2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 while (!list_empty(&transaction
->pending_chunks
)) {
68 struct extent_map
*em
;
70 em
= list_first_entry(&transaction
->pending_chunks
,
71 struct extent_map
, list
);
72 list_del_init(&em
->list
);
75 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
79 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
80 struct btrfs_fs_info
*fs_info
)
82 struct btrfs_root
*root
, *tmp
;
84 down_write(&fs_info
->commit_root_sem
);
85 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
87 list_del_init(&root
->dirty_list
);
88 free_extent_buffer(root
->commit_root
);
89 root
->commit_root
= btrfs_root_node(root
);
90 if (is_fstree(root
->objectid
))
91 btrfs_unpin_free_ino(root
);
93 up_write(&fs_info
->commit_root_sem
);
96 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
99 if (type
& TRANS_EXTWRITERS
)
100 atomic_inc(&trans
->num_extwriters
);
103 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
106 if (type
& TRANS_EXTWRITERS
)
107 atomic_dec(&trans
->num_extwriters
);
110 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
113 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
116 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
118 return atomic_read(&trans
->num_extwriters
);
122 * either allocate a new transaction or hop into the existing one
124 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
126 struct btrfs_transaction
*cur_trans
;
127 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
129 spin_lock(&fs_info
->trans_lock
);
131 /* The file system has been taken offline. No new transactions. */
132 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
133 spin_unlock(&fs_info
->trans_lock
);
137 cur_trans
= fs_info
->running_transaction
;
139 if (cur_trans
->aborted
) {
140 spin_unlock(&fs_info
->trans_lock
);
141 return cur_trans
->aborted
;
143 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
144 spin_unlock(&fs_info
->trans_lock
);
147 atomic_inc(&cur_trans
->use_count
);
148 atomic_inc(&cur_trans
->num_writers
);
149 extwriter_counter_inc(cur_trans
, type
);
150 spin_unlock(&fs_info
->trans_lock
);
153 spin_unlock(&fs_info
->trans_lock
);
156 * If we are ATTACH, we just want to catch the current transaction,
157 * and commit it. If there is no transaction, just return ENOENT.
159 if (type
== TRANS_ATTACH
)
163 * JOIN_NOLOCK only happens during the transaction commit, so
164 * it is impossible that ->running_transaction is NULL
166 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
168 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
172 spin_lock(&fs_info
->trans_lock
);
173 if (fs_info
->running_transaction
) {
175 * someone started a transaction after we unlocked. Make sure
176 * to redo the checks above
178 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
180 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
181 spin_unlock(&fs_info
->trans_lock
);
182 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
186 atomic_set(&cur_trans
->num_writers
, 1);
187 extwriter_counter_init(cur_trans
, type
);
188 init_waitqueue_head(&cur_trans
->writer_wait
);
189 init_waitqueue_head(&cur_trans
->commit_wait
);
190 cur_trans
->state
= TRANS_STATE_RUNNING
;
192 * One for this trans handle, one so it will live on until we
193 * commit the transaction.
195 atomic_set(&cur_trans
->use_count
, 2);
196 cur_trans
->start_time
= get_seconds();
198 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
199 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
200 cur_trans
->delayed_refs
.num_heads_ready
= 0;
201 cur_trans
->delayed_refs
.num_heads
= 0;
202 cur_trans
->delayed_refs
.flushing
= 0;
203 cur_trans
->delayed_refs
.run_delayed_start
= 0;
206 * although the tree mod log is per file system and not per transaction,
207 * the log must never go across transaction boundaries.
210 if (!list_empty(&fs_info
->tree_mod_seq_list
))
211 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
212 "creating a fresh transaction\n");
213 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
214 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
215 "creating a fresh transaction\n");
216 atomic64_set(&fs_info
->tree_mod_seq
, 0);
218 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
220 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
221 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
222 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
223 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
224 extent_io_tree_init(&cur_trans
->dirty_pages
,
225 fs_info
->btree_inode
->i_mapping
);
226 fs_info
->generation
++;
227 cur_trans
->transid
= fs_info
->generation
;
228 fs_info
->running_transaction
= cur_trans
;
229 cur_trans
->aborted
= 0;
230 spin_unlock(&fs_info
->trans_lock
);
236 * this does all the record keeping required to make sure that a reference
237 * counted root is properly recorded in a given transaction. This is required
238 * to make sure the old root from before we joined the transaction is deleted
239 * when the transaction commits
241 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
242 struct btrfs_root
*root
)
244 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
245 root
->last_trans
< trans
->transid
) {
246 WARN_ON(root
== root
->fs_info
->extent_root
);
247 WARN_ON(root
->commit_root
!= root
->node
);
250 * see below for IN_TRANS_SETUP usage rules
251 * we have the reloc mutex held now, so there
252 * is only one writer in this function
254 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
256 /* make sure readers find IN_TRANS_SETUP before
257 * they find our root->last_trans update
261 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
262 if (root
->last_trans
== trans
->transid
) {
263 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
266 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
267 (unsigned long)root
->root_key
.objectid
,
268 BTRFS_ROOT_TRANS_TAG
);
269 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
270 root
->last_trans
= trans
->transid
;
272 /* this is pretty tricky. We don't want to
273 * take the relocation lock in btrfs_record_root_in_trans
274 * unless we're really doing the first setup for this root in
277 * Normally we'd use root->last_trans as a flag to decide
278 * if we want to take the expensive mutex.
280 * But, we have to set root->last_trans before we
281 * init the relocation root, otherwise, we trip over warnings
282 * in ctree.c. The solution used here is to flag ourselves
283 * with root IN_TRANS_SETUP. When this is 1, we're still
284 * fixing up the reloc trees and everyone must wait.
