2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
35 static long dax_map_atomic(struct block_device
*bdev
, struct blk_dax_ctl
*dax
)
37 struct request_queue
*q
= bdev
->bd_queue
;
40 dax
->addr
= (void __pmem
*) ERR_PTR(-EIO
);
41 if (blk_queue_enter(q
, true) != 0)
44 rc
= bdev_direct_access(bdev
, dax
);
46 dax
->addr
= (void __pmem
*) ERR_PTR(rc
);
53 static void dax_unmap_atomic(struct block_device
*bdev
,
54 const struct blk_dax_ctl
*dax
)
56 if (IS_ERR(dax
->addr
))
58 blk_queue_exit(bdev
->bd_queue
);
61 struct page
*read_dax_sector(struct block_device
*bdev
, sector_t n
)
63 struct page
*page
= alloc_pages(GFP_KERNEL
, 0);
64 struct blk_dax_ctl dax
= {
66 .sector
= n
& ~((((int) PAGE_SIZE
) / 512) - 1),
71 return ERR_PTR(-ENOMEM
);
73 rc
= dax_map_atomic(bdev
, &dax
);
76 memcpy_from_pmem(page_address(page
), dax
.addr
, PAGE_SIZE
);
77 dax_unmap_atomic(bdev
, &dax
);
82 * dax_clear_blocks() is called from within transaction context from XFS,
83 * and hence this means the stack from this point must follow GFP_NOFS
84 * semantics for all operations.
86 int dax_clear_blocks(struct inode
*inode
, sector_t block
, long _size
)
88 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
89 struct blk_dax_ctl dax
= {
90 .sector
= block
<< (inode
->i_blkbits
- 9),
98 count
= dax_map_atomic(bdev
, &dax
);
101 sz
= min_t(long, count
, SZ_128K
);
102 clear_pmem(dax
.addr
, sz
);
104 dax
.sector
+= sz
/ 512;
105 dax_unmap_atomic(bdev
, &dax
);
112 EXPORT_SYMBOL_GPL(dax_clear_blocks
);
114 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
115 static void dax_new_buf(void __pmem
*addr
, unsigned size
, unsigned first
,
116 loff_t pos
, loff_t end
)
118 loff_t final
= end
- pos
+ first
; /* The final byte of the buffer */
121 clear_pmem(addr
, first
);
123 clear_pmem(addr
+ final
, size
- final
);
126 static bool buffer_written(struct buffer_head
*bh
)
128 return buffer_mapped(bh
) && !buffer_unwritten(bh
);
132 * When ext4 encounters a hole, it returns without modifying the buffer_head
133 * which means that we can't trust b_size. To cope with this, we set b_state
134 * to 0 before calling get_block and, if any bit is set, we know we can trust
135 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
136 * and would save us time calling get_block repeatedly.
138 static bool buffer_size_valid(struct buffer_head
*bh
)
140 return bh
->b_state
!= 0;
144 static sector_t
to_sector(const struct buffer_head
*bh
,
145 const struct inode
*inode
)
147 sector_t sector
= bh
->b_blocknr
<< (inode
->i_blkbits
- 9);
152 static ssize_t
dax_io(struct inode
*inode
, struct iov_iter
*iter
,
153 loff_t start
, loff_t end
, get_block_t get_block
,
154 struct buffer_head
*bh
)
156 loff_t pos
= start
, max
= start
, bh_max
= start
;
157 bool hole
= false, need_wmb
= false;
158 struct block_device
*bdev
= NULL
;
159 int rw
= iov_iter_rw(iter
), rc
;
161 struct blk_dax_ctl dax
= {
162 .addr
= (void __pmem
*) ERR_PTR(-EIO
),
166 end
= min(end
, i_size_read(inode
));
171 unsigned blkbits
= inode
->i_blkbits
;
172 long page
= pos
>> PAGE_SHIFT
;
173 sector_t block
= page
