2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum
= 8;
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum
= 32;
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice
= HZ
/10; /* 100 ms */
24 static struct blkcg_policy blkcg_policy_throtl
;
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct
*kthrotld_workqueue
;
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
53 struct list_head node
; /* service_queue->queued[] */
54 struct bio_list bios
; /* queued bios */
55 struct throtl_grp
*tg
; /* tg this qnode belongs to */
58 struct throtl_service_queue
{
59 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
65 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued
[2]; /* number of queued bios */
69 * RB tree of active children throtl_grp's, which are sorted by
72 struct rb_root pending_tree
; /* RB tree of active tgs */
73 struct rb_node
*first_pending
; /* first node in the tree */
74 unsigned int nr_pending
; /* # queued in the tree */
75 unsigned long first_pending_disptime
; /* disptime of the first tg */
76 struct timer_list pending_timer
; /* fires on first_pending_disptime */
80 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
87 /* must be the first member */
88 struct blkg_policy_data pd
;
90 /* active throtl group service_queue member */
91 struct rb_node rb_node
;
93 /* throtl_data this group belongs to */
94 struct throtl_data
*td
;
96 /* this group's service queue */
97 struct throtl_service_queue service_queue
;
100 * qnode_on_self is used when bios are directly queued to this
101 * throtl_grp so that local bios compete fairly with bios
102 * dispatched from children. qnode_on_parent is used when bios are
103 * dispatched from this throtl_grp into its parent and will compete
104 * with the sibling qnode_on_parents and the parent's
107 struct throtl_qnode qnode_on_self
[2];
108 struct throtl_qnode qnode_on_parent
[2];
111 * Dispatch time in jiffies. This is the estimated time when group
112 * will unthrottle and is ready to dispatch more bio. It is used as
113 * key to sort active groups in service tree.
115 unsigned long disptime
;
119 /* are there any throtl rules between this group and td? */
122 /* bytes per second rate limits */
126 unsigned int iops
[2];
128 /* Number of bytes disptached in current slice */
129 uint64_t bytes_disp
[2];
130 /* Number of bio's dispatched in current slice */
131 unsigned int io_disp
[2];
133 /* When did we start a new slice */
134 unsigned long slice_start
[2];
135 unsigned long slice_end
[2];
140 /* service tree for active throtl groups */
141 struct throtl_service_queue service_queue
;
143 struct request_queue
*queue
;
145 /* Total Number of queued bios on READ and WRITE lists */
146 unsigned int nr_queued
[2];
148 /* Work for dispatching throttled bios */
149 struct work_struct dispatch_work
;
152 static void throtl_pending_timer_fn(unsigned long arg
);
154 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
156 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
159 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
161 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
164 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
166 return pd_to_blkg(&tg
->pd
);
170 * sq_to_tg - return the throl_grp the specified service queue belongs to
171 * @sq: the throtl_service_queue of interest
173 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
174 * embedded in throtl_data, %NULL is returned.
176 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
178 if (sq
&& sq
->parent_sq
)
179 return container_of(sq
, struct throtl_grp
, service_queue
);
185 * sq_to_td - return throtl_data the specified service queue belongs to
186 * @sq: the throtl_service_queue of interest
188 * A service_queue can be embeded in either a throtl_grp or throtl_data.
189 * Determine the associated throtl_data accordingly and return it.
191 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
193 struct throtl_grp
*tg
= sq_to_tg(sq
);
198 return container_of(sq
, struct throtl_data
, service_queue
);
202 * throtl_log - log debug message via blktrace
203 * @sq: the service_queue being reported
204 * @fmt: printf format string
207 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
208 * throtl_grp; otherwise, just "throtl".
210 #define throtl_log(sq, fmt, args...) do { \
211 struct throtl_grp *__tg = sq_to_tg((sq)); \
212 struct throtl_data *__td = sq_to_td((sq)); \
215 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
220 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
221 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
223 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
227 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
229 INIT_LIST_HEAD(&qn
->node
);
230 bio_list_init(&qn
->bios
);
235 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
236 * @bio: bio being added
237 * @qn: qnode to add bio to
238 * @queued: the service_queue->queued[] list @qn belongs to
240 * Add @bio to @qn and put @qn on @queued if it's not already on.
241 * @qn->tg's reference count is bumped when @qn is activated. See the
242 * comment on top of throtl_qnode definition for details.