286 * When this is zero, they can trust root->last_trans and fly
287 * through btrfs_record_root_in_trans without having to take the
288 * lock. smp_wmb() makes sure that all the writes above are
289 * done before we pop in the zero below
291 btrfs_init_reloc_root(trans
, root
);
292 smp_mb__before_atomic();
293 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
299 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
300 struct btrfs_root
*root
)
302 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
306 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
310 if (root
->last_trans
== trans
->transid
&&
311 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
314 mutex_lock(&root
->fs_info
->reloc_mutex
);
315 record_root_in_trans(trans
, root
);
316 mutex_unlock(&root
->fs_info
->reloc_mutex
);
321 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
323 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
324 trans
->state
< TRANS_STATE_UNBLOCKED
&&
328 /* wait for commit against the current transaction to become unblocked
329 * when this is done, it is safe to start a new transaction, but the current
330 * transaction might not be fully on disk.
332 static void wait_current_trans(struct btrfs_root
*root
)
334 struct btrfs_transaction
*cur_trans
;
336 spin_lock(&root
->fs_info
->trans_lock
);
337 cur_trans
= root
->fs_info
->running_transaction
;
338 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
339 atomic_inc(&cur_trans
->use_count
);
340 spin_unlock(&root
->fs_info
->trans_lock
);
342 wait_event(root
->fs_info
->transaction_wait
,
343 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
345 btrfs_put_transaction(cur_trans
);
347 spin_unlock(&root
->fs_info
->trans_lock
);
351 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
353 if (root
->fs_info
->log_root_recovering
)
356 if (type
== TRANS_USERSPACE
)
359 if (type
== TRANS_START
&&
360 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
366 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
368 if (!root
->fs_info
->reloc_ctl
||
369 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
370 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
377 static struct btrfs_trans_handle
*
378 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
379 enum btrfs_reserve_flush_enum flush
)
381 struct btrfs_trans_handle
*h
;
382 struct btrfs_transaction
*cur_trans
;
384 u64 qgroup_reserved
= 0;
385 bool reloc_reserved
= false;
388 /* Send isn't supposed to start transactions. */
389 ASSERT(current
->journal_info
!= (void *)BTRFS_SEND_TRANS_STUB
);
391 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
392 return ERR_PTR(-EROFS
);
394 if (current
->journal_info
) {
395 WARN_ON(type
& TRANS_EXTWRITERS
);
396 h
= current
->journal_info
;
398 WARN_ON(h
->use_count
> 2);
399 h
->orig_rsv
= h
->block_rsv
;
405 * Do the reservation before we join the transaction so we can do all
406 * the appropriate flushing if need be.
408 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
409 if (root
->fs_info
->quota_enabled
&&
410 is_fstree(root
->root_key
.objectid
)) {
411 qgroup_reserved
= num_items
* root
->leafsize
;
412 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
417 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
419 * Do the reservation for the relocation root creation
421 if (unlikely(need_reserve_reloc_root(root
))) {
422 num_bytes
+= root
->nodesize
;
423 reloc_reserved
= true;
426 ret
= btrfs_block_rsv_add(root
,
427 &root
->fs_info
->trans_block_rsv
,
433 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
440 * If we are JOIN_NOLOCK we're already committing a transaction and
441 * waiting on this guy, so we don't need to do the sb_start_intwrite
442 * because we're already holding a ref. We need this because we could
443 * have raced in and did an fsync() on a file which can kick a commit
444 * and then we deadlock with somebody doing a freeze.
446 * If we are ATTACH, it means we just want to catch the current
447 * transaction and commit it, so we needn't do sb_start_intwrite().
449 if (type
& __TRANS_FREEZABLE
)
450 sb_start_intwrite(root
->fs_info
->sb
);
452 if (may_wait_transaction(root
, type
))
453 wait_current_trans(root
);
456 ret
= join_transaction(root
, type
);
458 wait_current_trans(root
);
459 if (unlikely(type
== TRANS_ATTACH
))
462 } while (ret
== -EBUSY
);
465 /* We must get the transaction if we are JOIN_NOLOCK. */
466 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
470 cur_trans
= root
->fs_info
->running_transaction
;
472 h
->transid
= cur_trans
->transid
;
473 h
->transaction
= cur_trans
;
475 h
->bytes_reserved
= 0;
477 h
->delayed_ref_updates
= 0;
483 h
->qgroup_reserved
= 0;
484 h
->delayed_ref_elem
.seq
= 0;
486 h
->allocating_chunk
= false;
487 h
->reloc_reserved
= false;
489 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
490 INIT_LIST_HEAD(&h
->new_bgs
);
493 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
494 may_wait_transaction(root
, type
)) {
495 current
->journal_info
= h
;
496 btrfs_commit_transaction(h
, root
);
501 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
502 h
->transid
, num_bytes
, 1);
503 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
504 h
->bytes_reserved
= num_bytes
;
505 h
->reloc_reserved
= reloc_reserved
;
507 h
->qgroup_reserved
= qgroup_reserved
;
510 btrfs_record_root_in_trans(h
, root
);
512 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
513 current
->journal_info
= h
;
517 if (type
& __TRANS_FREEZABLE
)
518 sb_end_intwrite(root
->fs_info
->sb
);
519 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
522 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
526 btrfs_qgroup_free(root
, qgroup_reserved
);
530 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
533 return start_transaction(root
, num_items
, TRANS_START
,
534 BTRFS_RESERVE_FLUSH_ALL
);
537 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
538 struct btrfs_root
*root
, int num_items
)
540 return start_transaction(root
, num_items
, TRANS_START
,
541 BTRFS_RESERVE_FLUSH_LIMIT
);
544 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
546 return start_transaction(root
, 0, TRANS_JOIN
, 0);
549 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
551 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
554 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
556 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
560 * btrfs_attach_transaction() - catch the running transaction
562 * It is used when we want to commit the current the transaction, but
563 * don't want to start a new one.