<< (PAGE_SHIFT
- blkbits
);
174 unsigned first
= pos
- (block
<< blkbits
);
178 bh
->b_size
= PAGE_ALIGN(end
- pos
);
180 rc
= get_block(inode
, block
, bh
, rw
== WRITE
);
183 if (!buffer_size_valid(bh
))
184 bh
->b_size
= 1 << blkbits
;
185 bh_max
= pos
- first
+ bh
->b_size
;
188 unsigned done
= bh
->b_size
-
189 (bh_max
- (pos
- first
));
190 bh
->b_blocknr
+= done
>> blkbits
;
194 hole
= rw
== READ
&& !buffer_written(bh
);
196 size
= bh
->b_size
- first
;
198 dax_unmap_atomic(bdev
, &dax
);
199 dax
.sector
= to_sector(bh
, inode
);
200 dax
.size
= bh
->b_size
;
201 map_len
= dax_map_atomic(bdev
, &dax
);
206 if (buffer_unwritten(bh
) || buffer_new(bh
)) {
207 dax_new_buf(dax
.addr
, map_len
, first
,
212 size
= map_len
- first
;
214 max
= min(pos
+ size
, end
);
217 if (iov_iter_rw(iter
) == WRITE
) {
218 len
= copy_from_iter_pmem(dax
.addr
, max
- pos
, iter
);
221 len
= copy_to_iter((void __force
*) dax
.addr
, max
- pos
,
224 len
= iov_iter_zero(max
- pos
, iter
);
232 if (!IS_ERR(dax
.addr
))
238 dax_unmap_atomic(bdev
, &dax
);
240 return (pos
== start
) ? rc
: pos
- start
;
244 * dax_do_io - Perform I/O to a DAX file
245 * @iocb: The control block for this I/O
246 * @inode: The file which the I/O is directed at
247 * @iter: The addresses to do I/O from or to
248 * @pos: The file offset where the I/O starts
249 * @get_block: The filesystem method used to translate file offsets to blocks
250 * @end_io: A filesystem callback for I/O completion
253 * This function uses the same locking scheme as do_blockdev_direct_IO:
254 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255 * caller for writes. For reads, we take and release the i_mutex ourselves.
256 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
260 ssize_t
dax_do_io(struct kiocb
*iocb
, struct inode
*inode
,
261 struct iov_iter
*iter
, loff_t pos
, get_block_t get_block
,
262 dio_iodone_t end_io
, int flags
)
264 struct buffer_head bh
;
265 ssize_t retval
= -EINVAL
;
266 loff_t end
= pos
+ iov_iter_count(iter
);
268 memset(&bh
, 0, sizeof(bh
));
269 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
271 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
) {
272 struct address_space
*mapping
= inode
->i_mapping
;
274 retval
= filemap_write_and_wait_range(mapping
, pos
, end
- 1);
281 /* Protects against truncate */
282 if (!(flags
& DIO_SKIP_DIO_COUNT
))
283 inode_dio_begin(inode
);
285 retval
= dax_io(inode
, iter
, pos
, end
, get_block
, &bh
);
287 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
)
290 if ((retval
> 0) && end_io
)
291 end_io(iocb
, pos
, retval
, bh
.b_private
);
293 if (!(flags
& DIO_SKIP_DIO_COUNT
))
294 inode_dio_end(inode
);
298 EXPORT_SYMBOL_GPL(dax_do_io
);
301 * The user has performed a load from a hole in the file. Allocating
302 * a new page in the file would cause excessive storage usage for
303 * workloads with sparse files. We allocate a page cache page instead.
304 * We'll kick it out of the page cache if it's ever written to,
305 * otherwise it will simply fall out of the page cache under memory
306 * pressure without ever having been dirtied.
