2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
26 #include <linux/gpio.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
30 /* SPI register offsets */
33 #define SPI_RDR 0x0008
34 #define SPI_TDR 0x000c
36 #define SPI_IER 0x0014
37 #define SPI_IDR 0x0018
38 #define SPI_IMR 0x001c
39 #define SPI_CSR0 0x0030
40 #define SPI_CSR1 0x0034
41 #define SPI_CSR2 0x0038
42 #define SPI_CSR3 0x003c
43 #define SPI_FMR 0x0040
44 #define SPI_FLR 0x0044
45 #define SPI_VERSION 0x00fc
46 #define SPI_RPR 0x0100
47 #define SPI_RCR 0x0104
48 #define SPI_TPR 0x0108
49 #define SPI_TCR 0x010c
50 #define SPI_RNPR 0x0110
51 #define SPI_RNCR 0x0114
52 #define SPI_TNPR 0x0118
53 #define SPI_TNCR 0x011c
54 #define SPI_PTCR 0x0120
55 #define SPI_PTSR 0x0124
58 #define SPI_SPIEN_OFFSET 0
59 #define SPI_SPIEN_SIZE 1
60 #define SPI_SPIDIS_OFFSET 1
61 #define SPI_SPIDIS_SIZE 1
62 #define SPI_SWRST_OFFSET 7
63 #define SPI_SWRST_SIZE 1
64 #define SPI_LASTXFER_OFFSET 24
65 #define SPI_LASTXFER_SIZE 1
66 #define SPI_TXFCLR_OFFSET 16
67 #define SPI_TXFCLR_SIZE 1
68 #define SPI_RXFCLR_OFFSET 17
69 #define SPI_RXFCLR_SIZE 1
70 #define SPI_FIFOEN_OFFSET 30
71 #define SPI_FIFOEN_SIZE 1
72 #define SPI_FIFODIS_OFFSET 31
73 #define SPI_FIFODIS_SIZE 1
76 #define SPI_MSTR_OFFSET 0
77 #define SPI_MSTR_SIZE 1
78 #define SPI_PS_OFFSET 1
80 #define SPI_PCSDEC_OFFSET 2
81 #define SPI_PCSDEC_SIZE 1
82 #define SPI_FDIV_OFFSET 3
83 #define SPI_FDIV_SIZE 1
84 #define SPI_MODFDIS_OFFSET 4
85 #define SPI_MODFDIS_SIZE 1
86 #define SPI_WDRBT_OFFSET 5
87 #define SPI_WDRBT_SIZE 1
88 #define SPI_LLB_OFFSET 7
89 #define SPI_LLB_SIZE 1
90 #define SPI_PCS_OFFSET 16
91 #define SPI_PCS_SIZE 4
92 #define SPI_DLYBCS_OFFSET 24
93 #define SPI_DLYBCS_SIZE 8
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET 0
97 #define SPI_RD_SIZE 16
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET 0
101 #define SPI_TD_SIZE 16
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET 0
105 #define SPI_RDRF_SIZE 1
106 #define SPI_TDRE_OFFSET 1
107 #define SPI_TDRE_SIZE 1
108 #define SPI_MODF_OFFSET 2
109 #define SPI_MODF_SIZE 1
110 #define SPI_OVRES_OFFSET 3
111 #define SPI_OVRES_SIZE 1
112 #define SPI_ENDRX_OFFSET 4
113 #define SPI_ENDRX_SIZE 1
114 #define SPI_ENDTX_OFFSET 5
115 #define SPI_ENDTX_SIZE 1
116 #define SPI_RXBUFF_OFFSET 6
117 #define SPI_RXBUFF_SIZE 1
118 #define SPI_TXBUFE_OFFSET 7
119 #define SPI_TXBUFE_SIZE 1
120 #define SPI_NSSR_OFFSET 8
121 #define SPI_NSSR_SIZE 1
122 #define SPI_TXEMPTY_OFFSET 9
123 #define SPI_TXEMPTY_SIZE 1
124 #define SPI_SPIENS_OFFSET 16
125 #define SPI_SPIENS_SIZE 1
126 #define SPI_TXFEF_OFFSET 24
127 #define SPI_TXFEF_SIZE 1
128 #define SPI_TXFFF_OFFSET 25
129 #define SPI_TXFFF_SIZE 1
130 #define SPI_TXFTHF_OFFSET 26
131 #define SPI_TXFTHF_SIZE 1
132 #define SPI_RXFEF_OFFSET 27
133 #define SPI_RXFEF_SIZE 1
134 #define SPI_RXFFF_OFFSET 28
135 #define SPI_RXFFF_SIZE 1
136 #define SPI_RXFTHF_OFFSET 29
137 #define SPI_RXFTHF_SIZE 1
138 #define SPI_TXFPTEF_OFFSET 30
139 #define SPI_TXFPTEF_SIZE 1
140 #define SPI_RXFPTEF_OFFSET 31
141 #define SPI_RXFPTEF_SIZE 1
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET 0
145 #define SPI_CPOL_SIZE 1
146 #define SPI_NCPHA_OFFSET 1
147 #define SPI_NCPHA_SIZE 1
148 #define SPI_CSAAT_OFFSET 3
149 #define SPI_CSAAT_SIZE 1
150 #define SPI_BITS_OFFSET 4
151 #define SPI_BITS_SIZE 4
152 #define SPI_SCBR_OFFSET 8
153 #define SPI_SCBR_SIZE 8
154 #define SPI_DLYBS_OFFSET 16
155 #define SPI_DLYBS_SIZE 8
156 #define SPI_DLYBCT_OFFSET 24
157 #define SPI_DLYBCT_SIZE 8
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET 0
161 #define SPI_RXCTR_SIZE 16
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET 0
165 #define SPI_TXCTR_SIZE 16
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET 0
169 #define SPI_RXNCR_SIZE 16
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET 0
173 #define SPI_TXNCR_SIZE 16
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET 0
177 #define SPI_RXTEN_SIZE 1
178 #define SPI_RXTDIS_OFFSET 1
179 #define SPI_RXTDIS_SIZE 1
180 #define SPI_TXTEN_OFFSET 8
181 #define SPI_TXTEN_SIZE 1
182 #define SPI_TXTDIS_OFFSET 9
183 #define SPI_TXTDIS_SIZE 1
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET 0
187 #define SPI_TXRDYM_SIZE 2
188 #define SPI_RXRDYM_OFFSET 4
189 #define SPI_RXRDYM_SIZE 2
190 #define SPI_TXFTHRES_OFFSET 16
191 #define SPI_TXFTHRES_SIZE 6
192 #define SPI_RXFTHRES_OFFSET 24
193 #define SPI_RXFTHRES_SIZE 6
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET 0
197 #define SPI_TXFL_SIZE 6
198 #define SPI_RXFL_OFFSET 16
199 #define SPI_RXFL_SIZE 6
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT 0
203 #define SPI_BITS_9_BPT 1
204 #define SPI_BITS_10_BPT 2
205 #define SPI_BITS_11_BPT 3
206 #define SPI_BITS_12_BPT 4
207 #define SPI_BITS_13_BPT 5
208 #define SPI_BITS_14_BPT 6
209 #define SPI_BITS_15_BPT 7
210 #define SPI_BITS_16_BPT 8
211 #define SPI_ONE_DATA 0
212 #define SPI_TWO_DATA 1
213 #define SPI_FOUR_DATA 2
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217 (1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 | SPI_BF(name, value))