565 * Note: If this function return -ENOENT, it just means there is no
566 * running transaction. But it is possible that the inactive transaction
567 * is still in the memory, not fully on disk. If you hope there is no
568 * inactive transaction in the fs when -ENOENT is returned, you should
570 * btrfs_attach_transaction_barrier()
572 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
574 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
578 * btrfs_attach_transaction_barrier() - catch the running transaction
580 * It is similar to the above function, the differentia is this one
581 * will wait for all the inactive transactions until they fully
584 struct btrfs_trans_handle
*
585 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
587 struct btrfs_trans_handle
*trans
;
589 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
590 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
591 btrfs_wait_for_commit(root
, 0);
596 /* wait for a transaction commit to be fully complete */
597 static noinline
void wait_for_commit(struct btrfs_root
*root
,
598 struct btrfs_transaction
*commit
)
600 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
603 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
605 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
609 if (transid
<= root
->fs_info
->last_trans_committed
)
613 /* find specified transaction */
614 spin_lock(&root
->fs_info
->trans_lock
);
615 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
616 if (t
->transid
== transid
) {
618 atomic_inc(&cur_trans
->use_count
);
622 if (t
->transid
> transid
) {
627 spin_unlock(&root
->fs_info
->trans_lock
);
628 /* The specified transaction doesn't exist */
632 /* find newest transaction that is committing | committed */
633 spin_lock(&root
->fs_info
->trans_lock
);
634 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
636 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
637 if (t
->state
== TRANS_STATE_COMPLETED
)
640 atomic_inc(&cur_trans
->use_count
);
644 spin_unlock(&root
->fs_info
->trans_lock
);
646 goto out
; /* nothing committing|committed */
649 wait_for_commit(root
, cur_trans
);
650 btrfs_put_transaction(cur_trans
);
655 void btrfs_throttle(struct btrfs_root
*root
)
657 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
658 wait_current_trans(root
);
661 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
662 struct btrfs_root
*root
)
664 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
665 btrfs_check_space_for_delayed_refs(trans
, root
))
668 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
671 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
672 struct btrfs_root
*root
)
674 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
679 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
680 cur_trans
->delayed_refs
.flushing
)
683 updates
= trans
->delayed_ref_updates
;
684 trans
->delayed_ref_updates
= 0;
686 err
= btrfs_run_delayed_refs(trans
, root
, updates
);
687 if (err
) /* Error code will also eval true */
691 return should_end_transaction(trans
, root
);
694 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
695 struct btrfs_root
*root
, int throttle
)
697 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
698 struct btrfs_fs_info
*info
= root
->fs_info
;
699 unsigned long cur
= trans
->delayed_ref_updates
;
700 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
702 int must_run_delayed_refs
= 0;
704 if (trans
->use_count
> 1) {
706 trans
->block_rsv
= trans
->orig_rsv
;
710 btrfs_trans_release_metadata(trans
, root
);
711 trans
->block_rsv
= NULL
;
713 if (!list_empty(&trans
->new_bgs
))
714 btrfs_create_pending_block_groups(trans
, root
);
716 trans
->delayed_ref_updates
= 0;
718 must_run_delayed_refs
=
719 btrfs_should_throttle_delayed_refs(trans
, root
);
720 cur
= max_t(unsigned long, cur
, 32);
723 * don't make the caller wait if they are from a NOLOCK
724 * or ATTACH transaction, it will deadlock with commit
726 if (must_run_delayed_refs
== 1 &&
727 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
728 must_run_delayed_refs
= 2;
731 if (trans
->qgroup_reserved
) {
733 * the same root has to be passed here between start_transaction
734 * and end_transaction. Subvolume quota depends on this.
736 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
737 trans
->qgroup_reserved
= 0;
740 btrfs_trans_release_metadata(trans
, root
);
741 trans
->block_rsv
= NULL
;
743 if (!list_empty(&trans
->new_bgs
))
744 btrfs_create_pending_block_groups(trans
, root
);
746 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
747 should_end_transaction(trans
, root
) &&
748 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
749 spin_lock(&info
->trans_lock
);
750 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
751 cur_trans
->state
= TRANS_STATE_BLOCKED
;
752 spin_unlock(&info
->trans_lock
);
755 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
757 return btrfs_commit_transaction(trans
, root
);
759 wake_up_process(info
->transaction_kthread
);
762 if (trans
->type
& __TRANS_FREEZABLE
)
763 sb_end_intwrite(root
->fs_info
->sb
);
765 WARN_ON(cur_trans
!= info
->running_transaction
);
766 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
767 atomic_dec(&cur_trans
->num_writers
);
768 extwriter_counter_dec(cur_trans
, trans
->type
);
771 if (waitqueue_active(&cur_trans
->writer_wait
))
772 wake_up(&cur_trans
->writer_wait
);
773 btrfs_put_transaction(cur_trans
);
775 if (current
->journal_info
== trans
)
776 current
->journal_info
= NULL
;
779 btrfs_run_delayed_iputs(root
);
781 if (trans
->aborted
||
782 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
783 wake_up_process(info
->transaction_kthread
);
786 assert_qgroups_uptodate(trans
);
788 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
789 if (must_run_delayed_refs
) {
790 btrfs_async_run_delayed_refs(root
, cur
,
791 must_run_delayed_refs
== 1);
796 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
797 struct btrfs_root
*root
)
799 return __btrfs_end_transaction(trans
, root
, 0);
802 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
803 struct btrfs_root
*root
)
805 return __btrfs_end_transaction(trans
, root
, 1);
809 * when btree blocks are allocated, they have some corresponding bits set for
810 * them in one of two extent_io trees. This is used to make sure all of
811 * those extents are sent to disk but does not wait on them
