is depends on callers. We set our retry-count to be function
2537 * of # of children which we should visit in this loop.
2539 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2540 mem_cgroup_count_children(memcg
);
2542 oldusage
= page_counter_read(&memcg
->memory
);
2545 if (signal_pending(current
)) {
2550 mutex_lock(&memcg_limit_mutex
);
2551 if (limit
> memcg
->memsw
.limit
) {
2552 mutex_unlock(&memcg_limit_mutex
);
2556 if (limit
> memcg
->memory
.limit
)
2558 ret
= page_counter_limit(&memcg
->memory
, limit
);
2559 mutex_unlock(&memcg_limit_mutex
);
2564 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2566 curusage
= page_counter_read(&memcg
->memory
);
2567 /* Usage is reduced ? */
2568 if (curusage
>= oldusage
)
2571 oldusage
= curusage
;
2572 } while (retry_count
);
2574 if (!ret
&& enlarge
)
2575 memcg_oom_recover(memcg
);
2580 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2581 unsigned long limit
)
2583 unsigned long curusage
;
2584 unsigned long oldusage
;
2585 bool enlarge
= false;
2589 /* see mem_cgroup_resize_res_limit */
2590 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2591 mem_cgroup_count_children(memcg
);
2593 oldusage
= page_counter_read(&memcg
->memsw
);
2596 if (signal_pending(current
)) {
2601 mutex_lock(&memcg_limit_mutex
);
2602 if (limit
< memcg
->memory
.limit
) {
2603 mutex_unlock(&memcg_limit_mutex
);
2607 if (limit
> memcg
->memsw
.limit
)
2609 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2610 mutex_unlock(&memcg_limit_mutex
);
2615 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2617 curusage
= page_counter_read(&memcg
->memsw
);
2618 /* Usage is reduced ? */
2619 if (curusage
>= oldusage
)
2622 oldusage
= curusage
;
2623 } while (retry_count
);
2625 if (!ret
&& enlarge
)
2626 memcg_oom_recover(memcg
);
2631 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2633 unsigned long *total_scanned
)
2635 unsigned long nr_reclaimed
= 0;
2636 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2637 unsigned long reclaimed
;
2639 struct mem_cgroup_tree_per_zone
*mctz
;
2640 unsigned long excess
;
2641 unsigned long nr_scanned
;
2646 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
2648 * This loop can run a while, specially if mem_cgroup's continuously
2649 * keep exceeding their soft limit and putting the system under
2656 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2661 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
2662 gfp_mask
, &nr_scanned
);
2663 nr_reclaimed
+= reclaimed
;
2664 *total_scanned
+= nr_scanned
;
2665 spin_lock_irq(&mctz
->lock
);
2666 __mem_cgroup_remove_exceeded(mz
, mctz
);
2669 * If we failed to reclaim anything from this memory cgroup
2670 * it is time to move on to the next cgroup
2674 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2676 excess
= soft_limit_excess(mz
->memcg
);
2678 * One school of thought says that we should not add
2679 * back the node to the tree if reclaim returns 0.
2680 * But our reclaim could return 0, simply because due
2681 * to priority we are exposing a smaller subset of
2682 * memory to reclaim from. Consider this as a longer
2685 /* If excess == 0, no tree ops */
2686 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2687 spin_unlock_irq(&mctz
->lock
);
2688 css_put(&mz
->memcg
->css
);
2691 * Could not reclaim anything and there are no more
2692 * mem cgroups to try or we seem to be looping without
2693 * reclaiming anything.
2695 if (!nr_reclaimed
&&
2697 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2699 } while (!nr_reclaimed
);
2701 css_put(&next_mz
->memcg
->css
);
2702 return nr_reclaimed
;
2706 * Test whether @memcg has children, dead or alive. Note that this
2707 * function doesn't care whether @memcg has use_hierarchy enabled and
2708 * returns %true if there are child csses according to the cgroup
2709 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2711 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2716 * The lock does not prevent addition or deletion of children, but
2717 * it prevents a new child from being initialized based on this
2718 * parent in css_online(), so it's enough to decide whether
2719 * hierarchically inherited attributes can still be changed or not.
2721 lockdep_assert_held(&memcg_create_mutex
);
2724 ret
= css_next_child(NULL
, &memcg
->css
);
2730 * Reclaims as many pages from the given memcg as possible and moves
2731 * the rest to the parent.
2733 * Caller is responsible for holding css reference for memcg.
2735 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2737 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2739 /* we call try-to-free pages for make this cgroup empty */
2740 lru_add_drain_all();
2741 /* try to free all pages in this cgroup */
2742 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2745 if (signal_pending(current
))
2748 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2752 /* maybe some writeback is necessary */
2753 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2761 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2762 char *buf
, size_t nbytes
,
2765 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2767 if (mem_cgroup_is_root(memcg
))
2769 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2772 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2775 return mem_cgroup_from_css(css
)->use_hierarchy
;
2778 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2779 struct cftype
*cft
, u64 val
)
2782 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2783 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2785 mutex_lock(&memcg_create_mutex
);
2787 if (memcg
->use_hierarchy
== val
)
2791 * If parent's use_hierarchy is set, we can't make any modifications
2792 * in the child subtrees. If it is unset, then the change can
2793 * occur, provided the current cgroup has no children.
2795 * For the root cgroup, parent_mem is NULL, we allow value to be
2796 * set if there are no children.
2798 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2799 (val
== 1 || val
== 0)) {
2800 if (!memcg_has_children(memcg
))
2801 memcg
->use_hierarchy
= val
;
2808 mutex_unlock(&memcg_create_mutex
);
2813 static unsigned long tree_stat(struct mem_cgroup
*memcg
,
2814 enum mem_cgroup_stat_index idx
)
2816 struct mem_cgroup
*iter
;
2817 unsigned long val
= 0;
2819 for_each_mem_cgroup_tree(iter
, memcg
)
2820 val
+= mem_cgroup_read_stat(iter
, idx
);
2825 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2829 if (mem_cgroup_is_root(memcg
)) {
2830 val
= tree_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
2831 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_RSS
);
2833 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
2836 val
= page_counter_read(&memcg
->memory
);
2838 val
= page_counter_read(&memcg
->memsw
);
2851 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2854 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2855 struct page_counter
*counter
;
2857 switch (MEMFILE_TYPE(cft
->private)) {
2859 counter
= &memcg
->memory
;
2862 counter
= &memcg
->memsw
;
2865 counter
= &memcg
->kmem
;
2871 switch (MEMFILE_ATTR(cft
->private)) {
2873 if (counter
== &memcg
->memory
)
2874 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2875 if (counter
== &memcg
->memsw
)
2876 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2877 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2879 return (u64
)counter
->limit
* PAGE_SIZE
;
2881 return (u64
)counter
->watermark
* PAGE_SIZE
;
2883 return counter
->failcnt
;
2884 case RES_SOFT_LIMIT
:
2885 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2891 #ifdef CONFIG_MEMCG_KMEM
2892 static int memcg_activate_kmem(struct mem_cgroup
*memcg
,
2893 unsigned long nr_pages
)
2898 BUG_ON(memcg
->kmemcg_id
>= 0);
2899 BUG_ON(memcg
->kmem_acct_activated
);
2900 BUG_ON(memcg
->kmem_acct_active
);
2903 * For simplicity, we won't allow this to be disabled. It also can't
2904 * be changed if the cgroup has children already, or if tasks had
2907 * If tasks join before we set the limit, a person looking at
2908 * kmem.usage_in_bytes will have no way to determine when it took
2909 * place, which makes the value quite meaningless.
2911 * After it first became limited, changes in the value of the limit are
2912 * of course permitted.
2914 mutex_lock(&memcg_create_mutex
);
2915 if (cgroup_is_populated(memcg
->css
.cgroup
) ||
2916 (memcg
->use_hierarchy
&& memcg_has_children(memcg
)))
2918 mutex_unlock(&memcg_create_mutex
);
2922 memcg_id
= memcg_alloc_cache_id();
2929 * We couldn't have accounted to this cgroup, because it hasn't got
2930 * activated yet, so this should succeed.
2932 err
= page_counter_limit(&memcg
->kmem
, nr_pages
);
2935 static_key_slow_inc(&memcg_kmem_enabled_key
);
2937 * A memory cgroup is considered kmem-active as soon as it gets
2938 * kmemcg_id. Setting the id after enabling static branching will
2939 * guarantee no one starts accounting before all call sites are
2942 memcg
->kmemcg_id
= memcg_id
;
2943 memcg
->kmem_acct_activated
= true;
2944 memcg
->kmem_acct_active
= true;
2949 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2950 unsigned long limit
)
2954 mutex_lock(&memcg_limit_mutex
);
2955 if (!memcg_kmem_is_active(memcg
))
2956 ret
= memcg_activate_kmem(memcg
, limit
);
2958 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2959 mutex_unlock(&memcg_limit_mutex
);
2963 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
2966 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
2971 mutex_lock(&memcg_limit_mutex
);
2973 * If the parent cgroup is not kmem-active now, it cannot be activated
2974 * after this point, because it has at least one child already.
