ipv6: Pull IPv6 GSO registration out of the module
[linux/fpc-iii.git] / net / core / dev.c
blobcf843a256cc6feeeabdd20dd0b37332e00dc505c
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
178 static DEFINE_SPINLOCK(ptype_lock);
179 static DEFINE_SPINLOCK(offload_lock);
180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
181 static struct list_head ptype_all __read_mostly; /* Taps */
182 static struct list_head offload_base __read_mostly;
185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
186 * semaphore.
188 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
190 * Writers must hold the rtnl semaphore while they loop through the
191 * dev_base_head list, and hold dev_base_lock for writing when they do the
192 * actual updates. This allows pure readers to access the list even
193 * while a writer is preparing to update it.
195 * To put it another way, dev_base_lock is held for writing only to
196 * protect against pure readers; the rtnl semaphore provides the
197 * protection against other writers.
199 * See, for example usages, register_netdevice() and
200 * unregister_netdevice(), which must be called with the rtnl
201 * semaphore held.
203 DEFINE_RWLOCK(dev_base_lock);
204 EXPORT_SYMBOL(dev_base_lock);
206 static inline void dev_base_seq_inc(struct net *net)
208 while (++net->dev_base_seq == 0);
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 static inline void rps_lock(struct softnet_data *sd)
225 #ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227 #endif
230 static inline void rps_unlock(struct softnet_data *sd)
232 #ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
237 /* Device list insertion */
238 static int list_netdevice(struct net_device *dev)
240 struct net *net = dev_net(dev);
242 ASSERT_RTNL();
244 write_lock_bh(&dev_base_lock);
245 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
246 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
247 hlist_add_head_rcu(&dev->index_hlist,
248 dev_index_hash(net, dev->ifindex));
249 write_unlock_bh(&dev_base_lock);
251 dev_base_seq_inc(net);
253 return 0;
256 /* Device list removal
257 * caller must respect a RCU grace period before freeing/reusing dev
259 static void unlist_netdevice(struct net_device *dev)
261 ASSERT_RTNL();
263 /* Unlink dev from the device chain */
264 write_lock_bh(&dev_base_lock);
265 list_del_rcu(&dev->dev_list);
266 hlist_del_rcu(&dev->name_hlist);
267 hlist_del_rcu(&dev->index_hlist);
268 write_unlock_bh(&dev_base_lock);
270 dev_base_seq_inc(dev_net(dev));
274 * Our notifier list
277 static RAW_NOTIFIER_HEAD(netdev_chain);
280 * Device drivers call our routines to queue packets here. We empty the
281 * queue in the local softnet handler.
284 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
285 EXPORT_PER_CPU_SYMBOL(softnet_data);
287 #ifdef CONFIG_LOCKDEP
289 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
290 * according to dev->type
292 static const unsigned short netdev_lock_type[] =
293 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
294 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
295 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
296 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
297 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
298 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
299 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
300 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
301 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
302 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
303 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
304 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
305 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
306 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
307 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
309 static const char *const netdev_lock_name[] =
310 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
311 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
312 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
313 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
314 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
315 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
316 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
317 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
318 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
319 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
320 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
321 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
322 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
323 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
324 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
329 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
331 int i;
333 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
334 if (netdev_lock_type[i] == dev_type)
335 return i;
336 /* the last key is used by default */
337 return ARRAY_SIZE(netdev_lock_type) - 1;
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
343 int i;
345 i = netdev_lock_pos(dev_type);
346 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
347 netdev_lock_name[i]);
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 int i;
354 i = netdev_lock_pos(dev->type);
355 lockdep_set_class_and_name(&dev->addr_list_lock,
356 &netdev_addr_lock_key[i],
357 netdev_lock_name[i]);
359 #else
360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
361 unsigned short dev_type)
364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
367 #endif
369 /*******************************************************************************
371 Protocol management and registration routines
373 *******************************************************************************/
376 * Add a protocol ID to the list. Now that the input handler is
377 * smarter we can dispense with all the messy stuff that used to be
378 * here.
380 * BEWARE!!! Protocol handlers, mangling input packets,
381 * MUST BE last in hash buckets and checking protocol handlers
382 * MUST start from promiscuous ptype_all chain in net_bh.
383 * It is true now, do not change it.
384 * Explanation follows: if protocol handler, mangling packet, will
385 * be the first on list, it is not able to sense, that packet
386 * is cloned and should be copied-on-write, so that it will
387 * change it and subsequent readers will get broken packet.
388 * --ANK (980803)
391 static inline struct list_head *ptype_head(const struct packet_type *pt)
393 if (pt->type == htons(ETH_P_ALL))
394 return &ptype_all;
395 else
396 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400 * dev_add_pack - add packet handler
401 * @pt: packet type declaration
403 * Add a protocol handler to the networking stack. The passed &packet_type
404 * is linked into kernel lists and may not be freed until it has been
405 * removed from the kernel lists.
407 * This call does not sleep therefore it can not
408 * guarantee all CPU's that are in middle of receiving packets
409 * will see the new packet type (until the next received packet).
412 void dev_add_pack(struct packet_type *pt)
414 struct list_head *head = ptype_head(pt);
416 spin_lock(&ptype_lock);
417 list_add_rcu(&pt->list, head);
418 spin_unlock(&ptype_lock);
420 EXPORT_SYMBOL(dev_add_pack);
423 * __dev_remove_pack - remove packet handler
424 * @pt: packet type declaration
426 * Remove a protocol handler that was previously added to the kernel
427 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
428 * from the kernel lists and can be freed or reused once this function
429 * returns.
431 * The packet type might still be in use by receivers
432 * and must not be freed until after all the CPU's have gone
433 * through a quiescent state.
435 void __dev_remove_pack(struct packet_type *pt)
437 struct list_head *head = ptype_head(pt);
438 struct packet_type *pt1;
440 spin_lock(&ptype_lock);
442 list_for_each_entry(pt1, head, list) {
443 if (pt == pt1) {
444 list_del_rcu(&pt->list);
445 goto out;
449 pr_warn("dev_remove_pack: %p not found\n", pt);
450 out:
451 spin_unlock(&ptype_lock);
453 EXPORT_SYMBOL(__dev_remove_pack);
456 * dev_remove_pack - remove packet handler
457 * @pt: packet type declaration
459 * Remove a protocol handler that was previously added to the kernel
460 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
461 * from the kernel lists and can be freed or reused once this function
462 * returns.
464 * This call sleeps to guarantee that no CPU is looking at the packet
465 * type after return.
467 void dev_remove_pack(struct packet_type *pt)
469 __dev_remove_pack(pt);
471 synchronize_net();
473 EXPORT_SYMBOL(dev_remove_pack);
477 * dev_add_offload - register offload handlers
478 * @po: protocol offload declaration
480 * Add protocol offload handlers to the networking stack. The passed
481 * &proto_offload is linked into kernel lists and may not be freed until
482 * it has been removed from the kernel lists.
484 * This call does not sleep therefore it can not
485 * guarantee all CPU's that are in middle of receiving packets
486 * will see the new offload handlers (until the next received packet).
488 void dev_add_offload(struct packet_offload *po)
490 struct list_head *head = &offload_base;
492 spin_lock(&offload_lock);
493 list_add_rcu(&po->list, head);
494 spin_unlock(&offload_lock);
496 EXPORT_SYMBOL(dev_add_offload);
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
511 void __dev_remove_offload(struct packet_offload *po)
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
516 spin_lock(&ptype_lock);
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&ptype_lock);
529 EXPORT_SYMBOL(__dev_remove_offload);
532 * dev_remove_offload - remove packet offload handler
533 * @po: packet offload declaration
535 * Remove a packet offload handler that was previously added to the kernel
536 * offload handlers by dev_add_offload(). The passed &offload_type is
537 * removed from the kernel lists and can be freed or reused once this
538 * function returns.
540 * This call sleeps to guarantee that no CPU is looking at the packet
541 * type after return.
543 void dev_remove_offload(struct packet_offload *po)
545 __dev_remove_offload(po);
547 synchronize_net();
549 EXPORT_SYMBOL(dev_remove_offload);
551 /******************************************************************************
553 Device Boot-time Settings Routines
555 *******************************************************************************/
557 /* Boot time configuration table */
558 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
561 * netdev_boot_setup_add - add new setup entry
562 * @name: name of the device
563 * @map: configured settings for the device
565 * Adds new setup entry to the dev_boot_setup list. The function
566 * returns 0 on error and 1 on success. This is a generic routine to
567 * all netdevices.
569 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 struct netdev_boot_setup *s;
572 int i;
574 s = dev_boot_setup;
575 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
576 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
577 memset(s[i].name, 0, sizeof(s[i].name));
578 strlcpy(s[i].name, name, IFNAMSIZ);
579 memcpy(&s[i].map, map, sizeof(s[i].map));
580 break;
584 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
588 * netdev_boot_setup_check - check boot time settings
589 * @dev: the netdevice
591 * Check boot time settings for the device.
592 * The found settings are set for the device to be used
593 * later in the device probing.
594 * Returns 0 if no settings found, 1 if they are.
596 int netdev_boot_setup_check(struct net_device *dev)
598 struct netdev_boot_setup *s = dev_boot_setup;
599 int i;
601 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
602 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
603 !strcmp(dev->name, s[i].name)) {
604 dev->irq = s[i].map.irq;
605 dev->base_addr = s[i].map.base_addr;
606 dev->mem_start = s[i].map.mem_start;
607 dev->mem_end = s[i].map.mem_end;
608 return 1;
611 return 0;
613 EXPORT_SYMBOL(netdev_boot_setup_check);
617 * netdev_boot_base - get address from boot time settings
618 * @prefix: prefix for network device
619 * @unit: id for network device
621 * Check boot time settings for the base address of device.
622 * The found settings are set for the device to be used
623 * later in the device probing.
624 * Returns 0 if no settings found.
626 unsigned long netdev_boot_base(const char *prefix, int unit)
628 const struct netdev_boot_setup *s = dev_boot_setup;
629 char name[IFNAMSIZ];
630 int i;
632 sprintf(name, "%s%d", prefix, unit);
635 * If device already registered then return base of 1
636 * to indicate not to probe for this interface
638 if (__dev_get_by_name(&init_net, name))
639 return 1;
641 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
642 if (!strcmp(name, s[i].name))
643 return s[i].map.base_addr;
644 return 0;
648 * Saves at boot time configured settings for any netdevice.
650 int __init netdev_boot_setup(char *str)
652 int ints[5];
653 struct ifmap map;
655 str = get_options(str, ARRAY_SIZE(ints), ints);
656 if (!str || !*str)
657 return 0;
659 /* Save settings */
660 memset(&map, 0, sizeof(map));
661 if (ints[0] > 0)
662 map.irq = ints[1];
663 if (ints[0] > 1)
664 map.base_addr = ints[2];
665 if (ints[0] > 2)
666 map.mem_start = ints[3];
667 if (ints[0] > 3)
668 map.mem_end = ints[4];
670 /* Add new entry to the list */
671 return netdev_boot_setup_add(str, &map);
674 __setup("netdev=", netdev_boot_setup);
676 /*******************************************************************************
678 Device Interface Subroutines
680 *******************************************************************************/
683 * __dev_get_by_name - find a device by its name
684 * @net: the applicable net namespace
685 * @name: name to find
687 * Find an interface by name. Must be called under RTNL semaphore
688 * or @dev_base_lock. If the name is found a pointer to the device
689 * is returned. If the name is not found then %NULL is returned. The
690 * reference counters are not incremented so the caller must be
691 * careful with locks.
694 struct net_device *__dev_get_by_name(struct net *net, const char *name)
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
700 hlist_for_each_entry(dev, p, head, name_hlist)
701 if (!strncmp(dev->name, name, IFNAMSIZ))
702 return dev;
704 return NULL;
706 EXPORT_SYMBOL(__dev_get_by_name);
709 * dev_get_by_name_rcu - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
713 * Find an interface by name.
714 * If the name is found a pointer to the device is returned.
715 * If the name is not found then %NULL is returned.
716 * The reference counters are not incremented so the caller must be
717 * careful with locks. The caller must hold RCU lock.
720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 struct hlist_node *p;
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
726 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
730 return NULL;
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
735 * dev_get_by_name - find a device by its name
736 * @net: the applicable net namespace
737 * @name: name to find
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
748 struct net_device *dev;
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
757 EXPORT_SYMBOL(dev_get_by_name);
760 * __dev_get_by_index - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
773 struct hlist_node *p;
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
777 hlist_for_each_entry(dev, p, head, index_hlist)
778 if (dev->ifindex == ifindex)
779 return dev;
781 return NULL;
783 EXPORT_SYMBOL(__dev_get_by_index);
786 * dev_get_by_index_rcu - find a device by its ifindex
787 * @net: the applicable net namespace
788 * @ifindex: index of device
790 * Search for an interface by index. Returns %NULL if the device
791 * is not found or a pointer to the device. The device has not
792 * had its reference counter increased so the caller must be careful
793 * about locking. The caller must hold RCU lock.
796 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
798 struct hlist_node *p;
799 struct net_device *dev;
800 struct hlist_head *head = dev_index_hash(net, ifindex);
802 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
803 if (dev->ifindex == ifindex)
804 return dev;
806 return NULL;
808 EXPORT_SYMBOL(dev_get_by_index_rcu);
812 * dev_get_by_index - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
816 * Search for an interface by index. Returns NULL if the device
817 * is not found or a pointer to the device. The device returned has
818 * had a reference added and the pointer is safe until the user calls
819 * dev_put to indicate they have finished with it.
822 struct net_device *dev_get_by_index(struct net *net, int ifindex)
824 struct net_device *dev;
826 rcu_read_lock();
827 dev = dev_get_by_index_rcu(net, ifindex);
828 if (dev)
829 dev_hold(dev);
830 rcu_read_unlock();
831 return dev;
833 EXPORT_SYMBOL(dev_get_by_index);
836 * dev_getbyhwaddr_rcu - find a device by its hardware address
837 * @net: the applicable net namespace
838 * @type: media type of device
839 * @ha: hardware address
841 * Search for an interface by MAC address. Returns NULL if the device
842 * is not found or a pointer to the device.
843 * The caller must hold RCU or RTNL.
844 * The returned device has not had its ref count increased
845 * and the caller must therefore be careful about locking
849 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
850 const char *ha)
852 struct net_device *dev;
854 for_each_netdev_rcu(net, dev)
855 if (dev->type == type &&
856 !memcmp(dev->dev_addr, ha, dev->addr_len))
857 return dev;
859 return NULL;
861 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 struct net_device *dev;
867 ASSERT_RTNL();
868 for_each_netdev(net, dev)
869 if (dev->type == type)
870 return dev;
872 return NULL;
874 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 struct net_device *dev, *ret = NULL;
880 rcu_read_lock();
881 for_each_netdev_rcu(net, dev)
882 if (dev->type == type) {
883 dev_hold(dev);
884 ret = dev;
885 break;
887 rcu_read_unlock();
888 return ret;
890 EXPORT_SYMBOL(dev_getfirstbyhwtype);
893 * dev_get_by_flags_rcu - find any device with given flags
894 * @net: the applicable net namespace
895 * @if_flags: IFF_* values
896 * @mask: bitmask of bits in if_flags to check
898 * Search for any interface with the given flags. Returns NULL if a device
899 * is not found or a pointer to the device. Must be called inside
900 * rcu_read_lock(), and result refcount is unchanged.
903 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
904 unsigned short mask)
906 struct net_device *dev, *ret;
908 ret = NULL;
909 for_each_netdev_rcu(net, dev) {
910 if (((dev->flags ^ if_flags) & mask) == 0) {
911 ret = dev;
912 break;
915 return ret;
917 EXPORT_SYMBOL(dev_get_by_flags_rcu);
920 * dev_valid_name - check if name is okay for network device
921 * @name: name string
923 * Network device names need to be valid file names to
924 * to allow sysfs to work. We also disallow any kind of
925 * whitespace.
927 bool dev_valid_name(const char *name)
929 if (*name == '\0')
930 return false;
931 if (strlen(name) >= IFNAMSIZ)
932 return false;
933 if (!strcmp(name, ".") || !strcmp(name, ".."))
934 return false;
936 while (*name) {
937 if (*name == '/' || isspace(*name))
938 return false;
939 name++;
941 return true;
943 EXPORT_SYMBOL(dev_valid_name);
946 * __dev_alloc_name - allocate a name for a device
947 * @net: network namespace to allocate the device name in
948 * @name: name format string
949 * @buf: scratch buffer and result name string
951 * Passed a format string - eg "lt%d" it will try and find a suitable
952 * id. It scans list of devices to build up a free map, then chooses
953 * the first empty slot. The caller must hold the dev_base or rtnl lock
954 * while allocating the name and adding the device in order to avoid
955 * duplicates.
956 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
957 * Returns the number of the unit assigned or a negative errno code.
960 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 int i = 0;
963 const char *p;
964 const int max_netdevices = 8*PAGE_SIZE;
965 unsigned long *inuse;
966 struct net_device *d;
968 p = strnchr(name, IFNAMSIZ-1, '%');
969 if (p) {
971 * Verify the string as this thing may have come from
972 * the user. There must be either one "%d" and no other "%"
973 * characters.
975 if (p[1] != 'd' || strchr(p + 2, '%'))
976 return -EINVAL;
978 /* Use one page as a bit array of possible slots */
979 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
980 if (!inuse)
981 return -ENOMEM;
983 for_each_netdev(net, d) {
984 if (!sscanf(d->name, name, &i))
985 continue;
986 if (i < 0 || i >= max_netdevices)
987 continue;
989 /* avoid cases where sscanf is not exact inverse of printf */
990 snprintf(buf, IFNAMSIZ, name, i);
991 if (!strncmp(buf, d->name, IFNAMSIZ))
992 set_bit(i, inuse);
995 i = find_first_zero_bit(inuse, max_netdevices);
996 free_page((unsigned long) inuse);
999 if (buf != name)
1000 snprintf(buf, IFNAMSIZ, name, i);
1001 if (!__dev_get_by_name(net, buf))
1002 return i;
1004 /* It is possible to run out of possible slots
1005 * when the name is long and there isn't enough space left
1006 * for the digits, or if all bits are used.
1008 return -ENFILE;
1012 * dev_alloc_name - allocate a name for a device
1013 * @dev: device
1014 * @name: name format string
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1025 int dev_alloc_name(struct net_device *dev, const char *name)
1027 char buf[IFNAMSIZ];
1028 struct net *net;
1029 int ret;
1031 BUG_ON(!dev_net(dev));
1032 net = dev_net(dev);
1033 ret = __dev_alloc_name(net, name, buf);
1034 if (ret >= 0)
1035 strlcpy(dev->name, buf, IFNAMSIZ);
1036 return ret;
1038 EXPORT_SYMBOL(dev_alloc_name);
1040 static int dev_alloc_name_ns(struct net *net,
1041 struct net_device *dev,
1042 const char *name)
1044 char buf[IFNAMSIZ];
1045 int ret;
1047 ret = __dev_alloc_name(net, name, buf);
1048 if (ret >= 0)
1049 strlcpy(dev->name, buf, IFNAMSIZ);
1050 return ret;
1053 static int dev_get_valid_name(struct net *net,
1054 struct net_device *dev,
1055 const char *name)
1057 BUG_ON(!net);
1059 if (!dev_valid_name(name))
1060 return -EINVAL;
1062 if (strchr(name, '%'))
1063 return dev_alloc_name_ns(net, dev, name);
1064 else if (__dev_get_by_name(net, name))
1065 return -EEXIST;
1066 else if (dev->name != name)
1067 strlcpy(dev->name, name, IFNAMSIZ);
1069 return 0;
1073 * dev_change_name - change name of a device
1074 * @dev: device
1075 * @newname: name (or format string) must be at least IFNAMSIZ
1077 * Change name of a device, can pass format strings "eth%d".
1078 * for wildcarding.
1080 int dev_change_name(struct net_device *dev, const char *newname)
1082 char oldname[IFNAMSIZ];
1083 int err = 0;
1084 int ret;
1085 struct net *net;
1087 ASSERT_RTNL();
1088 BUG_ON(!dev_net(dev));
1090 net = dev_net(dev);
1091 if (dev->flags & IFF_UP)
1092 return -EBUSY;
1094 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1095 return 0;
1097 memcpy(oldname, dev->name, IFNAMSIZ);
1099 err = dev_get_valid_name(net, dev, newname);
1100 if (err < 0)
1101 return err;
1103 rollback:
1104 ret = device_rename(&dev->dev, dev->name);
1105 if (ret) {
1106 memcpy(dev->name, oldname, IFNAMSIZ);
1107 return ret;
1110 write_lock_bh(&dev_base_lock);
1111 hlist_del_rcu(&dev->name_hlist);
1112 write_unlock_bh(&dev_base_lock);
1114 synchronize_rcu();
1116 write_lock_bh(&dev_base_lock);
1117 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1118 write_unlock_bh(&dev_base_lock);
1120 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1121 ret = notifier_to_errno(ret);
1123 if (ret) {
1124 /* err >= 0 after dev_alloc_name() or stores the first errno */
1125 if (err >= 0) {
1126 err = ret;
1127 memcpy(dev->name, oldname, IFNAMSIZ);
1128 goto rollback;
1129 } else {
1130 pr_err("%s: name change rollback failed: %d\n",
1131 dev->name, ret);
1135 return err;
1139 * dev_set_alias - change ifalias of a device
1140 * @dev: device
1141 * @alias: name up to IFALIASZ
1142 * @len: limit of bytes to copy from info
1144 * Set ifalias for a device,
1146 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1148 char *new_ifalias;
1150 ASSERT_RTNL();
1152 if (len >= IFALIASZ)
1153 return -EINVAL;
1155 if (!len) {
1156 if (dev->ifalias) {
1157 kfree(dev->ifalias);
1158 dev->ifalias = NULL;
1160 return 0;
1163 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1164 if (!new_ifalias)
1165 return -ENOMEM;
1166 dev->ifalias = new_ifalias;
1168 strlcpy(dev->ifalias, alias, len+1);
1169 return len;
1174 * netdev_features_change - device changes features
1175 * @dev: device to cause notification
1177 * Called to indicate a device has changed features.