308 static int dax_load_hole(struct address_space
*mapping
, struct page
*page
,
309 struct vm_fault
*vmf
)
312 struct inode
*inode
= mapping
->host
;
314 page
= find_or_create_page(mapping
, vmf
->pgoff
,
315 GFP_KERNEL
| __GFP_ZERO
);
318 /* Recheck i_size under page lock to avoid truncate race */
319 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
320 if (vmf
->pgoff
>= size
) {
322 page_cache_release(page
);
323 return VM_FAULT_SIGBUS
;
327 return VM_FAULT_LOCKED
;
330 static int copy_user_bh(struct page
*to
, struct inode
*inode
,
331 struct buffer_head
*bh
, unsigned long vaddr
)
333 struct blk_dax_ctl dax
= {
334 .sector
= to_sector(bh
, inode
),
337 struct block_device
*bdev
= bh
->b_bdev
;
340 if (dax_map_atomic(bdev
, &dax
) < 0)
341 return PTR_ERR(dax
.addr
);
342 vto
= kmap_atomic(to
);
343 copy_user_page(vto
, (void __force
*)dax
.addr
, vaddr
, to
);
345 dax_unmap_atomic(bdev
, &dax
);
350 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
352 static int dax_radix_entry(struct address_space
*mapping
, pgoff_t index
,
353 sector_t sector
, bool pmd_entry
, bool dirty
)
355 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
356 pgoff_t pmd_index
= DAX_PMD_INDEX(index
);
360 WARN_ON_ONCE(pmd_entry
&& !dirty
);
362 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
364 spin_lock_irq(&mapping
->tree_lock
);
366 entry
= radix_tree_lookup(page_tree
, pmd_index
);
367 if (entry
&& RADIX_DAX_TYPE(entry
) == RADIX_DAX_PMD
) {
372 entry
= radix_tree_lookup(page_tree
, index
);
374 type
= RADIX_DAX_TYPE(entry
);
375 if (WARN_ON_ONCE(type
!= RADIX_DAX_PTE
&&
376 type
!= RADIX_DAX_PMD
)) {
381 if (!pmd_entry
|| type
== RADIX_DAX_PMD
)
385 * We only insert dirty PMD entries into the radix tree. This
386 * means we don't need to worry about removing a dirty PTE
387 * entry and inserting a clean PMD entry, thus reducing the
388 * range we would flush with a follow-up fsync/msync call.
390 radix_tree_delete(&mapping
->page_tree
, index
);
391 mapping
->nrexceptional
--;
394 if (sector
== NO_SECTOR
) {
396 * This can happen during correct operation if our pfn_mkwrite
397 * fault raced against a hole punch operation. If this
398 * happens the pte that was hole punched will have been
399 * unmapped and the radix tree entry will have been removed by
400 * the time we are called, but the call will still happen. We
401 * will return all the way up to wp_pfn_shared(), where the
402 * pte_same() check will fail, eventually causing page fault
403 * to be retried by the CPU.
408 error
= radix_tree_insert(page_tree
, index
,
409 RADIX_DAX_ENTRY(sector
, pmd_entry
));
413 mapping
->nrexceptional
++;
416 radix_tree_tag_set(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
418 spin_unlock_irq(&mapping
->tree_lock
);
422 static int dax_writeback_one(struct block_device
*bdev
,
423 struct address_space
*mapping
, pgoff_t index
, void *entry
)
425 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
426 int type
= RADIX_DAX_TYPE(entry
);
427 struct radix_tree_node
*node
;
428 struct blk_dax_ctl dax
;
432 spin_lock_irq(&mapping
->tree_lock
);
434 * Regular page slots are stabilized by the page lock even
435 * without the tree itself locked. These unlocked entries
436 * need verification under the tree lock.
438 if (!__radix_tree_lookup(page_tree
, index
, &node
, &slot
))
443 /* another fsync thread may have already written back this entry */
444 if (!radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
447 if (WARN_ON_ONCE(type
!= RADIX_DAX_PTE
&& type
!= RADIX_DAX_PMD
)) {
452 dax
.sector
= RADIX_DAX_SECTOR(entry
);
453 dax
.size
= (type
== RADIX_DAX_PMD
? PMD_SIZE
: PAGE_SIZE
);
454 spin_unlock_irq(&mapping
->tree_lock
);
457 * We cannot hold tree_lock while calling dax_map_atomic() because it
458 * eventually calls cond_resched().