2976 if (memcg_kmem_is_active(parent
))
2977 ret
= memcg_activate_kmem(memcg
, PAGE_COUNTER_MAX
);
2978 mutex_unlock(&memcg_limit_mutex
);
2982 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2983 unsigned long limit
)
2987 #endif /* CONFIG_MEMCG_KMEM */
2990 * The user of this function is...
2993 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2994 char *buf
, size_t nbytes
, loff_t off
)
2996 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2997 unsigned long nr_pages
;
3000 buf
= strstrip(buf
);
3001 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3005 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3007 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3011 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3013 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3016 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3019 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3023 case RES_SOFT_LIMIT
:
3024 memcg
->soft_limit
= nr_pages
;
3028 return ret
?: nbytes
;
3031 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3032 size_t nbytes
, loff_t off
)
3034 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3035 struct page_counter
*counter
;
3037 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3039 counter
= &memcg
->memory
;
3042 counter
= &memcg
->memsw
;
3045 counter
= &memcg
->kmem
;
3051 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3053 page_counter_reset_watermark(counter
);
3056 counter
->failcnt
= 0;
3065 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3068 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3073 struct cftype
*cft
, u64 val
)
3075 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3077 if (val
& ~MOVE_MASK
)
3081 * No kind of locking is needed in here, because ->can_attach() will
3082 * check this value once in the beginning of the process, and then carry
3083 * on with stale data. This means that changes to this value will only
3084 * affect task migrations starting after the change.
3086 memcg
->move_charge_at_immigrate
= val
;
3090 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3091 struct cftype
*cft
, u64 val
)
3098 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3102 unsigned int lru_mask
;
3105 static const struct numa_stat stats
[] = {
3106 { "total", LRU_ALL
},
3107 { "file", LRU_ALL_FILE
},
3108 { "anon", LRU_ALL_ANON
},
3109 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3111 const struct numa_stat
*stat
;
3114 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3116 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3117 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3118 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3119 for_each_node_state(nid
, N_MEMORY
) {
3120 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3122 seq_printf(m
, " N%d=%lu", nid
, nr
);
3127 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3128 struct mem_cgroup
*iter
;
3131 for_each_mem_cgroup_tree(iter
, memcg
)
3132 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3133 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3134 for_each_node_state(nid
, N_MEMORY
) {
3136 for_each_mem_cgroup_tree(iter
, memcg
)
3137 nr
+= mem_cgroup_node_nr_lru_pages(
3138 iter
, nid
, stat
->lru_mask
);
3139 seq_printf(m
, " N%d=%lu", nid
, nr
);
3146 #endif /* CONFIG_NUMA */
3148 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3150 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3151 unsigned long memory
, memsw
;
3152 struct mem_cgroup
*mi
;
3155 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3156 MEM_CGROUP_STAT_NSTATS
);
3157 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3158 MEM_CGROUP_EVENTS_NSTATS
);
3159 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3161 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3162 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
3164 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3165 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3168 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3169 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3170 mem_cgroup_read_events(memcg
, i
));
3172 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3173 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3174 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3176 /* Hierarchical information */
3177 memory
= memsw
= PAGE_COUNTER_MAX
;
3178 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3179 memory
= min(memory
, mi
->memory
.limit
);
3180 memsw
= min(memsw
, mi
->memsw
.limit
);
3182 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3183 (u64
)memory
* PAGE_SIZE
);
3184 if (do_swap_account
)
3185 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3186 (u64
)memsw
* PAGE_SIZE
);
3188 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3189 unsigned long long val
= 0;
3191 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
3193 for_each_mem_cgroup_tree(mi
, memcg
)
3194 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3195 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3198 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3199 unsigned long long val
= 0;
3201 for_each_mem_cgroup_tree(mi
, memcg
)
3202 val
+= mem_cgroup_read_events(mi
, i
);
3203 seq_printf(m
, "total_%s %llu\n",
3204 mem_cgroup_events_names
[i
], val
);
3207 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3208 unsigned long long val
= 0;
3210 for_each_mem_cgroup_tree(mi
, memcg
)
3211 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3212 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3215 #ifdef CONFIG_DEBUG_VM
3218 struct mem_cgroup_per_zone
*mz
;
3219 struct zone_reclaim_stat
*rstat
;
3220 unsigned long recent_rotated
[2] = {0, 0};
3221 unsigned long recent_scanned
[2] = {0, 0};
3223 for_each_online_node(nid
)
3224 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3225 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
3226 rstat
= &mz
->lruvec
.reclaim_stat
;
3228 recent_rotated
[0] += rstat
->recent_rotated
[0];
3229 recent_rotated
[1] += rstat
->recent_rotated
[1];
3230 recent_scanned
[0] += rstat
->recent_scanned
[0];
3231 recent_scanned
[1] += rstat
->recent_scanned
[1];
3233 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3234 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3235 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3236 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3243 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3246 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3248 return mem_cgroup_swappiness(memcg
);
3251 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3252 struct cftype
*cft
, u64 val
)
3254 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3260 memcg
->swappiness
= val
;
3262 vm_swappiness
= val
;
3267 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3269 struct mem_cgroup_threshold_ary
*t
;
3270 unsigned long usage
;
3275 t
= rcu_dereference(memcg
->thresholds
.primary
);
3277 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3282 usage
= mem_cgroup_usage(memcg
, swap
);
3285 * current_threshold points to threshold just below or equal to usage.
3286 * If it's not true, a threshold was crossed after last
3287 * call of __mem_cgroup_threshold().
3289 i
= t
->current_threshold
;
3292 * Iterate backward over array of thresholds starting from
3293 * current_threshold and check if a threshold is crossed.
3294 * If none of thresholds below usage is crossed, we read
3295 * only one element of the array here.
3297 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3298 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3300 /* i = current_threshold + 1 */
3304 * Iterate forward over array of thresholds starting from
3305 * current_threshold+1 and check if a threshold is crossed.
3306 * If none of thresholds above usage is crossed, we read
3307 * only one element of the array here.
3309 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3310 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3312 /* Update current_threshold */
3313 t
->current_threshold
= i
- 1;
3318 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3321 __mem_cgroup_threshold(memcg
, false);
3322 if (do_swap_account
)
3323 __mem_cgroup_threshold(memcg
, true);
3325 memcg
= parent_mem_cgroup(memcg
);
3329 static int compare_thresholds(const void *a
, const void *b
)
3331 const struct mem_cgroup_threshold
*_a
= a
;
3332 const struct mem_cgroup_threshold
*_b
= b
;
3334 if (_a
->threshold
> _b
->threshold
)
3337 if (_a
->threshold
< _b
->threshold
)
3343 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3345 struct mem_cgroup_eventfd_list
*ev
;
3347 spin_lock(&memcg_oom_lock
);
3349 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3350 eventfd_signal(ev
->eventfd
, 1);
3352 spin_unlock(&memcg_oom_lock
);
3356 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3358 struct mem_cgroup
*iter
;
3360 for_each_mem_cgroup_tree(iter
, memcg
)
3361 mem_cgroup_oom_notify_cb(iter
);
3364 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3365 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3367 struct mem_cgroup_thresholds
*thresholds
;
3368 struct mem_cgroup_threshold_ary
*new;
3369 unsigned long threshold
;
3370 unsigned long usage
;
3373 ret
= page_counter_memparse(args
, "-1", &threshold
);
3377 mutex_lock(&memcg
->thresholds_lock
);
3380 thresholds
= &memcg
->thresholds
;
3381 usage
= mem_cgroup_usage(memcg
, false);
3382 } else if (type
== _MEMSWAP
) {
3383 thresholds
= &memcg
->memsw_thresholds
;
3384 usage
= mem_cgroup_usage(memcg
, true);
3388 /* Check if a threshold crossed before adding a new one */
3389 if (thresholds
->primary
)
3390 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3392 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3394 /* Allocate memory for new array of thresholds */
3395 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3403 /* Copy thresholds (if any) to new array */
3404 if (thresholds
->primary
) {
3405 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3406 sizeof(struct mem_cgroup_threshold
));
3409 /* Add new threshold */
3410 new->entries
[size
- 1].eventfd
= eventfd
;
3411 new->entries
[size
- 1].threshold
= threshold
;
3413 /* Sort thresholds. Registering of new threshold isn't time-critical */
3414 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3415 compare_thresholds
, NULL
);
3417 /* Find current threshold */
3418 new->current_threshold
= -1;
3419 for (i
= 0; i
< size
; i
++) {
3420 if (new->entries
[i
].threshold
<= usage
) {