1179 void netdev_features_change(struct net_device *dev)
1181 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1183 EXPORT_SYMBOL(netdev_features_change);
1186 * netdev_state_change - device changes state
1187 * @dev: device to cause notification
1189 * Called to indicate a device has changed state. This function calls
1190 * the notifier chains for netdev_chain and sends a NEWLINK message
1191 * to the routing socket.
1193 void netdev_state_change(struct net_device *dev)
1195 if (dev->flags & IFF_UP) {
1196 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1197 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1200 EXPORT_SYMBOL(netdev_state_change);
1203 * netdev_notify_peers - notify network peers about existence of @dev
1204 * @dev: network device
1206 * Generate traffic such that interested network peers are aware of
1207 * @dev, such as by generating a gratuitous ARP. This may be used when
1208 * a device wants to inform the rest of the network about some sort of
1209 * reconfiguration such as a failover event or virtual machine
1210 * migration.
1212 void netdev_notify_peers(struct net_device *dev)
1214 rtnl_lock();
1215 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1216 rtnl_unlock();
1218 EXPORT_SYMBOL(netdev_notify_peers);
1221 * dev_load - load a network module
1222 * @net: the applicable net namespace
1223 * @name: name of interface
1225 * If a network interface is not present and the process has suitable
1226 * privileges this function loads the module. If module loading is not
1227 * available in this kernel then it becomes a nop.
1230 void dev_load(struct net *net, const char *name)
1232 struct net_device *dev;
1233 int no_module;
1235 rcu_read_lock();
1236 dev = dev_get_by_name_rcu(net, name);
1237 rcu_read_unlock();
1239 no_module = !dev;
1240 if (no_module && capable(CAP_NET_ADMIN))
1241 no_module = request_module("netdev-%s", name);
1242 if (no_module && capable(CAP_SYS_MODULE)) {
1243 if (!request_module("%s", name))
1244 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1245 name);
1248 EXPORT_SYMBOL(dev_load);
1250 static int __dev_open(struct net_device *dev)
1252 const struct net_device_ops *ops = dev->netdev_ops;
1253 int ret;
1255 ASSERT_RTNL();
1257 if (!netif_device_present(dev))
1258 return -ENODEV;
1260 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1261 ret = notifier_to_errno(ret);
1262 if (ret)
1263 return ret;
1265 set_bit(__LINK_STATE_START, &dev->state);
1267 if (ops->ndo_validate_addr)
1268 ret = ops->ndo_validate_addr(dev);
1270 if (!ret && ops->ndo_open)
1271 ret = ops->ndo_open(dev);
1273 if (ret)
1274 clear_bit(__LINK_STATE_START, &dev->state);
1275 else {
1276 dev->flags |= IFF_UP;
1277 net_dmaengine_get();
1278 dev_set_rx_mode(dev);
1279 dev_activate(dev);
1280 add_device_randomness(dev->dev_addr, dev->addr_len);
1283 return ret;
1287 * dev_open - prepare an interface for use.
1288 * @dev: device to open
1290 * Takes a device from down to up state. The device's private open
1291 * function is invoked and then the multicast lists are loaded. Finally
1292 * the device is moved into the up state and a %NETDEV_UP message is
1293 * sent to the netdev notifier chain.
1295 * Calling this function on an active interface is a nop. On a failure
1296 * a negative errno code is returned.
1298 int dev_open(struct net_device *dev)
1300 int ret;
1302 if (dev->flags & IFF_UP)
1303 return 0;
1305 ret = __dev_open(dev);
1306 if (ret < 0)
1307 return ret;
1309 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1310 call_netdevice_notifiers(NETDEV_UP, dev);
1312 return ret;
1314 EXPORT_SYMBOL(dev_open);
1316 static int __dev_close_many(struct list_head *head)
1318 struct net_device *dev;
1320 ASSERT_RTNL();
1321 might_sleep();
1323 list_for_each_entry(dev, head, unreg_list) {
1324 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1326 clear_bit(__LINK_STATE_START, &dev->state);
1328 /* Synchronize to scheduled poll. We cannot touch poll list, it
1329 * can be even on different cpu. So just clear netif_running().
1331 * dev->stop() will invoke napi_disable() on all of it's
1332 * napi_struct instances on this device.
1334 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1337 dev_deactivate_many(head);
1339 list_for_each_entry(dev, head, unreg_list) {
1340 const struct net_device_ops *ops = dev->netdev_ops;
1343 * Call the device specific close. This cannot fail.
1344 * Only if device is UP
1346 * We allow it to be called even after a DETACH hot-plug
1347 * event.
1349 if (ops->ndo_stop)
1350 ops->ndo_stop(dev);
1352 dev->flags &= ~IFF_UP;
1353 net_dmaengine_put();
1356 return 0;
1359 static int __dev_close(struct net_device *dev)
1361 int retval;
1362 LIST_HEAD(single);
1364 list_add(&dev->unreg_list, &single);
1365 retval = __dev_close_many(&single);
1366 list_del(&single);
1367 return retval;
1370 static int dev_close_many(struct list_head *head)
1372 struct net_device *dev, *tmp;
1373 LIST_HEAD(tmp_list);
1375 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1376 if (!(dev->flags & IFF_UP))
1377 list_move(&dev->unreg_list, &tmp_list);
1379 __dev_close_many(head);
1381 list_for_each_entry(dev, head, unreg_list) {
1382 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1383 call_netdevice_notifiers(NETDEV_DOWN, dev);
1386 /* rollback_registered_many needs the complete original list */
1387 list_splice(&tmp_list, head);
1388 return 0;
1392 * dev_close - shutdown an interface.
1393 * @dev: device to shutdown
1395 * This function moves an active device into down state. A
1396 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1397 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1398 * chain.
1400 int dev_close(struct net_device *dev)
1402 if (dev->flags & IFF_UP) {
1403 LIST_HEAD(single);
1405 list_add(&dev->unreg_list, &single);
1406 dev_close_many(&single);
1407 list_del(&single);
1409 return 0;
1411 EXPORT_SYMBOL(dev_close);
1415 * dev_disable_lro - disable Large Receive Offload on a device
1416 * @dev: device
1418 * Disable Large Receive Offload (LRO) on a net device. Must be
1419 * called under RTNL. This is needed if received packets may be
1420 * forwarded to another interface.
1422 void dev_disable_lro(struct net_device *dev)
1425 * If we're trying to disable lro on a vlan device
1426 * use the underlying physical device instead
1428 if (is_vlan_dev(dev))
1429 dev = vlan_dev_real_dev(dev);
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1437 EXPORT_SYMBOL(dev_disable_lro);
1440 static int dev_boot_phase = 1;
1443 * register_netdevice_notifier - register a network notifier block
1444 * @nb: notifier
1446 * Register a notifier to be called when network device events occur.
1447 * The notifier passed is linked into the kernel structures and must
1448 * not be reused until it has been unregistered. A negative errno code
1449 * is returned on a failure.
1451 * When registered all registration and up events are replayed
1452 * to the new notifier to allow device to have a race free
1453 * view of the network device list.
1456 int register_netdevice_notifier(struct notifier_block *nb)
1458 struct net_device *dev;
1459 struct net_device *last;
1460 struct net *net;
1461 int err;
1463 rtnl_lock();
1464 err = raw_notifier_chain_register(&netdev_chain, nb);
1465 if (err)
1466 goto unlock;
1467 if (dev_boot_phase)
1468 goto unlock;
1469 for_each_net(net) {
1470 for_each_netdev(net, dev) {
1471 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1472 err = notifier_to_errno(err);
1473 if (err)
1474 goto rollback;
1476 if (!(dev->flags & IFF_UP))
1477 continue;
1479 nb->notifier_call(nb, NETDEV_UP, dev);
1483 unlock:
1484 rtnl_unlock();
1485 return err;
1487 rollback:
1488 last = dev;
1489 for_each_net(net) {
1490 for_each_netdev(net, dev) {
1491 if (dev == last)
1492 goto outroll;
1494 if (dev->flags & IFF_UP) {
1495 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1496 nb->notifier_call(nb, NETDEV_DOWN, dev);
1498 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1502 outroll:
1503 raw_notifier_chain_unregister(&netdev_chain, nb);
1504 goto unlock;
1506 EXPORT_SYMBOL(register_netdevice_notifier);
1509 * unregister_netdevice_notifier - unregister a network notifier block
1510 * @nb: notifier
1512 * Unregister a notifier previously registered by
1513 * register_netdevice_notifier(). The notifier is unlinked into the
1514 * kernel structures and may then be reused. A negative errno code
1515 * is returned on a failure.
1517 * After unregistering unregister and down device events are synthesized
1518 * for all devices on the device list to the removed notifier to remove
1519 * the need for special case cleanup code.
1522 int unregister_netdevice_notifier(struct notifier_block *nb)
1524 struct net_device *dev;
1525 struct net *net;
1526 int err;
1528 rtnl_lock();
1529 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1530 if (err)
1531 goto unlock;
1533 for_each_net(net) {
1534 for_each_netdev(net, dev) {
1535 if (dev->flags & IFF_UP) {
1536 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1537 nb->notifier_call(nb, NETDEV_DOWN, dev);
1539 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1542 unlock:
1543 rtnl_unlock();
1544 return err;
1546 EXPORT_SYMBOL(unregister_netdevice_notifier);
1549 * call_netdevice_notifiers - call all network notifier blocks
1550 * @val: value passed unmodified to notifier function
1551 * @dev: net_device pointer passed unmodified to notifier function
1553 * Call all network notifier blocks. Parameters and return value
1554 * are as for raw_notifier_call_chain().
1557 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1559 ASSERT_RTNL();
1560 return raw_notifier_call_chain(&netdev_chain, val, dev);
1562 EXPORT_SYMBOL(call_netdevice_notifiers);
1564 static struct static_key netstamp_needed __read_mostly;
1565 #ifdef HAVE_JUMP_LABEL
1566 /* We are not allowed to call static_key_slow_dec() from irq context
1567 * If net_disable_timestamp() is called from irq context, defer the
1568 * static_key_slow_dec() calls.
1570 static atomic_t netstamp_needed_deferred;
1571 #endif
1573 void net_enable_timestamp(void)
1575 #ifdef HAVE_JUMP_LABEL
1576 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1578 if (deferred) {
1579 while (--deferred)
1580 static_key_slow_dec(&netstamp_needed);
1581 return;
1583 #endif
1584 WARN_ON(in_interrupt());
1585 static_key_slow_inc(&netstamp_needed);
1587 EXPORT_SYMBOL(net_enable_timestamp);
1589 void net_disable_timestamp(void)
1591 #ifdef HAVE_JUMP_LABEL
1592 if (in_interrupt()) {
1593 atomic_inc(&netstamp_needed_deferred);
1594 return;
1596 #endif
1597 static_key_slow_dec(&netstamp_needed);
1599 EXPORT_SYMBOL(net_disable_timestamp);
1601 static inline void net_timestamp_set(struct sk_buff *skb)
1603 skb->tstamp.tv64 = 0;
1604 if (static_key_false(&netstamp_needed))
1605 __net_timestamp(skb);
1608 #define net_timestamp_check(COND, SKB) \
1609 if (static_key_false(&netstamp_needed)) { \
1610 if ((COND) && !(SKB)->tstamp.tv64) \
1611 __net_timestamp(SKB); \
1614 static int net_hwtstamp_validate(struct ifreq *ifr)
1616 struct hwtstamp_config cfg;
1617 enum hwtstamp_tx_types tx_type;
1618 enum hwtstamp_rx_filters rx_filter;
1619 int tx_type_valid = 0;
1620 int rx_filter_valid = 0;
1622 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1623 return -EFAULT;
1625 if (cfg.flags) /* reserved for future extensions */
1626 return -EINVAL;
1628 tx_type = cfg.tx_type;
1629 rx_filter = cfg.rx_filter;
1631 switch (tx_type) {
1632 case HWTSTAMP_TX_OFF:
1633 case HWTSTAMP_TX_ON:
1634 case HWTSTAMP_TX_ONESTEP_SYNC:
1635 tx_type_valid = 1;
1636 break;
1639 switch (rx_filter) {
1640 case HWTSTAMP_FILTER_NONE:
1641 case HWTSTAMP_FILTER_ALL:
1642 case HWTSTAMP_FILTER_SOME:
1643 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1644 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1645 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1646 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1647 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1648 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1649 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1650 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1651 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1652 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1653 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1654 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1655 rx_filter_valid = 1;
1656 break;
1659 if (!tx_type_valid || !rx_filter_valid)
1660 return -ERANGE;
1662 return 0;
1665 static inline bool is_skb_forwardable(struct net_device *dev,
1666 struct sk_buff *skb)
1668 unsigned int len;
1670 if (!(dev->flags & IFF_UP))
1671 return false;
1673 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1674 if (skb->len <= len)
1675 return true;
1677 /* if TSO is enabled, we don't care about the length as the packet
1678 * could be forwarded without being segmented before
1680 if (skb_is_gso(skb))
1681 return true;
1683 return false;
1687 * dev_forward_skb - loopback an skb to another netif
1689 * @dev: destination network device
1690 * @skb: buffer to forward
1692 * return values:
1693 * NET_RX_SUCCESS (no congestion)
1694 * NET_RX_DROP (packet was dropped, but freed)
1696 * dev_forward_skb can be used for injecting an skb from the
1697 * start_xmit function of one device into the receive queue
1698 * of another device.
1700 * The receiving device may be in another namespace, so
1701 * we have to clear all information in the skb that could
1702 * impact namespace isolation.
1704 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1706 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1707 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1708 atomic_long_inc(&dev->rx_dropped);
1709 kfree_skb(skb);
1710 return NET_RX_DROP;
1714 skb_orphan(skb);
1715 nf_reset(skb);
1717 if (unlikely(!is_skb_forwardable(dev, skb))) {
1718 atomic_long_inc(&dev->rx_dropped);
1719 kfree_skb(skb);
1720 return NET_RX_DROP;
1722 skb->skb_iif = 0;
1723 skb->dev = dev;
1724 skb_dst_drop(skb);
1725 skb->tstamp.tv64 = 0;
1726 skb->pkt_type = PACKET_HOST;
1727 skb->protocol = eth_type_trans(skb, dev);
1728 skb->mark = 0;
1729 secpath_reset(skb);
1730 nf_reset(skb);
1731 return netif_rx(skb);
1733 EXPORT_SYMBOL_GPL(dev_forward_skb);
1735 static inline int deliver_skb(struct sk_buff *skb,
1736 struct packet_type *pt_prev,
1737 struct net_device *orig_dev)
1739 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1740 return -ENOMEM;
1741 atomic_inc(&skb->users);
1742 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1745 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1747 if (!ptype->af_packet_priv || !skb->sk)
1748 return false;
1750 if (ptype->id_match)
1751 return ptype->id_match(ptype, skb->sk);
1752 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1753 return true;
1755 return false;
1759 * Support routine. Sends outgoing frames to any network
1760 * taps currently in use.
1763 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1765 struct packet_type *ptype;
1766 struct sk_buff *skb2 = NULL;
1767 struct packet_type *pt_prev = NULL;
1769 rcu_read_lock();
1770 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1771 /* Never send packets back to the socket
1772 * they originated from - MvS (miquels@drinkel.ow.org)
1774 if ((ptype->dev == dev || !ptype->dev) &&
1775 (!skb_loop_sk(ptype, skb))) {
1776 if (pt_prev) {
1777 deliver_skb(skb2, pt_prev, skb->dev);
1778 pt_prev = ptype;
1779 continue;
1782 skb2 = skb_clone(skb, GFP_ATOMIC);
1783 if (!skb2)
1784 break;
1786 net_timestamp_set(skb2);
1788 /* skb->nh should be correctly
1789 set by sender, so that the second statement is
1790 just protection against buggy protocols.
1792 skb_reset_mac_header(skb2);
1794 if (skb_network_header(skb2) < skb2->data ||
1795 skb2->network_header > skb2->tail) {
1796 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1797 ntohs(skb2->protocol),
1798 dev->name);
1799 skb_reset_network_header(skb2);
1802 skb2->transport_header = skb2->network_header;
1803 skb2->pkt_type = PACKET_OUTGOING;
1804 pt_prev = ptype;
1807 if (pt_prev)
1808 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1809 rcu_read_unlock();
1813 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1814 * @dev: Network device
1815 * @txq: number of queues available
1817 * If real_num_tx_queues is changed the tc mappings may no longer be
1818 * valid. To resolve this verify the tc mapping remains valid and if
1819 * not NULL the mapping. With no priorities mapping to this
1820 * offset/count pair it will no longer be used. In the worst case TC0
1821 * is invalid nothing can be done so disable priority mappings. If is
1822 * expected that drivers will fix this mapping if they can before
1823 * calling netif_set_real_num_tx_queues.
1825 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1827 int i;
1828 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1830 /* If TC0 is invalidated disable TC mapping */
1831 if (tc->offset + tc->count > txq) {
1832 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1833 dev->num_tc = 0;
1834 return;
1837 /* Invalidated prio to tc mappings set to TC0 */
1838 for (i = 1; i < TC_BITMASK + 1; i++) {
1839 int q = netdev_get_prio_tc_map(dev, i);
1841 tc = &dev->tc_to_txq[q];
1842 if (tc->offset + tc->count > txq) {
1843 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1844 i, q);
1845 netdev_set_prio_tc_map(dev, i, 0);
1851 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1852 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1854 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1856 int rc;
1858 if (txq < 1 || txq > dev->num_tx_queues)
1859 return -EINVAL;
1861 if (dev->reg_state == NETREG_REGISTERED ||
1862 dev->reg_state == NETREG_UNREGISTERING) {
1863 ASSERT_RTNL();
1865 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1866 txq);
1867 if (rc)
1868 return rc;
1870 if (dev->num_tc)
1871 netif_setup_tc(dev, txq);
1873 if (txq < dev->real_num_tx_queues)
1874 qdisc_reset_all_tx_gt(dev, txq);
1877 dev->real_num_tx_queues = txq;
1878 return 0;
1880 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1882 #ifdef CONFIG_RPS
1884 * netif_set_real_num_rx_queues - set actual number of RX queues used
1885 * @dev: Network device
1886 * @rxq: Actual number of RX queues
1888 * This must be called either with the rtnl_lock held or before
1889 * registration of the net device. Returns 0 on success, or a
1890 * negative error code. If called before registration, it always
1891 * succeeds.
1893 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1895 int rc;
1897 if (rxq < 1 || rxq > dev->num_rx_queues)
1898 return -EINVAL;
1900 if (dev->reg_state == NETREG_REGISTERED) {
1901 ASSERT_RTNL();
1903 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1904 rxq);
1905 if (rc)
1906 return rc;
1909 dev->real_num_rx_queues = rxq;
1910 return 0;
1912 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1913 #endif
1916 * netif_get_num_default_rss_queues - default number of RSS queues
1918 * This routine should set an upper limit on the number of RSS queues
1919 * used by default by multiqueue devices.
1921 int netif_get_num_default_rss_queues(void)
1923 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1925 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1927 static inline void __netif_reschedule(struct Qdisc *q)
1929 struct softnet_data *sd;
1930 unsigned long flags;
1932 local_irq_save(flags);
1933 sd = &__get_cpu_var(softnet_data);
1934 q->next_sched = NULL;
1935 *sd->output_queue_tailp = q;
1936 sd->output_queue_tailp = &q->next_sched;
1937 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1938 local_irq_restore(flags);
1941 void __netif_schedule(struct Qdisc *q)
1943 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1944 __netif_reschedule(q);
1946 EXPORT_SYMBOL(__netif_schedule);
1948 void dev_kfree_skb_irq(struct sk_buff *skb)
1950 if (atomic_dec_and_test(&skb->users)) {
1951 struct softnet_data *sd;
1952 unsigned long flags;
1954 local_irq_save(flags);
1955 sd = &__get_cpu_var(softnet_data);
1956 skb->next = sd->completion_queue;
1957 sd->completion_queue = skb;
1958 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1959 local_irq_restore(flags);
1962 EXPORT_SYMBOL(dev_kfree_skb_irq);
1964 void dev_kfree_skb_any(struct sk_buff *skb)
1966 if (in_irq() || irqs_disabled())
1967 dev_kfree_skb_irq(skb);
1968 else
1969 dev_kfree_skb(skb);
1971 EXPORT_SYMBOL(dev_kfree_skb_any);
1975 * netif_device_detach - mark device as removed
1976 * @dev: network device
1978 * Mark device as removed from system and therefore no longer available.