226 /* Register access macros */
228 #define spi_readl(port, reg) \
229 __raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231 __raw_writel((value), (port)->regs + SPI_##reg)
233 #define spi_readw(port, reg) \
234 __raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236 __raw_writew((value), (port)->regs + SPI_##reg)
238 #define spi_readb(port, reg) \
239 __raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241 __raw_writeb((value), (port)->regs + SPI_##reg)
243 #define spi_readl(port, reg) \
244 readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246 writel_relaxed((value), (port)->regs + SPI_##reg)
248 #define spi_readw(port, reg) \
249 readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251 writew_relaxed((value), (port)->regs + SPI_##reg)
253 #define spi_readb(port, reg) \
254 readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256 writeb_relaxed((value), (port)->regs + SPI_##reg)
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259 * cache operations; better heuristics consider wordsize and bitrate.
261 #define DMA_MIN_BYTES 16
263 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
265 #define AUTOSUSPEND_TIMEOUT 2000
267 struct atmel_spi_dma
{
268 struct dma_chan
*chan_rx
;
269 struct dma_chan
*chan_tx
;
270 struct scatterlist sgrx
;
271 struct scatterlist sgtx
;
272 struct dma_async_tx_descriptor
*data_desc_rx
;
273 struct dma_async_tx_descriptor
*data_desc_tx
;
275 struct at_dma_slave dma_slave
;
278 struct atmel_spi_caps
{
281 bool has_dma_support
;
285 * The core SPI transfer engine just talks to a register bank to set up
286 * DMA transfers; transfer queue progress is driven by IRQs. The clock
287 * framework provides the base clock, subdivided for each spi_device.
297 struct platform_device
*pdev
;
299 struct spi_transfer
*current_transfer
;
300 int current_remaining_bytes
;
303 struct completion xfer_completion
;
307 dma_addr_t buffer_dma
;
309 struct atmel_spi_caps caps
;
315 struct atmel_spi_dma dma
;
323 /* Controller-specific per-slave state */
324 struct atmel_spi_device
{
325 unsigned int npcs_pin
;
329 #define BUFFER_SIZE PAGE_SIZE
330 #define INVALID_DMA_ADDRESS 0xffffffff
333 * Version 2 of the SPI controller has
335 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
336 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
338 * - SPI_CSRx.SBCR allows faster clocking
340 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
342 return as
->caps
.is_spi2
;
346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
347 * they assume that spi slave device state will not change on deselect, so
348 * that automagic deselection is OK. ("NPCSx rises if no data is to be
349 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
350 * controllers have CSAAT and friends.
352 * Since the CSAAT functionality is a bit weird on newer controllers as
353 * well, we use GPIO to control nCSx pins on all controllers, updating
354 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
355 * support active-high chipselects despite the controller's belief that
356 * only active-low devices/systems exists.
358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
359 * right when driven with GPIO. ("Mode Fault does not allow more than one
360 * Master on Chip Select 0.") No workaround exists for that ... so for
361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
362 * and (c) will trigger that first erratum in some cases.
365 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
367 struct atmel_spi_device
*asd
= spi
->controller_state
;
368 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
371 if (atmel_spi_is_v2(as
)) {
372 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, asd
->csr
);
373 /* For the low SPI version, there is a issue that PDC transfer
374 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
376 spi_writel(as
, CSR0
, asd
->csr
);
377 if (as
->caps
.has_wdrbt
) {
379 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
385 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
390 mr
= spi_readl(as
, MR
);
391 if (as
->use_cs_gpios
)
392 gpio_set_value(asd
->npcs_pin
, active
);
394 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
398 /* Make sure clock polarity is correct */
399 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
400 csr
= spi_readl(as
, CSR0
+ 4 * i
);
401 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
402 spi_writel(as
, CSR0
+ 4 * i
,
403 csr
^ SPI_BIT(CPOL
));
406 mr
= spi_readl(as
, MR
);
407 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
408 if (as
->use_cs_gpios
&& spi
->chip_select
!= 0)
409 gpio_set_value(asd
->npcs_pin
, active
);
410 spi_writel(as
, MR
, mr
);
413 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
414 asd
->npcs_pin
, active
? " (high)" : "",
418 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
420 struct atmel_spi_device
*asd
= spi
->controller_state
;
421 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
424 /* only deactivate *this* device; sometimes transfers to
425 * another device may be active when this routine is called.