244 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
245 struct list_head
*queued
)
247 bio_list_add(&qn
->bios
, bio
);
248 if (list_empty(&qn
->node
)) {
249 list_add_tail(&qn
->node
, queued
);
250 blkg_get(tg_to_blkg(qn
->tg
));
255 * throtl_peek_queued - peek the first bio on a qnode list
256 * @queued: the qnode list to peek
258 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
260 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
263 if (list_empty(queued
))
266 bio
= bio_list_peek(&qn
->bios
);
272 * throtl_pop_queued - pop the first bio form a qnode list
273 * @queued: the qnode list to pop a bio from
274 * @tg_to_put: optional out argument for throtl_grp to put
276 * Pop the first bio from the qnode list @queued. After popping, the first
277 * qnode is removed from @queued if empty or moved to the end of @queued so
278 * that the popping order is round-robin.
280 * When the first qnode is removed, its associated throtl_grp should be put
281 * too. If @tg_to_put is NULL, this function automatically puts it;
282 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
283 * responsible for putting it.
285 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
286 struct throtl_grp
**tg_to_put
)
288 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
291 if (list_empty(queued
))
294 bio
= bio_list_pop(&qn
->bios
);
297 if (bio_list_empty(&qn
->bios
)) {
298 list_del_init(&qn
->node
);
302 blkg_put(tg_to_blkg(qn
->tg
));
304 list_move_tail(&qn
->node
, queued
);
310 /* init a service_queue, assumes the caller zeroed it */
311 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
313 INIT_LIST_HEAD(&sq
->queued
[0]);
314 INIT_LIST_HEAD(&sq
->queued
[1]);
315 sq
->pending_tree
= RB_ROOT
;
316 setup_timer(&sq
->pending_timer
, throtl_pending_timer_fn
,
320 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
, int node
)
322 struct throtl_grp
*tg
;
325 tg
= kzalloc_node(sizeof(*tg
), gfp
, node
);
329 throtl_service_queue_init(&tg
->service_queue
);
331 for (rw
= READ
; rw
<= WRITE
; rw
++) {
332 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
333 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
336 RB_CLEAR_NODE(&tg
->rb_node
);
340 tg
->iops
[WRITE
] = -1;
345 static void throtl_pd_init(struct blkg_policy_data
*pd
)
347 struct throtl_grp
*tg
= pd_to_tg(pd
);
348 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
349 struct throtl_data
*td
= blkg
->q
->td
;
350 struct throtl_service_queue
*sq
= &tg
->service_queue
;
353 * If on the default hierarchy, we switch to properly hierarchical
354 * behavior where limits on a given throtl_grp are applied to the
355 * whole subtree rather than just the group itself. e.g. If 16M
356 * read_bps limit is set on the root group, the whole system can't
357 * exceed 16M for the device.
359 * If not on the default hierarchy, the broken flat hierarchy
360 * behavior is retained where all throtl_grps are treated as if
361 * they're all separate root groups right below throtl_data.
362 * Limits of a group don't interact with limits of other groups
363 * regardless of the position of the group in the hierarchy.
365 sq
->parent_sq
= &td
->service_queue
;
366 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
367 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
372 * Set has_rules[] if @tg or any of its parents have limits configured.
373 * This doesn't require walking up to the top of the hierarchy as the
374 * parent's has_rules[] is guaranteed to be correct.
376 static void tg_update_has_rules(struct throtl_grp
*tg
)
378 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
381 for (rw
= READ
; rw
<= WRITE
; rw
++)
382 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
383 (tg
->bps
[rw
] != -1 || tg
->iops
[rw
] != -1);
386 static void throtl_pd_online(struct blkg_policy_data
*pd
)
389 * We don't want new groups to escape the limits of its ancestors.
390 * Update has_rules[] after a new group is brought online.