1980 void netif_device_detach(struct net_device *dev)
1982 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1983 netif_running(dev)) {
1984 netif_tx_stop_all_queues(dev);
1987 EXPORT_SYMBOL(netif_device_detach);
1990 * netif_device_attach - mark device as attached
1991 * @dev: network device
1993 * Mark device as attached from system and restart if needed.
1995 void netif_device_attach(struct net_device *dev)
1997 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1998 netif_running(dev)) {
1999 netif_tx_wake_all_queues(dev);
2000 __netdev_watchdog_up(dev);
2003 EXPORT_SYMBOL(netif_device_attach);
2005 static void skb_warn_bad_offload(const struct sk_buff *skb)
2007 static const netdev_features_t null_features = 0;
2008 struct net_device *dev = skb->dev;
2009 const char *driver = "";
2011 if (dev && dev->dev.parent)
2012 driver = dev_driver_string(dev->dev.parent);
2014 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2015 "gso_type=%d ip_summed=%d\n",
2016 driver, dev ? &dev->features : &null_features,
2017 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2018 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2019 skb_shinfo(skb)->gso_type, skb->ip_summed);
2023 * Invalidate hardware checksum when packet is to be mangled, and
2024 * complete checksum manually on outgoing path.
2026 int skb_checksum_help(struct sk_buff *skb)
2028 __wsum csum;
2029 int ret = 0, offset;
2031 if (skb->ip_summed == CHECKSUM_COMPLETE)
2032 goto out_set_summed;
2034 if (unlikely(skb_shinfo(skb)->gso_size)) {
2035 skb_warn_bad_offload(skb);
2036 return -EINVAL;
2039 offset = skb_checksum_start_offset(skb);
2040 BUG_ON(offset >= skb_headlen(skb));
2041 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2043 offset += skb->csum_offset;
2044 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2046 if (skb_cloned(skb) &&
2047 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2048 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2049 if (ret)
2050 goto out;
2053 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2054 out_set_summed:
2055 skb->ip_summed = CHECKSUM_NONE;
2056 out:
2057 return ret;
2059 EXPORT_SYMBOL(skb_checksum_help);
2062 * skb_gso_segment - Perform segmentation on skb.
2063 * @skb: buffer to segment
2064 * @features: features for the output path (see dev->features)
2066 * This function segments the given skb and returns a list of segments.
2068 * It may return NULL if the skb requires no segmentation. This is
2069 * only possible when GSO is used for verifying header integrity.
2071 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2072 netdev_features_t features)
2074 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2075 struct packet_offload *ptype;
2076 __be16 type = skb->protocol;
2077 int vlan_depth = ETH_HLEN;
2078 int err;
2080 while (type == htons(ETH_P_8021Q)) {
2081 struct vlan_hdr *vh;
2083 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2084 return ERR_PTR(-EINVAL);
2086 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2087 type = vh->h_vlan_encapsulated_proto;
2088 vlan_depth += VLAN_HLEN;
2091 skb_reset_mac_header(skb);
2092 skb->mac_len = skb->network_header - skb->mac_header;
2093 __skb_pull(skb, skb->mac_len);
2095 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2096 skb_warn_bad_offload(skb);
2098 if (skb_header_cloned(skb) &&
2099 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2100 return ERR_PTR(err);
2103 rcu_read_lock();
2104 list_for_each_entry_rcu(ptype, &offload_base, list) {
2105 if (ptype->type == type && ptype->gso_segment) {
2106 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2107 err = ptype->gso_send_check(skb);
2108 segs = ERR_PTR(err);
2109 if (err || skb_gso_ok(skb, features))
2110 break;
2111 __skb_push(skb, (skb->data -
2112 skb_network_header(skb)));
2114 segs = ptype->gso_segment(skb, features);
2115 break;
2118 rcu_read_unlock();
2120 __skb_push(skb, skb->data - skb_mac_header(skb));
2122 return segs;
2124 EXPORT_SYMBOL(skb_gso_segment);
2126 /* Take action when hardware reception checksum errors are detected. */
2127 #ifdef CONFIG_BUG
2128 void netdev_rx_csum_fault(struct net_device *dev)
2130 if (net_ratelimit()) {
2131 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2132 dump_stack();
2135 EXPORT_SYMBOL(netdev_rx_csum_fault);
2136 #endif
2138 /* Actually, we should eliminate this check as soon as we know, that:
2139 * 1. IOMMU is present and allows to map all the memory.
2140 * 2. No high memory really exists on this machine.
2143 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2145 #ifdef CONFIG_HIGHMEM
2146 int i;
2147 if (!(dev->features & NETIF_F_HIGHDMA)) {
2148 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2149 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2150 if (PageHighMem(skb_frag_page(frag)))
2151 return 1;
2155 if (PCI_DMA_BUS_IS_PHYS) {
2156 struct device *pdev = dev->dev.parent;
2158 if (!pdev)
2159 return 0;
2160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2161 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2162 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2163 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2164 return 1;
2167 #endif
2168 return 0;
2171 struct dev_gso_cb {
2172 void (*destructor)(struct sk_buff *skb);
2175 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2177 static void dev_gso_skb_destructor(struct sk_buff *skb)
2179 struct dev_gso_cb *cb;
2181 do {
2182 struct sk_buff *nskb = skb->next;
2184 skb->next = nskb->next;
2185 nskb->next = NULL;
2186 kfree_skb(nskb);
2187 } while (skb->next);
2189 cb = DEV_GSO_CB(skb);
2190 if (cb->destructor)
2191 cb->destructor(skb);
2195 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2196 * @skb: buffer to segment
2197 * @features: device features as applicable to this skb
2199 * This function segments the given skb and stores the list of segments
2200 * in skb->next.
2202 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2204 struct sk_buff *segs;
2206 segs = skb_gso_segment(skb, features);
2208 /* Verifying header integrity only. */
2209 if (!segs)
2210 return 0;
2212 if (IS_ERR(segs))
2213 return PTR_ERR(segs);
2215 skb->next = segs;
2216 DEV_GSO_CB(skb)->destructor = skb->destructor;
2217 skb->destructor = dev_gso_skb_destructor;
2219 return 0;
2222 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2224 return ((features & NETIF_F_GEN_CSUM) ||
2225 ((features & NETIF_F_V4_CSUM) &&
2226 protocol == htons(ETH_P_IP)) ||
2227 ((features & NETIF_F_V6_CSUM) &&
2228 protocol == htons(ETH_P_IPV6)) ||
2229 ((features & NETIF_F_FCOE_CRC) &&
2230 protocol == htons(ETH_P_FCOE)));
2233 static netdev_features_t harmonize_features(struct sk_buff *skb,
2234 __be16 protocol, netdev_features_t features)
2236 if (skb->ip_summed != CHECKSUM_NONE &&
2237 !can_checksum_protocol(features, protocol)) {
2238 features &= ~NETIF_F_ALL_CSUM;
2239 features &= ~NETIF_F_SG;
2240 } else if (illegal_highdma(skb->dev, skb)) {
2241 features &= ~NETIF_F_SG;
2244 return features;
2247 netdev_features_t netif_skb_features(struct sk_buff *skb)
2249 __be16 protocol = skb->protocol;
2250 netdev_features_t features = skb->dev->features;
2252 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2253 features &= ~NETIF_F_GSO_MASK;
2255 if (protocol == htons(ETH_P_8021Q)) {
2256 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2257 protocol = veh->h_vlan_encapsulated_proto;
2258 } else if (!vlan_tx_tag_present(skb)) {
2259 return harmonize_features(skb, protocol, features);
2262 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2264 if (protocol != htons(ETH_P_8021Q)) {
2265 return harmonize_features(skb, protocol, features);
2266 } else {
2267 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2268 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2269 return harmonize_features(skb, protocol, features);
2272 EXPORT_SYMBOL(netif_skb_features);
2275 * Returns true if either:
2276 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2277 * 2. skb is fragmented and the device does not support SG.
2279 static inline int skb_needs_linearize(struct sk_buff *skb,
2280 int features)
2282 return skb_is_nonlinear(skb) &&
2283 ((skb_has_frag_list(skb) &&
2284 !(features & NETIF_F_FRAGLIST)) ||
2285 (skb_shinfo(skb)->nr_frags &&
2286 !(features & NETIF_F_SG)));
2289 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2290 struct netdev_queue *txq)
2292 const struct net_device_ops *ops = dev->netdev_ops;
2293 int rc = NETDEV_TX_OK;
2294 unsigned int skb_len;
2296 if (likely(!skb->next)) {
2297 netdev_features_t features;
2300 * If device doesn't need skb->dst, release it right now while
2301 * its hot in this cpu cache
2303 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2304 skb_dst_drop(skb);
2306 features = netif_skb_features(skb);
2308 if (vlan_tx_tag_present(skb) &&
2309 !(features & NETIF_F_HW_VLAN_TX)) {
2310 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2311 if (unlikely(!skb))
2312 goto out;
2314 skb->vlan_tci = 0;
2317 if (netif_needs_gso(skb, features)) {
2318 if (unlikely(dev_gso_segment(skb, features)))
2319 goto out_kfree_skb;
2320 if (skb->next)
2321 goto gso;
2322 } else {
2323 if (skb_needs_linearize(skb, features) &&
2324 __skb_linearize(skb))
2325 goto out_kfree_skb;
2327 /* If packet is not checksummed and device does not
2328 * support checksumming for this protocol, complete
2329 * checksumming here.
2331 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2332 skb_set_transport_header(skb,
2333 skb_checksum_start_offset(skb));
2334 if (!(features & NETIF_F_ALL_CSUM) &&
2335 skb_checksum_help(skb))
2336 goto out_kfree_skb;
2340 if (!list_empty(&ptype_all))
2341 dev_queue_xmit_nit(skb, dev);
2343 skb_len = skb->len;
2344 rc = ops->ndo_start_xmit(skb, dev);
2345 trace_net_dev_xmit(skb, rc, dev, skb_len);
2346 if (rc == NETDEV_TX_OK)
2347 txq_trans_update(txq);
2348 return rc;
2351 gso:
2352 do {
2353 struct sk_buff *nskb = skb->next;
2355 skb->next = nskb->next;
2356 nskb->next = NULL;
2359 * If device doesn't need nskb->dst, release it right now while
2360 * its hot in this cpu cache
2362 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2363 skb_dst_drop(nskb);
2365 if (!list_empty(&ptype_all))
2366 dev_queue_xmit_nit(nskb, dev);
2368 skb_len = nskb->len;
2369 rc = ops->ndo_start_xmit(nskb, dev);
2370 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2371 if (unlikely(rc != NETDEV_TX_OK)) {
2372 if (rc & ~NETDEV_TX_MASK)
2373 goto out_kfree_gso_skb;
2374 nskb->next = skb->next;
2375 skb->next = nskb;
2376 return rc;
2378 txq_trans_update(txq);
2379 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2380 return NETDEV_TX_BUSY;
2381 } while (skb->next);
2383 out_kfree_gso_skb:
2384 if (likely(skb->next == NULL))
2385 skb->destructor = DEV_GSO_CB(skb)->destructor;
2386 out_kfree_skb:
2387 kfree_skb(skb);
2388 out:
2389 return rc;
2392 static u32 hashrnd __read_mostly;
2395 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2396 * to be used as a distribution range.
2398 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2399 unsigned int num_tx_queues)
2401 u32 hash;
2402 u16 qoffset = 0;
2403 u16 qcount = num_tx_queues;
2405 if (skb_rx_queue_recorded(skb)) {
2406 hash = skb_get_rx_queue(skb);
2407 while (unlikely(hash >= num_tx_queues))
2408 hash -= num_tx_queues;
2409 return hash;
2412 if (dev->num_tc) {
2413 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2414 qoffset = dev->tc_to_txq[tc].offset;
2415 qcount = dev->tc_to_txq[tc].count;
2418 if (skb->sk && skb->sk->sk_hash)
2419 hash = skb->sk->sk_hash;
2420 else
2421 hash = (__force u16) skb->protocol;
2422 hash = jhash_1word(hash, hashrnd);
2424 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2426 EXPORT_SYMBOL(__skb_tx_hash);
2428 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2430 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2431 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2432 dev->name, queue_index,
2433 dev->real_num_tx_queues);
2434 return 0;
2436 return queue_index;
2439 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2441 #ifdef CONFIG_XPS
2442 struct xps_dev_maps *dev_maps;
2443 struct xps_map *map;
2444 int queue_index = -1;
2446 rcu_read_lock();
2447 dev_maps = rcu_dereference(dev->xps_maps);
2448 if (dev_maps) {
2449 map = rcu_dereference(
2450 dev_maps->cpu_map[raw_smp_processor_id()]);
2451 if (map) {
2452 if (map->len == 1)
2453 queue_index = map->queues[0];
2454 else {
2455 u32 hash;
2456 if (skb->sk && skb->sk->sk_hash)
2457 hash = skb->sk->sk_hash;
2458 else
2459 hash = (__force u16) skb->protocol ^
2460 skb->rxhash;
2461 hash = jhash_1word(hash, hashrnd);
2462 queue_index = map->queues[
2463 ((u64)hash * map->len) >> 32];
2465 if (unlikely(queue_index >= dev->real_num_tx_queues))
2466 queue_index = -1;
2469 rcu_read_unlock();
2471 return queue_index;
2472 #else
2473 return -1;
2474 #endif
2477 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2478 struct sk_buff *skb)
2480 int queue_index;
2481 const struct net_device_ops *ops = dev->netdev_ops;
2483 if (dev->real_num_tx_queues == 1)
2484 queue_index = 0;
2485 else if (ops->ndo_select_queue) {
2486 queue_index = ops->ndo_select_queue(dev, skb);
2487 queue_index = dev_cap_txqueue(dev, queue_index);
2488 } else {
2489 struct sock *sk = skb->sk;
2490 queue_index = sk_tx_queue_get(sk);
2492 if (queue_index < 0 || skb->ooo_okay ||
2493 queue_index >= dev->real_num_tx_queues) {
2494 int old_index = queue_index;
2496 queue_index = get_xps_queue(dev, skb);
2497 if (queue_index < 0)
2498 queue_index = skb_tx_hash(dev, skb);
2500 if (queue_index != old_index && sk) {
2501 struct dst_entry *dst =
2502 rcu_dereference_check(sk->sk_dst_cache, 1);
2504 if (dst && skb_dst(skb) == dst)
2505 sk_tx_queue_set(sk, queue_index);
2510 skb_set_queue_mapping(skb, queue_index);
2511 return netdev_get_tx_queue(dev, queue_index);
2514 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2515 struct net_device *dev,
2516 struct netdev_queue *txq)
2518 spinlock_t *root_lock = qdisc_lock(q);
2519 bool contended;
2520 int rc;
2522 qdisc_skb_cb(skb)->pkt_len = skb->len;
2523 qdisc_calculate_pkt_len(skb, q);
2525 * Heuristic to force contended enqueues to serialize on a
2526 * separate lock before trying to get qdisc main lock.
2527 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2528 * and dequeue packets faster.
2530 contended = qdisc_is_running(q);
2531 if (unlikely(contended))
2532 spin_lock(&q->busylock);
2534 spin_lock(root_lock);
2535 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2536 kfree_skb(skb);
2537 rc = NET_XMIT_DROP;
2538 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2539 qdisc_run_begin(q)) {
2541 * This is a work-conserving queue; there are no old skbs
2542 * waiting to be sent out; and the qdisc is not running -
2543 * xmit the skb directly.
2545 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2546 skb_dst_force(skb);
2548 qdisc_bstats_update(q, skb);
2550 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2551 if (unlikely(contended)) {
2552 spin_unlock(&q->busylock);
2553 contended = false;
2555 __qdisc_run(q);
2556 } else
2557 qdisc_run_end(q);
2559 rc = NET_XMIT_SUCCESS;
2560 } else {
2561 skb_dst_force(skb);
2562 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2563 if (qdisc_run_begin(q)) {
2564 if (unlikely(contended)) {
2565 spin_unlock(&q->busylock);
2566 contended = false;
2568 __qdisc_run(q);
2571 spin_unlock(root_lock);
2572 if (unlikely(contended))
2573 spin_unlock(&q->busylock);
2574 return rc;
2577 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2578 static void skb_update_prio(struct sk_buff *skb)
2580 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2582 if (!skb->priority && skb->sk && map) {
2583 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2585 if (prioidx < map->priomap_len)
2586 skb->priority = map->priomap[prioidx];
2589 #else
2590 #define skb_update_prio(skb)
2591 #endif
2593 static DEFINE_PER_CPU(int, xmit_recursion);
2594 #define RECURSION_LIMIT 10
2597 * dev_loopback_xmit - loop back @skb
2598 * @skb: buffer to transmit
2600 int dev_loopback_xmit(struct sk_buff *skb)
2602 skb_reset_mac_header(skb);
2603 __skb_pull(skb, skb_network_offset(skb));
2604 skb->pkt_type = PACKET_LOOPBACK;
2605 skb->ip_summed = CHECKSUM_UNNECESSARY;
2606 WARN_ON(!skb_dst(skb));
2607 skb_dst_force(skb);
2608 netif_rx_ni(skb);
2609 return 0;
2611 EXPORT_SYMBOL(dev_loopback_xmit);
2614 * dev_queue_xmit - transmit a buffer
2615 * @skb: buffer to transmit
2617 * Queue a buffer for transmission to a network device. The caller must
2618 * have set the device and priority and built the buffer before calling
2619 * this function. The function can be called from an interrupt.
2621 * A negative errno code is returned on a failure. A success does not
2622 * guarantee the frame will be transmitted as it may be dropped due
2623 * to congestion or traffic shaping.
2625 * -----------------------------------------------------------------------------------
2626 * I notice this method can also return errors from the queue disciplines,
2627 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2628 * be positive.
2630 * Regardless of the return value, the skb is consumed, so it is currently
2631 * difficult to retry a send to this method. (You can bump the ref count
2632 * before sending to hold a reference for retry if you are careful.)
2634 * When calling this method, interrupts MUST be enabled. This is because
2635 * the BH enable code must have IRQs enabled so that it will not deadlock.
2636 * --BLG
2638 int dev_queue_xmit(struct sk_buff *skb)
2640 struct net_device *dev = skb->dev;
2641 struct netdev_queue *txq;
2642 struct Qdisc *q;
2643 int rc = -ENOMEM;
2645 /* Disable soft irqs for various locks below. Also
2646 * stops preemption for RCU.
2648 rcu_read_lock_bh();
2650 skb_update_prio(skb);
2652 txq = netdev_pick_tx(dev, skb);
2653 q = rcu_dereference_bh(txq->qdisc);
2655 #ifdef CONFIG_NET_CLS_ACT
2656 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2657 #endif
2658 trace_net_dev_queue(skb);
2659 if (q->enqueue) {
2660 rc = __dev_xmit_skb(skb, q, dev, txq);
2661 goto out;
2664 /* The device has no queue. Common case for software devices:
2665 loopback, all the sorts of tunnels...
2667 Really, it is unlikely that netif_tx_lock protection is necessary
2668 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2669 counters.)
2670 However, it is possible, that they rely on protection
2671 made by us here.
2673 Check this and shot the lock. It is not prone from deadlocks.
2674 Either shot noqueue qdisc, it is even simpler 8)
2676 if (dev->flags & IFF_UP) {
2677 int cpu = smp_processor_id(); /* ok because BHs are off */
2679 if (txq->xmit_lock_owner != cpu) {
2681 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2682 goto recursion_alert;
2684 HARD_TX_LOCK(dev, txq, cpu);
2686 if (!netif_xmit_stopped(txq)) {
2687 __this_cpu_inc(xmit_recursion);
2688 rc = dev_hard_start_xmit(skb, dev, txq);
2689 __this_cpu_dec(xmit_recursion);
2690 if (dev_xmit_complete(rc)) {
2691 HARD_TX_UNLOCK(dev, txq);
2692 goto out;
2695 HARD_TX_UNLOCK(dev, txq);
2696 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2697 dev->name);
2698 } else {
2699 /* Recursion is detected! It is possible,
2700 * unfortunately
2702 recursion_alert:
2703 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2704 dev->name);
2708 rc = -ENETDOWN;
2709 rcu_read_unlock_bh();
2711 kfree_skb(skb);
2712 return rc;
2713 out:
2714 rcu_read_unlock_bh();
2715 return rc;
2717 EXPORT_SYMBOL(dev_queue_xmit);
2720 /*=======================================================================
2721 Receiver routines
2722 =======================================================================*/
2724 int netdev_max_backlog __read_mostly = 1000;
2725 EXPORT_SYMBOL(netdev_max_backlog);
2727 int netdev_tstamp_prequeue __read_mostly = 1;
2728 int netdev_budget __read_mostly = 300;
2729 int weight_p __read_mostly = 64; /* old backlog weight */
2731 /* Called with irq disabled */
2732 static inline void ____napi_schedule(struct softnet_data *sd,
2733 struct napi_struct *napi)
2735 list_add_tail(&napi->poll_list, &sd->poll_list);
2736 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2740 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2741 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2742 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2743 * if hash is a canonical 4-tuple hash over transport ports.