427 mr
= spi_readl(as
, MR
);
428 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
429 mr
= SPI_BFINS(PCS
, 0xf, mr
);
430 spi_writel(as
, MR
, mr
);
433 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
434 asd
->npcs_pin
, active
? " (low)" : "",
437 if (!as
->use_cs_gpios
)
438 spi_writel(as
, CR
, SPI_BIT(LASTXFER
));
439 else if (atmel_spi_is_v2(as
) || spi
->chip_select
!= 0)
440 gpio_set_value(asd
->npcs_pin
, !active
);
443 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
445 spin_lock_irqsave(&as
->lock
, as
->flags
);
448 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
450 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
453 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
454 struct spi_transfer
*xfer
)
456 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
459 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
460 struct dma_slave_config
*slave_config
,
465 if (bits_per_word
> 8) {
466 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
467 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
469 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
470 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
473 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
474 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
475 slave_config
->src_maxburst
= 1;
476 slave_config
->dst_maxburst
= 1;
477 slave_config
->device_fc
= false;
480 * This driver uses fixed peripheral select mode (PS bit set to '0' in
481 * the Mode Register).
482 * So according to the datasheet, when FIFOs are available (and
483 * enabled), the Transmit FIFO operates in Multiple Data Mode.
484 * In this mode, up to 2 data, not 4, can be written into the Transmit
485 * Data Register in a single access.
486 * However, the first data has to be written into the lowest 16 bits and
487 * the second data into the highest 16 bits of the Transmit
488 * Data Register. For 8bit data (the most frequent case), it would
489 * require to rework tx_buf so each data would actualy fit 16 bits.
490 * So we'd rather write only one data at the time. Hence the transmit
491 * path works the same whether FIFOs are available (and enabled) or not.
493 slave_config
->direction
= DMA_MEM_TO_DEV
;
494 if (dmaengine_slave_config(as
->dma
.chan_tx
, slave_config
)) {
495 dev_err(&as
->pdev
->dev
,
496 "failed to configure tx dma channel\n");
501 * This driver configures the spi controller for master mode (MSTR bit
502 * set to '1' in the Mode Register).
503 * So according to the datasheet, when FIFOs are available (and
504 * enabled), the Receive FIFO operates in Single Data Mode.
505 * So the receive path works the same whether FIFOs are available (and
508 slave_config
->direction
= DMA_DEV_TO_MEM
;
509 if (dmaengine_slave_config(as
->dma
.chan_rx
, slave_config
)) {
510 dev_err(&as
->pdev
->dev
,
511 "failed to configure rx dma channel\n");
518 static int atmel_spi_configure_dma(struct atmel_spi
*as
)
520 struct dma_slave_config slave_config
;
521 struct device
*dev
= &as
->pdev
->dev
;
526 dma_cap_set(DMA_SLAVE
, mask
);
528 as
->dma
.chan_tx
= dma_request_slave_channel_reason(dev
, "tx");
529 if (IS_ERR(as
->dma
.chan_tx
)) {
530 err
= PTR_ERR(as
->dma
.chan_tx
);
531 if (err
== -EPROBE_DEFER
) {
532 dev_warn(dev
, "no DMA channel available at the moment\n");
536 "DMA TX channel not available, SPI unable to use DMA\n");
542 * No reason to check EPROBE_DEFER here since we have already requested
543 * tx channel. If it fails here, it's for another reason.
545 as
->dma
.chan_rx
= dma_request_slave_channel(dev
, "rx");
547 if (!as
->dma
.chan_rx
) {
549 "DMA RX channel not available, SPI unable to use DMA\n");
554 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
558 dev_info(&as
->pdev
->dev
,
559 "Using %s (tx) and %s (rx) for DMA transfers\n",
560 dma_chan_name(as
->dma
.chan_tx
),
561 dma_chan_name(as
->dma
.chan_rx
));
565 dma_release_channel(as
->dma
.chan_rx
);
566 if (!IS_ERR(as
->dma
.chan_tx
))
567 dma_release_channel(as
->dma
.chan_tx
);
571 static void atmel_spi_stop_dma(struct atmel_spi
*as
)
574 dmaengine_terminate_all(as
->dma
.chan_rx
);
576 dmaengine_terminate_all(as
->dma
.chan_tx
);
579 static void atmel_spi_release_dma(struct atmel_spi
*as
)
582 dma_release_channel(as
->dma
.chan_rx
);
584 dma_release_channel(as
->dma
.chan_tx
);
587 /* This function is called by the DMA driver from tasklet context */
588 static void dma_callback(void *data
)
590 struct spi_master
*master
= data
;
591 struct atmel_spi
*as
= spi_master_get_devdata(master
);
593 complete(&as
->xfer_completion
);
597 * Next transfer using PIO without FIFO.