460 ret
= dax_map_atomic(bdev
, &dax
);
464 if (WARN_ON_ONCE(ret
< dax
.size
)) {
469 wb_cache_pmem(dax
.addr
, dax
.size
);
471 spin_lock_irq(&mapping
->tree_lock
);
472 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_TOWRITE
);
473 spin_unlock_irq(&mapping
->tree_lock
);
475 dax_unmap_atomic(bdev
, &dax
);
479 spin_unlock_irq(&mapping
->tree_lock
);
484 * Flush the mapping to the persistent domain within the byte range of [start,
485 * end]. This is required by data integrity operations to ensure file data is
486 * on persistent storage prior to completion of the operation.
488 int dax_writeback_mapping_range(struct address_space
*mapping
, loff_t start
,
491 struct inode
*inode
= mapping
->host
;
492 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
493 pgoff_t start_index
, end_index
, pmd_index
;
494 pgoff_t indices
[PAGEVEC_SIZE
];
500 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
503 start_index
= start
>> PAGE_CACHE_SHIFT
;
504 end_index
= end
>> PAGE_CACHE_SHIFT
;
505 pmd_index
= DAX_PMD_INDEX(start_index
);
508 entry
= radix_tree_lookup(&mapping
->page_tree
, pmd_index
);
511 /* see if the start of our range is covered by a PMD entry */
512 if (entry
&& RADIX_DAX_TYPE(entry
) == RADIX_DAX_PMD
)
513 start_index
= pmd_index
;
515 tag_pages_for_writeback(mapping
, start_index
, end_index
);
517 pagevec_init(&pvec
, 0);
519 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
520 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
521 pvec
.pages
, indices
);
526 for (i
= 0; i
< pvec
.nr
; i
++) {
527 if (indices
[i
] > end_index
) {
532 ret
= dax_writeback_one(bdev
, mapping
, indices
[i
],
541 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
543 static int dax_insert_mapping(struct inode
*inode
, struct buffer_head
*bh
,
544 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
546 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
547 struct address_space
*mapping
= inode
->i_mapping
;
548 struct block_device
*bdev
= bh
->b_bdev
;
549 struct blk_dax_ctl dax
= {
550 .sector
= to_sector(bh
, inode
),
556 i_mmap_lock_read(mapping
);
559 * Check truncate didn't happen while we were allocating a block.
560 * If it did, this block may or may not be still allocated to the
561 * file. We can't tell the filesystem to free it because we can't
562 * take i_mutex here. In the worst case, the file still has blocks
563 * allocated past the end of the file.
565 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
566 if (unlikely(vmf
->pgoff
>= size
)) {
571 if (dax_map_atomic(bdev
, &dax
) < 0) {
572 error
= PTR_ERR(dax
.addr
);
576 if (buffer_unwritten(bh
) || buffer_new(bh
)) {
577 clear_pmem(dax
.addr
, PAGE_SIZE
);
580 dax_unmap_atomic(bdev
, &dax
);
582 error
= dax_radix_entry(mapping
, vmf
->pgoff
, dax
.sector
, false,
583 vmf
->flags
& FAULT_FLAG_WRITE
);
587 error
= vm_insert_mixed(vma
, vaddr
, dax
.pfn
);
590 i_mmap_unlock_read(mapping
);
596 * __dax_fault - handle a page fault on a DAX file
597 * @vma: The virtual memory area where the fault occurred
598 * @vmf: The description of the fault
599 * @get_block: The filesystem method used to translate file offsets to blocks
600 * @complete_unwritten: The filesystem method used to convert unwritten blocks
601 * to written so the data written to them is exposed. This is required for
602 * required by write faults for filesystems that will return unwritten
603 * extent mappings from @get_block, but it is optional for reads as
604 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
605 * not support unwritten extents, the it should pass NULL.
607 * When a page fault occurs, filesystems may call this helper in their
608 * fault handler for DAX files. __dax_fault() assumes the caller has done all
609 * the necessary locking for the page fault to proceed successfully.