3422 * new->current_threshold will not be used until
3423 * rcu_assign_pointer(), so it's safe to increment
3426 ++new->current_threshold
;
3431 /* Free old spare buffer and save old primary buffer as spare */
3432 kfree(thresholds
->spare
);
3433 thresholds
->spare
= thresholds
->primary
;
3435 rcu_assign_pointer(thresholds
->primary
, new);
3437 /* To be sure that nobody uses thresholds */
3441 mutex_unlock(&memcg
->thresholds_lock
);
3446 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3447 struct eventfd_ctx
*eventfd
, const char *args
)
3449 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3452 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3453 struct eventfd_ctx
*eventfd
, const char *args
)
3455 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3458 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3459 struct eventfd_ctx
*eventfd
, enum res_type type
)
3461 struct mem_cgroup_thresholds
*thresholds
;
3462 struct mem_cgroup_threshold_ary
*new;
3463 unsigned long usage
;
3466 mutex_lock(&memcg
->thresholds_lock
);
3469 thresholds
= &memcg
->thresholds
;
3470 usage
= mem_cgroup_usage(memcg
, false);
3471 } else if (type
== _MEMSWAP
) {
3472 thresholds
= &memcg
->memsw_thresholds
;
3473 usage
= mem_cgroup_usage(memcg
, true);
3477 if (!thresholds
->primary
)
3480 /* Check if a threshold crossed before removing */
3481 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3483 /* Calculate new number of threshold */
3485 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3486 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3490 new = thresholds
->spare
;
3492 /* Set thresholds array to NULL if we don't have thresholds */
3501 /* Copy thresholds and find current threshold */
3502 new->current_threshold
= -1;
3503 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3504 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3507 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3508 if (new->entries
[j
].threshold
<= usage
) {
3510 * new->current_threshold will not be used
3511 * until rcu_assign_pointer(), so it's safe to increment
3514 ++new->current_threshold
;
3520 /* Swap primary and spare array */
3521 thresholds
->spare
= thresholds
->primary
;
3523 rcu_assign_pointer(thresholds
->primary
, new);
3525 /* To be sure that nobody uses thresholds */
3528 /* If all events are unregistered, free the spare array */
3530 kfree(thresholds
->spare
);
3531 thresholds
->spare
= NULL
;
3534 mutex_unlock(&memcg
->thresholds_lock
);
3537 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3538 struct eventfd_ctx
*eventfd
)
3540 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3543 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3544 struct eventfd_ctx
*eventfd
)
3546 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3549 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3550 struct eventfd_ctx
*eventfd
, const char *args
)
3552 struct mem_cgroup_eventfd_list
*event
;
3554 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3558 spin_lock(&memcg_oom_lock
);
3560 event
->eventfd
= eventfd
;
3561 list_add(&event
->list
, &memcg
->oom_notify
);
3563 /* already in OOM ? */
3564 if (memcg
->under_oom
)
3565 eventfd_signal(eventfd
, 1);
3566 spin_unlock(&memcg_oom_lock
);
3571 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3572 struct eventfd_ctx
*eventfd
)
3574 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3576 spin_lock(&memcg_oom_lock
);
3578 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3579 if (ev
->eventfd
== eventfd
) {
3580 list_del(&ev
->list
);
3585 spin_unlock(&memcg_oom_lock
);
3588 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3590 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3592 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3593 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3597 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3598 struct cftype
*cft
, u64 val
)
3600 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3602 /* cannot set to root cgroup and only 0 and 1 are allowed */
3603 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3606 memcg
->oom_kill_disable
= val
;
3608 memcg_oom_recover(memcg
);
3613 #ifdef CONFIG_MEMCG_KMEM
3614 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
3618 ret
= memcg_propagate_kmem(memcg
);
3622 return mem_cgroup_sockets_init(memcg
, ss
);
3625 static void memcg_deactivate_kmem(struct mem_cgroup
*memcg
)
3627 struct cgroup_subsys_state
*css
;
3628 struct mem_cgroup
*parent
, *child
;
3631 if (!memcg
->kmem_acct_active
)
3635 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3636 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3637 * guarantees no cache will be created for this cgroup after we are
3638 * done (see memcg_create_kmem_cache()).
3640 memcg
->kmem_acct_active
= false;
3642 memcg_deactivate_kmem_caches(memcg
);
3644 kmemcg_id
= memcg
->kmemcg_id
;
3645 BUG_ON(kmemcg_id
< 0);
3647 parent
= parent_mem_cgroup(memcg
);
3649 parent
= root_mem_cgroup
;
3652 * Change kmemcg_id of this cgroup and all its descendants to the
3653 * parent's id, and then move all entries from this cgroup's list_lrus
3654 * to ones of the parent. After we have finished, all list_lrus
3655 * corresponding to this cgroup are guaranteed to remain empty. The
3656 * ordering is imposed by list_lru_node->lock taken by
3657 * memcg_drain_all_list_lrus().
3659 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3660 css_for_each_descendant_pre(css
, &memcg
->css
) {
3661 child
= mem_cgroup_from_css(css
);
3662 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3663 child
->kmemcg_id
= parent
->kmemcg_id
;
3664 if (!memcg
->use_hierarchy
)
3669 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
3671 memcg_free_cache_id(kmemcg_id
);
3674 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
3676 if (memcg
->kmem_acct_activated
) {
3677 memcg_destroy_kmem_caches(memcg
);
3678 static_key_slow_dec(&memcg_kmem_enabled_key
);
3679 WARN_ON(page_counter_read(&memcg
->kmem
));
3681 mem_cgroup_sockets_destroy(memcg
);
3684 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
3689 static void memcg_deactivate_kmem(struct mem_cgroup
*memcg
)
3693 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
3698 #ifdef CONFIG_CGROUP_WRITEBACK
3700 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3702 return &memcg
->cgwb_list
;
3705 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3707 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3710 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3712 wb_domain_exit(&memcg
->cgwb_domain
);
3715 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3717 wb_domain_size_changed(&memcg
->cgwb_domain
);
3720 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3722 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3724 if (!memcg
->css
.parent
)
3727 return &memcg
->cgwb_domain
;
3731 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3732 * @wb: bdi_writeback in question
3733 * @pfilepages: out parameter for number of file pages
3734 * @pheadroom: out parameter for number of allocatable pages according to memcg
3735 * @pdirty: out parameter for number of dirty pages
3736 * @pwriteback: out parameter for number of pages under writeback
3738 * Determine the numbers of file, headroom, dirty, and writeback pages in
3739 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3740 * is a bit more involved.
3742 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3743 * headroom is calculated as the lowest headroom of itself and the
3744 * ancestors. Note that this doesn't consider the actual amount of
3745 * available memory in the system. The caller should further cap
3746 * *@pheadroom accordingly.
3748 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3749 unsigned long *pheadroom
, unsigned long *pdirty
,
3750 unsigned long *pwriteback
)
3752 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3753 struct mem_cgroup
*parent
;
3755 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3757 /* this should eventually include NR_UNSTABLE_NFS */
3758 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3759 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3760 (1 << LRU_ACTIVE_FILE
));
3761 *pheadroom
= PAGE_COUNTER_MAX
;
3763 while ((parent
= parent_mem_cgroup(memcg
))) {
3764 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3765 unsigned long used
= page_counter_read(&memcg
->memory
);
3767 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3772 #else /* CONFIG_CGROUP_WRITEBACK */
3774 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3779 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3783 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3787 #endif /* CONFIG_CGROUP_WRITEBACK */
3790 * DO NOT USE IN NEW FILES.
3792 * "cgroup.event_control" implementation.
3794 * This is way over-engineered. It tries to support fully configurable
3795 * events for each user. Such level of flexibility is completely
3796 * unnecessary especially in the light of the planned unified hierarchy.
3798 * Please deprecate this and replace with something simpler if at all
3803 * Unregister event and free resources.
3805 * Gets called from workqueue.
3807 static void memcg_event_remove(struct work_struct
*work
)
3809 struct mem_cgroup_event
*event
=
3810 container_of(work
, struct mem_cgroup_event
, remove
);
3811 struct mem_cgroup
*memcg
= event
->memcg
;
3813 remove_wait_queue(event
->wqh
, &event
->wait
);
3815 event
->unregister_event(memcg
, event
->eventfd
);
3817 /* Notify userspace the event is going away. */
3818 eventfd_signal(event
->eventfd
, 1);
3820 eventfd_ctx_put(event
->eventfd
);
3822 css_put(&memcg
->css
);
3826 * Gets called on POLLHUP on eventfd when user closes it.
3828 * Called with wqh->lock held and interrupts disabled.
3830 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3831 int sync
, void *key
)
3833 struct mem_cgroup_event
*event
=
3834 container_of(wait
, struct mem_cgroup_event
, wait
);
3835 struct mem_cgroup
*memcg
= event
->memcg
;
3836 unsigned long flags
= (unsigned long)key
;
3838 if (flags
& POLLHUP
) {
3840 * If the event has been detached at cgroup removal, we
3841 * can simply return knowing the other side will cleanup
3844 * We can't race against event freeing since the other
3845 * side will require wqh->lock via remove_wait_queue(),
3848 spin_lock(&memcg
->event_list_lock
);
3849 if (!list_empty(&event
->list
)) {
3850 list_del_init(&event
->list
);
3852 * We are in atomic context, but cgroup_event_remove()
3853 * may sleep, so we have to call it in workqueue.