599 static void atmel_spi_next_xfer_single(struct spi_master
*master
,
600 struct spi_transfer
*xfer
)
602 struct atmel_spi
*as
= spi_master_get_devdata(master
);
603 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
605 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
607 /* Make sure data is not remaining in RDR */
609 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
615 if (xfer
->bits_per_word
> 8)
616 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
618 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
620 spi_writel(as
, TDR
, 0);
623 dev_dbg(master
->dev
.parent
,
624 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
625 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
626 xfer
->bits_per_word
);
628 /* Enable relevant interrupts */
629 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
633 * Next transfer using PIO with FIFO.
635 static void atmel_spi_next_xfer_fifo(struct spi_master
*master
,
636 struct spi_transfer
*xfer
)
638 struct atmel_spi
*as
= spi_master_get_devdata(master
);
639 u32 current_remaining_data
, num_data
;
640 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
641 const u16
*words
= (const u16
*)((u8
*)xfer
->tx_buf
+ offset
);
642 const u8
*bytes
= (const u8
*)((u8
*)xfer
->tx_buf
+ offset
);
646 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_fifo\n");
648 /* Compute the number of data to transfer in the current iteration */
649 current_remaining_data
= ((xfer
->bits_per_word
> 8) ?
650 ((u32
)as
->current_remaining_bytes
>> 1) :
651 (u32
)as
->current_remaining_bytes
);
652 num_data
= min(current_remaining_data
, as
->fifo_size
);
654 /* Flush RX and TX FIFOs */
655 spi_writel(as
, CR
, SPI_BIT(RXFCLR
) | SPI_BIT(TXFCLR
));
656 while (spi_readl(as
, FLR
))
659 /* Set RX FIFO Threshold to the number of data to transfer */
660 fifomr
= spi_readl(as
, FMR
);
661 spi_writel(as
, FMR
, SPI_BFINS(RXFTHRES
, num_data
, fifomr
));
663 /* Clear FIFO flags in the Status Register, especially RXFTHF */
664 (void)spi_readl(as
, SR
);
667 while (num_data
>= 2) {
669 if (xfer
->bits_per_word
> 8) {
681 spi_writel(as
, TDR
, (td1
<< 16) | td0
);
687 if (xfer
->bits_per_word
> 8)
695 spi_writew(as
, TDR
, td0
);
699 dev_dbg(master
->dev
.parent
,
700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
702 xfer
->bits_per_word
);
705 * Enable RX FIFO Threshold Flag interrupt to be notified about
706 * transfer completion.
708 spi_writel(as
, IER
, SPI_BIT(RXFTHF
) | SPI_BIT(OVRES
));
712 * Next transfer using PIO.
714 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
715 struct spi_transfer
*xfer
)
717 struct atmel_spi
*as
= spi_master_get_devdata(master
);
720 atmel_spi_next_xfer_fifo(master
, xfer
);
722 atmel_spi_next_xfer_single(master
, xfer
);
726 * Submit next transfer for DMA.
728 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
729 struct spi_transfer
*xfer
,
732 struct atmel_spi
*as
= spi_master_get_devdata(master
);
733 struct dma_chan
*rxchan
= as
->dma
.chan_rx
;
734 struct dma_chan
*txchan
= as
->dma
.chan_tx
;
735 struct dma_async_tx_descriptor
*rxdesc
;
736 struct dma_async_tx_descriptor
*txdesc
;
737 struct dma_slave_config slave_config
;
741 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
743 /* Check that the channels are available */
744 if (!rxchan
|| !txchan
)
747 /* release lock for DMA operations */
748 atmel_spi_unlock(as
);
750 /* prepare the RX dma transfer */
751 sg_init_table(&as
->dma
.sgrx
, 1);
753 as
->dma
.sgrx
.dma_address
= xfer
->rx_dma
+ xfer
->len
- *plen
;
755 as
->dma
.sgrx
.dma_address
= as
->buffer_dma
;
756 if (len
> BUFFER_SIZE
)
760 /* prepare the TX dma transfer */
761 sg_init_table(&as
->dma
.sgtx
, 1);
763 as
->dma
.sgtx
.dma_address
= xfer
->tx_dma
+ xfer
->len
- *plen
;
765 as
->dma
.sgtx
.dma_address
= as
->buffer_dma
;
766 if (len
> BUFFER_SIZE
)
768 memset(as
->buffer
, 0, len
);
771 sg_dma_len(&as
->dma
.sgtx
) = len
;
772 sg_dma_len(&as
->dma
.sgrx
) = len
;
776 if (atmel_spi_dma_slave_config(as
, &slave_config
,
777 xfer
->bits_per_word
))
780 /* Send both scatterlists */
781 rxdesc
= dmaengine_prep_slave_sg(rxchan
, &as
->dma
.sgrx
, 1,
783 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
787 txdesc
= dmaengine_prep_slave_sg(txchan
, &as
->dma
.sgtx
, 1,
789 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
793 dev_dbg(master
->dev
.parent
,
794 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
795 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
796 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
798 /* Enable relevant interrupts */
799 spi_writel(as
, IER
, SPI_BIT(OVRES
));
801 /* Put the callback on the RX transfer only, that should finish last */
802 rxdesc
->callback
= dma_callback
;
803 rxdesc
->callback_param
= master
;
805 /* Submit and fire RX and TX with TX last so we're ready to read! */
806 cookie
= rxdesc
->tx_submit(rxdesc
);
807 if (dma_submit_error(cookie
))
809 cookie
= txdesc
->tx_submit(txdesc
);
810 if (dma_submit_error(cookie
))
812 rxchan
->device
->device_issue_pending(rxchan
);
813 txchan
->device
->device_issue_pending(txchan
);
820 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
821 atmel_spi_stop_dma(as
);
827 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
828 struct spi_transfer
*xfer
,
833 struct atmel_spi
*as
= spi_master_get_devdata(master
);
836 /* use scratch buffer only when rx or tx data is unspecified */
838 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
840 *rx_dma
= as
->buffer_dma
;
841 if (len
> BUFFER_SIZE
)
846 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
848 *tx_dma
= as
->buffer_dma
;
849 if (len
> BUFFER_SIZE
)
851 memset(as
->buffer
, 0, len
);
852 dma_sync_single_for_device(&as
->pdev
->dev
,
853 as
->buffer_dma
, len
, DMA_TO_DEVICE
);
859 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
860 struct spi_device
*spi
,
861 struct spi_transfer
*xfer
)
864 unsigned long bus_hz
;
866 /* v1 chips start out at half the peripheral bus speed. */
867 bus_hz
= clk_get_rate(as
->clk
);
868 if (!atmel_spi_is_v2(as
))
872 * Calculate the lowest divider that satisfies the
873 * constraint, assuming div32/fdiv/mbz == 0.