611 int __dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
612 get_block_t get_block
, dax_iodone_t complete_unwritten
)
614 struct file
*file
= vma
->vm_file
;
615 struct address_space
*mapping
= file
->f_mapping
;
616 struct inode
*inode
= mapping
->host
;
618 struct buffer_head bh
;
619 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
620 unsigned blkbits
= inode
->i_blkbits
;
626 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
627 if (vmf
->pgoff
>= size
)
628 return VM_FAULT_SIGBUS
;
630 memset(&bh
, 0, sizeof(bh
));
631 block
= (sector_t
)vmf
->pgoff
<< (PAGE_SHIFT
- blkbits
);
632 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
633 bh
.b_size
= PAGE_SIZE
;
636 page
= find_get_page(mapping
, vmf
->pgoff
);
638 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
639 page_cache_release(page
);
640 return VM_FAULT_RETRY
;
642 if (unlikely(page
->mapping
!= mapping
)) {
644 page_cache_release(page
);
647 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
648 if (unlikely(vmf
->pgoff
>= size
)) {
650 * We have a struct page covering a hole in the file
651 * from a read fault and we've raced with a truncate
658 error
= get_block(inode
, block
, &bh
, 0);
659 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
660 error
= -EIO
; /* fs corruption? */
664 if (!buffer_mapped(&bh
) && !buffer_unwritten(&bh
) && !vmf
->cow_page
) {
665 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
666 error
= get_block(inode
, block
, &bh
, 1);
667 count_vm_event(PGMAJFAULT
);
668 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
669 major
= VM_FAULT_MAJOR
;
670 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
675 return dax_load_hole(mapping
, page
, vmf
);
680 struct page
*new_page
= vmf
->cow_page
;
681 if (buffer_written(&bh
))
682 error
= copy_user_bh(new_page
, inode
, &bh
, vaddr
);
684 clear_user_highpage(new_page
, vaddr
);
689 i_mmap_lock_read(mapping
);
690 /* Check we didn't race with truncate */
691 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >>
693 if (vmf
->pgoff
>= size
) {
694 i_mmap_unlock_read(mapping
);
699 return VM_FAULT_LOCKED
;
702 /* Check we didn't race with a read fault installing a new page */
704 page
= find_lock_page(mapping
, vmf
->pgoff
);
707 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
709 delete_from_page_cache(page
);
711 page_cache_release(page
);
716 * If we successfully insert the new mapping over an unwritten extent,
717 * we need to ensure we convert the unwritten extent. If there is an
718 * error inserting the mapping, the filesystem needs to leave it as
719 * unwritten to prevent exposure of the stale underlying data to
720 * userspace, but we still need to call the completion function so
721 * the private resources on the mapping buffer can be released. We
722 * indicate what the callback should do via the uptodate variable, same
723 * as for normal BH based IO completions.
725 error
= dax_insert_mapping(inode
, &bh
, vma
, vmf
);
726 if (buffer_unwritten(&bh
)) {
727 if (complete_unwritten
)
728 complete_unwritten(&bh
, !error
);
730 WARN_ON_ONCE(!(vmf
->flags
& FAULT_FLAG_WRITE
));
734 if (error
== -ENOMEM
)
735 return VM_FAULT_OOM
| major
;
736 /* -EBUSY is fine, somebody else faulted on the same PTE */
737 if ((error
< 0) && (error
!= -EBUSY
))
738 return VM_FAULT_SIGBUS
| major
;
739 return VM_FAULT_NOPAGE
| major
;
744 page_cache_release(page
);
748 EXPORT_SYMBOL(__dax_fault
);
751 * dax_fault - handle a page fault on a DAX file
752 * @vma: The virtual memory area where the fault occurred
753 * @vmf: The description of the fault
754 * @get_block: The filesystem method used to translate file offsets to blocks
756 * When a page fault occurs, filesystems may call this helper in their
757 * fault handler for DAX files.
759 int dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
760 get_block_t get_block
, dax_iodone_t complete_unwritten
)
763 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
765 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
766 sb_start_pagefault(sb
);
767 file_update_time(vma
->vm_file
);
769 result
= __dax_fault(vma
, vmf
, get_block
, complete_unwritten
);
770 if (vmf
->flags
& FAULT_FLAG_WRITE
)
771 sb_end_pagefault(sb
);
775 EXPORT_SYMBOL_GPL(dax_fault
);
777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
779 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
780 * more often than one might expect in the below function.