392 tg_update_has_rules(pd_to_tg(pd
));
395 static void throtl_pd_free(struct blkg_policy_data
*pd
)
397 struct throtl_grp
*tg
= pd_to_tg(pd
);
399 del_timer_sync(&tg
->service_queue
.pending_timer
);
403 static struct throtl_grp
*
404 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
406 /* Service tree is empty */
407 if (!parent_sq
->nr_pending
)
410 if (!parent_sq
->first_pending
)
411 parent_sq
->first_pending
= rb_first(&parent_sq
->pending_tree
);
413 if (parent_sq
->first_pending
)
414 return rb_entry_tg(parent_sq
->first_pending
);
419 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
425 static void throtl_rb_erase(struct rb_node
*n
,
426 struct throtl_service_queue
*parent_sq
)
428 if (parent_sq
->first_pending
== n
)
429 parent_sq
->first_pending
= NULL
;
430 rb_erase_init(n
, &parent_sq
->pending_tree
);
431 --parent_sq
->nr_pending
;
434 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
436 struct throtl_grp
*tg
;
438 tg
= throtl_rb_first(parent_sq
);
442 parent_sq
->first_pending_disptime
= tg
->disptime
;
445 static void tg_service_queue_add(struct throtl_grp
*tg
)
447 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
448 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_node
;
449 struct rb_node
*parent
= NULL
;
450 struct throtl_grp
*__tg
;
451 unsigned long key
= tg
->disptime
;
454 while (*node
!= NULL
) {
456 __tg
= rb_entry_tg(parent
);
458 if (time_before(key
, __tg
->disptime
))
459 node
= &parent
->rb_left
;
461 node
= &parent
->rb_right
;
467 parent_sq
->first_pending
= &tg
->rb_node
;
469 rb_link_node(&tg
->rb_node
, parent
, node
);
470 rb_insert_color(&tg
->rb_node
, &parent_sq
->pending_tree
);
473 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
475 tg_service_queue_add(tg
);
476 tg
->flags
|= THROTL_TG_PENDING
;
477 tg
->service_queue
.parent_sq
->nr_pending
++;
480 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
482 if (!(tg
->flags
& THROTL_TG_PENDING
))
483 __throtl_enqueue_tg(tg
);
486 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
488 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
489 tg
->flags
&= ~THROTL_TG_PENDING
;
492 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
494 if (tg
->flags
& THROTL_TG_PENDING
)
495 __throtl_dequeue_tg(tg
);
498 /* Call with queue lock held */
499 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
500 unsigned long expires
)
502 mod_timer(&sq
->pending_timer
, expires
);
503 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
504 expires
- jiffies
, jiffies
);
508 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
509 * @sq: the service_queue to schedule dispatch for
510 * @force: force scheduling
512 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
513 * dispatch time of the first pending child. Returns %true if either timer
514 * is armed or there's no pending child left. %false if the current
515 * dispatch window is still open and the caller should continue
518 * If @force is %true, the dispatch timer is always scheduled and this
519 * function is guaranteed to return %true. This is to be used when the
520 * caller can't dispatch itself and needs to invoke pending_timer
521 * unconditionally. Note that forced scheduling is likely to induce short
522 * delay before dispatch starts even if @sq->first_pending_disptime is not
523 * in the future and thus shouldn't be used in hot paths.
525 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
528 /* any pending children left? */
532 update_min_dispatch_time(sq
);
534 /* is the next dispatch time in the future? */
535 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
536 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
540 /* tell the caller to continue dispatching */
544 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
545 bool rw
, unsigned long start
)
547 tg
->bytes_disp
[rw
] = 0;
551 * Previous slice has expired. We must have trimmed it after last
552 * bio dispatch. That means since start of last slice, we never used
553 * that bandwidth. Do try to make use of that bandwidth while giving
556 if (time_after_eq(start
, tg
->slice_start
[rw
]))
557 tg
->slice_start
[rw
] = start
;
559 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
560 throtl_log(&tg
->service_queue
,
561 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
562 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
563 tg
->slice_end
[rw
], jiffies
);
566 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
568 tg
->bytes_disp
[rw
] = 0;
570 tg
->slice_start
[rw
] = jiffies
;
571 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
572 throtl_log(&tg
->service_queue
,
573 "[%c] new slice start=%lu end=%lu jiffies=%lu",
574 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
575 tg
->slice_end
[rw
], jiffies
);
578 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
579 unsigned long jiffy_end
)
581 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
584 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
585 unsigned long jiffy_end
)
587 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
588 throtl_log(&tg
->service_queue
,
589 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
590 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
591 tg
->slice_end
[rw
], jiffies
);
594 /* Determine if previously allocated or extended slice is complete or not */
595 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
597 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
603 /* Trim the used slices and adjust slice start accordingly */
604 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
606 unsigned long nr_slices
, time_elapsed
, io_trim
;
609 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
612 * If bps are unlimited (-1), then time slice don't get
613 * renewed. Don't try to trim the slice if slice is used. A new
614 * slice will start when appropriate.
616 if (throtl_slice_used(tg
, rw
))
620 * A bio has been dispatched. Also adjust slice_end. It might happen
621 * that initially cgroup limit was very low resulting in high
622 * slice_end, but later limit was bumped up and bio was dispached
623 * sooner, then we need to reduce slice_end. A high bogus slice_end
624 * is bad because it does not allow new slice to start.