875 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
878 * If the resulting divider doesn't fit into the
879 * register bitfield, we can't satisfy the constraint.
881 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
883 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
884 xfer
->speed_hz
, scbr
, bus_hz
/255);
889 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
890 xfer
->speed_hz
, scbr
, bus_hz
);
893 csr
= spi_readl(as
, CSR0
+ 4 * spi
->chip_select
);
894 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
895 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
901 * Submit next transfer for PDC.
902 * lock is held, spi irq is blocked
904 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
905 struct spi_message
*msg
,
906 struct spi_transfer
*xfer
)
908 struct atmel_spi
*as
= spi_master_get_devdata(master
);
910 dma_addr_t tx_dma
, rx_dma
;
912 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
914 len
= as
->current_remaining_bytes
;
915 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
916 as
->current_remaining_bytes
-= len
;
918 spi_writel(as
, RPR
, rx_dma
);
919 spi_writel(as
, TPR
, tx_dma
);
921 if (msg
->spi
->bits_per_word
> 8)
923 spi_writel(as
, RCR
, len
);
924 spi_writel(as
, TCR
, len
);
926 dev_dbg(&msg
->spi
->dev
,
927 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
928 xfer
, xfer
->len
, xfer
->tx_buf
,
929 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
930 (unsigned long long)xfer
->rx_dma
);
932 if (as
->current_remaining_bytes
) {
933 len
= as
->current_remaining_bytes
;
934 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
935 as
->current_remaining_bytes
-= len
;
937 spi_writel(as
, RNPR
, rx_dma
);
938 spi_writel(as
, TNPR
, tx_dma
);
940 if (msg
->spi
->bits_per_word
> 8)
942 spi_writel(as
, RNCR
, len
);
943 spi_writel(as
, TNCR
, len
);
945 dev_dbg(&msg
->spi
->dev
,
946 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
947 xfer
, xfer
->len
, xfer
->tx_buf
,
948 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
949 (unsigned long long)xfer
->rx_dma
);
952 /* REVISIT: We're waiting for RXBUFF before we start the next
953 * transfer because we need to handle some difficult timing
954 * issues otherwise. If we wait for TXBUFE in one transfer and
955 * then starts waiting for RXBUFF in the next, it's difficult
956 * to tell the difference between the RXBUFF interrupt we're
957 * actually waiting for and the RXBUFF interrupt of the
960 * It should be doable, though. Just not now...
962 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
963 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
967 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
968 * - The buffer is either valid for CPU access, else NULL
969 * - If the buffer is valid, so is its DMA address
971 * This driver manages the dma address unless message->is_dma_mapped.
974 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
976 struct device
*dev
= &as
->pdev
->dev
;
978 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
980 /* tx_buf is a const void* where we need a void * for the dma
982 void *nonconst_tx
= (void *)xfer
->tx_buf
;
984 xfer
->tx_dma
= dma_map_single(dev
,
985 nonconst_tx
, xfer
->len
,
987 if (dma_mapping_error(dev
, xfer
->tx_dma
))
991 xfer
->rx_dma
= dma_map_single(dev
,
992 xfer
->rx_buf
, xfer
->len
,
994 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
996 dma_unmap_single(dev
,
997 xfer
->tx_dma
, xfer
->len
,
1005 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
1006 struct spi_transfer
*xfer
)
1008 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
1009 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
1010 xfer
->len
, DMA_TO_DEVICE
);
1011 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
1012 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
1013 xfer
->len
, DMA_FROM_DEVICE
);
1016 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
1018 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1022 atmel_spi_pump_single_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1026 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
1029 if (xfer
->bits_per_word
> 8) {
1030 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
1031 *rxp16
= spi_readl(as
, RDR
);
1033 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
1034 *rxp
= spi_readl(as
, RDR
);
1039 if (xfer
->bits_per_word
> 8) {
1040 if (as
->current_remaining_bytes
> 2)
1041 as
->current_remaining_bytes
-= 2;
1043 as
->current_remaining_bytes
= 0;
1045 as
->current_remaining_bytes
--;
1050 atmel_spi_pump_fifo_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1052 u32 fifolr
= spi_readl(as
, FLR
);
1053 u32 num_bytes
, num_data
= SPI_BFEXT(RXFL
, fifolr
);
1054 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
1055 u16
*words
= (u16
*)((u8
*)xfer
->rx_buf
+ offset
);
1056 u8
*bytes
= (u8
*)((u8
*)xfer
->rx_buf
+ offset
);
1057 u16 rd
; /* RD field is the lowest 16 bits of RDR */
1059 /* Update the number of remaining bytes to transfer */
1060 num_bytes
= ((xfer
->bits_per_word
> 8) ?