782 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
784 static void __dax_dbg(struct buffer_head
*bh
, unsigned long address
,
785 const char *reason
, const char *fn
)
788 char bname
[BDEVNAME_SIZE
];
789 bdevname(bh
->b_bdev
, bname
);
790 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
791 "length %zd fallback: %s\n", fn
, current
->comm
,
792 address
, bname
, bh
->b_state
, (u64
)bh
->b_blocknr
,
795 pr_debug("%s: %s addr: %lx fallback: %s\n", fn
,
796 current
->comm
, address
, reason
);
800 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
802 int __dax_pmd_fault(struct vm_area_struct
*vma
, unsigned long address
,
803 pmd_t
*pmd
, unsigned int flags
, get_block_t get_block
,
804 dax_iodone_t complete_unwritten
)
806 struct file
*file
= vma
->vm_file
;
807 struct address_space
*mapping
= file
->f_mapping
;
808 struct inode
*inode
= mapping
->host
;
809 struct buffer_head bh
;
810 unsigned blkbits
= inode
->i_blkbits
;
811 unsigned long pmd_addr
= address
& PMD_MASK
;
812 bool write
= flags
& FAULT_FLAG_WRITE
;
813 struct block_device
*bdev
;
816 int error
, result
= 0;
819 /* dax pmd mappings require pfn_t_devmap() */
820 if (!IS_ENABLED(CONFIG_FS_DAX_PMD
))
821 return VM_FAULT_FALLBACK
;
823 /* Fall back to PTEs if we're going to COW */
824 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
825 split_huge_pmd(vma
, pmd
, address
);
826 dax_pmd_dbg(NULL
, address
, "cow write");
827 return VM_FAULT_FALLBACK
;
829 /* If the PMD would extend outside the VMA */
830 if (pmd_addr
< vma
->vm_start
) {
831 dax_pmd_dbg(NULL
, address
, "vma start unaligned");
832 return VM_FAULT_FALLBACK
;
834 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
) {
835 dax_pmd_dbg(NULL
, address
, "vma end unaligned");
836 return VM_FAULT_FALLBACK
;
839 pgoff
= linear_page_index(vma
, pmd_addr
);
840 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
842 return VM_FAULT_SIGBUS
;
843 /* If the PMD would cover blocks out of the file */
844 if ((pgoff
| PG_PMD_COLOUR
) >= size
) {
845 dax_pmd_dbg(NULL
, address
,
846 "offset + huge page size > file size");
847 return VM_FAULT_FALLBACK
;
850 memset(&bh
, 0, sizeof(bh
));
851 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
852 block
= (sector_t
)pgoff
<< (PAGE_SHIFT
- blkbits
);
854 bh
.b_size
= PMD_SIZE
;
856 if (get_block(inode
, block
, &bh
, 0) != 0)
857 return VM_FAULT_SIGBUS
;
859 if (!buffer_mapped(&bh
) && write
) {
860 if (get_block(inode
, block
, &bh
, 1) != 0)
861 return VM_FAULT_SIGBUS
;
868 * If the filesystem isn't willing to tell us the length of a hole,
869 * just fall back to PTEs. Calling get_block 512 times in a loop
872 if (!buffer_size_valid(&bh
) || bh
.b_size
< PMD_SIZE
) {
873 dax_pmd_dbg(&bh
, address
, "allocated block too small");
874 return VM_FAULT_FALLBACK
;
878 * If we allocated new storage, make sure no process has any
879 * zero pages covering this hole
882 loff_t lstart
= pgoff
<< PAGE_SHIFT
;
883 loff_t lend
= lstart
+ PMD_SIZE
- 1; /* inclusive */
885 truncate_pagecache_range(inode
, lstart
, lend
);
888 i_mmap_lock_read(mapping
);
891 * If a truncate happened while we were allocating blocks, we may
892 * leave blocks allocated to the file that are beyond EOF. We can't
893 * take i_mutex here, so just leave them hanging; they'll be freed
894 * when the file is deleted.