2745 void __skb_get_rxhash(struct sk_buff *skb)
2747 struct flow_keys keys;
2748 u32 hash;
2750 if (!skb_flow_dissect(skb, &keys))
2751 return;
2753 if (keys.ports)
2754 skb->l4_rxhash = 1;
2756 /* get a consistent hash (same value on both flow directions) */
2757 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2758 (((__force u32)keys.dst == (__force u32)keys.src) &&
2759 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2760 swap(keys.dst, keys.src);
2761 swap(keys.port16[0], keys.port16[1]);
2764 hash = jhash_3words((__force u32)keys.dst,
2765 (__force u32)keys.src,
2766 (__force u32)keys.ports, hashrnd);
2767 if (!hash)
2768 hash = 1;
2770 skb->rxhash = hash;
2772 EXPORT_SYMBOL(__skb_get_rxhash);
2774 #ifdef CONFIG_RPS
2776 /* One global table that all flow-based protocols share. */
2777 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2778 EXPORT_SYMBOL(rps_sock_flow_table);
2780 struct static_key rps_needed __read_mostly;
2782 static struct rps_dev_flow *
2783 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2784 struct rps_dev_flow *rflow, u16 next_cpu)
2786 if (next_cpu != RPS_NO_CPU) {
2787 #ifdef CONFIG_RFS_ACCEL
2788 struct netdev_rx_queue *rxqueue;
2789 struct rps_dev_flow_table *flow_table;
2790 struct rps_dev_flow *old_rflow;
2791 u32 flow_id;
2792 u16 rxq_index;
2793 int rc;
2795 /* Should we steer this flow to a different hardware queue? */
2796 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2797 !(dev->features & NETIF_F_NTUPLE))
2798 goto out;
2799 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2800 if (rxq_index == skb_get_rx_queue(skb))
2801 goto out;
2803 rxqueue = dev->_rx + rxq_index;
2804 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2805 if (!flow_table)
2806 goto out;
2807 flow_id = skb->rxhash & flow_table->mask;
2808 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2809 rxq_index, flow_id);
2810 if (rc < 0)
2811 goto out;
2812 old_rflow = rflow;
2813 rflow = &flow_table->flows[flow_id];
2814 rflow->filter = rc;
2815 if (old_rflow->filter == rflow->filter)
2816 old_rflow->filter = RPS_NO_FILTER;
2817 out:
2818 #endif
2819 rflow->last_qtail =
2820 per_cpu(softnet_data, next_cpu).input_queue_head;
2823 rflow->cpu = next_cpu;
2824 return rflow;
2828 * get_rps_cpu is called from netif_receive_skb and returns the target
2829 * CPU from the RPS map of the receiving queue for a given skb.
2830 * rcu_read_lock must be held on entry.
2832 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2833 struct rps_dev_flow **rflowp)
2835 struct netdev_rx_queue *rxqueue;
2836 struct rps_map *map;
2837 struct rps_dev_flow_table *flow_table;
2838 struct rps_sock_flow_table *sock_flow_table;
2839 int cpu = -1;
2840 u16 tcpu;
2842 if (skb_rx_queue_recorded(skb)) {
2843 u16 index = skb_get_rx_queue(skb);
2844 if (unlikely(index >= dev->real_num_rx_queues)) {
2845 WARN_ONCE(dev->real_num_rx_queues > 1,
2846 "%s received packet on queue %u, but number "
2847 "of RX queues is %u\n",
2848 dev->name, index, dev->real_num_rx_queues);
2849 goto done;
2851 rxqueue = dev->_rx + index;
2852 } else
2853 rxqueue = dev->_rx;
2855 map = rcu_dereference(rxqueue->rps_map);
2856 if (map) {
2857 if (map->len == 1 &&
2858 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2859 tcpu = map->cpus[0];
2860 if (cpu_online(tcpu))
2861 cpu = tcpu;
2862 goto done;
2864 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2865 goto done;
2868 skb_reset_network_header(skb);
2869 if (!skb_get_rxhash(skb))
2870 goto done;
2872 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2873 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2874 if (flow_table && sock_flow_table) {
2875 u16 next_cpu;
2876 struct rps_dev_flow *rflow;
2878 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2879 tcpu = rflow->cpu;
2881 next_cpu = sock_flow_table->ents[skb->rxhash &
2882 sock_flow_table->mask];
2885 * If the desired CPU (where last recvmsg was done) is
2886 * different from current CPU (one in the rx-queue flow
2887 * table entry), switch if one of the following holds:
2888 * - Current CPU is unset (equal to RPS_NO_CPU).
2889 * - Current CPU is offline.
2890 * - The current CPU's queue tail has advanced beyond the
2891 * last packet that was enqueued using this table entry.
2892 * This guarantees that all previous packets for the flow
2893 * have been dequeued, thus preserving in order delivery.
2895 if (unlikely(tcpu != next_cpu) &&
2896 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2897 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2898 rflow->last_qtail)) >= 0))
2899 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2901 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2902 *rflowp = rflow;
2903 cpu = tcpu;
2904 goto done;
2908 if (map) {
2909 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2911 if (cpu_online(tcpu)) {
2912 cpu = tcpu;
2913 goto done;
2917 done:
2918 return cpu;
2921 #ifdef CONFIG_RFS_ACCEL
2924 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2925 * @dev: Device on which the filter was set
2926 * @rxq_index: RX queue index
2927 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2928 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2930 * Drivers that implement ndo_rx_flow_steer() should periodically call
2931 * this function for each installed filter and remove the filters for
2932 * which it returns %true.
2934 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2935 u32 flow_id, u16 filter_id)
2937 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2938 struct rps_dev_flow_table *flow_table;
2939 struct rps_dev_flow *rflow;
2940 bool expire = true;
2941 int cpu;
2943 rcu_read_lock();
2944 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2945 if (flow_table && flow_id <= flow_table->mask) {
2946 rflow = &flow_table->flows[flow_id];
2947 cpu = ACCESS_ONCE(rflow->cpu);
2948 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2949 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2950 rflow->last_qtail) <
2951 (int)(10 * flow_table->mask)))
2952 expire = false;
2954 rcu_read_unlock();
2955 return expire;
2957 EXPORT_SYMBOL(rps_may_expire_flow);
2959 #endif /* CONFIG_RFS_ACCEL */
2961 /* Called from hardirq (IPI) context */
2962 static void rps_trigger_softirq(void *data)
2964 struct softnet_data *sd = data;
2966 ____napi_schedule(sd, &sd->backlog);
2967 sd->received_rps++;
2970 #endif /* CONFIG_RPS */
2973 * Check if this softnet_data structure is another cpu one
2974 * If yes, queue it to our IPI list and return 1
2975 * If no, return 0
2977 static int rps_ipi_queued(struct softnet_data *sd)
2979 #ifdef CONFIG_RPS
2980 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2982 if (sd != mysd) {
2983 sd->rps_ipi_next = mysd->rps_ipi_list;
2984 mysd->rps_ipi_list = sd;
2986 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2987 return 1;
2989 #endif /* CONFIG_RPS */
2990 return 0;
2994 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2995 * queue (may be a remote CPU queue).
2997 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2998 unsigned int *qtail)
3000 struct softnet_data *sd;
3001 unsigned long flags;
3003 sd = &per_cpu(softnet_data, cpu);
3005 local_irq_save(flags);
3007 rps_lock(sd);
3008 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3009 if (skb_queue_len(&sd->input_pkt_queue)) {
3010 enqueue:
3011 __skb_queue_tail(&sd->input_pkt_queue, skb);
3012 input_queue_tail_incr_save(sd, qtail);
3013 rps_unlock(sd);
3014 local_irq_restore(flags);
3015 return NET_RX_SUCCESS;
3018 /* Schedule NAPI for backlog device
3019 * We can use non atomic operation since we own the queue lock
3021 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3022 if (!rps_ipi_queued(sd))
3023 ____napi_schedule(sd, &sd->backlog);
3025 goto enqueue;
3028 sd->dropped++;
3029 rps_unlock(sd);
3031 local_irq_restore(flags);
3033 atomic_long_inc(&skb->dev->rx_dropped);
3034 kfree_skb(skb);
3035 return NET_RX_DROP;
3039 * netif_rx - post buffer to the network code
3040 * @skb: buffer to post
3042 * This function receives a packet from a device driver and queues it for
3043 * the upper (protocol) levels to process. It always succeeds. The buffer
3044 * may be dropped during processing for congestion control or by the
3045 * protocol layers.
3047 * return values:
3048 * NET_RX_SUCCESS (no congestion)
3049 * NET_RX_DROP (packet was dropped)
3053 int netif_rx(struct sk_buff *skb)
3055 int ret;
3057 /* if netpoll wants it, pretend we never saw it */
3058 if (netpoll_rx(skb))
3059 return NET_RX_DROP;
3061 net_timestamp_check(netdev_tstamp_prequeue, skb);
3063 trace_netif_rx(skb);
3064 #ifdef CONFIG_RPS
3065 if (static_key_false(&rps_needed)) {
3066 struct rps_dev_flow voidflow, *rflow = &voidflow;
3067 int cpu;
3069 preempt_disable();
3070 rcu_read_lock();
3072 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3073 if (cpu < 0)
3074 cpu = smp_processor_id();
3076 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3078 rcu_read_unlock();
3079 preempt_enable();
3080 } else
3081 #endif
3083 unsigned int qtail;
3084 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3085 put_cpu();
3087 return ret;
3089 EXPORT_SYMBOL(netif_rx);
3091 int netif_rx_ni(struct sk_buff *skb)
3093 int err;
3095 preempt_disable();
3096 err = netif_rx(skb);
3097 if (local_softirq_pending())
3098 do_softirq();
3099 preempt_enable();
3101 return err;
3103 EXPORT_SYMBOL(netif_rx_ni);
3105 static void net_tx_action(struct softirq_action *h)
3107 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3109 if (sd->completion_queue) {
3110 struct sk_buff *clist;
3112 local_irq_disable();
3113 clist = sd->completion_queue;
3114 sd->completion_queue = NULL;
3115 local_irq_enable();
3117 while (clist) {
3118 struct sk_buff *skb = clist;
3119 clist = clist->next;
3121 WARN_ON(atomic_read(&skb->users));
3122 trace_kfree_skb(skb, net_tx_action);
3123 __kfree_skb(skb);
3127 if (sd->output_queue) {
3128 struct Qdisc *head;
3130 local_irq_disable();
3131 head = sd->output_queue;
3132 sd->output_queue = NULL;
3133 sd->output_queue_tailp = &sd->output_queue;
3134 local_irq_enable();
3136 while (head) {
3137 struct Qdisc *q = head;
3138 spinlock_t *root_lock;
3140 head = head->next_sched;
3142 root_lock = qdisc_lock(q);
3143 if (spin_trylock(root_lock)) {
3144 smp_mb__before_clear_bit();
3145 clear_bit(__QDISC_STATE_SCHED,
3146 &q->state);
3147 qdisc_run(q);
3148 spin_unlock(root_lock);
3149 } else {
3150 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3151 &q->state)) {
3152 __netif_reschedule(q);
3153 } else {
3154 smp_mb__before_clear_bit();
3155 clear_bit(__QDISC_STATE_SCHED,
3156 &q->state);
3163 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3164 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3165 /* This hook is defined here for ATM LANE */
3166 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3167 unsigned char *addr) __read_mostly;
3168 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3169 #endif
3171 #ifdef CONFIG_NET_CLS_ACT
3172 /* TODO: Maybe we should just force sch_ingress to be compiled in
3173 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3174 * a compare and 2 stores extra right now if we dont have it on
3175 * but have CONFIG_NET_CLS_ACT
3176 * NOTE: This doesn't stop any functionality; if you dont have
3177 * the ingress scheduler, you just can't add policies on ingress.
3180 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3182 struct net_device *dev = skb->dev;
3183 u32 ttl = G_TC_RTTL(skb->tc_verd);
3184 int result = TC_ACT_OK;
3185 struct Qdisc *q;
3187 if (unlikely(MAX_RED_LOOP < ttl++)) {
3188 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3189 skb->skb_iif, dev->ifindex);
3190 return TC_ACT_SHOT;
3193 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3194 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3196 q = rxq->qdisc;
3197 if (q != &noop_qdisc) {
3198 spin_lock(qdisc_lock(q));
3199 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3200 result = qdisc_enqueue_root(skb, q);
3201 spin_unlock(qdisc_lock(q));
3204 return result;
3207 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3208 struct packet_type **pt_prev,
3209 int *ret, struct net_device *orig_dev)
3211 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3213 if (!rxq || rxq->qdisc == &noop_qdisc)
3214 goto out;
3216 if (*pt_prev) {
3217 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3218 *pt_prev = NULL;
3221 switch (ing_filter(skb, rxq)) {
3222 case TC_ACT_SHOT:
3223 case TC_ACT_STOLEN:
3224 kfree_skb(skb);
3225 return NULL;
3228 out:
3229 skb->tc_verd = 0;
3230 return skb;
3232 #endif
3235 * netdev_rx_handler_register - register receive handler
3236 * @dev: device to register a handler for
3237 * @rx_handler: receive handler to register
3238 * @rx_handler_data: data pointer that is used by rx handler
3240 * Register a receive hander for a device. This handler will then be
3241 * called from __netif_receive_skb. A negative errno code is returned
3242 * on a failure.
3244 * The caller must hold the rtnl_mutex.
3246 * For a general description of rx_handler, see enum rx_handler_result.
3248 int netdev_rx_handler_register(struct net_device *dev,
3249 rx_handler_func_t *rx_handler,
3250 void *rx_handler_data)
3252 ASSERT_RTNL();
3254 if (dev->rx_handler)
3255 return -EBUSY;
3257 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3258 rcu_assign_pointer(dev->rx_handler, rx_handler);
3260 return 0;
3262 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3265 * netdev_rx_handler_unregister - unregister receive handler
3266 * @dev: device to unregister a handler from
3268 * Unregister a receive hander from a device.
3270 * The caller must hold the rtnl_mutex.
3272 void netdev_rx_handler_unregister(struct net_device *dev)
3275 ASSERT_RTNL();
3276 RCU_INIT_POINTER(dev->rx_handler, NULL);
3277 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3279 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3282 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3283 * the special handling of PFMEMALLOC skbs.
3285 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3287 switch (skb->protocol) {
3288 case __constant_htons(ETH_P_ARP):
3289 case __constant_htons(ETH_P_IP):
3290 case __constant_htons(ETH_P_IPV6):
3291 case __constant_htons(ETH_P_8021Q):
3292 return true;
3293 default:
3294 return false;
3298 static int __netif_receive_skb(struct sk_buff *skb)
3300 struct packet_type *ptype, *pt_prev;
3301 rx_handler_func_t *rx_handler;
3302 struct net_device *orig_dev;
3303 struct net_device *null_or_dev;
3304 bool deliver_exact = false;
3305 int ret = NET_RX_DROP;
3306 __be16 type;
3307 unsigned long pflags = current->flags;
3309 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3311 trace_netif_receive_skb(skb);
3314 * PFMEMALLOC skbs are special, they should
3315 * - be delivered to SOCK_MEMALLOC sockets only
3316 * - stay away from userspace
3317 * - have bounded memory usage
3319 * Use PF_MEMALLOC as this saves us from propagating the allocation
3320 * context down to all allocation sites.
3322 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3323 current->flags |= PF_MEMALLOC;
3325 /* if we've gotten here through NAPI, check netpoll */
3326 if (netpoll_receive_skb(skb))
3327 goto out;
3329 orig_dev = skb->dev;
3331 skb_reset_network_header(skb);
3332 skb_reset_transport_header(skb);
3333 skb_reset_mac_len(skb);
3335 pt_prev = NULL;
3337 rcu_read_lock();
3339 another_round:
3340 skb->skb_iif = skb->dev->ifindex;
3342 __this_cpu_inc(softnet_data.processed);
3344 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3345 skb = vlan_untag(skb);
3346 if (unlikely(!skb))
3347 goto unlock;
3350 #ifdef CONFIG_NET_CLS_ACT
3351 if (skb->tc_verd & TC_NCLS) {
3352 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3353 goto ncls;
3355 #endif
3357 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3358 goto skip_taps;
3360 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3361 if (!ptype->dev || ptype->dev == skb->dev) {
3362 if (pt_prev)
3363 ret = deliver_skb(skb, pt_prev, orig_dev);
3364 pt_prev = ptype;
3368 skip_taps:
3369 #ifdef CONFIG_NET_CLS_ACT
3370 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3371 if (!skb)
3372 goto unlock;
3373 ncls:
3374 #endif
3376 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3377 && !skb_pfmemalloc_protocol(skb))
3378 goto drop;
3380 if (vlan_tx_tag_present(skb)) {
3381 if (pt_prev) {
3382 ret = deliver_skb(skb, pt_prev, orig_dev);
3383 pt_prev = NULL;
3385 if (vlan_do_receive(&skb))
3386 goto another_round;
3387 else if (unlikely(!skb))
3388 goto unlock;
3391 rx_handler = rcu_dereference(skb->dev->rx_handler);
3392 if (rx_handler) {
3393 if (pt_prev) {
3394 ret = deliver_skb(skb, pt_prev, orig_dev);
3395 pt_prev = NULL;
3397 switch (rx_handler(&skb)) {
3398 case RX_HANDLER_CONSUMED:
3399 goto unlock;
3400 case RX_HANDLER_ANOTHER:
3401 goto another_round;
3402 case RX_HANDLER_EXACT:
3403 deliver_exact = true;
3404 case RX_HANDLER_PASS:
3405 break;
3406 default:
3407 BUG();
3411 if (vlan_tx_nonzero_tag_present(skb))
3412 skb->pkt_type = PACKET_OTHERHOST;
3414 /* deliver only exact match when indicated */
3415 null_or_dev = deliver_exact ? skb->dev : NULL;
3417 type = skb->protocol;
3418 list_for_each_entry_rcu(ptype,
3419 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3420 if (ptype->type == type &&
3421 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3422 ptype->dev == orig_dev)) {
3423 if (pt_prev)
3424 ret = deliver_skb(skb, pt_prev, orig_dev);
3425 pt_prev = ptype;
3429 if (pt_prev) {
3430 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3431 goto drop;
3432 else
3433 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3434 } else {
3435 drop:
3436 atomic_long_inc(&skb->dev->rx_dropped);
3437 kfree_skb(skb);
3438 /* Jamal, now you will not able to escape explaining
3439 * me how you were going to use this. :-)
3441 ret = NET_RX_DROP;
3444 unlock:
3445 rcu_read_unlock();
3446 out:
3447 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3448 return ret;
3452 * netif_receive_skb - process receive buffer from network
3453 * @skb: buffer to process
3455 * netif_receive_skb() is the main receive data processing function.
3456 * It always succeeds. The buffer may be dropped during processing
3457 * for congestion control or by the protocol layers.
3459 * This function may only be called from softirq context and interrupts
3460 * should be enabled.
3462 * Return values (usually ignored):
3463 * NET_RX_SUCCESS: no congestion
3464 * NET_RX_DROP: packet was dropped
3466 int netif_receive_skb(struct sk_buff *skb)
3468 net_timestamp_check(netdev_tstamp_prequeue, skb);
3470 if (skb_defer_rx_timestamp(skb))
3471 return NET_RX_SUCCESS;
3473 #ifdef CONFIG_RPS
3474 if (static_key_false(&rps_needed)) {
3475 struct rps_dev_flow voidflow, *rflow = &voidflow;
3476 int cpu, ret;
3478 rcu_read_lock();
3480 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3482 if (cpu >= 0) {
3483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3484 rcu_read_unlock();
3485 return ret;
3487 rcu_read_unlock();
3489 #endif
3490 return __netif_receive_skb(skb);
3492 EXPORT_SYMBOL(netif_receive_skb);
3494 /* Network device is going away, flush any packets still pending
3495 * Called with irqs disabled.
3497 static void flush_backlog(void *arg)
3499 struct net_device *dev = arg;
3500 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3501 struct sk_buff *skb, *tmp;
3503 rps_lock(sd);
3504 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3505 if (skb->dev == dev) {
3506 __skb_unlink(skb, &sd->input_pkt_queue);
3507 kfree_skb(skb);
3508 input_queue_head_incr(sd);
3511 rps_unlock(sd);
3513 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3514 if (skb->dev == dev) {
3515 __skb_unlink(skb, &sd->process_queue);
3516 kfree_skb(skb);
3517 input_queue_head_incr(sd);
3522 static int napi_gro_complete(struct sk_buff *skb)
3524 struct packet_offload *ptype;
3525 __be16 type = skb->protocol;
3526 struct list_head *head = &offload_base;
3527 int err = -ENOENT;
3529 if (NAPI_GRO_CB(skb)->count == 1) {
3530 skb_shinfo(skb)->gso_size = 0;
3531 goto out;
3534 rcu_read_lock();
3535 list_for_each_entry_rcu(ptype, head, list) {
3536 if (ptype->type != type || !ptype->gro_complete)
3537 continue;
3539 err = ptype->gro_complete(skb);
3540 break;
3542 rcu_read_unlock();
3544 if (err) {
3545 WARN_ON(&ptype->list == head);
3546 kfree_skb(skb);
3547 return NET_RX_SUCCESS;
3550 out:
3551 return netif_receive_skb(skb);
3554 /* napi->gro_list contains packets ordered by age.
3555 * youngest packets at the head of it.
3556 * Complete skbs in reverse order to reduce latencies.