3855 schedule_work(&event
->remove
);
3857 spin_unlock(&memcg
->event_list_lock
);
3863 static void memcg_event_ptable_queue_proc(struct file
*file
,
3864 wait_queue_head_t
*wqh
, poll_table
*pt
)
3866 struct mem_cgroup_event
*event
=
3867 container_of(pt
, struct mem_cgroup_event
, pt
);
3870 add_wait_queue(wqh
, &event
->wait
);
3874 * DO NOT USE IN NEW FILES.
3876 * Parse input and register new cgroup event handler.
3878 * Input must be in format '<event_fd> <control_fd> <args>'.
3879 * Interpretation of args is defined by control file implementation.
3881 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3882 char *buf
, size_t nbytes
, loff_t off
)
3884 struct cgroup_subsys_state
*css
= of_css(of
);
3885 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3886 struct mem_cgroup_event
*event
;
3887 struct cgroup_subsys_state
*cfile_css
;
3888 unsigned int efd
, cfd
;
3895 buf
= strstrip(buf
);
3897 efd
= simple_strtoul(buf
, &endp
, 10);
3902 cfd
= simple_strtoul(buf
, &endp
, 10);
3903 if ((*endp
!= ' ') && (*endp
!= '\0'))
3907 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3911 event
->memcg
= memcg
;
3912 INIT_LIST_HEAD(&event
->list
);
3913 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3914 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3915 INIT_WORK(&event
->remove
, memcg_event_remove
);
3923 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3924 if (IS_ERR(event
->eventfd
)) {
3925 ret
= PTR_ERR(event
->eventfd
);
3932 goto out_put_eventfd
;
3935 /* the process need read permission on control file */
3936 /* AV: shouldn't we check that it's been opened for read instead? */
3937 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3942 * Determine the event callbacks and set them in @event. This used
3943 * to be done via struct cftype but cgroup core no longer knows
3944 * about these events. The following is crude but the whole thing
3945 * is for compatibility anyway.
3947 * DO NOT ADD NEW FILES.
3949 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3951 if (!strcmp(name
, "memory.usage_in_bytes")) {
3952 event
->register_event
= mem_cgroup_usage_register_event
;
3953 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3954 } else if (!strcmp(name
, "memory.oom_control")) {
3955 event
->register_event
= mem_cgroup_oom_register_event
;
3956 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3957 } else if (!strcmp(name
, "memory.pressure_level")) {
3958 event
->register_event
= vmpressure_register_event
;
3959 event
->unregister_event
= vmpressure_unregister_event
;
3960 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3961 event
->register_event
= memsw_cgroup_usage_register_event
;
3962 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3969 * Verify @cfile should belong to @css. Also, remaining events are
3970 * automatically removed on cgroup destruction but the removal is
3971 * asynchronous, so take an extra ref on @css.
3973 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3974 &memory_cgrp_subsys
);
3976 if (IS_ERR(cfile_css
))
3978 if (cfile_css
!= css
) {
3983 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3987 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3989 spin_lock(&memcg
->event_list_lock
);
3990 list_add(&event
->list
, &memcg
->event_list
);
3991 spin_unlock(&memcg
->event_list_lock
);
4003 eventfd_ctx_put(event
->eventfd
);
4012 static struct cftype mem_cgroup_legacy_files
[] = {
4014 .name
= "usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4016 .read_u64
= mem_cgroup_read_u64
,
4019 .name
= "max_usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4021 .write
= mem_cgroup_reset
,
4022 .read_u64
= mem_cgroup_read_u64
,
4025 .name
= "limit_in_bytes",
4026 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4027 .write
= mem_cgroup_write
,
4028 .read_u64
= mem_cgroup_read_u64
,
4031 .name
= "soft_limit_in_bytes",
4032 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4033 .write
= mem_cgroup_write
,
4034 .read_u64
= mem_cgroup_read_u64
,
4038 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4039 .write
= mem_cgroup_reset
,
4040 .read_u64
= mem_cgroup_read_u64
,
4044 .seq_show
= memcg_stat_show
,
4047 .name
= "force_empty",
4048 .write
= mem_cgroup_force_empty_write
,
4051 .name
= "use_hierarchy",
4052 .write_u64
= mem_cgroup_hierarchy_write
,
4053 .read_u64
= mem_cgroup_hierarchy_read
,
4056 .name
= "cgroup.event_control", /* XXX: for compat */
4057 .write
= memcg_write_event_control
,
4058 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4061 .name
= "swappiness",
4062 .read_u64
= mem_cgroup_swappiness_read
,
4063 .write_u64
= mem_cgroup_swappiness_write
,
4066 .name
= "move_charge_at_immigrate",
4067 .read_u64
= mem_cgroup_move_charge_read
,
4068 .write_u64
= mem_cgroup_move_charge_write
,
4071 .name
= "oom_control",
4072 .seq_show
= mem_cgroup_oom_control_read
,
4073 .write_u64
= mem_cgroup_oom_control_write
,
4074 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4077 .name
= "pressure_level",
4081 .name
= "numa_stat",
4082 .seq_show
= memcg_numa_stat_show
,
4085 #ifdef CONFIG_MEMCG_KMEM
4087 .name
= "kmem.limit_in_bytes",
4088 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4089 .write
= mem_cgroup_write
,
4090 .read_u64
= mem_cgroup_read_u64
,
4093 .name
= "kmem.usage_in_bytes",
4094 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4095 .read_u64
= mem_cgroup_read_u64
,
4098 .name
= "kmem.failcnt",
4099 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4100 .write
= mem_cgroup_reset
,
4101 .read_u64
= mem_cgroup_read_u64
,
4104 .name
= "kmem.max_usage_in_bytes",
4105 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4106 .write
= mem_cgroup_reset
,
4107 .read_u64
= mem_cgroup_read_u64
,
4109 #ifdef CONFIG_SLABINFO
4111 .name
= "kmem.slabinfo",
4112 .seq_start
= slab_start
,
4113 .seq_next
= slab_next
,
4114 .seq_stop
= slab_stop
,
4115 .seq_show
= memcg_slab_show
,
4119 { }, /* terminate */
4123 * Private memory cgroup IDR
4125 * Swap-out records and page cache shadow entries need to store memcg
4126 * references in constrained space, so we maintain an ID space that is
4127 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4128 * memory-controlled cgroups to 64k.
4130 * However, there usually are many references to the oflline CSS after
4131 * the cgroup has been destroyed, such as page cache or reclaimable
4132 * slab objects, that don't need to hang on to the ID. We want to keep
4133 * those dead CSS from occupying IDs, or we might quickly exhaust the
4134 * relatively small ID space and prevent the creation of new cgroups
4135 * even when there are much fewer than 64k cgroups - possibly none.
4137 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4138 * be freed and recycled when it's no longer needed, which is usually
4139 * when the CSS is offlined.
4141 * The only exception to that are records of swapped out tmpfs/shmem
4142 * pages that need to be attributed to live ancestors on swapin. But
4143 * those references are manageable from userspace.
4146 static DEFINE_IDR(mem_cgroup_idr
);
4148 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4150 atomic_add(n
, &memcg
->id
.ref
);
4153 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
4155 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
4157 * The root cgroup cannot be destroyed, so it's refcount must
4160 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
4164 memcg
= parent_mem_cgroup(memcg
);
4166 memcg
= root_mem_cgroup
;
4171 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4173 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4174 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4177 /* Memcg ID pins CSS */
4178 css_put(&memcg
->css
);
4182 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4184 mem_cgroup_id_get_many(memcg
, 1);
4187 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4189 mem_cgroup_id_put_many(memcg
, 1);
4193 * mem_cgroup_from_id - look up a memcg from a memcg id
4194 * @id: the memcg id to look up
4196 * Caller must hold rcu_read_lock().
4198 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4200 WARN_ON_ONCE(!rcu_read_lock_held());
4201 return idr_find(&mem_cgroup_idr
, id
);
4204 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4206 struct mem_cgroup_per_node
*pn
;
4207 struct mem_cgroup_per_zone
*mz
;
4208 int zone
, tmp
= node
;
4210 * This routine is called against possible nodes.
4211 * But it's BUG to call kmalloc() against offline node.
4213 * TODO: this routine can waste much memory for nodes which will
4214 * never be onlined. It's better to use memory hotplug callback
4217 if (!node_state(node
, N_NORMAL_MEMORY
))
4219 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4223 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4224 mz
= &pn
->zoneinfo
[zone
];
4225 lruvec_init(&mz
->lruvec
);
4226 mz
->usage_in_excess
= 0;
4227 mz
->on_tree
= false;
4230 memcg
->nodeinfo
[node
] = pn
;
4234 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4236 kfree(memcg
->nodeinfo
[node
]);
4239 static struct mem_cgroup
*mem_cgroup_alloc(void)
4241 struct mem_cgroup
*memcg
;
4244 size
= sizeof(struct mem_cgroup
);
4245 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4247 memcg
= kzalloc(size
, GFP_KERNEL
);
4251 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4255 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4258 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4259 1, MEM_CGROUP_ID_MAX
,
4261 if (memcg
->id
.id
< 0)
4267 free_percpu(memcg
->stat
);
4274 * At destroying mem_cgroup, references from swap_cgroup can remain.