896 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
898 result
= VM_FAULT_SIGBUS
;
901 if ((pgoff
| PG_PMD_COLOUR
) >= size
) {
902 dax_pmd_dbg(&bh
, address
,
903 "offset + huge page size > file size");
907 if (!write
&& !buffer_mapped(&bh
) && buffer_uptodate(&bh
)) {
910 struct page
*zero_page
= get_huge_zero_page();
912 if (unlikely(!zero_page
)) {
913 dax_pmd_dbg(&bh
, address
, "no zero page");
917 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
918 if (!pmd_none(*pmd
)) {
920 dax_pmd_dbg(&bh
, address
, "pmd already present");
924 dev_dbg(part_to_dev(bdev
->bd_part
),
925 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
926 __func__
, current
->comm
, address
,
927 (unsigned long long) to_sector(&bh
, inode
));
929 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
930 entry
= pmd_mkhuge(entry
);
931 set_pmd_at(vma
->vm_mm
, pmd_addr
, pmd
, entry
);
932 result
= VM_FAULT_NOPAGE
;
935 struct blk_dax_ctl dax
= {
936 .sector
= to_sector(&bh
, inode
),
939 long length
= dax_map_atomic(bdev
, &dax
);
942 result
= VM_FAULT_SIGBUS
;
945 if (length
< PMD_SIZE
) {
946 dax_pmd_dbg(&bh
, address
, "dax-length too small");
947 dax_unmap_atomic(bdev
, &dax
);
950 if (pfn_t_to_pfn(dax
.pfn
) & PG_PMD_COLOUR
) {
951 dax_pmd_dbg(&bh
, address
, "pfn unaligned");
952 dax_unmap_atomic(bdev
, &dax
);
956 if (!pfn_t_devmap(dax
.pfn
)) {
957 dax_unmap_atomic(bdev
, &dax
);
958 dax_pmd_dbg(&bh
, address
, "pfn not in memmap");
962 if (buffer_unwritten(&bh
) || buffer_new(&bh
)) {
963 clear_pmem(dax
.addr
, PMD_SIZE
);
965 count_vm_event(PGMAJFAULT
);
966 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
967 result
|= VM_FAULT_MAJOR
;
969 dax_unmap_atomic(bdev
, &dax
);
972 * For PTE faults we insert a radix tree entry for reads, and
973 * leave it clean. Then on the first write we dirty the radix
974 * tree entry via the dax_pfn_mkwrite() path. This sequence
975 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
976 * call into get_block() to translate the pgoff to a sector in
977 * order to be able to create a new radix tree entry.
979 * The PMD path doesn't have an equivalent to
980 * dax_pfn_mkwrite(), though, so for a read followed by a
981 * write we traverse all the way through __dax_pmd_fault()
982 * twice. This means we can just skip inserting a radix tree
983 * entry completely on the initial read and just wait until
984 * the write to insert a dirty entry.
987 error
= dax_radix_entry(mapping
, pgoff
, dax
.sector
,
990 dax_pmd_dbg(&bh
, address
,
991 "PMD radix insertion failed");
996 dev_dbg(part_to_dev(bdev
->bd_part
),
997 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
998 __func__
, current
->comm
, address
,
999 pfn_t_to_pfn(dax
.pfn
),
1000 (unsigned long long) dax
.sector
);
1001 result
|= vmf_insert_pfn_pmd(vma
, address
, pmd
,
1006 i_mmap_unlock_read(mapping
);
1008 if (buffer_unwritten(&bh
))
1009 complete_unwritten(&bh
, !(result
& VM_FAULT_ERROR
));
1014 count_vm_event(THP_FAULT_FALLBACK
);
1015 result
= VM_FAULT_FALLBACK
;
1018 EXPORT_SYMBOL_GPL(__dax_pmd_fault
);
1021 * dax_pmd_fault - handle a PMD fault on a DAX file
1022 * @vma: The virtual memory area where the fault occurred
1023 * @vmf: The description of the fault
1024 * @get_block: The filesystem method used to translate file offsets to blocks
1026 * When a page fault occurs, filesystems may call this helper in their
1027 * pmd_fault handler for DAX files.