813 int btrfs_write_marked_extents(struct btrfs_root
*root
,
814 struct extent_io_tree
*dirty_pages
, int mark
)
818 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
819 struct extent_state
*cached_state
= NULL
;
823 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
824 mark
, &cached_state
)) {
825 convert_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
826 mark
, &cached_state
, GFP_NOFS
);
828 err
= filemap_fdatawrite_range(mapping
, start
, end
);
840 * when btree blocks are allocated, they have some corresponding bits set for
841 * them in one of two extent_io trees. This is used to make sure all of
842 * those extents are on disk for transaction or log commit. We wait
843 * on all the pages and clear them from the dirty pages state tree
845 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
846 struct extent_io_tree
*dirty_pages
, int mark
)
850 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
851 struct extent_state
*cached_state
= NULL
;
855 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
856 EXTENT_NEED_WAIT
, &cached_state
)) {
857 clear_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
858 0, 0, &cached_state
, GFP_NOFS
);
859 err
= filemap_fdatawait_range(mapping
, start
, end
);
871 * when btree blocks are allocated, they have some corresponding bits set for
872 * them in one of two extent_io trees. This is used to make sure all of
873 * those extents are on disk for transaction or log commit
875 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
876 struct extent_io_tree
*dirty_pages
, int mark
)
880 struct blk_plug plug
;
882 blk_start_plug(&plug
);
883 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
884 blk_finish_plug(&plug
);
885 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
894 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
895 struct btrfs_root
*root
)
897 if (!trans
|| !trans
->transaction
) {
898 struct inode
*btree_inode
;
899 btree_inode
= root
->fs_info
->btree_inode
;
900 return filemap_write_and_wait(btree_inode
->i_mapping
);
902 return btrfs_write_and_wait_marked_extents(root
,
903 &trans
->transaction
->dirty_pages
,
908 * this is used to update the root pointer in the tree of tree roots.
910 * But, in the case of the extent allocation tree, updating the root
911 * pointer may allocate blocks which may change the root of the extent
914 * So, this loops and repeats and makes sure the cowonly root didn't
915 * change while the root pointer was being updated in the metadata.
917 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
918 struct btrfs_root
*root
)
923 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
925 old_root_used
= btrfs_root_used(&root
->root_item
);
926 btrfs_write_dirty_block_groups(trans
, root
);
929 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
930 if (old_root_bytenr
== root
->node
->start
&&
931 old_root_used
== btrfs_root_used(&root
->root_item
))
934 btrfs_set_root_node(&root
->root_item
, root
->node
);
935 ret
= btrfs_update_root(trans
, tree_root
,
941 old_root_used
= btrfs_root_used(&root
->root_item
);
942 ret
= btrfs_write_dirty_block_groups(trans
, root
);
951 * update all the cowonly tree roots on disk
953 * The error handling in this function may not be obvious. Any of the
954 * failures will cause the file system to go offline. We still need
955 * to clean up the delayed refs.
957 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
958 struct btrfs_root
*root
)
960 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
961 struct list_head
*next
;
962 struct extent_buffer
*eb
;
965 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
969 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
970 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
972 btrfs_tree_unlock(eb
);
973 free_extent_buffer(eb
);
978 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
982 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
985 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
988 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
992 /* run_qgroups might have added some more refs */
993 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
997 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
998 next
= fs_info
->dirty_cowonly_roots
.next
;
1000 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1002 if (root
!= fs_info
->extent_root
)
1003 list_add_tail(&root
->dirty_list
,
1004 &trans
->transaction
->switch_commits
);
1005 ret
= update_cowonly_root(trans
, root
);
1010 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1011 &trans
->transaction
->switch_commits
);
1012 btrfs_after_dev_replace_commit(fs_info
);
1018 * dead roots are old snapshots that need to be deleted. This allocates
1019 * a dirty root struct and adds it into the list of dead roots that need to
1022 void btrfs_add_dead_root(struct btrfs_root
*root
)
1024 spin_lock(&root
->fs_info
->trans_lock
);
1025 if (list_empty(&root
->root_list
))
1026 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1027 spin_unlock(&root
->fs_info
->trans_lock
);
1031 * update all the cowonly tree roots on disk
1033 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1034 struct btrfs_root
*root
)
1036 struct btrfs_root
*gang
[8];
1037 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1042 spin_lock(&fs_info
->fs_roots_radix_lock
);
1044 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1047 BTRFS_ROOT_TRANS_TAG
);
1050 for (i
= 0; i
< ret
; i
++) {
1052 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1053 (unsigned long)root
->root_key
.objectid
,
1054 BTRFS_ROOT_TRANS_TAG
);
1055 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1057 btrfs_free_log(trans
, root
);
1058 btrfs_update_reloc_root(trans
, root
);
1059 btrfs_orphan_commit_root(trans
, root
);
1061 btrfs_save_ino_cache(root
, trans
);
1063 /* see comments in should_cow_block() */
1064 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1065 smp_mb__after_atomic();
1067 if (root
->commit_root
!= root
->node
) {
1068 list_add_tail(&root
->dirty_list
,
1069 &trans
->transaction
->switch_commits
);
1070 btrfs_set_root_node(&root
->root_item
,
1074 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1077 spin_lock(&fs_info
->fs_roots_radix_lock
);
1082 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1087 * defrag a given btree.
1088 * Every leaf in the btree is read and defragged.