1064 if (as
->current_remaining_bytes
> num_bytes
)
1065 as
->current_remaining_bytes
-= num_bytes
;
1067 as
->current_remaining_bytes
= 0;
1069 /* Handle odd number of bytes when data are more than 8bit width */
1070 if (xfer
->bits_per_word
> 8)
1071 as
->current_remaining_bytes
&= ~0x1;
1075 rd
= spi_readl(as
, RDR
);
1077 if (xfer
->bits_per_word
> 8)
1088 * Must update "current_remaining_bytes" to keep track of data
1092 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1095 atmel_spi_pump_fifo_data(as
, xfer
);
1097 atmel_spi_pump_single_data(as
, xfer
);
1102 * No need for locking in this Interrupt handler: done_status is the
1103 * only information modified.
1106 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
1108 struct spi_master
*master
= dev_id
;
1109 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1110 u32 status
, pending
, imr
;
1111 struct spi_transfer
*xfer
;
1114 imr
= spi_readl(as
, IMR
);
1115 status
= spi_readl(as
, SR
);
1116 pending
= status
& imr
;
1118 if (pending
& SPI_BIT(OVRES
)) {
1120 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
1121 dev_warn(master
->dev
.parent
, "overrun\n");
1124 * When we get an overrun, we disregard the current
1125 * transfer. Data will not be copied back from any
1126 * bounce buffer and msg->actual_len will not be
1127 * updated with the last xfer.
1129 * We will also not process any remaning transfers in
1132 as
->done_status
= -EIO
;
1135 /* Clear any overrun happening while cleaning up */
1138 complete(&as
->xfer_completion
);
1140 } else if (pending
& (SPI_BIT(RDRF
) | SPI_BIT(RXFTHF
))) {
1143 if (as
->current_remaining_bytes
) {
1145 xfer
= as
->current_transfer
;
1146 atmel_spi_pump_pio_data(as
, xfer
);
1147 if (!as
->current_remaining_bytes
)
1148 spi_writel(as
, IDR
, pending
);
1150 complete(&as
->xfer_completion
);
1153 atmel_spi_unlock(as
);
1155 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
1157 spi_writel(as
, IDR
, pending
);
1164 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
1166 struct spi_master
*master
= dev_id
;
1167 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1168 u32 status
, pending
, imr
;
1171 imr
= spi_readl(as
, IMR
);
1172 status
= spi_readl(as
, SR
);
1173 pending
= status
& imr
;
1175 if (pending
& SPI_BIT(OVRES
)) {
1179 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
1182 /* Clear any overrun happening while cleaning up */
1185 as
->done_status
= -EIO
;
1187 complete(&as
->xfer_completion
);
1189 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
1192 spi_writel(as
, IDR
, pending
);
1194 complete(&as
->xfer_completion
);
1200 static int atmel_spi_setup(struct spi_device
*spi
)
1202 struct atmel_spi
*as
;
1203 struct atmel_spi_device
*asd
;
1205 unsigned int bits
= spi
->bits_per_word
;
1206 unsigned int npcs_pin
;
1209 as
= spi_master_get_devdata(spi
->master
);
1211 /* see notes above re chipselect */
1212 if (!atmel_spi_is_v2(as
)
1213 && spi
->chip_select
== 0
1214 && (spi
->mode
& SPI_CS_HIGH
)) {
1215 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
1219 csr
= SPI_BF(BITS
, bits
- 8);
1220 if (spi
->mode
& SPI_CPOL
)
1221 csr
|= SPI_BIT(CPOL
);
1222 if (!(spi
->mode
& SPI_CPHA
))
1223 csr
|= SPI_BIT(NCPHA
);
1224 if (!as
->use_cs_gpios
)
1225 csr
|= SPI_BIT(CSAAT
);
1227 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1229 * DLYBCT would add delays between words, slowing down transfers.
1230 * It could potentially be useful to cope with DMA bottlenecks, but
1231 * in those cases it's probably best to just use a lower bitrate.
1233 csr
|= SPI_BF(DLYBS
, 0);
1234 csr
|= SPI_BF(DLYBCT
, 0);
1236 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1237 npcs_pin
= (unsigned long)spi
->controller_data
;
1239 if (!as
->use_cs_gpios
)
1240 npcs_pin
= spi
->chip_select
;
1241 else if (gpio_is_valid(spi
->cs_gpio
))
1242 npcs_pin
= spi
->cs_gpio
;
1244 asd
= spi
->controller_state
;
1246 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1250 if (as
->use_cs_gpios
) {
1251 ret
= gpio_request(npcs_pin
, dev_name(&spi
->dev
));
1257 gpio_direction_output(npcs_pin
,
1258 !(spi
->mode
& SPI_CS_HIGH
));
1261 asd
->npcs_pin
= npcs_pin
;
1262 spi
->controller_state
= asd
;
1268 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1269 bits
, spi
->mode
, spi
->chip_select
, csr
);
1271 if (!atmel_spi_is_v2(as
))
1272 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
1277 static int atmel_spi_one_transfer(struct spi_master
*master
,
1278 struct spi_message
*msg
,
1279 struct spi_transfer
*xfer
)
1281 struct atmel_spi
*as
;
1282 struct spi_device
*spi
= msg
->spi
;
1285 struct atmel_spi_device
*asd
;
1288 unsigned long dma_timeout
;
1290 as
= spi_master_get_devdata(master
);
1292 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1293 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1297 asd
= spi
->controller_state
;
1298 bits
= (asd
->csr
>> 4) & 0xf;
1299 if (bits
!= xfer
->bits_per_word
- 8) {
1301 "you can't yet change bits_per_word in transfers\n");
1302 return -ENOPROTOOPT
;
1306 * DMA map early, for performance (empties dcache ASAP) and
1307 * better fault reporting.