1029 int dax_pmd_fault(struct vm_area_struct
*vma
, unsigned long address
,
1030 pmd_t
*pmd
, unsigned int flags
, get_block_t get_block
,
1031 dax_iodone_t complete_unwritten
)
1034 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
1036 if (flags
& FAULT_FLAG_WRITE
) {
1037 sb_start_pagefault(sb
);
1038 file_update_time(vma
->vm_file
);
1040 result
= __dax_pmd_fault(vma
, address
, pmd
, flags
, get_block
,
1041 complete_unwritten
);
1042 if (flags
& FAULT_FLAG_WRITE
)
1043 sb_end_pagefault(sb
);
1047 EXPORT_SYMBOL_GPL(dax_pmd_fault
);
1048 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1051 * dax_pfn_mkwrite - handle first write to DAX page
1052 * @vma: The virtual memory area where the fault occurred
1053 * @vmf: The description of the fault
1055 int dax_pfn_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1057 struct file
*file
= vma
->vm_file
;
1060 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1061 * RADIX_DAX_PTE entry already exists in the radix tree from a
1062 * previous call to __dax_fault(). We just want to look up that PTE
1063 * entry using vmf->pgoff and make sure the dirty tag is set. This
1064 * saves us from having to make a call to get_block() here to look
1067 dax_radix_entry(file
->f_mapping
, vmf
->pgoff
, NO_SECTOR
, false, true);
1068 return VM_FAULT_NOPAGE
;
1070 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite
);
1073 * dax_zero_page_range - zero a range within a page of a DAX file
1074 * @inode: The file being truncated
1075 * @from: The file offset that is being truncated to
1076 * @length: The number of bytes to zero
1077 * @get_block: The filesystem method used to translate file offsets to blocks
1079 * This function can be called by a filesystem when it is zeroing part of a
1080 * page in a DAX file. This is intended for hole-punch operations. If
1081 * you are truncating a file, the helper function dax_truncate_page() may be
1084 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1085 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1086 * took care of disposing of the unnecessary blocks. Even if the filesystem
1087 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1088 * since the file might be mmapped.
1090 int dax_zero_page_range(struct inode
*inode
, loff_t from
, unsigned length
,
1091 get_block_t get_block
)
1093 struct buffer_head bh
;
1094 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
1095 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1098 /* Block boundary? Nothing to do */
1101 BUG_ON((offset
+ length
) > PAGE_CACHE_SIZE
);
1103 memset(&bh
, 0, sizeof(bh
));
1104 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
1105 bh
.b_size
= PAGE_CACHE_SIZE
;
1106 err
= get_block(inode
, index
, &bh
, 0);
1109 if (buffer_written(&bh
)) {
1110 struct block_device
*bdev
= bh
.b_bdev
;
1111 struct blk_dax_ctl dax
= {
1112 .sector
= to_sector(&bh
, inode
),
1113 .size
= PAGE_CACHE_SIZE
,
1116 if (dax_map_atomic(bdev
, &dax
) < 0)
1117 return PTR_ERR(dax
.addr
);
1118 clear_pmem(dax
.addr
+ offset
, length
);
1120 dax_unmap_atomic(bdev
, &dax
);
1125 EXPORT_SYMBOL_GPL(dax_zero_page_range
);
1128 * dax_truncate_page - handle a partial page being truncated in a DAX file
1129 * @inode: The file being truncated
1130 * @from: The file offset that is being truncated to
1131 * @get_block: The filesystem method used to translate file offsets to blocks
1133 * Similar to block_truncate_page(), this function can be called by a
1134 * filesystem when it is truncating a DAX file to handle the partial page.
1136 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1137 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1138 * took care of disposing of the unnecessary blocks. Even if the filesystem
1139 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1140 * since the file might be mmapped.
1142 int dax_truncate_page(struct inode
*inode
, loff_t from
, get_block_t get_block
)
1144 unsigned length
= PAGE_CACHE_ALIGN(from
) - from
;
1145 return dax_zero_page_range(inode
, from
, length
, get_block
);
1147 EXPORT_SYMBOL_GPL(dax_truncate_page
);