1090 int btrfs_defrag_root(struct btrfs_root
*root
)
1092 struct btrfs_fs_info
*info
= root
->fs_info
;
1093 struct btrfs_trans_handle
*trans
;
1096 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1100 trans
= btrfs_start_transaction(root
, 0);
1102 return PTR_ERR(trans
);
1104 ret
= btrfs_defrag_leaves(trans
, root
);
1106 btrfs_end_transaction(trans
, root
);
1107 btrfs_btree_balance_dirty(info
->tree_root
);
1110 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1113 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1114 pr_debug("BTRFS: defrag_root cancelled\n");
1119 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1124 * new snapshots need to be created at a very specific time in the
1125 * transaction commit. This does the actual creation.
1128 * If the error which may affect the commitment of the current transaction
1129 * happens, we should return the error number. If the error which just affect
1130 * the creation of the pending snapshots, just return 0.
1132 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1133 struct btrfs_fs_info
*fs_info
,
1134 struct btrfs_pending_snapshot
*pending
)
1136 struct btrfs_key key
;
1137 struct btrfs_root_item
*new_root_item
;
1138 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1139 struct btrfs_root
*root
= pending
->root
;
1140 struct btrfs_root
*parent_root
;
1141 struct btrfs_block_rsv
*rsv
;
1142 struct inode
*parent_inode
;
1143 struct btrfs_path
*path
;
1144 struct btrfs_dir_item
*dir_item
;
1145 struct dentry
*dentry
;
1146 struct extent_buffer
*tmp
;
1147 struct extent_buffer
*old
;
1148 struct timespec cur_time
= CURRENT_TIME
;
1156 path
= btrfs_alloc_path();
1158 pending
->error
= -ENOMEM
;
1162 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1163 if (!new_root_item
) {
1164 pending
->error
= -ENOMEM
;
1165 goto root_item_alloc_fail
;
1168 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1170 goto no_free_objectid
;
1172 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1174 if (to_reserve
> 0) {
1175 pending
->error
= btrfs_block_rsv_add(root
,
1176 &pending
->block_rsv
,
1178 BTRFS_RESERVE_NO_FLUSH
);
1180 goto no_free_objectid
;
1183 key
.objectid
= objectid
;
1184 key
.offset
= (u64
)-1;
1185 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1187 rsv
= trans
->block_rsv
;
1188 trans
->block_rsv
= &pending
->block_rsv
;
1189 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1191 dentry
= pending
->dentry
;
1192 parent_inode
= pending
->dir
;
1193 parent_root
= BTRFS_I(parent_inode
)->root
;
1194 record_root_in_trans(trans
, parent_root
);
1197 * insert the directory item
1199 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1200 BUG_ON(ret
); /* -ENOMEM */
1202 /* check if there is a file/dir which has the same name. */
1203 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1204 btrfs_ino(parent_inode
),
1205 dentry
->d_name
.name
,
1206 dentry
->d_name
.len
, 0);
1207 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1208 pending
->error
= -EEXIST
;
1209 goto dir_item_existed
;
1210 } else if (IS_ERR(dir_item
)) {
1211 ret
= PTR_ERR(dir_item
);
1212 btrfs_abort_transaction(trans
, root
, ret
);
1215 btrfs_release_path(path
);
1218 * pull in the delayed directory update
1219 * and the delayed inode item
1220 * otherwise we corrupt the FS during
1223 ret
= btrfs_run_delayed_items(trans
, root
);
1224 if (ret
) { /* Transaction aborted */
1225 btrfs_abort_transaction(trans
, root
, ret
);
1229 record_root_in_trans(trans
, root
);
1230 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1231 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1232 btrfs_check_and_init_root_item(new_root_item
);
1234 root_flags
= btrfs_root_flags(new_root_item
);
1235 if (pending
->readonly
)
1236 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1238 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1239 btrfs_set_root_flags(new_root_item
, root_flags
);
1241 btrfs_set_root_generation_v2(new_root_item
,
1243 uuid_le_gen(&new_uuid
);
1244 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1245 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1247 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1248 memset(new_root_item
->received_uuid
, 0,
1249 sizeof(new_root_item
->received_uuid
));
1250 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1251 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1252 btrfs_set_root_stransid(new_root_item
, 0);
1253 btrfs_set_root_rtransid(new_root_item
, 0);
1255 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1256 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1257 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1259 old
= btrfs_lock_root_node(root
);
1260 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1262 btrfs_tree_unlock(old
);
1263 free_extent_buffer(old
);
1264 btrfs_abort_transaction(trans
, root
, ret
);
1268 btrfs_set_lock_blocking(old
);
1270 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1271 /* clean up in any case */
1272 btrfs_tree_unlock(old
);
1273 free_extent_buffer(old
);
1275 btrfs_abort_transaction(trans
, root
, ret
);
1280 * We need to flush delayed refs in order to make sure all of our quota
1281 * operations have been done before we call btrfs_qgroup_inherit.