4275 * (scanning all at force_empty is too costly...)
4277 * Instead of clearing all references at force_empty, we remember
4278 * the number of reference from swap_cgroup and free mem_cgroup when
4279 * it goes down to 0.
4281 * Removal of cgroup itself succeeds regardless of refs from swap.
4284 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4288 mem_cgroup_remove_from_trees(memcg
);
4291 free_mem_cgroup_per_zone_info(memcg
, node
);
4293 free_percpu(memcg
->stat
);
4294 memcg_wb_domain_exit(memcg
);
4299 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4301 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4303 if (!memcg
->memory
.parent
)
4305 return mem_cgroup_from_counter(memcg
->memory
.parent
, memory
);
4307 EXPORT_SYMBOL(parent_mem_cgroup
);
4309 static struct cgroup_subsys_state
* __ref
4310 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4312 struct mem_cgroup
*memcg
;
4313 long error
= -ENOMEM
;
4316 memcg
= mem_cgroup_alloc();
4318 return ERR_PTR(error
);
4321 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4325 if (parent_css
== NULL
) {
4326 root_mem_cgroup
= memcg
;
4327 mem_cgroup_root_css
= &memcg
->css
;
4328 page_counter_init(&memcg
->memory
, NULL
);
4329 memcg
->high
= PAGE_COUNTER_MAX
;
4330 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4331 page_counter_init(&memcg
->memsw
, NULL
);
4332 page_counter_init(&memcg
->kmem
, NULL
);
4335 memcg
->last_scanned_node
= MAX_NUMNODES
;
4336 INIT_LIST_HEAD(&memcg
->oom_notify
);
4337 memcg
->move_charge_at_immigrate
= 0;
4338 mutex_init(&memcg
->thresholds_lock
);
4339 spin_lock_init(&memcg
->move_lock
);
4340 vmpressure_init(&memcg
->vmpressure
);
4341 INIT_LIST_HEAD(&memcg
->event_list
);
4342 spin_lock_init(&memcg
->event_list_lock
);
4343 #ifdef CONFIG_MEMCG_KMEM
4344 memcg
->kmemcg_id
= -1;
4346 #ifdef CONFIG_CGROUP_WRITEBACK
4347 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4349 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4353 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4354 __mem_cgroup_free(memcg
);
4355 return ERR_PTR(error
);
4359 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4361 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4362 struct mem_cgroup
*parent
= mem_cgroup_from_css(css
->parent
);
4365 /* Online state pins memcg ID, memcg ID pins CSS */
4366 mem_cgroup_id_get(mem_cgroup_from_css(css
));
4372 mutex_lock(&memcg_create_mutex
);
4374 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4375 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4376 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4378 if (parent
->use_hierarchy
) {
4379 page_counter_init(&memcg
->memory
, &parent
->memory
);
4380 memcg
->high
= PAGE_COUNTER_MAX
;
4381 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4382 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4383 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4386 * No need to take a reference to the parent because cgroup
4387 * core guarantees its existence.
4390 page_counter_init(&memcg
->memory
, NULL
);
4391 memcg
->high
= PAGE_COUNTER_MAX
;
4392 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4393 page_counter_init(&memcg
->memsw
, NULL
);
4394 page_counter_init(&memcg
->kmem
, NULL
);
4396 * Deeper hierachy with use_hierarchy == false doesn't make
4397 * much sense so let cgroup subsystem know about this
4398 * unfortunate state in our controller.
4400 if (parent
!= root_mem_cgroup
)
4401 memory_cgrp_subsys
.broken_hierarchy
= true;
4403 mutex_unlock(&memcg_create_mutex
);
4405 ret
= memcg_init_kmem(memcg
, &memory_cgrp_subsys
);
4410 * Make sure the memcg is initialized: mem_cgroup_iter()
4411 * orders reading memcg->initialized against its callers
4412 * reading the memcg members.
4414 smp_store_release(&memcg
->initialized
, 1);
4419 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4421 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4422 struct mem_cgroup_event
*event
, *tmp
;
4425 * Unregister events and notify userspace.
4426 * Notify userspace about cgroup removing only after rmdir of cgroup
4427 * directory to avoid race between userspace and kernelspace.
4429 spin_lock(&memcg
->event_list_lock
);
4430 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4431 list_del_init(&event
->list
);
4432 schedule_work(&event
->remove
);
4434 spin_unlock(&memcg
->event_list_lock
);
4436 vmpressure_cleanup(&memcg
->vmpressure
);
4438 memcg_deactivate_kmem(memcg
);
4440 wb_memcg_offline(memcg
);
4442 mem_cgroup_id_put(memcg
);
4445 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4447 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4449 invalidate_reclaim_iterators(memcg
);
4452 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4454 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4456 memcg_destroy_kmem(memcg
);
4457 __mem_cgroup_free(memcg
);
4461 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4462 * @css: the target css
4464 * Reset the states of the mem_cgroup associated with @css. This is
4465 * invoked when the userland requests disabling on the default hierarchy
4466 * but the memcg is pinned through dependency. The memcg should stop
4467 * applying policies and should revert to the vanilla state as it may be
4468 * made visible again.
4470 * The current implementation only resets the essential configurations.
4471 * This needs to be expanded to cover all the visible parts.
4473 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4475 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4477 mem_cgroup_resize_limit(memcg
, PAGE_COUNTER_MAX
);
4478 mem_cgroup_resize_memsw_limit(memcg
, PAGE_COUNTER_MAX
);
4479 memcg_update_kmem_limit(memcg
, PAGE_COUNTER_MAX
);
4481 memcg
->high
= PAGE_COUNTER_MAX
;
4482 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4483 memcg_wb_domain_size_changed(memcg
);
4487 /* Handlers for move charge at task migration. */
4488 static int mem_cgroup_do_precharge(unsigned long count
)
4492 /* Try a single bulk charge without reclaim first, kswapd may wake */
4493 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4495 mc
.precharge
+= count
;
4499 /* Try charges one by one with reclaim, but do not retry */
4501 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4511 * get_mctgt_type - get target type of moving charge
4512 * @vma: the vma the pte to be checked belongs
4513 * @addr: the address corresponding to the pte to be checked
4514 * @ptent: the pte to be checked
4515 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4518 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4519 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4520 * move charge. if @target is not NULL, the page is stored in target->page
4521 * with extra refcnt got(Callers should handle it).
4522 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4523 * target for charge migration. if @target is not NULL, the entry is stored
4526 * Called with pte lock held.
4533 enum mc_target_type
{
4539 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4540 unsigned long addr
, pte_t ptent
)
4542 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4544 if (!page
|| !page_mapped(page
))
4546 if (PageAnon(page
)) {
4547 if (!(mc
.flags
& MOVE_ANON
))
4550 if (!(mc
.flags
& MOVE_FILE
))
4553 if (!get_page_unless_zero(page
))
4560 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4561 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4563 struct page
*page
= NULL
;
4564 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4566 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4569 * Because lookup_swap_cache() updates some statistics counter,
4570 * we call find_get_page() with swapper_space directly.
4572 page
= find_get_page(swap_address_space(ent
), ent
.val
);
4573 if (do_swap_account
)
4574 entry
->val
= ent
.val
;
4579 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4580 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4586 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4587 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4589 struct page
*page
= NULL
;
4590 struct address_space
*mapping
;
4593 if (!vma
->vm_file
) /* anonymous vma */
4595 if (!(mc
.flags
& MOVE_FILE
))
4598 mapping
= vma
->vm_file
->f_mapping
;
4599 pgoff
= linear_page_index(vma
, addr
);
4601 /* page is moved even if it's not RSS of this task(page-faulted). */
4603 /* shmem/tmpfs may report page out on swap: account for that too. */
4604 if (shmem_mapping(mapping
)) {
4605 page
= find_get_entry(mapping
, pgoff
);
4606 if (radix_tree_exceptional_entry(page
)) {
4607 swp_entry_t swp
= radix_to_swp_entry(page
);
4608 if (do_swap_account
)
4610 page
= find_get_page(swap_address_space(swp
), swp
.val
);
4613 page
= find_get_page(mapping
, pgoff
);
4615 page
= find_get_page(mapping
, pgoff
);
4621 * mem_cgroup_move_account - move account of the page
4623 * @nr_pages: number of regular pages (>1 for huge pages)
4624 * @from: mem_cgroup which the page is moved from.
4625 * @to: mem_cgroup which the page is moved to. @from != @to.
4627 * The caller must confirm following.
4628 * - page is not on LRU (isolate_page() is useful.)
4629 * - compound_lock is held when nr_pages > 1
4631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4634 static int mem_cgroup_move_account(struct page
*page
,
4635 unsigned int nr_pages
,
4636 struct mem_cgroup
*from
,
4637 struct mem_cgroup
*to
)
4639 unsigned long flags
;
4643 VM_BUG_ON(from
== to
);
4644 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4646 * The page is isolated from LRU. So, collapse function
4647 * will not handle this page. But page splitting can happen.