1309 if ((!msg
->is_dma_mapped
)
1310 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
)) {
1311 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1315 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1317 as
->done_status
= 0;
1318 as
->current_transfer
= xfer
;
1319 as
->current_remaining_bytes
= xfer
->len
;
1320 while (as
->current_remaining_bytes
) {
1321 reinit_completion(&as
->xfer_completion
);
1324 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1325 } else if (atmel_spi_use_dma(as
, xfer
)) {
1326 len
= as
->current_remaining_bytes
;
1327 ret
= atmel_spi_next_xfer_dma_submit(master
,
1331 "unable to use DMA, fallback to PIO\n");
1332 atmel_spi_next_xfer_pio(master
, xfer
);
1334 as
->current_remaining_bytes
-= len
;
1335 if (as
->current_remaining_bytes
< 0)
1336 as
->current_remaining_bytes
= 0;
1339 atmel_spi_next_xfer_pio(master
, xfer
);
1342 /* interrupts are disabled, so free the lock for schedule */
1343 atmel_spi_unlock(as
);
1344 dma_timeout
= wait_for_completion_timeout(&as
->xfer_completion
,
1347 if (WARN_ON(dma_timeout
== 0)) {
1348 dev_err(&spi
->dev
, "spi transfer timeout\n");
1349 as
->done_status
= -EIO
;
1352 if (as
->done_status
)
1356 if (as
->done_status
) {
1358 dev_warn(master
->dev
.parent
,
1359 "overrun (%u/%u remaining)\n",
1360 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1363 * Clean up DMA registers and make sure the data
1364 * registers are empty.
1366 spi_writel(as
, RNCR
, 0);
1367 spi_writel(as
, TNCR
, 0);
1368 spi_writel(as
, RCR
, 0);
1369 spi_writel(as
, TCR
, 0);
1370 for (timeout
= 1000; timeout
; timeout
--)
1371 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1374 dev_warn(master
->dev
.parent
,
1375 "timeout waiting for TXEMPTY");
1376 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1379 /* Clear any overrun happening while cleaning up */
1382 } else if (atmel_spi_use_dma(as
, xfer
)) {
1383 atmel_spi_stop_dma(as
);
1386 if (!msg
->is_dma_mapped
1387 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
))
1388 atmel_spi_dma_unmap_xfer(master
, xfer
);
1393 /* only update length if no error */
1394 msg
->actual_length
+= xfer
->len
;
1397 if (!msg
->is_dma_mapped
1398 && (atmel_spi_use_dma(as
, xfer
) || as
->use_pdc
))
1399 atmel_spi_dma_unmap_xfer(master
, xfer
);
1401 if (xfer
->delay_usecs
)
1402 udelay(xfer
->delay_usecs
);
1404 if (xfer
->cs_change
) {
1405 if (list_is_last(&xfer
->transfer_list
,
1409 as
->cs_active
= !as
->cs_active
;
1411 cs_activate(as
, msg
->spi
);
1413 cs_deactivate(as
, msg
->spi
);
1420 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1421 struct spi_message
*msg
)
1423 struct atmel_spi
*as
;
1424 struct spi_transfer
*xfer
;
1425 struct spi_device
*spi
= msg
->spi
;
1428 as
= spi_master_get_devdata(master
);
1430 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1431 msg
, dev_name(&spi
->dev
));
1434 cs_activate(as
, spi
);
1436 as
->cs_active
= true;
1437 as
->keep_cs
= false;
1440 msg
->actual_length
= 0;
1442 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1443 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1449 atmel_spi_disable_pdc_transfer(as
);
1451 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1453 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1455 xfer
->tx_buf
, &xfer
->tx_dma
,
1456 xfer
->rx_buf
, &xfer
->rx_dma
);
1461 cs_deactivate(as
, msg
->spi
);
1463 atmel_spi_unlock(as
);
1465 msg
->status
= as
->done_status
;
1466 spi_finalize_current_message(spi
->master
);
1471 static void atmel_spi_cleanup(struct spi_device
*spi
)
1473 struct atmel_spi_device
*asd
= spi
->controller_state
;
1474 unsigned gpio
= (unsigned long) spi
->controller_data
;
1479 spi
->controller_state
= NULL
;
1484 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1486 return spi_readl(as
, VERSION
) & 0x00000fff;
1489 static void atmel_get_caps(struct atmel_spi
*as
)
1491 unsigned int version
;
1493 version
= atmel_get_version(as
);
1494 dev_info(&as
->pdev
->dev
, "version: 0x%x\n", version
);
1496 as
->caps
.is_spi2
= version
> 0x121;
1497 as
->caps
.has_wdrbt
= version
>= 0x210;
1498 as
->caps
.has_dma_support
= version
>= 0x212;
1501 /*-------------------------------------------------------------------------*/
1503 static int atmel_spi_probe(struct platform_device
*pdev
)
1505 struct resource
*regs
;
1509 struct spi_master
*master
;
1510 struct atmel_spi
*as
;
1512 /* Select default pin state */
1513 pinctrl_pm_select_default_state(&pdev
->dev
);
1515 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1519 irq
= platform_get_irq(pdev
, 0);
1523 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1525 return PTR_ERR(clk
);
1527 /* setup spi core then atmel-specific driver state */
1529 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1533 /* the spi->mode bits understood by this driver: */
1534 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1535 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1536 master
->dev
.of_node
= pdev
->dev
.of_node
;
1537 master
->bus_num
= pdev
->id
;
1538 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
1539 master
->setup
= atmel_spi_setup
;
1540 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1541 master
->cleanup
= atmel_spi_cleanup
;
1542 master
->auto_runtime_pm
= true;
1543 platform_set_drvdata(pdev
, master
);
1545 as
= spi_master_get_devdata(master
);
1548 * Scratch buffer is used for throwaway rx and tx data.