1283 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1285 btrfs_abort_transaction(trans
, root
, ret
);
1289 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1290 root
->root_key
.objectid
,
1291 objectid
, pending
->inherit
);
1293 btrfs_abort_transaction(trans
, root
, ret
);
1297 /* see comments in should_cow_block() */
1298 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1301 btrfs_set_root_node(new_root_item
, tmp
);
1302 /* record when the snapshot was created in key.offset */
1303 key
.offset
= trans
->transid
;
1304 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1305 btrfs_tree_unlock(tmp
);
1306 free_extent_buffer(tmp
);
1308 btrfs_abort_transaction(trans
, root
, ret
);
1313 * insert root back/forward references
1315 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1316 parent_root
->root_key
.objectid
,
1317 btrfs_ino(parent_inode
), index
,
1318 dentry
->d_name
.name
, dentry
->d_name
.len
);
1320 btrfs_abort_transaction(trans
, root
, ret
);
1324 key
.offset
= (u64
)-1;
1325 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1326 if (IS_ERR(pending
->snap
)) {
1327 ret
= PTR_ERR(pending
->snap
);
1328 btrfs_abort_transaction(trans
, root
, ret
);
1332 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1334 btrfs_abort_transaction(trans
, root
, ret
);
1338 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1340 btrfs_abort_transaction(trans
, root
, ret
);
1344 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1345 dentry
->d_name
.name
, dentry
->d_name
.len
,
1347 BTRFS_FT_DIR
, index
);
1348 /* We have check then name at the beginning, so it is impossible. */
1349 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1351 btrfs_abort_transaction(trans
, root
, ret
);
1355 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1356 dentry
->d_name
.len
* 2);
1357 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1358 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1360 btrfs_abort_transaction(trans
, root
, ret
);
1363 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1364 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1366 btrfs_abort_transaction(trans
, root
, ret
);
1369 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1370 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1371 new_root_item
->received_uuid
,
1372 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1374 if (ret
&& ret
!= -EEXIST
) {
1375 btrfs_abort_transaction(trans
, root
, ret
);
1380 pending
->error
= ret
;
1382 trans
->block_rsv
= rsv
;
1383 trans
->bytes_reserved
= 0;
1385 kfree(new_root_item
);
1386 root_item_alloc_fail
:
1387 btrfs_free_path(path
);
1392 * create all the snapshots we've scheduled for creation
1394 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1395 struct btrfs_fs_info
*fs_info
)
1397 struct btrfs_pending_snapshot
*pending
, *next
;
1398 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1401 list_for_each_entry_safe(pending
, next
, head
, list
) {
1402 list_del(&pending
->list
);
1403 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1410 static void update_super_roots(struct btrfs_root
*root
)
1412 struct btrfs_root_item
*root_item
;
1413 struct btrfs_super_block
*super
;
1415 super
= root
->fs_info
->super_copy
;
1417 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1418 super
->chunk_root
= root_item
->bytenr
;
1419 super
->chunk_root_generation
= root_item
->generation
;
1420 super
->chunk_root_level
= root_item
->level
;
1422 root_item
= &root
->fs_info
->tree_root
->root_item
;
1423 super
->root
= root_item
->bytenr
;
1424 super
->generation
= root_item
->generation
;
1425 super
->root_level
= root_item
->level
;
1426 if (btrfs_test_opt(root
, SPACE_CACHE
))
1427 super
->cache_generation
= root_item
->generation
;
1428 if (root
->fs_info
->update_uuid_tree_gen
)
1429 super
->uuid_tree_generation
= root_item
->generation
;
1432 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1434 struct btrfs_transaction
*trans
;
1437 spin_lock(&info
->trans_lock
);
1438 trans
= info
->running_transaction
;
1440 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1441 spin_unlock(&info
->trans_lock
);
1445 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1447 struct btrfs_transaction
*trans
;
1450 spin_lock(&info
->trans_lock
);
1451 trans
= info
->running_transaction
;
1453 ret
= is_transaction_blocked(trans
);
1454 spin_unlock(&info
->trans_lock
);
1459 * wait for the current transaction commit to start and block subsequent
1462 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1463 struct btrfs_transaction
*trans
)
1465 wait_event(root
->fs_info
->transaction_blocked_wait
,
1466 trans
->state
>= TRANS_STATE_COMMIT_START
||
1471 * wait for the current transaction to start and then become unblocked.
1474 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1475 struct btrfs_transaction
*trans
)
1477 wait_event(root
->fs_info
->transaction_wait
,
1478 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1483 * commit transactions asynchronously. once btrfs_commit_transaction_async
1484 * returns, any subsequent transaction will not be allowed to join.
1486 struct btrfs_async_commit
{
1487 struct btrfs_trans_handle
*newtrans
;
1488 struct btrfs_root
*root
;
1489 struct work_struct work
;
1492 static void do_async_commit(struct work_struct
*work
)
1494 struct btrfs_async_commit
*ac
=
1495 container_of(work
, struct btrfs_async_commit
, work
);
1498 * We've got freeze protection passed with the transaction.
1499 * Tell lockdep about it.
1501 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1503 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1506 current
->journal_info
= ac
->newtrans
;
1508 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1512 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1513 struct btrfs_root
*root
,
1514 int wait_for_unblock
)
1516 struct btrfs_async_commit
*ac
;
1517 struct btrfs_transaction
*cur_trans
;
1519 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1523 INIT_WORK(&ac
->work
, do_async_commit
);
1525 ac
->newtrans
= btrfs_join_transaction(root
);
1526 if (IS_ERR(ac
->newtrans
)) {
1527 int err
= PTR_ERR(ac
->newtrans
);
1532 /* take transaction reference */
1533 cur_trans
= trans
->transaction
;
1534 atomic_inc(&cur_trans
->use_count
);
1536 btrfs_end_transaction(trans
, root
);
1539 * Tell lockdep we've released the freeze rwsem, since the
1540 * async commit thread will be the one to unlock it.
1542 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1544 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1547 schedule_work(&ac
->work
);
1549 /* wait for transaction to start and unblock */
1550 if (wait_for_unblock
)
1551 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1553 wait_current_trans_commit_start(root
, cur_trans
);
1555 if (current
->journal_info
== trans
)
1556 current
->journal_info
= NULL
;
1558 btrfs_put_transaction(cur_trans
);
1563 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1564 struct btrfs_root
*root
, int err
)
1566 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1569 WARN_ON(trans
->use_count
> 1);
1571 btrfs_abort_transaction(trans
, root
, err
);
1573 spin_lock(&root
->fs_info
->trans_lock
);
1576 * If the transaction is removed from the list, it means this
1577 * transaction has been committed successfully, so it is impossible
1578 * to call the cleanup function.