4648 * Do this check under compound_page_lock(). The caller should
4652 if (nr_pages
> 1 && !PageTransHuge(page
))
4656 * Prevent mem_cgroup_replace_page() from looking at
4657 * page->mem_cgroup of its source page while we change it.
4659 if (!trylock_page(page
))
4663 if (page
->mem_cgroup
!= from
)
4666 anon
= PageAnon(page
);
4668 spin_lock_irqsave(&from
->move_lock
, flags
);
4670 if (!anon
&& page_mapped(page
)) {
4671 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4673 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4678 * move_lock grabbed above and caller set from->moving_account, so
4679 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4680 * So mapping should be stable for dirty pages.
4682 if (!anon
&& PageDirty(page
)) {
4683 struct address_space
*mapping
= page_mapping(page
);
4685 if (mapping_cap_account_dirty(mapping
)) {
4686 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4688 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4693 if (PageWriteback(page
)) {
4694 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4696 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4701 * It is safe to change page->mem_cgroup here because the page
4702 * is referenced, charged, and isolated - we can't race with
4703 * uncharging, charging, migration, or LRU putback.
4706 /* caller should have done css_get */
4707 page
->mem_cgroup
= to
;
4708 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4712 local_irq_disable();
4713 mem_cgroup_charge_statistics(to
, page
, nr_pages
);
4714 memcg_check_events(to
, page
);
4715 mem_cgroup_charge_statistics(from
, page
, -nr_pages
);
4716 memcg_check_events(from
, page
);
4724 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4725 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4727 struct page
*page
= NULL
;
4728 enum mc_target_type ret
= MC_TARGET_NONE
;
4729 swp_entry_t ent
= { .val
= 0 };
4731 if (pte_present(ptent
))
4732 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4733 else if (is_swap_pte(ptent
))
4734 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4735 else if (pte_none(ptent
))
4736 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4738 if (!page
&& !ent
.val
)
4742 * Do only loose check w/o serialization.
4743 * mem_cgroup_move_account() checks the page is valid or
4744 * not under LRU exclusion.
4746 if (page
->mem_cgroup
== mc
.from
) {
4747 ret
= MC_TARGET_PAGE
;
4749 target
->page
= page
;
4751 if (!ret
|| !target
)
4754 /* There is a swap entry and a page doesn't exist or isn't charged */
4755 if (ent
.val
&& !ret
&&
4756 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4757 ret
= MC_TARGET_SWAP
;
4764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4766 * We don't consider swapping or file mapped pages because THP does not
4767 * support them for now.
4768 * Caller should make sure that pmd_trans_huge(pmd) is true.
4770 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4771 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4773 struct page
*page
= NULL
;
4774 enum mc_target_type ret
= MC_TARGET_NONE
;
4776 page
= pmd_page(pmd
);
4777 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4778 if (!(mc
.flags
& MOVE_ANON
))
4780 if (page
->mem_cgroup
== mc
.from
) {
4781 ret
= MC_TARGET_PAGE
;
4784 target
->page
= page
;
4790 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4791 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4793 return MC_TARGET_NONE
;
4797 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4798 unsigned long addr
, unsigned long end
,
4799 struct mm_walk
*walk
)
4801 struct vm_area_struct
*vma
= walk
->vma
;
4805 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
4806 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4807 mc
.precharge
+= HPAGE_PMD_NR
;
4812 if (pmd_trans_unstable(pmd
))
4814 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4815 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4816 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4817 mc
.precharge
++; /* increment precharge temporarily */
4818 pte_unmap_unlock(pte
- 1, ptl
);
4824 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4826 unsigned long precharge
;
4828 struct mm_walk mem_cgroup_count_precharge_walk
= {
4829 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4832 down_read(&mm
->mmap_sem
);
4833 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk
);
4834 up_read(&mm
->mmap_sem
);
4836 precharge
= mc
.precharge
;
4842 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4844 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4846 VM_BUG_ON(mc
.moving_task
);
4847 mc
.moving_task
= current
;
4848 return mem_cgroup_do_precharge(precharge
);
4851 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4852 static void __mem_cgroup_clear_mc(void)
4854 struct mem_cgroup
*from
= mc
.from
;
4855 struct mem_cgroup
*to
= mc
.to
;
4857 /* we must uncharge all the leftover precharges from mc.to */
4859 cancel_charge(mc
.to
, mc
.precharge
);
4863 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4864 * we must uncharge here.
4866 if (mc
.moved_charge
) {
4867 cancel_charge(mc
.from
, mc
.moved_charge
);
4868 mc
.moved_charge
= 0;
4870 /* we must fixup refcnts and charges */
4871 if (mc
.moved_swap
) {
4872 /* uncharge swap account from the old cgroup */
4873 if (!mem_cgroup_is_root(mc
.from
))
4874 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4876 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4879 * we charged both to->memory and to->memsw, so we
4880 * should uncharge to->memory.
4882 if (!mem_cgroup_is_root(mc
.to
))
4883 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4885 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4886 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4890 memcg_oom_recover(from
);
4891 memcg_oom_recover(to
);
4892 wake_up_all(&mc
.waitq
);
4895 static void mem_cgroup_clear_mc(void)
4897 struct mm_struct
*mm
= mc
.mm
;
4900 * we must clear moving_task before waking up waiters at the end of
4903 mc
.moving_task
= NULL
;
4904 __mem_cgroup_clear_mc();
4905 spin_lock(&mc
.lock
);
4909 spin_unlock(&mc
.lock
);
4914 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4916 struct cgroup_subsys_state
*css
;
4917 struct mem_cgroup
*memcg
;
4918 struct mem_cgroup
*from
;
4919 struct task_struct
*leader
, *p
;
4920 struct mm_struct
*mm
;
4921 unsigned long move_flags
;
4924 /* charge immigration isn't supported on the default hierarchy */
4925 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4929 * Multi-process migrations only happen on the default hierarchy
4930 * where charge immigration is not used. Perform charge
4931 * immigration if @tset contains a leader and whine if there are
4935 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4938 memcg
= mem_cgroup_from_css(css
);
4944 * We are now commited to this value whatever it is. Changes in this
4945 * tunable will only affect upcoming migrations, not the current one.
4946 * So we need to save it, and keep it going.
4948 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4952 from
= mem_cgroup_from_task(p
);
4954 VM_BUG_ON(from
== memcg
);
4956 mm
= get_task_mm(p
);
4959 /* We move charges only when we move a owner of the mm */
4960 if (mm
->owner
== p
) {
4963 VM_BUG_ON(mc
.precharge
);
4964 VM_BUG_ON(mc
.moved_charge
);
4965 VM_BUG_ON(mc
.moved_swap
);
4967 spin_lock(&mc
.lock
);
4971 mc
.flags
= move_flags
;
4972 spin_unlock(&mc
.lock
);
4973 /* We set mc.moving_task later */
4975 ret
= mem_cgroup_precharge_mc(mm
);
4977 mem_cgroup_clear_mc();
4984 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4987 mem_cgroup_clear_mc();
4990 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4991 unsigned long addr
, unsigned long end
,
4992 struct mm_walk
*walk
)
4995 struct vm_area_struct
*vma
= walk
->vma
;
4998 enum mc_target_type target_type
;
4999 union mc_target target
;
5003 * We don't take compound_lock() here but no race with splitting thp
5005 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5006 * under splitting, which means there's no concurrent thp split,
5007 * - if another thread runs into split_huge_page() just after we
5008 * entered this if-block, the thread must wait for page table lock
5009 * to be unlocked in __split_huge_page_splitting(), where the main
5010 * part of thp split is not executed yet.
5012 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
5013 if (mc
.precharge
< HPAGE_PMD_NR
) {
5017 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5018 if (target_type
== MC_TARGET_PAGE
) {
5020 if (!isolate_lru_page(page
)) {
5021 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
5023 mc
.precharge
-= HPAGE_PMD_NR
;
5024 mc
.moved_charge
+= HPAGE_PMD_NR
;
5026 putback_lru_page(page
);
5034 if (pmd_trans_unstable(pmd
))
5037 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5038 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5039 pte_t ptent
= *(pte
++);
5045 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5046 case MC_TARGET_PAGE
:
5048 if (isolate_lru_page(page
))
5050 if (!mem_cgroup_move_account(page
, 1, mc
.from
, mc
.to
)) {
5052 /* we uncharge from mc.from later. */
5055 putback_lru_page(page
);
5056 put
: /* get_mctgt_type() gets the page */
5059 case MC_TARGET_SWAP
:
5061 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5063 /* we fixup refcnts and charges later. */
5071 pte_unmap_unlock(pte
- 1, ptl
);
5076 * We have consumed all precharges we got in can_attach().
5077 * We try charge one by one, but don't do any additional
5078 * charges to mc.to if we have failed in charge once in attach()
5081 ret
= mem_cgroup_do_precharge(1);
5089 static void mem_cgroup_move_charge(void)
5091 struct mm_walk mem_cgroup_move_charge_walk
= {
5092 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5096 lru_add_drain_all();
5098 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5099 * move_lock while we're moving its pages to another memcg.
5100 * Then wait for already started RCU-only updates to finish.