3558 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3560 struct sk_buff *skb, *prev = NULL;
3562 /* scan list and build reverse chain */
3563 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3564 skb->prev = prev;
3565 prev = skb;
3568 for (skb = prev; skb; skb = prev) {
3569 skb->next = NULL;
3571 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3572 return;
3574 prev = skb->prev;
3575 napi_gro_complete(skb);
3576 napi->gro_count--;
3579 napi->gro_list = NULL;
3581 EXPORT_SYMBOL(napi_gro_flush);
3583 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3585 struct sk_buff **pp = NULL;
3586 struct packet_offload *ptype;
3587 __be16 type = skb->protocol;
3588 struct list_head *head = &offload_base;
3589 int same_flow;
3590 int mac_len;
3591 enum gro_result ret;
3593 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3594 goto normal;
3596 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3597 goto normal;
3599 rcu_read_lock();
3600 list_for_each_entry_rcu(ptype, head, list) {
3601 if (ptype->type != type || !ptype->gro_receive)
3602 continue;
3604 skb_set_network_header(skb, skb_gro_offset(skb));
3605 mac_len = skb->network_header - skb->mac_header;
3606 skb->mac_len = mac_len;
3607 NAPI_GRO_CB(skb)->same_flow = 0;
3608 NAPI_GRO_CB(skb)->flush = 0;
3609 NAPI_GRO_CB(skb)->free = 0;
3611 pp = ptype->gro_receive(&napi->gro_list, skb);
3612 break;
3614 rcu_read_unlock();
3616 if (&ptype->list == head)
3617 goto normal;
3619 same_flow = NAPI_GRO_CB(skb)->same_flow;
3620 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3622 if (pp) {
3623 struct sk_buff *nskb = *pp;
3625 *pp = nskb->next;
3626 nskb->next = NULL;
3627 napi_gro_complete(nskb);
3628 napi->gro_count--;
3631 if (same_flow)
3632 goto ok;
3634 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3635 goto normal;
3637 napi->gro_count++;
3638 NAPI_GRO_CB(skb)->count = 1;
3639 NAPI_GRO_CB(skb)->age = jiffies;
3640 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3641 skb->next = napi->gro_list;
3642 napi->gro_list = skb;
3643 ret = GRO_HELD;
3645 pull:
3646 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3647 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3649 BUG_ON(skb->end - skb->tail < grow);
3651 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3653 skb->tail += grow;
3654 skb->data_len -= grow;
3656 skb_shinfo(skb)->frags[0].page_offset += grow;
3657 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3659 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3660 skb_frag_unref(skb, 0);
3661 memmove(skb_shinfo(skb)->frags,
3662 skb_shinfo(skb)->frags + 1,
3663 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3668 return ret;
3670 normal:
3671 ret = GRO_NORMAL;
3672 goto pull;
3674 EXPORT_SYMBOL(dev_gro_receive);
3676 static inline gro_result_t
3677 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3679 struct sk_buff *p;
3680 unsigned int maclen = skb->dev->hard_header_len;
3682 for (p = napi->gro_list; p; p = p->next) {
3683 unsigned long diffs;
3685 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3686 diffs |= p->vlan_tci ^ skb->vlan_tci;
3687 if (maclen == ETH_HLEN)
3688 diffs |= compare_ether_header(skb_mac_header(p),
3689 skb_gro_mac_header(skb));
3690 else if (!diffs)
3691 diffs = memcmp(skb_mac_header(p),
3692 skb_gro_mac_header(skb),
3693 maclen);
3694 NAPI_GRO_CB(p)->same_flow = !diffs;
3695 NAPI_GRO_CB(p)->flush = 0;
3698 return dev_gro_receive(napi, skb);
3701 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3703 switch (ret) {
3704 case GRO_NORMAL:
3705 if (netif_receive_skb(skb))
3706 ret = GRO_DROP;
3707 break;
3709 case GRO_DROP:
3710 kfree_skb(skb);
3711 break;
3713 case GRO_MERGED_FREE:
3714 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3715 kmem_cache_free(skbuff_head_cache, skb);
3716 else
3717 __kfree_skb(skb);
3718 break;
3720 case GRO_HELD:
3721 case GRO_MERGED:
3722 break;
3725 return ret;
3727 EXPORT_SYMBOL(napi_skb_finish);
3729 static void skb_gro_reset_offset(struct sk_buff *skb)
3731 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3732 const skb_frag_t *frag0 = &pinfo->frags[0];
3734 NAPI_GRO_CB(skb)->data_offset = 0;
3735 NAPI_GRO_CB(skb)->frag0 = NULL;
3736 NAPI_GRO_CB(skb)->frag0_len = 0;
3738 if (skb->mac_header == skb->tail &&
3739 pinfo->nr_frags &&
3740 !PageHighMem(skb_frag_page(frag0))) {
3741 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3742 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3746 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3748 skb_gro_reset_offset(skb);
3750 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3752 EXPORT_SYMBOL(napi_gro_receive);
3754 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3756 __skb_pull(skb, skb_headlen(skb));
3757 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3758 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3759 skb->vlan_tci = 0;
3760 skb->dev = napi->dev;
3761 skb->skb_iif = 0;
3763 napi->skb = skb;
3766 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3768 struct sk_buff *skb = napi->skb;
3770 if (!skb) {
3771 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3772 if (skb)
3773 napi->skb = skb;
3775 return skb;
3777 EXPORT_SYMBOL(napi_get_frags);
3779 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3780 gro_result_t ret)
3782 switch (ret) {
3783 case GRO_NORMAL:
3784 case GRO_HELD:
3785 skb->protocol = eth_type_trans(skb, skb->dev);
3787 if (ret == GRO_HELD)
3788 skb_gro_pull(skb, -ETH_HLEN);
3789 else if (netif_receive_skb(skb))
3790 ret = GRO_DROP;
3791 break;
3793 case GRO_DROP:
3794 case GRO_MERGED_FREE:
3795 napi_reuse_skb(napi, skb);
3796 break;
3798 case GRO_MERGED:
3799 break;
3802 return ret;
3804 EXPORT_SYMBOL(napi_frags_finish);
3806 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3808 struct sk_buff *skb = napi->skb;
3809 struct ethhdr *eth;
3810 unsigned int hlen;
3811 unsigned int off;
3813 napi->skb = NULL;
3815 skb_reset_mac_header(skb);
3816 skb_gro_reset_offset(skb);
3818 off = skb_gro_offset(skb);
3819 hlen = off + sizeof(*eth);
3820 eth = skb_gro_header_fast(skb, off);
3821 if (skb_gro_header_hard(skb, hlen)) {
3822 eth = skb_gro_header_slow(skb, hlen, off);
3823 if (unlikely(!eth)) {
3824 napi_reuse_skb(napi, skb);
3825 skb = NULL;
3826 goto out;
3830 skb_gro_pull(skb, sizeof(*eth));
3833 * This works because the only protocols we care about don't require
3834 * special handling. We'll fix it up properly at the end.
3836 skb->protocol = eth->h_proto;
3838 out:
3839 return skb;
3842 gro_result_t napi_gro_frags(struct napi_struct *napi)
3844 struct sk_buff *skb = napi_frags_skb(napi);
3846 if (!skb)
3847 return GRO_DROP;
3849 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3851 EXPORT_SYMBOL(napi_gro_frags);
3854 * net_rps_action sends any pending IPI's for rps.
3855 * Note: called with local irq disabled, but exits with local irq enabled.
3857 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3859 #ifdef CONFIG_RPS
3860 struct softnet_data *remsd = sd->rps_ipi_list;
3862 if (remsd) {
3863 sd->rps_ipi_list = NULL;
3865 local_irq_enable();
3867 /* Send pending IPI's to kick RPS processing on remote cpus. */
3868 while (remsd) {
3869 struct softnet_data *next = remsd->rps_ipi_next;
3871 if (cpu_online(remsd->cpu))
3872 __smp_call_function_single(remsd->cpu,
3873 &remsd->csd, 0);
3874 remsd = next;
3876 } else
3877 #endif
3878 local_irq_enable();
3881 static int process_backlog(struct napi_struct *napi, int quota)
3883 int work = 0;
3884 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3886 #ifdef CONFIG_RPS
3887 /* Check if we have pending ipi, its better to send them now,
3888 * not waiting net_rx_action() end.
3890 if (sd->rps_ipi_list) {
3891 local_irq_disable();
3892 net_rps_action_and_irq_enable(sd);
3894 #endif
3895 napi->weight = weight_p;
3896 local_irq_disable();
3897 while (work < quota) {
3898 struct sk_buff *skb;
3899 unsigned int qlen;
3901 while ((skb = __skb_dequeue(&sd->process_queue))) {
3902 local_irq_enable();
3903 __netif_receive_skb(skb);
3904 local_irq_disable();
3905 input_queue_head_incr(sd);
3906 if (++work >= quota) {
3907 local_irq_enable();
3908 return work;
3912 rps_lock(sd);
3913 qlen = skb_queue_len(&sd->input_pkt_queue);
3914 if (qlen)
3915 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3916 &sd->process_queue);
3918 if (qlen < quota - work) {
3920 * Inline a custom version of __napi_complete().
3921 * only current cpu owns and manipulates this napi,
3922 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3923 * we can use a plain write instead of clear_bit(),
3924 * and we dont need an smp_mb() memory barrier.
3926 list_del(&napi->poll_list);
3927 napi->state = 0;
3929 quota = work + qlen;
3931 rps_unlock(sd);
3933 local_irq_enable();
3935 return work;
3939 * __napi_schedule - schedule for receive
3940 * @n: entry to schedule
3942 * The entry's receive function will be scheduled to run
3944 void __napi_schedule(struct napi_struct *n)
3946 unsigned long flags;
3948 local_irq_save(flags);
3949 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3950 local_irq_restore(flags);
3952 EXPORT_SYMBOL(__napi_schedule);
3954 void __napi_complete(struct napi_struct *n)
3956 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3957 BUG_ON(n->gro_list);
3959 list_del(&n->poll_list);
3960 smp_mb__before_clear_bit();
3961 clear_bit(NAPI_STATE_SCHED, &n->state);
3963 EXPORT_SYMBOL(__napi_complete);
3965 void napi_complete(struct napi_struct *n)
3967 unsigned long flags;
3970 * don't let napi dequeue from the cpu poll list
3971 * just in case its running on a different cpu
3973 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3974 return;
3976 napi_gro_flush(n, false);
3977 local_irq_save(flags);
3978 __napi_complete(n);
3979 local_irq_restore(flags);
3981 EXPORT_SYMBOL(napi_complete);
3983 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3984 int (*poll)(struct napi_struct *, int), int weight)
3986 INIT_LIST_HEAD(&napi->poll_list);
3987 napi->gro_count = 0;
3988 napi->gro_list = NULL;
3989 napi->skb = NULL;
3990 napi->poll = poll;
3991 napi->weight = weight;
3992 list_add(&napi->dev_list, &dev->napi_list);
3993 napi->dev = dev;
3994 #ifdef CONFIG_NETPOLL
3995 spin_lock_init(&napi->poll_lock);
3996 napi->poll_owner = -1;
3997 #endif
3998 set_bit(NAPI_STATE_SCHED, &napi->state);
4000 EXPORT_SYMBOL(netif_napi_add);
4002 void netif_napi_del(struct napi_struct *napi)
4004 struct sk_buff *skb, *next;
4006 list_del_init(&napi->dev_list);
4007 napi_free_frags(napi);
4009 for (skb = napi->gro_list; skb; skb = next) {
4010 next = skb->next;
4011 skb->next = NULL;
4012 kfree_skb(skb);
4015 napi->gro_list = NULL;
4016 napi->gro_count = 0;
4018 EXPORT_SYMBOL(netif_napi_del);
4020 static void net_rx_action(struct softirq_action *h)
4022 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4023 unsigned long time_limit = jiffies + 2;
4024 int budget = netdev_budget;
4025 void *have;
4027 local_irq_disable();
4029 while (!list_empty(&sd->poll_list)) {
4030 struct napi_struct *n;
4031 int work, weight;
4033 /* If softirq window is exhuasted then punt.
4034 * Allow this to run for 2 jiffies since which will allow
4035 * an average latency of 1.5/HZ.
4037 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4038 goto softnet_break;
4040 local_irq_enable();
4042 /* Even though interrupts have been re-enabled, this
4043 * access is safe because interrupts can only add new
4044 * entries to the tail of this list, and only ->poll()
4045 * calls can remove this head entry from the list.
4047 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4049 have = netpoll_poll_lock(n);
4051 weight = n->weight;
4053 /* This NAPI_STATE_SCHED test is for avoiding a race
4054 * with netpoll's poll_napi(). Only the entity which
4055 * obtains the lock and sees NAPI_STATE_SCHED set will
4056 * actually make the ->poll() call. Therefore we avoid
4057 * accidentally calling ->poll() when NAPI is not scheduled.
4059 work = 0;
4060 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4061 work = n->poll(n, weight);
4062 trace_napi_poll(n);
4065 WARN_ON_ONCE(work > weight);
4067 budget -= work;
4069 local_irq_disable();
4071 /* Drivers must not modify the NAPI state if they
4072 * consume the entire weight. In such cases this code
4073 * still "owns" the NAPI instance and therefore can
4074 * move the instance around on the list at-will.
4076 if (unlikely(work == weight)) {
4077 if (unlikely(napi_disable_pending(n))) {
4078 local_irq_enable();
4079 napi_complete(n);
4080 local_irq_disable();
4081 } else {
4082 if (n->gro_list) {
4083 /* flush too old packets
4084 * If HZ < 1000, flush all packets.
4086 local_irq_enable();
4087 napi_gro_flush(n, HZ >= 1000);
4088 local_irq_disable();
4090 list_move_tail(&n->poll_list, &sd->poll_list);
4094 netpoll_poll_unlock(have);
4096 out:
4097 net_rps_action_and_irq_enable(sd);
4099 #ifdef CONFIG_NET_DMA
4101 * There may not be any more sk_buffs coming right now, so push
4102 * any pending DMA copies to hardware
4104 dma_issue_pending_all();
4105 #endif
4107 return;
4109 softnet_break:
4110 sd->time_squeeze++;
4111 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4112 goto out;
4115 static gifconf_func_t *gifconf_list[NPROTO];
4118 * register_gifconf - register a SIOCGIF handler
4119 * @family: Address family
4120 * @gifconf: Function handler
4122 * Register protocol dependent address dumping routines. The handler
4123 * that is passed must not be freed or reused until it has been replaced
4124 * by another handler.
4126 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4128 if (family >= NPROTO)
4129 return -EINVAL;
4130 gifconf_list[family] = gifconf;
4131 return 0;
4133 EXPORT_SYMBOL(register_gifconf);
4137 * Map an interface index to its name (SIOCGIFNAME)
4141 * We need this ioctl for efficient implementation of the
4142 * if_indextoname() function required by the IPv6 API. Without
4143 * it, we would have to search all the interfaces to find a
4144 * match. --pb
4147 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4149 struct net_device *dev;
4150 struct ifreq ifr;
4153 * Fetch the caller's info block.
4156 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4157 return -EFAULT;
4159 rcu_read_lock();
4160 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4161 if (!dev) {
4162 rcu_read_unlock();
4163 return -ENODEV;
4166 strcpy(ifr.ifr_name, dev->name);
4167 rcu_read_unlock();
4169 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4170 return -EFAULT;
4171 return 0;
4175 * Perform a SIOCGIFCONF call. This structure will change
4176 * size eventually, and there is nothing I can do about it.
4177 * Thus we will need a 'compatibility mode'.
4180 static int dev_ifconf(struct net *net, char __user *arg)
4182 struct ifconf ifc;
4183 struct net_device *dev;
4184 char __user *pos;
4185 int len;
4186 int total;
4187 int i;
4190 * Fetch the caller's info block.
4193 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4194 return -EFAULT;
4196 pos = ifc.ifc_buf;
4197 len = ifc.ifc_len;
4200 * Loop over the interfaces, and write an info block for each.
4203 total = 0;
4204 for_each_netdev(net, dev) {
4205 for (i = 0; i < NPROTO; i++) {
4206 if (gifconf_list[i]) {
4207 int done;
4208 if (!pos)
4209 done = gifconf_list[i](dev, NULL, 0);
4210 else
4211 done = gifconf_list[i](dev, pos + total,
4212 len - total);
4213 if (done < 0)
4214 return -EFAULT;
4215 total += done;
4221 * All done. Write the updated control block back to the caller.
4223 ifc.ifc_len = total;
4226 * Both BSD and Solaris return 0 here, so we do too.
4228 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4231 #ifdef CONFIG_PROC_FS
4233 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4235 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4236 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4237 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4239 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4241 struct net *net = seq_file_net(seq);
4242 struct net_device *dev;
4243 struct hlist_node *p;
4244 struct hlist_head *h;
4245 unsigned int count = 0, offset = get_offset(*pos);
4247 h = &net->dev_name_head[get_bucket(*pos)];
4248 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4249 if (++count == offset)
4250 return dev;
4253 return NULL;
4256 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4258 struct net_device *dev;
4259 unsigned int bucket;
4261 do {
4262 dev = dev_from_same_bucket(seq, pos);
4263 if (dev)
4264 return dev;
4266 bucket = get_bucket(*pos) + 1;
4267 *pos = set_bucket_offset(bucket, 1);
4268 } while (bucket < NETDEV_HASHENTRIES);
4270 return NULL;
4274 * This is invoked by the /proc filesystem handler to display a device
4275 * in detail.
4277 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4278 __acquires(RCU)
4280 rcu_read_lock();
4281 if (!*pos)
4282 return SEQ_START_TOKEN;
4284 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4285 return NULL;
4287 return dev_from_bucket(seq, pos);
4290 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4292 ++*pos;
4293 return dev_from_bucket(seq, pos);
4296 void dev_seq_stop(struct seq_file *seq, void *v)
4297 __releases(RCU)
4299 rcu_read_unlock();
4302 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4304 struct rtnl_link_stats64 temp;
4305 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4307 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4308 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4309 dev->name, stats->rx_bytes, stats->rx_packets,
4310 stats->rx_errors,
4311 stats->rx_dropped + stats->rx_missed_errors,
4312 stats->rx_fifo_errors,
4313 stats->rx_length_errors + stats->rx_over_errors +
4314 stats->rx_crc_errors + stats->rx_frame_errors,
4315 stats->rx_compressed, stats->multicast,
4316 stats->tx_bytes, stats->tx_packets,
4317 stats->tx_errors, stats->tx_dropped,
4318 stats->tx_fifo_errors, stats->collisions,
4319 stats->tx_carrier_errors +
4320 stats->tx_aborted_errors +
4321 stats->tx_window_errors +
4322 stats->tx_heartbeat_errors,
4323 stats->tx_compressed);
4327 * Called from the PROCfs module. This now uses the new arbitrary sized
4328 * /proc/net interface to create /proc/net/dev
4330 static int dev_seq_show(struct seq_file *seq, void *v)
4332 if (v == SEQ_START_TOKEN)
4333 seq_puts(seq, "Inter-| Receive "
4334 " | Transmit\n"
4335 " face |bytes packets errs drop fifo frame "
4336 "compressed multicast|bytes packets errs "
4337 "drop fifo colls carrier compressed\n");
4338 else
4339 dev_seq_printf_stats(seq, v);
4340 return 0;
4343 static struct softnet_data *softnet_get_online(loff_t *pos)
4345 struct softnet_data *sd = NULL;
4347 while (*pos < nr_cpu_ids)
4348 if (cpu_online(*pos)) {
4349 sd = &per_cpu(softnet_data, *pos);
4350 break;
4351 } else
4352 ++*pos;
4353 return sd;
4356 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4358 return softnet_get_online(pos);
4361 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4363 ++*pos;
4364 return softnet_get_online(pos);
4367 static void softnet_seq_stop(struct seq_file *seq, void *v)
4371 static int softnet_seq_show(struct seq_file *seq, void *v)
4373 struct softnet_data *sd = v;
4375 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4376 sd->processed, sd->dropped, sd->time_squeeze, 0,
4377 0, 0, 0, 0, /* was fastroute */
4378 sd->cpu_collision, sd->received_rps);
4379 return 0;
4382 static const struct seq_operations dev_seq_ops = {
4383 .start = dev_seq_start,
4384 .next = dev_seq_next,
4385 .stop = dev_seq_stop,
4386 .show = dev_seq_show,
4389 static int dev_seq_open(struct inode *inode, struct file *file)
4391 return seq_open_net(inode, file, &dev_seq_ops,
4392 sizeof(struct seq_net_private));
4395 static const struct file_operations dev_seq_fops = {
4396 .owner = THIS_MODULE,
4397 .open = dev_seq_open,
4398 .read = seq_read,
4399 .llseek = seq_lseek,
4400 .release = seq_release_net,
4403 static const struct seq_operations softnet_seq_ops = {
4404 .start = softnet_seq_start,
4405 .next = softnet_seq_next,
4406 .stop = softnet_seq_stop,
4407 .show = softnet_seq_show,
4410 static int softnet_seq_open(struct inode *inode, struct file *file)
4412 return seq_open(file, &softnet_seq_ops);
4415 static const struct file_operations softnet_seq_fops = {
4416 .owner = THIS_MODULE,
4417 .open = softnet_seq_open,
4418 .read = seq_read,
4419 .llseek = seq_lseek,
4420 .release = seq_release,
4423 static void *ptype_get_idx(loff_t pos)
4425 struct packet_type *pt = NULL;
4426 loff_t i = 0;
4427 int t;
4429 list_for_each_entry_rcu(pt, &ptype_all, list) {
4430 if (i == pos)
4431 return pt;
4432 ++i;
4435 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4436 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4437 if (i == pos)
4438 return pt;
4439 ++i;
4442 return NULL;
4445 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4446 __acquires(RCU)
4448 rcu_read_lock();
4449 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4452 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4454 struct packet_type *pt;
4455 struct list_head *nxt;
4456 int hash;
4458 ++*pos;
4459 if (v == SEQ_START_TOKEN)
4460 return ptype_get_idx(0);
4462 pt = v;
4463 nxt = pt->list.next;
4464 if (pt->type == htons(ETH_P_ALL)) {
4465 if (nxt != &ptype_all)
4466 goto found;
4467 hash = 0;
4468 nxt = ptype_base[0].next;
4469 } else
4470 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4472 while (nxt == &ptype_base[hash]) {
4473 if (++hash >= PTYPE_HASH_SIZE)
4474 return NULL;
4475 nxt = ptype_base[hash].next;
4477 found:
4478 return list_entry(nxt, struct packet_type, list);
4481 static void ptype_seq_stop(struct seq_file *seq, void *v)
4482 __releases(RCU)
4484 rcu_read_unlock();
4487 static int ptype_seq_show(struct seq_file *seq, void *v)
4489 struct packet_type *pt = v;
4491 if (v == SEQ_START_TOKEN)
4492 seq_puts(seq, "Type Device Function\n");
4493 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4494 if (pt->type == htons(ETH_P_ALL))
4495 seq_puts(seq, "ALL ");
4496 else
4497 seq_printf(seq, "%04x", ntohs(pt->type));
4499 seq_printf(seq, " %-8s %pF\n",
4500 pt->dev ? pt->dev->name : "", pt->func);
4503 return 0;
4506 static const struct seq_operations ptype_seq_ops = {
4507 .start = ptype_seq_start,
4508 .next = ptype_seq_next,
4509 .stop = ptype_seq_stop,
4510 .show = ptype_seq_show,
4513 static int ptype_seq_open(struct inode *inode, struct file *file)
4515 return seq_open_net(inode, file, &ptype_seq_ops,
4516 sizeof(struct seq_net_private));
4519 static const struct file_operations ptype_seq_fops = {
4520 .owner = THIS_MODULE,
4521 .open = ptype_seq_open,
4522 .read = seq_read,
4523 .llseek = seq_lseek,
4524 .release = seq_release_net,
4528 static int __net_init dev_proc_net_init(struct net *net)
4530 int rc = -ENOMEM;
4532 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4533 goto out;
4534 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4535 goto out_dev;
4536 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4537 goto out_softnet;
4539 if (wext_proc_init(net))
4540 goto out_ptype;
4541 rc = 0;
4542 out:
4543 return rc;
4544 out_ptype:
4545 proc_net_remove(net, "ptype");
4546 out_softnet:
4547 proc_net_remove(net, "softnet_stat");
4548 out_dev:
4549 proc_net_remove(net, "dev");
4550 goto out;
4553 static void __net_exit dev_proc_net_exit(struct net *net)
4555 wext_proc_exit(net);
4557 proc_net_remove(net, "ptype");
4558 proc_net_remove(net, "softnet_stat");
4559 proc_net_remove(net, "dev");
4562 static struct pernet_operations __net_initdata dev_proc_ops = {
4563 .init = dev_proc_net_init,
4564 .exit = dev_proc_net_exit,
4567 static int __init dev_proc_init(void)
4569 return register_pernet_subsys(&dev_proc_ops);
4571 #else
4572 #define dev_proc_init() 0
4573 #endif /* CONFIG_PROC_FS */
4577 * netdev_set_master - set up master pointer
4578 * @slave: slave device
4579 * @master: new master device
4581 * Changes the master device of the slave. Pass %NULL to break the
4582 * bonding. The caller must hold the RTNL semaphore. On a failure
4583 * a negative errno code is returned. On success the reference counts
4584 * are adjusted and the function returns zero.
