KVM: nVMX: Fix the NMI IDT-vectoring handling
[linux/fpc-iii.git] / kernel / events / callchain.c
blobe9fdb5203de5c0b99bfb992640e89ffe9d4a8160
1 /*
2 * Performance events callchain code, extracted from core.c:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include "internal.h"
16 struct callchain_cpus_entries {
17 struct rcu_head rcu_head;
18 struct perf_callchain_entry *cpu_entries[0];
21 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
22 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
24 static inline size_t perf_callchain_entry__sizeof(void)
26 return (sizeof(struct perf_callchain_entry) +
27 sizeof(__u64) * (sysctl_perf_event_max_stack +
28 sysctl_perf_event_max_contexts_per_stack));
31 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
32 static atomic_t nr_callchain_events;
33 static DEFINE_MUTEX(callchain_mutex);
34 static struct callchain_cpus_entries *callchain_cpus_entries;
37 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
38 struct pt_regs *regs)
42 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
43 struct pt_regs *regs)
47 static void release_callchain_buffers_rcu(struct rcu_head *head)
49 struct callchain_cpus_entries *entries;
50 int cpu;
52 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
54 for_each_possible_cpu(cpu)
55 kfree(entries->cpu_entries[cpu]);
57 kfree(entries);
60 static void release_callchain_buffers(void)
62 struct callchain_cpus_entries *entries;
64 entries = callchain_cpus_entries;
65 RCU_INIT_POINTER(callchain_cpus_entries, NULL);
66 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
69 static int alloc_callchain_buffers(void)
71 int cpu;
72 int size;
73 struct callchain_cpus_entries *entries;
76 * We can't use the percpu allocation API for data that can be
77 * accessed from NMI. Use a temporary manual per cpu allocation
78 * until that gets sorted out.
80 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
82 entries = kzalloc(size, GFP_KERNEL);
83 if (!entries)
84 return -ENOMEM;
86 size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
88 for_each_possible_cpu(cpu) {
89 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
90 cpu_to_node(cpu));
91 if (!entries->cpu_entries[cpu])
92 goto fail;
95 rcu_assign_pointer(callchain_cpus_entries, entries);
97 return 0;
99 fail:
100 for_each_possible_cpu(cpu)
101 kfree(entries->cpu_entries[cpu]);
102 kfree(entries);
104 return -ENOMEM;
107 int get_callchain_buffers(int event_max_stack)
109 int err = 0;
110 int count;
112 mutex_lock(&callchain_mutex);
114 count = atomic_inc_return(&nr_callchain_events);
115 if (WARN_ON_ONCE(count < 1)) {
116 err = -EINVAL;
117 goto exit;
120 if (count > 1) {
121 /* If the allocation failed, give up */
122 if (!callchain_cpus_entries)
123 err = -ENOMEM;
125 * If requesting per event more than the global cap,
126 * return a different error to help userspace figure
127 * this out.
129 * And also do it here so that we have &callchain_mutex held.
131 if (event_max_stack > sysctl_perf_event_max_stack)
132 err = -EOVERFLOW;
133 goto exit;
136 err = alloc_callchain_buffers();
137 exit:
138 if (err)
139 atomic_dec(&nr_callchain_events);
141 mutex_unlock(&callchain_mutex);
143 return err;
146 void put_callchain_buffers(void)
148 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
149 release_callchain_buffers();
150 mutex_unlock(&callchain_mutex);
154 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
156 int cpu;
157 struct callchain_cpus_entries *entries;
159 *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
160 if (*rctx == -1)
161 return NULL;
163 entries = rcu_dereference(callchain_cpus_entries);
164 if (!entries)
165 return NULL;
167 cpu = smp_processor_id();
169 return (((void *)entries->cpu_entries[cpu]) +
170 (*rctx * perf_callchain_entry__sizeof()));
173 static void
174 put_callchain_entry(int rctx)
176 put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
179 struct perf_callchain_entry *
180 perf_callchain(struct perf_event *event, struct pt_regs *regs)
182 bool kernel = !event->attr.exclude_callchain_kernel;
183 bool user = !event->attr.exclude_callchain_user;
184 /* Disallow cross-task user callchains. */
185 bool crosstask = event->ctx->task && event->ctx->task != current;
186 const u32 max_stack = event->attr.sample_max_stack;
188 if (!kernel && !user)
189 return NULL;
191 return get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true);
194 struct perf_callchain_entry *
195 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
196 u32 max_stack, bool crosstask, bool add_mark)
198 struct perf_callchain_entry *entry;
199 struct perf_callchain_entry_ctx ctx;
200 int rctx;
202 entry = get_callchain_entry(&rctx);
203 if (rctx == -1)
204 return NULL;
206 if (!entry)
207 goto exit_put;
209 ctx.entry = entry;
210 ctx.max_stack = max_stack;
211 ctx.nr = entry->nr = init_nr;
212 ctx.contexts = 0;
213 ctx.contexts_maxed = false;
215 if (kernel && !user_mode(regs)) {
216 if (add_mark)
217 perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
218 perf_callchain_kernel(&ctx, regs);
221 if (user) {
222 if (!user_mode(regs)) {
223 if (current->mm)
224 regs = task_pt_regs(current);
225 else
226 regs = NULL;
229 if (regs) {
230 if (crosstask)
231 goto exit_put;
233 if (add_mark)
234 perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
235 perf_callchain_user(&ctx, regs);
239 exit_put:
240 put_callchain_entry(rctx);
242 return entry;
246 * Used for sysctl_perf_event_max_stack and
247 * sysctl_perf_event_max_contexts_per_stack.
249 int perf_event_max_stack_handler(struct ctl_table *table, int write,
250 void __user *buffer, size_t *lenp, loff_t *ppos)
252 int *value = table->data;
253 int new_value = *value, ret;
254 struct ctl_table new_table = *table;
256 new_table.data = &new_value;
257 ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
258 if (ret || !write)
259 return ret;
261 mutex_lock(&callchain_mutex);
262 if (atomic_read(&nr_callchain_events))
263 ret = -EBUSY;
264 else
265 *value = new_value;
267 mutex_unlock(&callchain_mutex);
269 return ret;