1580 BUG_ON(list_empty(&cur_trans
->list
));
1582 list_del_init(&cur_trans
->list
);
1583 if (cur_trans
== root
->fs_info
->running_transaction
) {
1584 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1585 spin_unlock(&root
->fs_info
->trans_lock
);
1586 wait_event(cur_trans
->writer_wait
,
1587 atomic_read(&cur_trans
->num_writers
) == 1);
1589 spin_lock(&root
->fs_info
->trans_lock
);
1591 spin_unlock(&root
->fs_info
->trans_lock
);
1593 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1595 spin_lock(&root
->fs_info
->trans_lock
);
1596 if (cur_trans
== root
->fs_info
->running_transaction
)
1597 root
->fs_info
->running_transaction
= NULL
;
1598 spin_unlock(&root
->fs_info
->trans_lock
);
1600 if (trans
->type
& __TRANS_FREEZABLE
)
1601 sb_end_intwrite(root
->fs_info
->sb
);
1602 btrfs_put_transaction(cur_trans
);
1603 btrfs_put_transaction(cur_trans
);
1605 trace_btrfs_transaction_commit(root
);
1607 if (current
->journal_info
== trans
)
1608 current
->journal_info
= NULL
;
1609 btrfs_scrub_cancel(root
->fs_info
);
1611 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1614 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1616 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1617 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1621 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1623 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1624 btrfs_wait_ordered_roots(fs_info
, -1);
1627 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1628 struct btrfs_root
*root
)
1630 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1631 struct btrfs_transaction
*prev_trans
= NULL
;
1634 /* Stop the commit early if ->aborted is set */
1635 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1636 ret
= cur_trans
->aborted
;
1637 btrfs_end_transaction(trans
, root
);
1641 /* make a pass through all the delayed refs we have so far
1642 * any runnings procs may add more while we are here
1644 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1646 btrfs_end_transaction(trans
, root
);
1650 btrfs_trans_release_metadata(trans
, root
);
1651 trans
->block_rsv
= NULL
;
1652 if (trans
->qgroup_reserved
) {
1653 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1654 trans
->qgroup_reserved
= 0;
1657 cur_trans
= trans
->transaction
;
1660 * set the flushing flag so procs in this transaction have to
1661 * start sending their work down.
1663 cur_trans
->delayed_refs
.flushing
= 1;
1666 if (!list_empty(&trans
->new_bgs
))
1667 btrfs_create_pending_block_groups(trans
, root
);
1669 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1671 btrfs_end_transaction(trans
, root
);
1675 spin_lock(&root
->fs_info
->trans_lock
);
1676 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1677 spin_unlock(&root
->fs_info
->trans_lock
);
1678 atomic_inc(&cur_trans
->use_count
);
1679 ret
= btrfs_end_transaction(trans
, root
);
1681 wait_for_commit(root
, cur_trans
);
1683 btrfs_put_transaction(cur_trans
);
1688 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1689 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1691 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1692 prev_trans
= list_entry(cur_trans
->list
.prev
,
1693 struct btrfs_transaction
, list
);
1694 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1695 atomic_inc(&prev_trans
->use_count
);
1696 spin_unlock(&root
->fs_info
->trans_lock
);
1698 wait_for_commit(root
, prev_trans
);
1700 btrfs_put_transaction(prev_trans
);
1702 spin_unlock(&root
->fs_info
->trans_lock
);
1705 spin_unlock(&root
->fs_info
->trans_lock
);
1708 extwriter_counter_dec(cur_trans
, trans
->type
);
1710 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1712 goto cleanup_transaction
;
1714 ret
= btrfs_run_delayed_items(trans
, root
);
1716 goto cleanup_transaction
;
1718 wait_event(cur_trans
->writer_wait
,
1719 extwriter_counter_read(cur_trans
) == 0);
1721 /* some pending stuffs might be added after the previous flush. */
1722 ret
= btrfs_run_delayed_items(trans
, root
);
1724 goto cleanup_transaction
;
1726 btrfs_wait_delalloc_flush(root
->fs_info
);
1728 btrfs_scrub_pause(root
);
1730 * Ok now we need to make sure to block out any other joins while we
1731 * commit the transaction. We could have started a join before setting
1732 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1734 spin_lock(&root
->fs_info
->trans_lock
);
1735 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1736 spin_unlock(&root
->fs_info
->trans_lock
);
1737 wait_event(cur_trans
->writer_wait
,
1738 atomic_read(&cur_trans
->num_writers
) == 1);
1740 /* ->aborted might be set after the previous check, so check it */
1741 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1742 ret
= cur_trans
->aborted
;
1743 goto scrub_continue
;
1746 * the reloc mutex makes sure that we stop
1747 * the balancing code from coming in and moving
1748 * extents around in the middle of the commit
1750 mutex_lock(&root
->fs_info
->reloc_mutex
);
1753 * We needn't worry about the delayed items because we will
1754 * deal with them in create_pending_snapshot(), which is the
1755 * core function of the snapshot creation.
1757 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1759 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1760 goto scrub_continue
;
1764 * We insert the dir indexes of the snapshots and update the inode
1765 * of the snapshots' parents after the snapshot creation, so there
1766 * are some delayed items which are not dealt with. Now deal with
1769 * We needn't worry that this operation will corrupt the snapshots,
1770 * because all the tree which are snapshoted will be forced to COW
1771 * the nodes and leaves.