5102 atomic_inc(&mc
.from
->moving_account
);
5105 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5107 * Someone who are holding the mmap_sem might be waiting in
5108 * waitq. So we cancel all extra charges, wake up all waiters,
5109 * and retry. Because we cancel precharges, we might not be able
5110 * to move enough charges, but moving charge is a best-effort
5111 * feature anyway, so it wouldn't be a big problem.
5113 __mem_cgroup_clear_mc();
5118 * When we have consumed all precharges and failed in doing
5119 * additional charge, the page walk just aborts.
5121 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk
);
5122 up_read(&mc
.mm
->mmap_sem
);
5123 atomic_dec(&mc
.from
->moving_account
);
5126 static void mem_cgroup_move_task(void)
5129 mem_cgroup_move_charge();
5130 mem_cgroup_clear_mc();
5133 #else /* !CONFIG_MMU */
5134 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5138 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5141 static void mem_cgroup_move_task(void)
5147 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5148 * to verify whether we're attached to the default hierarchy on each mount
5151 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5154 * use_hierarchy is forced on the default hierarchy. cgroup core
5155 * guarantees that @root doesn't have any children, so turning it
5156 * on for the root memcg is enough.
5158 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5159 root_mem_cgroup
->use_hierarchy
= true;
5161 root_mem_cgroup
->use_hierarchy
= false;
5164 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5167 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5169 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5172 static int memory_low_show(struct seq_file
*m
, void *v
)
5174 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5175 unsigned long low
= READ_ONCE(memcg
->low
);
5177 if (low
== PAGE_COUNTER_MAX
)
5178 seq_puts(m
, "max\n");
5180 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5185 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5186 char *buf
, size_t nbytes
, loff_t off
)
5188 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5192 buf
= strstrip(buf
);
5193 err
= page_counter_memparse(buf
, "max", &low
);
5202 static int memory_high_show(struct seq_file
*m
, void *v
)
5204 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5205 unsigned long high
= READ_ONCE(memcg
->high
);
5207 if (high
== PAGE_COUNTER_MAX
)
5208 seq_puts(m
, "max\n");
5210 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5215 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5216 char *buf
, size_t nbytes
, loff_t off
)
5218 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5219 unsigned long nr_pages
;
5223 buf
= strstrip(buf
);
5224 err
= page_counter_memparse(buf
, "max", &high
);
5230 nr_pages
= page_counter_read(&memcg
->memory
);
5231 if (nr_pages
> high
)
5232 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5235 memcg_wb_domain_size_changed(memcg
);
5239 static int memory_max_show(struct seq_file
*m
, void *v
)
5241 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5242 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5244 if (max
== PAGE_COUNTER_MAX
)
5245 seq_puts(m
, "max\n");
5247 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5252 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5253 char *buf
, size_t nbytes
, loff_t off
)
5255 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5256 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5257 bool drained
= false;
5261 buf
= strstrip(buf
);
5262 err
= page_counter_memparse(buf
, "max", &max
);
5266 xchg(&memcg
->memory
.limit
, max
);
5269 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5271 if (nr_pages
<= max
)
5274 if (signal_pending(current
)) {
5280 drain_all_stock(memcg
);
5286 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5292 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5293 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5297 memcg_wb_domain_size_changed(memcg
);
5301 static int memory_events_show(struct seq_file
*m
, void *v
)
5303 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5305 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5306 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5307 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5308 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5313 static struct cftype memory_files
[] = {
5316 .flags
= CFTYPE_NOT_ON_ROOT
,
5317 .read_u64
= memory_current_read
,
5321 .flags
= CFTYPE_NOT_ON_ROOT
,
5322 .seq_show
= memory_low_show
,
5323 .write
= memory_low_write
,
5327 .flags
= CFTYPE_NOT_ON_ROOT
,
5328 .seq_show
= memory_high_show
,
5329 .write
= memory_high_write
,
5333 .flags
= CFTYPE_NOT_ON_ROOT
,
5334 .seq_show
= memory_max_show
,
5335 .write
= memory_max_write
,
5339 .flags
= CFTYPE_NOT_ON_ROOT
,
5340 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5341 .seq_show
= memory_events_show
,
5346 struct cgroup_subsys memory_cgrp_subsys
= {
5347 .css_alloc
= mem_cgroup_css_alloc
,
5348 .css_online
= mem_cgroup_css_online
,
5349 .css_offline
= mem_cgroup_css_offline
,
5350 .css_released
= mem_cgroup_css_released
,
5351 .css_free
= mem_cgroup_css_free
,
5352 .css_reset
= mem_cgroup_css_reset
,
5353 .can_attach
= mem_cgroup_can_attach
,
5354 .cancel_attach
= mem_cgroup_cancel_attach
,
5355 .post_attach
= mem_cgroup_move_task
,
5356 .bind
= mem_cgroup_bind
,
5357 .dfl_cftypes
= memory_files
,
5358 .legacy_cftypes
= mem_cgroup_legacy_files
,
5363 * mem_cgroup_low - check if memory consumption is below the normal range
5364 * @root: the highest ancestor to consider
5365 * @memcg: the memory cgroup to check
5367 * Returns %true if memory consumption of @memcg, and that of all
5368 * configurable ancestors up to @root, is below the normal range.
5370 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5372 if (mem_cgroup_disabled())
5376 * The toplevel group doesn't have a configurable range, so
5377 * it's never low when looked at directly, and it is not
5378 * considered an ancestor when assessing the hierarchy.
5381 if (memcg
== root_mem_cgroup
)
5384 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5387 while (memcg
!= root
) {
5388 memcg
= parent_mem_cgroup(memcg
);
5390 if (memcg
== root_mem_cgroup
)
5393 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5400 * mem_cgroup_try_charge - try charging a page
5401 * @page: page to charge
5402 * @mm: mm context of the victim
5403 * @gfp_mask: reclaim mode
5404 * @memcgp: charged memcg return
5406 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5407 * pages according to @gfp_mask if necessary.
5409 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5410 * Otherwise, an error code is returned.
5412 * After page->mapping has been set up, the caller must finalize the
5413 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5414 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5416 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5417 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
5419 struct mem_cgroup
*memcg
= NULL
;
5420 unsigned int nr_pages
= 1;
5423 if (mem_cgroup_disabled())
5426 if (PageSwapCache(page
)) {
5428 * Every swap fault against a single page tries to charge the
5429 * page, bail as early as possible. shmem_unuse() encounters
5430 * already charged pages, too. The USED bit is protected by
5431 * the page lock, which serializes swap cache removal, which
5432 * in turn serializes uncharging.
5434 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5435 if (page
->mem_cgroup
)
5438 if (do_swap_account
) {
5439 swp_entry_t ent
= { .val
= page_private(page
), };
5440 unsigned short id
= lookup_swap_cgroup_id(ent
);
5443 memcg
= mem_cgroup_from_id(id
);
5444 if (memcg
&& !css_tryget_online(&memcg
->css
))
5450 if (PageTransHuge(page
)) {
5451 nr_pages
<<= compound_order(page
);
5452 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5456 memcg
= get_mem_cgroup_from_mm(mm
);
5458 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5460 css_put(&memcg
->css
);
5467 * mem_cgroup_commit_charge - commit a page charge
5468 * @page: page to charge
5469 * @memcg: memcg to charge the page to
5470 * @lrucare: page might be on LRU already
5472 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5473 * after page->mapping has been set up. This must happen atomically
5474 * as part of the page instantiation, i.e. under the page table lock
5475 * for anonymous pages, under the page lock for page and swap cache.
5477 * In addition, the page must not be on the LRU during the commit, to
5478 * prevent racing with task migration. If it might be, use @lrucare.
5480 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5482 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5485 unsigned int nr_pages
= 1;
5487 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5488 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5490 if (mem_cgroup_disabled())
5493 * Swap faults will attempt to charge the same page multiple
5494 * times. But reuse_swap_page() might have removed the page
5495 * from swapcache already, so we can't check PageSwapCache().
5500 commit_charge(page
, memcg
, lrucare
);
5502 if (PageTransHuge(page
)) {
5503 nr_pages
<<= compound_order(page
);
5504 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5507 local_irq_disable();
5508 mem_cgroup_charge_statistics(memcg
, page
, nr_pages
);
5509 memcg_check_events(memcg
, page
);
5512 if (do_swap_account
&& PageSwapCache(page
)) {
5513 swp_entry_t entry
= { .val
= page_private(page
) };
5515 * The swap entry might not get freed for a long time,
5516 * let's not wait for it. The page already received a
5517 * memory+swap charge, drop the swap entry duplicate.
5519 mem_cgroup_uncharge_swap(entry
);
5524 * mem_cgroup_cancel_charge - cancel a page charge
5525 * @page: page to charge
5526 * @memcg: memcg to charge the page to
5528 * Cancel a charge transaction started by mem_cgroup_try_charge().
5530 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
)
5532 unsigned int nr_pages
= 1;
5534 if (mem_cgroup_disabled())
5537 * Swap faults will attempt to charge the same page multiple
5538 * times. But reuse_swap_page() might have removed the page
5539 * from swapcache already, so we can't check PageSwapCache().