1549 * It's coherent to minimize dcache pollution.
1551 as
->buffer
= dma_alloc_coherent(&pdev
->dev
, BUFFER_SIZE
,
1552 &as
->buffer_dma
, GFP_KERNEL
);
1556 spin_lock_init(&as
->lock
);
1559 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1560 if (IS_ERR(as
->regs
)) {
1561 ret
= PTR_ERR(as
->regs
);
1562 goto out_free_buffer
;
1564 as
->phybase
= regs
->start
;
1568 init_completion(&as
->xfer_completion
);
1572 as
->use_cs_gpios
= true;
1573 if (atmel_spi_is_v2(as
) &&
1574 pdev
->dev
.of_node
&&
1575 !of_get_property(pdev
->dev
.of_node
, "cs-gpios", NULL
)) {
1576 as
->use_cs_gpios
= false;
1577 master
->num_chipselect
= 4;
1580 as
->use_dma
= false;
1581 as
->use_pdc
= false;
1582 if (as
->caps
.has_dma_support
) {
1583 ret
= atmel_spi_configure_dma(as
);
1586 else if (ret
== -EPROBE_DEFER
)
1592 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1593 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1596 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1597 0, dev_name(&pdev
->dev
), master
);
1599 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1600 0, dev_name(&pdev
->dev
), master
);
1603 goto out_unmap_regs
;
1605 /* Initialize the hardware */
1606 ret
= clk_prepare_enable(clk
);
1609 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1610 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1611 if (as
->caps
.has_wdrbt
) {
1612 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1615 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1619 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1620 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1623 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1625 dev_info(&pdev
->dev
, "Using FIFO (%u data)\n", as
->fifo_size
);
1626 spi_writel(as
, CR
, SPI_BIT(FIFOEN
));
1630 dev_info(&pdev
->dev
, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1631 (unsigned long)regs
->start
, irq
);
1633 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1634 pm_runtime_use_autosuspend(&pdev
->dev
);
1635 pm_runtime_set_active(&pdev
->dev
);
1636 pm_runtime_enable(&pdev
->dev
);
1638 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1645 pm_runtime_disable(&pdev
->dev
);
1646 pm_runtime_set_suspended(&pdev
->dev
);
1649 atmel_spi_release_dma(as
);
1651 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1652 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1653 clk_disable_unprepare(clk
);
1657 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1660 spi_master_put(master
);
1664 static int atmel_spi_remove(struct platform_device
*pdev
)
1666 struct spi_master
*master
= platform_get_drvdata(pdev
);
1667 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1669 pm_runtime_get_sync(&pdev
->dev
);
1671 /* reset the hardware and block queue progress */
1672 spin_lock_irq(&as
->lock
);
1674 atmel_spi_stop_dma(as
);
1675 atmel_spi_release_dma(as
);
1678 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1679 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1681 spin_unlock_irq(&as
->lock
);
1683 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1686 clk_disable_unprepare(as
->clk
);
1688 pm_runtime_put_noidle(&pdev
->dev
);
1689 pm_runtime_disable(&pdev
->dev
);
1695 static int atmel_spi_runtime_suspend(struct device
*dev
)
1697 struct spi_master
*master
= dev_get_drvdata(dev
);
1698 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1700 clk_disable_unprepare(as
->clk
);
1701 pinctrl_pm_select_sleep_state(dev
);
1706 static int atmel_spi_runtime_resume(struct device
*dev
)
1708 struct spi_master
*master
= dev_get_drvdata(dev
);
1709 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1711 pinctrl_pm_select_default_state(dev
);
1713 return clk_prepare_enable(as
->clk
);
1716 #ifdef CONFIG_PM_SLEEP
1717 static int atmel_spi_suspend(struct device
*dev
)
1719 struct spi_master
*master
= dev_get_drvdata(dev
);
1722 /* Stop the queue running */
1723 ret
= spi_master_suspend(master
);
1725 dev_warn(dev
, "cannot suspend master\n");
1729 if (!pm_runtime_suspended(dev
))
1730 atmel_spi_runtime_suspend(dev
);
1735 static int atmel_spi_resume(struct device
*dev
)
1737 struct spi_master
*master
= dev_get_drvdata(dev
);
1740 if (!pm_runtime_suspended(dev
)) {
1741 ret
= atmel_spi_runtime_resume(dev
);
1746 /* Start the queue running */
1747 ret
= spi_master_resume(master
);
1749 dev_err(dev
, "problem starting queue (%d)\n", ret
);
1755 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1756 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1757 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1758 atmel_spi_runtime_resume
, NULL
)
1760 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1762 #define ATMEL_SPI_PM_OPS NULL
1765 #if defined(CONFIG_OF)
1766 static const struct of_device_id atmel_spi_dt_ids
[] = {
1767 { .compatible
= "atmel,at91rm9200-spi" },
1771 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1774 static struct platform_driver atmel_spi_driver
= {
1776 .name
= "atmel_spi",
1777 .pm
= ATMEL_SPI_PM_OPS
,
1778 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1780 .probe
= atmel_spi_probe
,
1781 .remove
= atmel_spi_remove
,
1783 module_platform_driver(atmel_spi_driver
);
1785 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1786 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1787 MODULE_LICENSE("GPL");
1788 MODULE_ALIAS("platform:atmel_spi");