4586 int netdev_set_master(struct net_device *slave, struct net_device *master)
4588 struct net_device *old = slave->master;
4590 ASSERT_RTNL();
4592 if (master) {
4593 if (old)
4594 return -EBUSY;
4595 dev_hold(master);
4598 slave->master = master;
4600 if (old)
4601 dev_put(old);
4602 return 0;
4604 EXPORT_SYMBOL(netdev_set_master);
4607 * netdev_set_bond_master - set up bonding master/slave pair
4608 * @slave: slave device
4609 * @master: new master device
4611 * Changes the master device of the slave. Pass %NULL to break the
4612 * bonding. The caller must hold the RTNL semaphore. On a failure
4613 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4614 * to the routing socket and the function returns zero.
4616 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4618 int err;
4620 ASSERT_RTNL();
4622 err = netdev_set_master(slave, master);
4623 if (err)
4624 return err;
4625 if (master)
4626 slave->flags |= IFF_SLAVE;
4627 else
4628 slave->flags &= ~IFF_SLAVE;
4630 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4631 return 0;
4633 EXPORT_SYMBOL(netdev_set_bond_master);
4635 static void dev_change_rx_flags(struct net_device *dev, int flags)
4637 const struct net_device_ops *ops = dev->netdev_ops;
4639 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4640 ops->ndo_change_rx_flags(dev, flags);
4643 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4645 unsigned int old_flags = dev->flags;
4646 kuid_t uid;
4647 kgid_t gid;
4649 ASSERT_RTNL();
4651 dev->flags |= IFF_PROMISC;
4652 dev->promiscuity += inc;
4653 if (dev->promiscuity == 0) {
4655 * Avoid overflow.
4656 * If inc causes overflow, untouch promisc and return error.
4658 if (inc < 0)
4659 dev->flags &= ~IFF_PROMISC;
4660 else {
4661 dev->promiscuity -= inc;
4662 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4663 dev->name);
4664 return -EOVERFLOW;
4667 if (dev->flags != old_flags) {
4668 pr_info("device %s %s promiscuous mode\n",
4669 dev->name,
4670 dev->flags & IFF_PROMISC ? "entered" : "left");
4671 if (audit_enabled) {
4672 current_uid_gid(&uid, &gid);
4673 audit_log(current->audit_context, GFP_ATOMIC,
4674 AUDIT_ANOM_PROMISCUOUS,
4675 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4676 dev->name, (dev->flags & IFF_PROMISC),
4677 (old_flags & IFF_PROMISC),
4678 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4679 from_kuid(&init_user_ns, uid),
4680 from_kgid(&init_user_ns, gid),
4681 audit_get_sessionid(current));
4684 dev_change_rx_flags(dev, IFF_PROMISC);
4686 return 0;
4690 * dev_set_promiscuity - update promiscuity count on a device
4691 * @dev: device
4692 * @inc: modifier
4694 * Add or remove promiscuity from a device. While the count in the device
4695 * remains above zero the interface remains promiscuous. Once it hits zero
4696 * the device reverts back to normal filtering operation. A negative inc
4697 * value is used to drop promiscuity on the device.
4698 * Return 0 if successful or a negative errno code on error.
4700 int dev_set_promiscuity(struct net_device *dev, int inc)
4702 unsigned int old_flags = dev->flags;
4703 int err;
4705 err = __dev_set_promiscuity(dev, inc);
4706 if (err < 0)
4707 return err;
4708 if (dev->flags != old_flags)
4709 dev_set_rx_mode(dev);
4710 return err;
4712 EXPORT_SYMBOL(dev_set_promiscuity);
4715 * dev_set_allmulti - update allmulti count on a device
4716 * @dev: device
4717 * @inc: modifier
4719 * Add or remove reception of all multicast frames to a device. While the
4720 * count in the device remains above zero the interface remains listening
4721 * to all interfaces. Once it hits zero the device reverts back to normal
4722 * filtering operation. A negative @inc value is used to drop the counter
4723 * when releasing a resource needing all multicasts.
4724 * Return 0 if successful or a negative errno code on error.
4727 int dev_set_allmulti(struct net_device *dev, int inc)
4729 unsigned int old_flags = dev->flags;
4731 ASSERT_RTNL();
4733 dev->flags |= IFF_ALLMULTI;
4734 dev->allmulti += inc;
4735 if (dev->allmulti == 0) {
4737 * Avoid overflow.
4738 * If inc causes overflow, untouch allmulti and return error.
4740 if (inc < 0)
4741 dev->flags &= ~IFF_ALLMULTI;
4742 else {
4743 dev->allmulti -= inc;
4744 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4745 dev->name);
4746 return -EOVERFLOW;
4749 if (dev->flags ^ old_flags) {
4750 dev_change_rx_flags(dev, IFF_ALLMULTI);
4751 dev_set_rx_mode(dev);
4753 return 0;
4755 EXPORT_SYMBOL(dev_set_allmulti);
4758 * Upload unicast and multicast address lists to device and
4759 * configure RX filtering. When the device doesn't support unicast
4760 * filtering it is put in promiscuous mode while unicast addresses
4761 * are present.
4763 void __dev_set_rx_mode(struct net_device *dev)
4765 const struct net_device_ops *ops = dev->netdev_ops;
4767 /* dev_open will call this function so the list will stay sane. */
4768 if (!(dev->flags&IFF_UP))
4769 return;
4771 if (!netif_device_present(dev))
4772 return;
4774 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4775 /* Unicast addresses changes may only happen under the rtnl,
4776 * therefore calling __dev_set_promiscuity here is safe.
4778 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4779 __dev_set_promiscuity(dev, 1);
4780 dev->uc_promisc = true;
4781 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4782 __dev_set_promiscuity(dev, -1);
4783 dev->uc_promisc = false;
4787 if (ops->ndo_set_rx_mode)
4788 ops->ndo_set_rx_mode(dev);
4791 void dev_set_rx_mode(struct net_device *dev)
4793 netif_addr_lock_bh(dev);
4794 __dev_set_rx_mode(dev);
4795 netif_addr_unlock_bh(dev);
4799 * dev_get_flags - get flags reported to userspace
4800 * @dev: device
4802 * Get the combination of flag bits exported through APIs to userspace.
4804 unsigned int dev_get_flags(const struct net_device *dev)
4806 unsigned int flags;
4808 flags = (dev->flags & ~(IFF_PROMISC |
4809 IFF_ALLMULTI |
4810 IFF_RUNNING |
4811 IFF_LOWER_UP |
4812 IFF_DORMANT)) |
4813 (dev->gflags & (IFF_PROMISC |
4814 IFF_ALLMULTI));
4816 if (netif_running(dev)) {
4817 if (netif_oper_up(dev))
4818 flags |= IFF_RUNNING;
4819 if (netif_carrier_ok(dev))
4820 flags |= IFF_LOWER_UP;
4821 if (netif_dormant(dev))
4822 flags |= IFF_DORMANT;
4825 return flags;
4827 EXPORT_SYMBOL(dev_get_flags);
4829 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4831 unsigned int old_flags = dev->flags;
4832 int ret;
4834 ASSERT_RTNL();
4837 * Set the flags on our device.
4840 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4841 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4842 IFF_AUTOMEDIA)) |
4843 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4844 IFF_ALLMULTI));
4847 * Load in the correct multicast list now the flags have changed.
4850 if ((old_flags ^ flags) & IFF_MULTICAST)
4851 dev_change_rx_flags(dev, IFF_MULTICAST);
4853 dev_set_rx_mode(dev);
4856 * Have we downed the interface. We handle IFF_UP ourselves
4857 * according to user attempts to set it, rather than blindly
4858 * setting it.
4861 ret = 0;
4862 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4863 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4865 if (!ret)
4866 dev_set_rx_mode(dev);
4869 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4870 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4872 dev->gflags ^= IFF_PROMISC;
4873 dev_set_promiscuity(dev, inc);
4876 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4877 is important. Some (broken) drivers set IFF_PROMISC, when
4878 IFF_ALLMULTI is requested not asking us and not reporting.
4880 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4881 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4883 dev->gflags ^= IFF_ALLMULTI;
4884 dev_set_allmulti(dev, inc);
4887 return ret;
4890 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4892 unsigned int changes = dev->flags ^ old_flags;
4894 if (changes & IFF_UP) {
4895 if (dev->flags & IFF_UP)
4896 call_netdevice_notifiers(NETDEV_UP, dev);
4897 else
4898 call_netdevice_notifiers(NETDEV_DOWN, dev);
4901 if (dev->flags & IFF_UP &&
4902 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4903 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4907 * dev_change_flags - change device settings
4908 * @dev: device
4909 * @flags: device state flags
4911 * Change settings on device based state flags. The flags are
4912 * in the userspace exported format.
4914 int dev_change_flags(struct net_device *dev, unsigned int flags)
4916 int ret;
4917 unsigned int changes, old_flags = dev->flags;
4919 ret = __dev_change_flags(dev, flags);
4920 if (ret < 0)
4921 return ret;
4923 changes = old_flags ^ dev->flags;
4924 if (changes)
4925 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4927 __dev_notify_flags(dev, old_flags);
4928 return ret;
4930 EXPORT_SYMBOL(dev_change_flags);
4933 * dev_set_mtu - Change maximum transfer unit
4934 * @dev: device
4935 * @new_mtu: new transfer unit
4937 * Change the maximum transfer size of the network device.
4939 int dev_set_mtu(struct net_device *dev, int new_mtu)
4941 const struct net_device_ops *ops = dev->netdev_ops;
4942 int err;
4944 if (new_mtu == dev->mtu)
4945 return 0;
4947 /* MTU must be positive. */
4948 if (new_mtu < 0)
4949 return -EINVAL;
4951 if (!netif_device_present(dev))
4952 return -ENODEV;
4954 err = 0;
4955 if (ops->ndo_change_mtu)
4956 err = ops->ndo_change_mtu(dev, new_mtu);
4957 else
4958 dev->mtu = new_mtu;
4960 if (!err && dev->flags & IFF_UP)
4961 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4962 return err;
4964 EXPORT_SYMBOL(dev_set_mtu);
4967 * dev_set_group - Change group this device belongs to
4968 * @dev: device
4969 * @new_group: group this device should belong to
4971 void dev_set_group(struct net_device *dev, int new_group)
4973 dev->group = new_group;
4975 EXPORT_SYMBOL(dev_set_group);
4978 * dev_set_mac_address - Change Media Access Control Address
4979 * @dev: device
4980 * @sa: new address
4982 * Change the hardware (MAC) address of the device
4984 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4986 const struct net_device_ops *ops = dev->netdev_ops;
4987 int err;
4989 if (!ops->ndo_set_mac_address)
4990 return -EOPNOTSUPP;
4991 if (sa->sa_family != dev->type)
4992 return -EINVAL;
4993 if (!netif_device_present(dev))
4994 return -ENODEV;
4995 err = ops->ndo_set_mac_address(dev, sa);
4996 if (!err)
4997 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4998 add_device_randomness(dev->dev_addr, dev->addr_len);
4999 return err;
5001 EXPORT_SYMBOL(dev_set_mac_address);
5004 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
5006 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
5008 int err;
5009 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
5011 if (!dev)
5012 return -ENODEV;
5014 switch (cmd) {
5015 case SIOCGIFFLAGS: /* Get interface flags */
5016 ifr->ifr_flags = (short) dev_get_flags(dev);
5017 return 0;
5019 case SIOCGIFMETRIC: /* Get the metric on the interface
5020 (currently unused) */
5021 ifr->ifr_metric = 0;
5022 return 0;
5024 case SIOCGIFMTU: /* Get the MTU of a device */
5025 ifr->ifr_mtu = dev->mtu;
5026 return 0;
5028 case SIOCGIFHWADDR:
5029 if (!dev->addr_len)
5030 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
5031 else
5032 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
5033 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5034 ifr->ifr_hwaddr.sa_family = dev->type;
5035 return 0;
5037 case SIOCGIFSLAVE:
5038 err = -EINVAL;
5039 break;
5041 case SIOCGIFMAP:
5042 ifr->ifr_map.mem_start = dev->mem_start;
5043 ifr->ifr_map.mem_end = dev->mem_end;
5044 ifr->ifr_map.base_addr = dev->base_addr;
5045 ifr->ifr_map.irq = dev->irq;
5046 ifr->ifr_map.dma = dev->dma;
5047 ifr->ifr_map.port = dev->if_port;
5048 return 0;
5050 case SIOCGIFINDEX:
5051 ifr->ifr_ifindex = dev->ifindex;
5052 return 0;
5054 case SIOCGIFTXQLEN:
5055 ifr->ifr_qlen = dev->tx_queue_len;
5056 return 0;
5058 default:
5059 /* dev_ioctl() should ensure this case
5060 * is never reached
5062 WARN_ON(1);
5063 err = -ENOTTY;
5064 break;
5067 return err;
5071 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
5073 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
5075 int err;
5076 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5077 const struct net_device_ops *ops;
5079 if (!dev)
5080 return -ENODEV;
5082 ops = dev->netdev_ops;
5084 switch (cmd) {
5085 case SIOCSIFFLAGS: /* Set interface flags */
5086 return dev_change_flags(dev, ifr->ifr_flags);
5088 case SIOCSIFMETRIC: /* Set the metric on the interface
5089 (currently unused) */
5090 return -EOPNOTSUPP;
5092 case SIOCSIFMTU: /* Set the MTU of a device */
5093 return dev_set_mtu(dev, ifr->ifr_mtu);
5095 case SIOCSIFHWADDR:
5096 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5098 case SIOCSIFHWBROADCAST:
5099 if (ifr->ifr_hwaddr.sa_family != dev->type)
5100 return -EINVAL;
5101 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5102 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5103 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5104 return 0;
5106 case SIOCSIFMAP:
5107 if (ops->ndo_set_config) {
5108 if (!netif_device_present(dev))
5109 return -ENODEV;
5110 return ops->ndo_set_config(dev, &ifr->ifr_map);
5112 return -EOPNOTSUPP;
5114 case SIOCADDMULTI:
5115 if (!ops->ndo_set_rx_mode ||
5116 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5117 return -EINVAL;
5118 if (!netif_device_present(dev))
5119 return -ENODEV;
5120 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5122 case SIOCDELMULTI:
5123 if (!ops->ndo_set_rx_mode ||
5124 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5125 return -EINVAL;
5126 if (!netif_device_present(dev))
5127 return -ENODEV;
5128 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5130 case SIOCSIFTXQLEN:
5131 if (ifr->ifr_qlen < 0)
5132 return -EINVAL;
5133 dev->tx_queue_len = ifr->ifr_qlen;
5134 return 0;
5136 case SIOCSIFNAME:
5137 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5138 return dev_change_name(dev, ifr->ifr_newname);
5140 case SIOCSHWTSTAMP:
5141 err = net_hwtstamp_validate(ifr);
5142 if (err)
5143 return err;
5144 /* fall through */
5147 * Unknown or private ioctl
5149 default:
5150 if ((cmd >= SIOCDEVPRIVATE &&
5151 cmd <= SIOCDEVPRIVATE + 15) ||
5152 cmd == SIOCBONDENSLAVE ||
5153 cmd == SIOCBONDRELEASE ||
5154 cmd == SIOCBONDSETHWADDR ||
5155 cmd == SIOCBONDSLAVEINFOQUERY ||
5156 cmd == SIOCBONDINFOQUERY ||
5157 cmd == SIOCBONDCHANGEACTIVE ||
5158 cmd == SIOCGMIIPHY ||
5159 cmd == SIOCGMIIREG ||
5160 cmd == SIOCSMIIREG ||
5161 cmd == SIOCBRADDIF ||
5162 cmd == SIOCBRDELIF ||
5163 cmd == SIOCSHWTSTAMP ||
5164 cmd == SIOCWANDEV) {
5165 err = -EOPNOTSUPP;
5166 if (ops->ndo_do_ioctl) {
5167 if (netif_device_present(dev))
5168 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5169 else
5170 err = -ENODEV;
5172 } else
5173 err = -EINVAL;
5176 return err;
5180 * This function handles all "interface"-type I/O control requests. The actual
5181 * 'doing' part of this is dev_ifsioc above.
5185 * dev_ioctl - network device ioctl
5186 * @net: the applicable net namespace
5187 * @cmd: command to issue
5188 * @arg: pointer to a struct ifreq in user space
5190 * Issue ioctl functions to devices. This is normally called by the
5191 * user space syscall interfaces but can sometimes be useful for
5192 * other purposes. The return value is the return from the syscall if
5193 * positive or a negative errno code on error.
5196 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5198 struct ifreq ifr;
5199 int ret;
5200 char *colon;
5202 /* One special case: SIOCGIFCONF takes ifconf argument
5203 and requires shared lock, because it sleeps writing
5204 to user space.
5207 if (cmd == SIOCGIFCONF) {
5208 rtnl_lock();
5209 ret = dev_ifconf(net, (char __user *) arg);
5210 rtnl_unlock();
5211 return ret;
5213 if (cmd == SIOCGIFNAME)
5214 return dev_ifname(net, (struct ifreq __user *)arg);
5216 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5217 return -EFAULT;
5219 ifr.ifr_name[IFNAMSIZ-1] = 0;
5221 colon = strchr(ifr.ifr_name, ':');
5222 if (colon)
5223 *colon = 0;
5226 * See which interface the caller is talking about.
5229 switch (cmd) {
5231 * These ioctl calls:
5232 * - can be done by all.
5233 * - atomic and do not require locking.