5544 if (PageTransHuge(page
)) {
5545 nr_pages
<<= compound_order(page
);
5546 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5549 cancel_charge(memcg
, nr_pages
);
5552 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5553 unsigned long nr_anon
, unsigned long nr_file
,
5554 unsigned long nr_huge
, struct page
*dummy_page
)
5556 unsigned long nr_pages
= nr_anon
+ nr_file
;
5557 unsigned long flags
;
5559 if (!mem_cgroup_is_root(memcg
)) {
5560 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5561 if (do_swap_account
)
5562 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5563 memcg_oom_recover(memcg
);
5566 local_irq_save(flags
);
5567 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5568 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5569 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5570 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5571 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5572 memcg_check_events(memcg
, dummy_page
);
5573 local_irq_restore(flags
);
5575 if (!mem_cgroup_is_root(memcg
))
5576 css_put_many(&memcg
->css
, nr_pages
);
5579 static void uncharge_list(struct list_head
*page_list
)
5581 struct mem_cgroup
*memcg
= NULL
;
5582 unsigned long nr_anon
= 0;
5583 unsigned long nr_file
= 0;
5584 unsigned long nr_huge
= 0;
5585 unsigned long pgpgout
= 0;
5586 struct list_head
*next
;
5589 next
= page_list
->next
;
5591 unsigned int nr_pages
= 1;
5593 page
= list_entry(next
, struct page
, lru
);
5594 next
= page
->lru
.next
;
5596 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5597 VM_BUG_ON_PAGE(page_count(page
), page
);
5599 if (!page
->mem_cgroup
)
5603 * Nobody should be changing or seriously looking at
5604 * page->mem_cgroup at this point, we have fully
5605 * exclusive access to the page.
5608 if (memcg
!= page
->mem_cgroup
) {
5610 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5612 pgpgout
= nr_anon
= nr_file
= nr_huge
= 0;
5614 memcg
= page
->mem_cgroup
;
5617 if (PageTransHuge(page
)) {
5618 nr_pages
<<= compound_order(page
);
5619 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5620 nr_huge
+= nr_pages
;
5624 nr_anon
+= nr_pages
;
5626 nr_file
+= nr_pages
;
5628 page
->mem_cgroup
= NULL
;
5631 } while (next
!= page_list
);
5634 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5639 * mem_cgroup_uncharge - uncharge a page
5640 * @page: page to uncharge
5642 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5643 * mem_cgroup_commit_charge().
5645 void mem_cgroup_uncharge(struct page
*page
)
5647 if (mem_cgroup_disabled())
5650 /* Don't touch page->lru of any random page, pre-check: */
5651 if (!page
->mem_cgroup
)
5654 INIT_LIST_HEAD(&page
->lru
);
5655 uncharge_list(&page
->lru
);
5659 * mem_cgroup_uncharge_list - uncharge a list of page
5660 * @page_list: list of pages to uncharge
5662 * Uncharge a list of pages previously charged with
5663 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5665 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5667 if (mem_cgroup_disabled())
5670 if (!list_empty(page_list
))
5671 uncharge_list(page_list
);
5675 * mem_cgroup_replace_page - migrate a charge to another page
5676 * @oldpage: currently charged page
5677 * @newpage: page to transfer the charge to
5679 * Migrate the charge from @oldpage to @newpage.
5681 * Both pages must be locked, @newpage->mapping must be set up.
5682 * Either or both pages might be on the LRU already.
5684 void mem_cgroup_replace_page(struct page
*oldpage
, struct page
*newpage
)
5686 struct mem_cgroup
*memcg
;
5689 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5690 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5691 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5692 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5695 if (mem_cgroup_disabled())
5698 /* Page cache replacement: new page already charged? */
5699 if (newpage
->mem_cgroup
)
5702 /* Swapcache readahead pages can get replaced before being charged */
5703 memcg
= oldpage
->mem_cgroup
;
5707 lock_page_lru(oldpage
, &isolated
);
5708 oldpage
->mem_cgroup
= NULL
;
5709 unlock_page_lru(oldpage
, isolated
);
5711 commit_charge(newpage
, memcg
, true);
5715 * subsys_initcall() for memory controller.
5717 * Some parts like hotcpu_notifier() have to be initialized from this context
5718 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5719 * everything that doesn't depend on a specific mem_cgroup structure should
5720 * be initialized from here.
5722 static int __init
mem_cgroup_init(void)
5726 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5728 for_each_possible_cpu(cpu
)
5729 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5732 for_each_node(node
) {
5733 struct mem_cgroup_tree_per_node
*rtpn
;
5736 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5737 node_online(node
) ? node
: NUMA_NO_NODE
);
5739 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5740 struct mem_cgroup_tree_per_zone
*rtpz
;
5742 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5743 rtpz
->rb_root
= RB_ROOT
;
5744 spin_lock_init(&rtpz
->lock
);
5746 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5751 subsys_initcall(mem_cgroup_init
);
5753 #ifdef CONFIG_MEMCG_SWAP
5755 * mem_cgroup_swapout - transfer a memsw charge to swap
5756 * @page: page whose memsw charge to transfer
5757 * @entry: swap entry to move the charge to
5759 * Transfer the memsw charge of @page to @entry.
5761 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5763 struct mem_cgroup
*memcg
, *swap_memcg
;
5764 unsigned short oldid
;
5766 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5767 VM_BUG_ON_PAGE(page_count(page
), page
);
5769 if (!do_swap_account
)
5772 memcg
= page
->mem_cgroup
;
5774 /* Readahead page, never charged */
5779 * In case the memcg owning these pages has been offlined and doesn't
5780 * have an ID allocated to it anymore, charge the closest online
5781 * ancestor for the swap instead and transfer the memory+swap charge.
5783 swap_memcg
= mem_cgroup_id_get_online(memcg
);
5784 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
));
5785 VM_BUG_ON_PAGE(oldid
, page
);
5786 mem_cgroup_swap_statistics(swap_memcg
, true);
5788 page
->mem_cgroup
= NULL
;
5790 if (!mem_cgroup_is_root(memcg
))
5791 page_counter_uncharge(&memcg
->memory
, 1);
5793 if (memcg
!= swap_memcg
) {
5794 if (!mem_cgroup_is_root(swap_memcg
))
5795 page_counter_charge(&swap_memcg
->memsw
, 1);
5796 page_counter_uncharge(&memcg
->memsw
, 1);
5800 * Interrupts should be disabled here because the caller holds the
5801 * mapping->tree_lock lock which is taken with interrupts-off. It is
5802 * important here to have the interrupts disabled because it is the
5803 * only synchronisation we have for udpating the per-CPU variables.
5805 VM_BUG_ON(!irqs_disabled());
5806 mem_cgroup_charge_statistics(memcg
, page
, -1);
5807 memcg_check_events(memcg
, page
);
5809 if (!mem_cgroup_is_root(memcg
))
5810 css_put(&memcg
->css
);
5814 * mem_cgroup_uncharge_swap - uncharge a swap entry
5815 * @entry: swap entry to uncharge
5817 * Drop the memsw charge associated with @entry.
5819 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5821 struct mem_cgroup
*memcg
;
5824 if (!do_swap_account
)
5827 id
= swap_cgroup_record(entry
, 0);
5829 memcg
= mem_cgroup_from_id(id
);
5831 if (!mem_cgroup_is_root(memcg
))
5832 page_counter_uncharge(&memcg
->memsw
, 1);
5833 mem_cgroup_swap_statistics(memcg
, false);
5834 mem_cgroup_id_put(memcg
);
5839 /* for remember boot option*/
5840 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5841 static int really_do_swap_account __initdata
= 1;
5843 static int really_do_swap_account __initdata
;
5846 static int __init
enable_swap_account(char *s
)
5848 if (!strcmp(s
, "1"))
5849 really_do_swap_account
= 1;
5850 else if (!strcmp(s
, "0"))
5851 really_do_swap_account
= 0;
5854 __setup("swapaccount=", enable_swap_account
);
5856 static struct cftype memsw_cgroup_files
[] = {
5858 .name
= "memsw.usage_in_bytes",
5859 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5860 .read_u64
= mem_cgroup_read_u64
,
5863 .name
= "memsw.max_usage_in_bytes",
5864 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5865 .write
= mem_cgroup_reset
,
5866 .read_u64
= mem_cgroup_read_u64
,
5869 .name
= "memsw.limit_in_bytes",
5870 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5871 .write
= mem_cgroup_write
,
5872 .read_u64
= mem_cgroup_read_u64
,
5875 .name
= "memsw.failcnt",
5876 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5877 .write
= mem_cgroup_reset
,
5878 .read_u64
= mem_cgroup_read_u64
,
5880 { }, /* terminate */
5883 static int __init
mem_cgroup_swap_init(void)
5885 if (!mem_cgroup_disabled() && really_do_swap_account
) {
5886 do_swap_account
= 1;
5887 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
5888 memsw_cgroup_files
));
5892 subsys_initcall(mem_cgroup_swap_init
);
5894 #endif /* CONFIG_MEMCG_SWAP */