1773 ret
= btrfs_run_delayed_items(trans
, root
);
1775 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1776 goto scrub_continue
;
1779 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1781 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1782 goto scrub_continue
;
1786 * make sure none of the code above managed to slip in a
1789 btrfs_assert_delayed_root_empty(root
);
1791 WARN_ON(cur_trans
!= trans
->transaction
);
1793 /* btrfs_commit_tree_roots is responsible for getting the
1794 * various roots consistent with each other. Every pointer
1795 * in the tree of tree roots has to point to the most up to date
1796 * root for every subvolume and other tree. So, we have to keep
1797 * the tree logging code from jumping in and changing any
1800 * At this point in the commit, there can't be any tree-log
1801 * writers, but a little lower down we drop the trans mutex
1802 * and let new people in. By holding the tree_log_mutex
1803 * from now until after the super is written, we avoid races
1804 * with the tree-log code.
1806 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1808 ret
= commit_fs_roots(trans
, root
);
1810 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1811 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1812 goto scrub_continue
;
1816 * Since the transaction is done, we should set the inode map cache flag
1817 * before any other comming transaction.
1819 if (btrfs_test_opt(root
, CHANGE_INODE_CACHE
))
1820 btrfs_set_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1822 btrfs_clear_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1824 /* commit_fs_roots gets rid of all the tree log roots, it is now
1825 * safe to free the root of tree log roots
1827 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1829 ret
= commit_cowonly_roots(trans
, root
);
1831 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1832 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1833 goto scrub_continue
;
1837 * The tasks which save the space cache and inode cache may also
1838 * update ->aborted, check it.
1840 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1841 ret
= cur_trans
->aborted
;
1842 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1843 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1844 goto scrub_continue
;
1847 btrfs_prepare_extent_commit(trans
, root
);
1849 cur_trans
= root
->fs_info
->running_transaction
;
1851 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1852 root
->fs_info
->tree_root
->node
);
1853 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
1854 &cur_trans
->switch_commits
);
1856 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1857 root
->fs_info
->chunk_root
->node
);
1858 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
1859 &cur_trans
->switch_commits
);
1861 switch_commit_roots(cur_trans
, root
->fs_info
);
1863 assert_qgroups_uptodate(trans
);
1864 update_super_roots(root
);
1866 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
1867 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
1868 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
1869 sizeof(*root
->fs_info
->super_copy
));
1871 spin_lock(&root
->fs_info
->trans_lock
);
1872 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
1873 root
->fs_info
->running_transaction
= NULL
;
1874 spin_unlock(&root
->fs_info
->trans_lock
);
1875 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1877 wake_up(&root
->fs_info
->transaction_wait
);
1879 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1881 btrfs_error(root
->fs_info
, ret
,
1882 "Error while writing out transaction");
1883 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1884 goto scrub_continue
;
1887 ret
= write_ctree_super(trans
, root
, 0);
1889 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1890 goto scrub_continue
;
1894 * the super is written, we can safely allow the tree-loggers
1895 * to go about their business
1897 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1899 btrfs_finish_extent_commit(trans
, root
);
1901 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1903 * We needn't acquire the lock here because there is no other task
1904 * which can change it.
1906 cur_trans
->state
= TRANS_STATE_COMPLETED
;
1907 wake_up(&cur_trans
->commit_wait
);
1909 spin_lock(&root
->fs_info
->trans_lock
);
1910 list_del_init(&cur_trans
->list
);
1911 spin_unlock(&root
->fs_info
->trans_lock
);
1913 btrfs_put_transaction(cur_trans
);
1914 btrfs_put_transaction(cur_trans
);
1916 if (trans
->type
& __TRANS_FREEZABLE
)
1917 sb_end_intwrite(root
->fs_info
->sb
);
1919 trace_btrfs_transaction_commit(root
);
1921 btrfs_scrub_continue(root
);
1923 if (current
->journal_info
== trans
)
1924 current
->journal_info
= NULL
;
1926 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1928 if (current
!= root
->fs_info
->transaction_kthread
)
1929 btrfs_run_delayed_iputs(root
);
1934 btrfs_scrub_continue(root
);
1935 cleanup_transaction
:
1936 btrfs_trans_release_metadata(trans
, root
);
1937 trans
->block_rsv
= NULL
;
1938 if (trans
->qgroup_reserved
) {
1939 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1940 trans
->qgroup_reserved
= 0;
1942 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
1943 if (current
->journal_info
== trans
)
1944 current
->journal_info
= NULL
;
1945 cleanup_transaction(trans
, root
, ret
);
1951 * return < 0 if error
1952 * 0 if there are no more dead_roots at the time of call
1953 * 1 there are more to be processed, call me again
1955 * The return value indicates there are certainly more snapshots to delete, but
1956 * if there comes a new one during processing, it may return 0. We don't mind,
1957 * because btrfs_commit_super will poke cleaner thread and it will process it a
1958 * few seconds later.
1960 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
1963 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1965 spin_lock(&fs_info
->trans_lock
);
1966 if (list_empty(&fs_info
->dead_roots
)) {
1967 spin_unlock(&fs_info
->trans_lock
);
1970 root
= list_first_entry(&fs_info
->dead_roots
,
1971 struct btrfs_root
, root_list
);
1972 list_del_init(&root
->root_list
);
1973 spin_unlock(&fs_info
->trans_lock
);
1975 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
1977 btrfs_kill_all_delayed_nodes(root
);
1979 if (btrfs_header_backref_rev(root
->node
) <
1980 BTRFS_MIXED_BACKREF_REV
)
1981 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
1983 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
1985 * If we encounter a transaction abort during snapshot cleaning, we
1986 * don't want to crash here
1988 return (ret
< 0) ? 0 : 1;