5234 * - return a value
5236 case SIOCGIFFLAGS:
5237 case SIOCGIFMETRIC:
5238 case SIOCGIFMTU:
5239 case SIOCGIFHWADDR:
5240 case SIOCGIFSLAVE:
5241 case SIOCGIFMAP:
5242 case SIOCGIFINDEX:
5243 case SIOCGIFTXQLEN:
5244 dev_load(net, ifr.ifr_name);
5245 rcu_read_lock();
5246 ret = dev_ifsioc_locked(net, &ifr, cmd);
5247 rcu_read_unlock();
5248 if (!ret) {
5249 if (colon)
5250 *colon = ':';
5251 if (copy_to_user(arg, &ifr,
5252 sizeof(struct ifreq)))
5253 ret = -EFAULT;
5255 return ret;
5257 case SIOCETHTOOL:
5258 dev_load(net, ifr.ifr_name);
5259 rtnl_lock();
5260 ret = dev_ethtool(net, &ifr);
5261 rtnl_unlock();
5262 if (!ret) {
5263 if (colon)
5264 *colon = ':';
5265 if (copy_to_user(arg, &ifr,
5266 sizeof(struct ifreq)))
5267 ret = -EFAULT;
5269 return ret;
5272 * These ioctl calls:
5273 * - require superuser power.
5274 * - require strict serialization.
5275 * - return a value
5277 case SIOCGMIIPHY:
5278 case SIOCGMIIREG:
5279 case SIOCSIFNAME:
5280 if (!capable(CAP_NET_ADMIN))
5281 return -EPERM;
5282 dev_load(net, ifr.ifr_name);
5283 rtnl_lock();
5284 ret = dev_ifsioc(net, &ifr, cmd);
5285 rtnl_unlock();
5286 if (!ret) {
5287 if (colon)
5288 *colon = ':';
5289 if (copy_to_user(arg, &ifr,
5290 sizeof(struct ifreq)))
5291 ret = -EFAULT;
5293 return ret;
5296 * These ioctl calls:
5297 * - require superuser power.
5298 * - require strict serialization.
5299 * - do not return a value
5301 case SIOCSIFFLAGS:
5302 case SIOCSIFMETRIC:
5303 case SIOCSIFMTU:
5304 case SIOCSIFMAP:
5305 case SIOCSIFHWADDR:
5306 case SIOCSIFSLAVE:
5307 case SIOCADDMULTI:
5308 case SIOCDELMULTI:
5309 case SIOCSIFHWBROADCAST:
5310 case SIOCSIFTXQLEN:
5311 case SIOCSMIIREG:
5312 case SIOCBONDENSLAVE:
5313 case SIOCBONDRELEASE:
5314 case SIOCBONDSETHWADDR:
5315 case SIOCBONDCHANGEACTIVE:
5316 case SIOCBRADDIF:
5317 case SIOCBRDELIF:
5318 case SIOCSHWTSTAMP:
5319 if (!capable(CAP_NET_ADMIN))
5320 return -EPERM;
5321 /* fall through */
5322 case SIOCBONDSLAVEINFOQUERY:
5323 case SIOCBONDINFOQUERY:
5324 dev_load(net, ifr.ifr_name);
5325 rtnl_lock();
5326 ret = dev_ifsioc(net, &ifr, cmd);
5327 rtnl_unlock();
5328 return ret;
5330 case SIOCGIFMEM:
5331 /* Get the per device memory space. We can add this but
5332 * currently do not support it */
5333 case SIOCSIFMEM:
5334 /* Set the per device memory buffer space.
5335 * Not applicable in our case */
5336 case SIOCSIFLINK:
5337 return -ENOTTY;
5340 * Unknown or private ioctl.
5342 default:
5343 if (cmd == SIOCWANDEV ||
5344 (cmd >= SIOCDEVPRIVATE &&
5345 cmd <= SIOCDEVPRIVATE + 15)) {
5346 dev_load(net, ifr.ifr_name);
5347 rtnl_lock();
5348 ret = dev_ifsioc(net, &ifr, cmd);
5349 rtnl_unlock();
5350 if (!ret && copy_to_user(arg, &ifr,
5351 sizeof(struct ifreq)))
5352 ret = -EFAULT;
5353 return ret;
5355 /* Take care of Wireless Extensions */
5356 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5357 return wext_handle_ioctl(net, &ifr, cmd, arg);
5358 return -ENOTTY;
5364 * dev_new_index - allocate an ifindex
5365 * @net: the applicable net namespace
5367 * Returns a suitable unique value for a new device interface
5368 * number. The caller must hold the rtnl semaphore or the
5369 * dev_base_lock to be sure it remains unique.
5371 static int dev_new_index(struct net *net)
5373 int ifindex = net->ifindex;
5374 for (;;) {
5375 if (++ifindex <= 0)
5376 ifindex = 1;
5377 if (!__dev_get_by_index(net, ifindex))
5378 return net->ifindex = ifindex;
5382 /* Delayed registration/unregisteration */
5383 static LIST_HEAD(net_todo_list);
5385 static void net_set_todo(struct net_device *dev)
5387 list_add_tail(&dev->todo_list, &net_todo_list);
5390 static void rollback_registered_many(struct list_head *head)
5392 struct net_device *dev, *tmp;
5394 BUG_ON(dev_boot_phase);
5395 ASSERT_RTNL();
5397 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5398 /* Some devices call without registering
5399 * for initialization unwind. Remove those
5400 * devices and proceed with the remaining.
5402 if (dev->reg_state == NETREG_UNINITIALIZED) {
5403 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5404 dev->name, dev);
5406 WARN_ON(1);
5407 list_del(&dev->unreg_list);
5408 continue;
5410 dev->dismantle = true;
5411 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5414 /* If device is running, close it first. */
5415 dev_close_many(head);
5417 list_for_each_entry(dev, head, unreg_list) {
5418 /* And unlink it from device chain. */
5419 unlist_netdevice(dev);
5421 dev->reg_state = NETREG_UNREGISTERING;
5424 synchronize_net();
5426 list_for_each_entry(dev, head, unreg_list) {
5427 /* Shutdown queueing discipline. */
5428 dev_shutdown(dev);
5431 /* Notify protocols, that we are about to destroy
5432 this device. They should clean all the things.
5434 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5436 if (!dev->rtnl_link_ops ||
5437 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5438 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5441 * Flush the unicast and multicast chains
5443 dev_uc_flush(dev);
5444 dev_mc_flush(dev);
5446 if (dev->netdev_ops->ndo_uninit)
5447 dev->netdev_ops->ndo_uninit(dev);
5449 /* Notifier chain MUST detach us from master device. */
5450 WARN_ON(dev->master);
5452 /* Remove entries from kobject tree */
5453 netdev_unregister_kobject(dev);
5456 synchronize_net();
5458 list_for_each_entry(dev, head, unreg_list)
5459 dev_put(dev);
5462 static void rollback_registered(struct net_device *dev)
5464 LIST_HEAD(single);
5466 list_add(&dev->unreg_list, &single);
5467 rollback_registered_many(&single);
5468 list_del(&single);
5471 static netdev_features_t netdev_fix_features(struct net_device *dev,
5472 netdev_features_t features)
5474 /* Fix illegal checksum combinations */
5475 if ((features & NETIF_F_HW_CSUM) &&
5476 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5477 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5478 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5481 /* Fix illegal SG+CSUM combinations. */
5482 if ((features & NETIF_F_SG) &&
5483 !(features & NETIF_F_ALL_CSUM)) {
5484 netdev_dbg(dev,
5485 "Dropping NETIF_F_SG since no checksum feature.\n");
5486 features &= ~NETIF_F_SG;
5489 /* TSO requires that SG is present as well. */
5490 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5491 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5492 features &= ~NETIF_F_ALL_TSO;
5495 /* TSO ECN requires that TSO is present as well. */
5496 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5497 features &= ~NETIF_F_TSO_ECN;
5499 /* Software GSO depends on SG. */
5500 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5501 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5502 features &= ~NETIF_F_GSO;
5505 /* UFO needs SG and checksumming */
5506 if (features & NETIF_F_UFO) {
5507 /* maybe split UFO into V4 and V6? */
5508 if (!((features & NETIF_F_GEN_CSUM) ||
5509 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5510 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5511 netdev_dbg(dev,
5512 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5513 features &= ~NETIF_F_UFO;
5516 if (!(features & NETIF_F_SG)) {
5517 netdev_dbg(dev,
5518 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5519 features &= ~NETIF_F_UFO;
5523 return features;
5526 int __netdev_update_features(struct net_device *dev)
5528 netdev_features_t features;
5529 int err = 0;
5531 ASSERT_RTNL();
5533 features = netdev_get_wanted_features(dev);
5535 if (dev->netdev_ops->ndo_fix_features)
5536 features = dev->netdev_ops->ndo_fix_features(dev, features);
5538 /* driver might be less strict about feature dependencies */
5539 features = netdev_fix_features(dev, features);
5541 if (dev->features == features)
5542 return 0;
5544 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5545 &dev->features, &features);
5547 if (dev->netdev_ops->ndo_set_features)
5548 err = dev->netdev_ops->ndo_set_features(dev, features);
5550 if (unlikely(err < 0)) {
5551 netdev_err(dev,
5552 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5553 err, &features, &dev->features);
5554 return -1;
5557 if (!err)
5558 dev->features = features;
5560 return 1;
5564 * netdev_update_features - recalculate device features
5565 * @dev: the device to check
5567 * Recalculate dev->features set and send notifications if it
5568 * has changed. Should be called after driver or hardware dependent
5569 * conditions might have changed that influence the features.
5571 void netdev_update_features(struct net_device *dev)
5573 if (__netdev_update_features(dev))
5574 netdev_features_change(dev);
5576 EXPORT_SYMBOL(netdev_update_features);
5579 * netdev_change_features - recalculate device features
5580 * @dev: the device to check
5582 * Recalculate dev->features set and send notifications even
5583 * if they have not changed. Should be called instead of
5584 * netdev_update_features() if also dev->vlan_features might
5585 * have changed to allow the changes to be propagated to stacked
5586 * VLAN devices.
5588 void netdev_change_features(struct net_device *dev)
5590 __netdev_update_features(dev);
5591 netdev_features_change(dev);
5593 EXPORT_SYMBOL(netdev_change_features);
5596 * netif_stacked_transfer_operstate - transfer operstate
5597 * @rootdev: the root or lower level device to transfer state from
5598 * @dev: the device to transfer operstate to
5600 * Transfer operational state from root to device. This is normally
5601 * called when a stacking relationship exists between the root
5602 * device and the device(a leaf device).
5604 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5605 struct net_device *dev)
5607 if (rootdev->operstate == IF_OPER_DORMANT)
5608 netif_dormant_on(dev);
5609 else
5610 netif_dormant_off(dev);
5612 if (netif_carrier_ok(rootdev)) {
5613 if (!netif_carrier_ok(dev))
5614 netif_carrier_on(dev);
5615 } else {
5616 if (netif_carrier_ok(dev))
5617 netif_carrier_off(dev);
5620 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5622 #ifdef CONFIG_RPS
5623 static int netif_alloc_rx_queues(struct net_device *dev)
5625 unsigned int i, count = dev->num_rx_queues;
5626 struct netdev_rx_queue *rx;
5628 BUG_ON(count < 1);
5630 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5631 if (!rx) {
5632 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5633 return -ENOMEM;
5635 dev->_rx = rx;
5637 for (i = 0; i < count; i++)
5638 rx[i].dev = dev;
5639 return 0;
5641 #endif
5643 static void netdev_init_one_queue(struct net_device *dev,
5644 struct netdev_queue *queue, void *_unused)
5646 /* Initialize queue lock */
5647 spin_lock_init(&queue->_xmit_lock);
5648 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5649 queue->xmit_lock_owner = -1;
5650 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5651 queue->dev = dev;
5652 #ifdef CONFIG_BQL
5653 dql_init(&queue->dql, HZ);
5654 #endif
5657 static int netif_alloc_netdev_queues(struct net_device *dev)
5659 unsigned int count = dev->num_tx_queues;
5660 struct netdev_queue *tx;
5662 BUG_ON(count < 1);
5664 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5665 if (!tx) {
5666 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5667 return -ENOMEM;
5669 dev->_tx = tx;
5671 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5672 spin_lock_init(&dev->tx_global_lock);
5674 return 0;
5678 * register_netdevice - register a network device
5679 * @dev: device to register
5681 * Take a completed network device structure and add it to the kernel
5682 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5683 * chain. 0 is returned on success. A negative errno code is returned
5684 * on a failure to set up the device, or if the name is a duplicate.
5686 * Callers must hold the rtnl semaphore. You may want
5687 * register_netdev() instead of this.
5689 * BUGS:
5690 * The locking appears insufficient to guarantee two parallel registers
5691 * will not get the same name.
5694 int register_netdevice(struct net_device *dev)
5696 int ret;
5697 struct net *net = dev_net(dev);
5699 BUG_ON(dev_boot_phase);
5700 ASSERT_RTNL();
5702 might_sleep();
5704 /* When net_device's are persistent, this will be fatal. */
5705 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5706 BUG_ON(!net);
5708 spin_lock_init(&dev->addr_list_lock);
5709 netdev_set_addr_lockdep_class(dev);
5711 dev->iflink = -1;
5713 ret = dev_get_valid_name(net, dev, dev->name);
5714 if (ret < 0)
5715 goto out;
5717 /* Init, if this function is available */
5718 if (dev->netdev_ops->ndo_init) {
5719 ret = dev->netdev_ops->ndo_init(dev);
5720 if (ret) {
5721 if (ret > 0)
5722 ret = -EIO;
5723 goto out;
5727 ret = -EBUSY;
5728 if (!dev->ifindex)
5729 dev->ifindex = dev_new_index(net);
5730 else if (__dev_get_by_index(net, dev->ifindex))
5731 goto err_uninit;
5733 if (dev->iflink == -1)
5734 dev->iflink = dev->ifindex;
5736 /* Transfer changeable features to wanted_features and enable
5737 * software offloads (GSO and GRO).
5739 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5740 dev->features |= NETIF_F_SOFT_FEATURES;
5741 dev->wanted_features = dev->features & dev->hw_features;
5743 /* Turn on no cache copy if HW is doing checksum */
5744 if (!(dev->flags & IFF_LOOPBACK)) {
5745 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5746 if (dev->features & NETIF_F_ALL_CSUM) {
5747 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5748 dev->features |= NETIF_F_NOCACHE_COPY;
5752 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5754 dev->vlan_features |= NETIF_F_HIGHDMA;
5756 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5757 ret = notifier_to_errno(ret);
5758 if (ret)
5759 goto err_uninit;
5761 ret = netdev_register_kobject(dev);
5762 if (ret)
5763 goto err_uninit;
5764 dev->reg_state = NETREG_REGISTERED;
5766 __netdev_update_features(dev);
5769 * Default initial state at registry is that the
5770 * device is present.
5773 set_bit(__LINK_STATE_PRESENT, &dev->state);
5775 linkwatch_init_dev(dev);
5777 dev_init_scheduler(dev);
5778 dev_hold(dev);
5779 list_netdevice(dev);
5780 add_device_randomness(dev->dev_addr, dev->addr_len);
5782 /* Notify protocols, that a new device appeared. */
5783 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5784 ret = notifier_to_errno(ret);
5785 if (ret) {
5786 rollback_registered(dev);
5787 dev->reg_state = NETREG_UNREGISTERED;
5790 * Prevent userspace races by waiting until the network
5791 * device is fully setup before sending notifications.
5793 if (!dev->rtnl_link_ops ||
5794 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5795 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5797 out:
5798 return ret;
5800 err_uninit:
5801 if (dev->netdev_ops->ndo_uninit)
5802 dev->netdev_ops->ndo_uninit(dev);
5803 goto out;
5805 EXPORT_SYMBOL(register_netdevice);
5808 * init_dummy_netdev - init a dummy network device for NAPI
5809 * @dev: device to init
5811 * This takes a network device structure and initialize the minimum
5812 * amount of fields so it can be used to schedule NAPI polls without
5813 * registering a full blown interface. This is to be used by drivers
5814 * that need to tie several hardware interfaces to a single NAPI
5815 * poll scheduler due to HW limitations.
5817 int init_dummy_netdev(struct net_device *dev)
5819 /* Clear everything. Note we don't initialize spinlocks
5820 * are they aren't supposed to be taken by any of the
5821 * NAPI code and this dummy netdev is supposed to be
5822 * only ever used for NAPI polls
5824 memset(dev, 0, sizeof(struct net_device));
5826 /* make sure we BUG if trying to hit standard
5827 * register/unregister code path
5829 dev->reg_state = NETREG_DUMMY;
5831 /* NAPI wants this */
5832 INIT_LIST_HEAD(&dev->napi_list);
5834 /* a dummy interface is started by default */
5835 set_bit(__LINK_STATE_PRESENT, &dev->state);
5836 set_bit(__LINK_STATE_START, &dev->state);
5838 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5839 * because users of this 'device' dont need to change
5840 * its refcount.
5843 return 0;
5845 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5849 * register_netdev - register a network device
5850 * @dev: device to register
5852 * Take a completed network device structure and add it to the kernel
5853 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5854 * chain. 0 is returned on success. A negative errno code is returned
5855 * on a failure to set up the device, or if the name is a duplicate.
5857 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5858 * and expands the device name if you passed a format string to
5859 * alloc_netdev.
5861 int register_netdev(struct net_device *dev)
5863 int err;
5865 rtnl_lock();
5866 err = register_netdevice(dev);
5867 rtnl_unlock();
5868 return err;
5870 EXPORT_SYMBOL(register_netdev);
5872 int netdev_refcnt_read(const struct net_device *dev)
5874 int i, refcnt = 0;
5876 for_each_possible_cpu(i)
5877 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5878 return refcnt;
5880 EXPORT_SYMBOL(netdev_refcnt_read);
5883 * netdev_wait_allrefs - wait until all references are gone.
5884 * @dev: target net_device
5886 * This is called when unregistering network devices.
5888 * Any protocol or device that holds a reference should register
5889 * for netdevice notification, and cleanup and put back the
5890 * reference if they receive an UNREGISTER event.
5891 * We can get stuck here if buggy protocols don't correctly
5892 * call dev_put.
5894 static void netdev_wait_allrefs(struct net_device *dev)
5896 unsigned long rebroadcast_time, warning_time;
5897 int refcnt;
5899 linkwatch_forget_dev(dev);
5901 rebroadcast_time = warning_time = jiffies;
5902 refcnt = netdev_refcnt_read(dev);
5904 while (refcnt != 0) {
5905 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5906 rtnl_lock();
5908 /* Rebroadcast unregister notification */
5909 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5911 __rtnl_unlock();
5912 rcu_barrier();
5913 rtnl_lock();
5915 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5916 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5917 &dev->state)) {
5918 /* We must not have linkwatch events
5919 * pending on unregister. If this
5920 * happens, we simply run the queue
5921 * unscheduled, resulting in a noop
5922 * for this device.
5924 linkwatch_run_queue();
5927 __rtnl_unlock();
5929 rebroadcast_time = jiffies;
5932 msleep(250);
5934 refcnt = netdev_refcnt_read(dev);
5936 if (time_after(jiffies, warning_time + 10 * HZ)) {
5937 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5938 dev->name, refcnt);
5939 warning_time = jiffies;
5944 /* The sequence is:
5946 * rtnl_lock();
5947 * ...
5948 * register_netdevice(x1);
5949 * register_netdevice(x2);
5950 * ...
5951 * unregister_netdevice(y1);
5952 * unregister_netdevice(y2);
5953 * ...
5954 * rtnl_unlock();
5955 * free_netdev(y1);
5956 * free_netdev(y2);
5958 * We are invoked by rtnl_unlock().
5959 * This allows us to deal with problems:
5960 * 1) We can delete sysfs objects which invoke hotplug
5961 * without deadlocking with linkwatch via keventd.
5962 * 2) Since we run with the RTNL semaphore not held, we can sleep
5963 * safely in order to wait for the netdev refcnt to drop to zero.
5965 * We must not return until all unregister events added during
5966 * the interval the lock was held have been completed.
5968 void netdev_run_todo(void)
5970 struct list_head list;
5972 /* Snapshot list, allow later requests */
5973 list_replace_init(&net_todo_list, &list);
5975 __rtnl_unlock();
5978 /* Wait for rcu callbacks to finish before next phase */
5979 if (!list_empty(&list))
5980 rcu_barrier();
5982 while (!list_empty(&list)) {
5983 struct net_device *dev
5984 = list_first_entry(&list, struct net_device, todo_list);
5985 list_del(&dev->todo_list);
5987 rtnl_lock();
5988 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5989 __rtnl_unlock();
5991 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5992 pr_err("network todo '%s' but state %d\n",
5993 dev->name, dev->reg_state);
5994 dump_stack();
5995 continue;
5998 dev->reg_state = NETREG_UNREGISTERED;
6000 on_each_cpu(flush_backlog, dev, 1);
6002 netdev_wait_allrefs(dev);
6004 /* paranoia */
6005 BUG_ON(netdev_refcnt_read(dev));
6006 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6007 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6008 WARN_ON(dev->dn_ptr);
6010 if (dev->destructor)
6011 dev->destructor(dev);
6013 /* Free network device */
6014 kobject_put(&dev->dev.kobj);
6018 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6019 * fields in the same order, with only the type differing.
6021 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6022 const struct net_device_stats *netdev_stats)
6024 #if BITS_PER_LONG == 64
6025 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6026 memcpy(stats64, netdev_stats, sizeof(*stats64));
6027 #else
6028 size_t i, n = sizeof(*stats64) / sizeof(u64);
6029 const unsigned long *src = (const unsigned long *)netdev_stats;
6030 u64 *dst = (u64 *)stats64;
6032 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6033 sizeof(*stats64) / sizeof(u64));
6034 for (i = 0; i < n; i++)
6035 dst[i] = src[i];
6036 #endif
6038 EXPORT_SYMBOL(netdev_stats_to_stats64);
6041 * dev_get_stats - get network device statistics
6042 * @dev: device to get statistics from
6043 * @storage: place to store stats
6045 * Get network statistics from device. Return @storage.
6046 * The device driver may provide its own method by setting
6047 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6048 * otherwise the internal statistics structure is used.
6050 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6051 struct rtnl_link_stats64 *storage)
6053 const struct net_device_ops *ops = dev->netdev_ops;
6055 if (ops->ndo_get_stats64) {
6056 memset(storage, 0, sizeof(*storage));
6057 ops->ndo_get_stats64(dev, storage);
6058 } else if (ops->ndo_get_stats) {
6059 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6060 } else {
6061 netdev_stats_to_stats64(storage, &dev->stats);
6063 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6064 return storage;
6066 EXPORT_SYMBOL(dev_get_stats);
6068 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6070 struct netdev_queue *queue = dev_ingress_queue(dev);
6072 #ifdef CONFIG_NET_CLS_ACT
6073 if (queue)
6074 return queue;
6075 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6076 if (!queue)
6077 return NULL;
6078 netdev_init_one_queue(dev, queue, NULL);
6079 queue->qdisc = &noop_qdisc;
6080 queue->qdisc_sleeping = &noop_qdisc;
6081 rcu_assign_pointer(dev->ingress_queue, queue);
6082 #endif
6083 return queue;
6086 static const struct ethtool_ops default_ethtool_ops;
6089 * alloc_netdev_mqs - allocate network device
6090 * @sizeof_priv: size of private data to allocate space for
6091 * @name: device name format string
6092 * @setup: callback to initialize device
6093 * @txqs: the number of TX subqueues to allocate
6094 * @rxqs: the number of RX subqueues to allocate
6096 * Allocates a struct net_device with private data area for driver use
6097 * and performs basic initialization. Also allocates subquue structs
6098 * for each queue on the device.
6100 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6101 void (*setup)(struct net_device *),
6102 unsigned int txqs, unsigned int rxqs)
6104 struct net_device *dev;
6105 size_t alloc_size;
6106 struct net_device *p;
6108 BUG_ON(strlen(name) >= sizeof(dev->name));
6110 if (txqs < 1) {
6111 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6112 return NULL;
6115 #ifdef CONFIG_RPS
6116 if (rxqs < 1) {
6117 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6118 return NULL;
6120 #endif
6122 alloc_size = sizeof(struct net_device);
6123 if (sizeof_priv) {
6124 /* ensure 32-byte alignment of private area */
6125 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6126 alloc_size += sizeof_priv;
6128 /* ensure 32-byte alignment of whole construct */
6129 alloc_size += NETDEV_ALIGN - 1;
6131 p = kzalloc(alloc_size, GFP_KERNEL);
6132 if (!p) {
6133 pr_err("alloc_netdev: Unable to allocate device\n");
6134 return NULL;
6137 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6138 dev->padded = (char *)dev - (char *)p;
6140 dev->pcpu_refcnt = alloc_percpu(int);
6141 if (!dev->pcpu_refcnt)
6142 goto free_p;
6144 if (dev_addr_init(dev))
6145 goto free_pcpu;
6147 dev_mc_init(dev);
6148 dev_uc_init(dev);
6150 dev_net_set(dev, &init_net);
6152 dev->gso_max_size = GSO_MAX_SIZE;
6153 dev->gso_max_segs = GSO_MAX_SEGS;
6155 INIT_LIST_HEAD(&dev->napi_list);
6156 INIT_LIST_HEAD(&dev->unreg_list);
6157 INIT_LIST_HEAD(&dev->link_watch_list);
6158 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6159 setup(dev);
6161 dev->num_tx_queues = txqs;
6162 dev->real_num_tx_queues = txqs;
6163 if (netif_alloc_netdev_queues(dev))
6164 goto free_all;
6166 #ifdef CONFIG_RPS
6167 dev->num_rx_queues = rxqs;
6168 dev->real_num_rx_queues = rxqs;
6169 if (netif_alloc_rx_queues(dev))
6170 goto free_all;
6171 #endif
6173 strcpy(dev->name, name);
6174 dev->group = INIT_NETDEV_GROUP;
6175 if (!dev->ethtool_ops)
6176 dev->ethtool_ops = &default_ethtool_ops;
6177 return dev;
6179 free_all:
6180 free_netdev(dev);
6181 return NULL;
6183 free_pcpu:
6184 free_percpu(dev->pcpu_refcnt);
6185 kfree(dev->_tx);
6186 #ifdef CONFIG_RPS
6187 kfree(dev->_rx);
6188 #endif
6190 free_p:
6191 kfree(p);
6192 return NULL;
6194 EXPORT_SYMBOL(alloc_netdev_mqs);
6197 * free_netdev - free network device
6198 * @dev: device
6200 * This function does the last stage of destroying an allocated device
6201 * interface. The reference to the device object is released.
6202 * If this is the last reference then it will be freed.
6204 void free_netdev(struct net_device *dev)
6206 struct napi_struct *p, *n;
6208 release_net(dev_net(dev));
6210 kfree(dev->_tx);
6211 #ifdef CONFIG_RPS
6212 kfree(dev->_rx);
6213 #endif
6215 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6217 /* Flush device addresses */
6218 dev_addr_flush(dev);
6220 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6221 netif_napi_del(p);
6223 free_percpu(dev->pcpu_refcnt);
6224 dev->pcpu_refcnt = NULL;
6226 /* Compatibility with error handling in drivers */
6227 if (dev->reg_state == NETREG_UNINITIALIZED) {
6228 kfree((char *)dev - dev->padded);
6229 return;
6232 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6233 dev->reg_state = NETREG_RELEASED;
6235 /* will free via device release */
6236 put_device(&dev->dev);
6238 EXPORT_SYMBOL(free_netdev);
6241 * synchronize_net - Synchronize with packet receive processing
6243 * Wait for packets currently being received to be done.
6244 * Does not block later packets from starting.
6246 void synchronize_net(void)
6248 might_sleep();
6249 if (rtnl_is_locked())
6250 synchronize_rcu_expedited();
6251 else
6252 synchronize_rcu();
6254 EXPORT_SYMBOL(synchronize_net);
6257 * unregister_netdevice_queue - remove device from the kernel
6258 * @dev: device
6259 * @head: list
6261 * This function shuts down a device interface and removes it
6262 * from the kernel tables.
6263 * If head not NULL, device is queued to be unregistered later.
6265 * Callers must hold the rtnl semaphore. You may want
6266 * unregister_netdev() instead of this.
6269 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6271 ASSERT_RTNL();
6273 if (head) {
6274 list_move_tail(&dev->unreg_list, head);
6275 } else {
6276 rollback_registered(dev);
6277 /* Finish processing unregister after unlock */
6278 net_set_todo(dev);
6281 EXPORT_SYMBOL(unregister_netdevice_queue);
6284 * unregister_netdevice_many - unregister many devices
6285 * @head: list of devices
6287 void unregister_netdevice_many(struct list_head *head)
6289 struct net_device *dev;
6291 if (!list_empty(head)) {
6292 rollback_registered_many(head);
6293 list_for_each_entry(dev, head, unreg_list)
6294 net_set_todo(dev);
6297 EXPORT_SYMBOL(unregister_netdevice_many);
6300 * unregister_netdev - remove device from the kernel
6301 * @dev: device
6303 * This function shuts down a device interface and removes it
6304 * from the kernel tables.
6306 * This is just a wrapper for unregister_netdevice that takes
6307 * the rtnl semaphore. In general you want to use this and not
6308 * unregister_netdevice.
6310 void unregister_netdev(struct net_device *dev)
6312 rtnl_lock();
6313 unregister_netdevice(dev);
6314 rtnl_unlock();
6316 EXPORT_SYMBOL(unregister_netdev);
6319 * dev_change_net_namespace - move device to different nethost namespace
6320 * @dev: device
6321 * @net: network namespace
6322 * @pat: If not NULL name pattern to try if the current device name
6323 * is already taken in the destination network namespace.
6325 * This function shuts down a device interface and moves it
6326 * to a new network namespace. On success 0 is returned, on
6327 * a failure a netagive errno code is returned.
6329 * Callers must hold the rtnl semaphore.
6332 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6334 int err;
6336 ASSERT_RTNL();
6338 /* Don't allow namespace local devices to be moved. */
6339 err = -EINVAL;
6340 if (dev->features & NETIF_F_NETNS_LOCAL)
6341 goto out;
6343 /* Ensure the device has been registrered */
6344 if (dev->reg_state != NETREG_REGISTERED)
6345 goto out;
6347 /* Get out if there is nothing todo */
6348 err = 0;
6349 if (net_eq(dev_net(dev), net))
6350 goto out;
6352 /* Pick the destination device name, and ensure
6353 * we can use it in the destination network namespace.
6355 err = -EEXIST;
6356 if (__dev_get_by_name(net, dev->name)) {
6357 /* We get here if we can't use the current device name */
6358 if (!pat)
6359 goto out;
6360 if (dev_get_valid_name(net, dev, pat) < 0)
6361 goto out;
6365 * And now a mini version of register_netdevice unregister_netdevice.
6368 /* If device is running close it first. */
6369 dev_close(dev);
6371 /* And unlink it from device chain */
6372 err = -ENODEV;
6373 unlist_netdevice(dev);
6375 synchronize_net();
6377 /* Shutdown queueing discipline. */
6378 dev_shutdown(dev);
6380 /* Notify protocols, that we are about to destroy
6381 this device. They should clean all the things.
6383 Note that dev->reg_state stays at NETREG_REGISTERED.
6384 This is wanted because this way 8021q and macvlan know
6385 the device is just moving and can keep their slaves up.
6387 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6388 rcu_barrier();
6389 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6390 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6393 * Flush the unicast and multicast chains
6395 dev_uc_flush(dev);
6396 dev_mc_flush(dev);
6398 /* Actually switch the network namespace */
6399 dev_net_set(dev, net);
6401 /* If there is an ifindex conflict assign a new one */
6402 if (__dev_get_by_index(net, dev->ifindex)) {
6403 int iflink = (dev->iflink == dev->ifindex);
6404 dev->ifindex = dev_new_index(net);
6405 if (iflink)
6406 dev->iflink = dev->ifindex;
6409 /* Fixup kobjects */
6410 err = device_rename(&dev->dev, dev->name);
6411 WARN_ON(err);
6413 /* Add the device back in the hashes */
6414 list_netdevice(dev);
6416 /* Notify protocols, that a new device appeared. */
6417 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6420 * Prevent userspace races by waiting until the network
6421 * device is fully setup before sending notifications.
6423 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6425 synchronize_net();
6426 err = 0;
6427 out:
6428 return err;
6430 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6432 static int dev_cpu_callback(struct notifier_block *nfb,
6433 unsigned long action,
6434 void *ocpu)
6436 struct sk_buff **list_skb;
6437 struct sk_buff *skb;
6438 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6439 struct softnet_data *sd, *oldsd;
6441 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6442 return NOTIFY_OK;
6444 local_irq_disable();
6445 cpu = smp_processor_id();
6446 sd = &per_cpu(softnet_data, cpu);
6447 oldsd = &per_cpu(softnet_data, oldcpu);
6449 /* Find end of our completion_queue. */
6450 list_skb = &sd->completion_queue;
6451 while (*list_skb)
6452 list_skb = &(*list_skb)->next;
6453 /* Append completion queue from offline CPU. */
6454 *list_skb = oldsd->completion_queue;
6455 oldsd->completion_queue = NULL;
6457 /* Append output queue from offline CPU. */
6458 if (oldsd->output_queue) {
6459 *sd->output_queue_tailp = oldsd->output_queue;
6460 sd->output_queue_tailp = oldsd->output_queue_tailp;
6461 oldsd->output_queue = NULL;
6462 oldsd->output_queue_tailp = &oldsd->output_queue;
6464 /* Append NAPI poll list from offline CPU. */
6465 if (!list_empty(&oldsd->poll_list)) {
6466 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6467 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6470 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6471 local_irq_enable();
6473 /* Process offline CPU's input_pkt_queue */
6474 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6475 netif_rx(skb);
6476 input_queue_head_incr(oldsd);
6478 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6479 netif_rx(skb);
6480 input_queue_head_incr(oldsd);
6483 return NOTIFY_OK;
6488 * netdev_increment_features - increment feature set by one
6489 * @all: current feature set
6490 * @one: new feature set
6491 * @mask: mask feature set
6493 * Computes a new feature set after adding a device with feature set
6494 * @one to the master device with current feature set @all. Will not
6495 * enable anything that is off in @mask. Returns the new feature set.
6497 netdev_features_t netdev_increment_features(netdev_features_t all,
6498 netdev_features_t one, netdev_features_t mask)
6500 if (mask & NETIF_F_GEN_CSUM)
6501 mask |= NETIF_F_ALL_CSUM;
6502 mask |= NETIF_F_VLAN_CHALLENGED;
6504 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6505 all &= one | ~NETIF_F_ALL_FOR_ALL;
6507 /* If one device supports hw checksumming, set for all. */
6508 if (all & NETIF_F_GEN_CSUM)
6509 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6511 return all;
6513 EXPORT_SYMBOL(netdev_increment_features);
6515 static struct hlist_head *netdev_create_hash(void)
6517 int i;
6518 struct hlist_head *hash;
6520 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6521 if (hash != NULL)
6522 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6523 INIT_HLIST_HEAD(&hash[i]);
6525 return hash;
6528 /* Initialize per network namespace state */
6529 static int __net_init netdev_init(struct net *net)
6531 if (net != &init_net)
6532 INIT_LIST_HEAD(&net->dev_base_head);
6534 net->dev_name_head = netdev_create_hash();
6535 if (net->dev_name_head == NULL)
6536 goto err_name;
6538 net->dev_index_head = netdev_create_hash();
6539 if (net->dev_index_head == NULL)
6540 goto err_idx;
6542 return 0;
6544 err_idx:
6545 kfree(net->dev_name_head);
6546 err_name:
6547 return -ENOMEM;
6551 * netdev_drivername - network driver for the device
6552 * @dev: network device
6554 * Determine network driver for device.
6556 const char *netdev_drivername(const struct net_device *dev)
6558 const struct device_driver *driver;
6559 const struct device *parent;
6560 const char *empty = "";
6562 parent = dev->dev.parent;
6563 if (!parent)
6564 return empty;
6566 driver = parent->driver;
6567 if (driver && driver->name)
6568 return driver->name;
6569 return empty;
6572 static int __netdev_printk(const char *level, const struct net_device *dev,
6573 struct va_format *vaf)
6575 int r;
6577 if (dev && dev->dev.parent) {
6578 r = dev_printk_emit(level[1] - '0',
6579 dev->dev.parent,
6580 "%s %s %s: %pV",
6581 dev_driver_string(dev->dev.parent),
6582 dev_name(dev->dev.parent),
6583 netdev_name(dev), vaf);
6584 } else if (dev) {
6585 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6586 } else {
6587 r = printk("%s(NULL net_device): %pV", level, vaf);
6590 return r;
6593 int netdev_printk(const char *level, const struct net_device *dev,
6594 const char *format, ...)
6596 struct va_format vaf;
6597 va_list args;
6598 int r;
6600 va_start(args, format);
6602 vaf.fmt = format;
6603 vaf.va = &args;
6605 r = __netdev_printk(level, dev, &vaf);
6607 va_end(args);
6609 return r;
6611 EXPORT_SYMBOL(netdev_printk);
6613 #define define_netdev_printk_level(func, level) \
6614 int func(const struct net_device *dev, const char *fmt, ...) \
6616 int r; \
6617 struct va_format vaf; \
6618 va_list args; \
6620 va_start(args, fmt); \
6622 vaf.fmt = fmt; \
6623 vaf.va = &args; \
6625 r = __netdev_printk(level, dev, &vaf); \
6627 va_end(args); \
6629 return r; \
6631 EXPORT_SYMBOL(func);
6633 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6634 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6635 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6636 define_netdev_printk_level(netdev_err, KERN_ERR);
6637 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6638 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6639 define_netdev_printk_level(netdev_info, KERN_INFO);
6641 static void __net_exit netdev_exit(struct net *net)
6643 kfree(net->dev_name_head);
6644 kfree(net->dev_index_head);
6647 static struct pernet_operations __net_initdata netdev_net_ops = {
6648 .init = netdev_init,
6649 .exit = netdev_exit,
6652 static void __net_exit default_device_exit(struct net *net)
6654 struct net_device *dev, *aux;
6656 * Push all migratable network devices back to the
6657 * initial network namespace
6659 rtnl_lock();
6660 for_each_netdev_safe(net, dev, aux) {
6661 int err;
6662 char fb_name[IFNAMSIZ];
6664 /* Ignore unmoveable devices (i.e. loopback) */
6665 if (dev->features & NETIF_F_NETNS_LOCAL)
6666 continue;
6668 /* Leave virtual devices for the generic cleanup */
6669 if (dev->rtnl_link_ops)
6670 continue;
6672 /* Push remaining network devices to init_net */
6673 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6674 err = dev_change_net_namespace(dev, &init_net, fb_name);
6675 if (err) {
6676 pr_emerg("%s: failed to move %s to init_net: %d\n",
6677 __func__, dev->name, err);
6678 BUG();
6681 rtnl_unlock();
6684 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6686 /* At exit all network devices most be removed from a network
6687 * namespace. Do this in the reverse order of registration.
6688 * Do this across as many network namespaces as possible to
6689 * improve batching efficiency.
6691 struct net_device *dev;
6692 struct net *net;
6693 LIST_HEAD(dev_kill_list);
6695 rtnl_lock();
6696 list_for_each_entry(net, net_list, exit_list) {
6697 for_each_netdev_reverse(net, dev) {
6698 if (dev->rtnl_link_ops)
6699 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6700 else
6701 unregister_netdevice_queue(dev, &dev_kill_list);
6704 unregister_netdevice_many(&dev_kill_list);
6705 list_del(&dev_kill_list);
6706 rtnl_unlock();
6709 static struct pernet_operations __net_initdata default_device_ops = {
6710 .exit = default_device_exit,
6711 .exit_batch = default_device_exit_batch,
6715 * Initialize the DEV module. At boot time this walks the device list and
6716 * unhooks any devices that fail to initialise (normally hardware not
6717 * present) and leaves us with a valid list of present and active devices.
6722 * This is called single threaded during boot, so no need
6723 * to take the rtnl semaphore.
6725 static int __init net_dev_init(void)
6727 int i, rc = -ENOMEM;
6729 BUG_ON(!dev_boot_phase);
6731 if (dev_proc_init())
6732 goto out;
6734 if (netdev_kobject_init())
6735 goto out;
6737 INIT_LIST_HEAD(&ptype_all);
6738 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6739 INIT_LIST_HEAD(&ptype_base[i]);
6741 INIT_LIST_HEAD(&offload_base);
6743 if (register_pernet_subsys(&netdev_net_ops))
6744 goto out;
6747 * Initialise the packet receive queues.
6750 for_each_possible_cpu(i) {
6751 struct softnet_data *sd = &per_cpu(softnet_data, i);
6753 memset(sd, 0, sizeof(*sd));
6754 skb_queue_head_init(&sd->input_pkt_queue);
6755 skb_queue_head_init(&sd->process_queue);
6756 sd->completion_queue = NULL;
6757 INIT_LIST_HEAD(&sd->poll_list);
6758 sd->output_queue = NULL;
6759 sd->output_queue_tailp = &sd->output_queue;
6760 #ifdef CONFIG_RPS
6761 sd->csd.func = rps_trigger_softirq;
6762 sd->csd.info = sd;
6763 sd->csd.flags = 0;
6764 sd->cpu = i;
6765 #endif
6767 sd->backlog.poll = process_backlog;
6768 sd->backlog.weight = weight_p;
6769 sd->backlog.gro_list = NULL;
6770 sd->backlog.gro_count = 0;
6773 dev_boot_phase = 0;
6775 /* The loopback device is special if any other network devices
6776 * is present in a network namespace the loopback device must
6777 * be present. Since we now dynamically allocate and free the
6778 * loopback device ensure this invariant is maintained by
6779 * keeping the loopback device as the first device on the
6780 * list of network devices. Ensuring the loopback devices
6781 * is the first device that appears and the last network device
6782 * that disappears.
6784 if (register_pernet_device(&loopback_net_ops))
6785 goto out;
6787 if (register_pernet_device(&default_device_ops))
6788 goto out;
6790 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6791 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6793 hotcpu_notifier(dev_cpu_callback, 0);
6794 dst_init();
6795 dev_mcast_init();
6796 rc = 0;
6797 out:
6798 return rc;
6801 subsys_initcall(net_dev_init);
6803 static int __init initialize_hashrnd(void)
6805 get_random_bytes(&hashrnd, sizeof(hashrnd));
6806 return 0;
6809 late_initcall_sync(initialize_hashrnd);