627 throtl_set_slice_end(tg
, rw
, jiffies
+ throtl_slice
);
629 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
631 nr_slices
= time_elapsed
/ throtl_slice
;
635 tmp
= tg
->bps
[rw
] * throtl_slice
* nr_slices
;
639 io_trim
= (tg
->iops
[rw
] * throtl_slice
* nr_slices
)/HZ
;
641 if (!bytes_trim
&& !io_trim
)
644 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
645 tg
->bytes_disp
[rw
] -= bytes_trim
;
647 tg
->bytes_disp
[rw
] = 0;
649 if (tg
->io_disp
[rw
] >= io_trim
)
650 tg
->io_disp
[rw
] -= io_trim
;
654 tg
->slice_start
[rw
] += nr_slices
* throtl_slice
;
656 throtl_log(&tg
->service_queue
,
657 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
658 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
659 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
662 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
665 bool rw
= bio_data_dir(bio
);
666 unsigned int io_allowed
;
667 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
670 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
672 /* Slice has just started. Consider one slice interval */
674 jiffy_elapsed_rnd
= throtl_slice
;
676 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
679 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
680 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
681 * will allow dispatch after 1 second and after that slice should
685 tmp
= (u64
)tg
->iops
[rw
] * jiffy_elapsed_rnd
;
689 io_allowed
= UINT_MAX
;
693 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
699 /* Calc approx time to dispatch */
700 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
)/tg
->iops
[rw
] + 1;
702 if (jiffy_wait
> jiffy_elapsed
)
703 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
712 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
715 bool rw
= bio_data_dir(bio
);
716 u64 bytes_allowed
, extra_bytes
, tmp
;
717 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
719 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
721 /* Slice has just started. Consider one slice interval */
723 jiffy_elapsed_rnd
= throtl_slice
;
725 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
727 tmp
= tg
->bps
[rw
] * jiffy_elapsed_rnd
;
731 if (tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
<= bytes_allowed
) {
737 /* Calc approx time to dispatch */
738 extra_bytes
= tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
- bytes_allowed
;
739 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg
->bps
[rw
]);
745 * This wait time is without taking into consideration the rounding
746 * up we did. Add that time also.
748 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
755 * Returns whether one can dispatch a bio or not. Also returns approx number
756 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
758 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
761 bool rw
= bio_data_dir(bio
);
762 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
765 * Currently whole state machine of group depends on first bio
766 * queued in the group bio list. So one should not be calling
767 * this function with a different bio if there are other bios
770 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
771 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
773 /* If tg->bps = -1, then BW is unlimited */
774 if (tg
->bps
[rw
] == -1 && tg
->iops
[rw
] == -1) {
781 * If previous slice expired, start a new one otherwise renew/extend
782 * existing slice to make sure it is at least throtl_slice interval
783 * long since now. New slice is started only for empty throttle group.
784 * If there is queued bio, that means there should be an active
785 * slice and it should be extended instead.
787 if (throtl_slice_used(tg
, rw
) && !(tg
->service_queue
.nr_queued
[rw
]))
788 throtl_start_new_slice(tg
, rw
);
790 if (time_before(tg
->slice_end
[rw
], jiffies
+ throtl_slice
))
791 throtl_extend_slice(tg
, rw
, jiffies
+ throtl_slice
);
794 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
795 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
801 max_wait
= max(bps_wait
, iops_wait
);
806 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
807 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
812 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
814 bool rw
= bio_data_dir(bio
);
816 /* Charge the bio to the group */
817 tg
->bytes_disp
[rw
] += bio
->bi_iter
.bi_size
;
821 * REQ_THROTTLED is used to prevent the same bio to be throttled
822 * more than once as a throttled bio will go through blk-throtl the
823 * second time when it eventually gets issued. Set it when a bio
824 * is being charged to a tg.
826 if (!(bio
->bi_opf
& REQ_THROTTLED
))
827 bio
->bi_opf
|= REQ_THROTTLED
;
831 * throtl_add_bio_tg - add a bio to the specified throtl_grp
834 * @tg: the target throtl_grp
836 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
837 * tg->qnode_on_self[] is used.
839 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
840 struct throtl_grp
*tg
)
842 struct throtl_service_queue
*sq
= &tg
->service_queue
;
843 bool rw
= bio_data_dir(bio
);
846 qn
= &tg
->qnode_on_self
[rw
];
849 * If @tg doesn't currently have any bios queued in the same
850 * direction, queueing @bio can change when @tg should be
851 * dispatched. Mark that @tg was empty. This is automatically
852 * cleaered on the next tg_update_disptime().
854 if (!sq
->nr_queued
[rw
])
855 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
857 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
860 throtl_enqueue_tg(tg
);
863 static void tg_update_disptime(struct throtl_grp
*tg
)
865 struct throtl_service_queue
*sq
= &tg
->service_queue
;
866 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
869 if ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
870 tg_may_dispatch(tg
, bio
, &read_wait
);
872 if ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
873 tg_may_dispatch(tg
, bio
, &write_wait
);
875 min_wait
= min(read_wait
, write_wait
);
876 disptime
= jiffies
+ min_wait
;
878 /* Update dispatch time */
879 throtl_dequeue_tg(tg
);
880 tg
->disptime
= disptime
;
881 throtl_enqueue_tg(tg
);
883 /* see throtl_add_bio_tg() */
884 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
887 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
888 struct throtl_grp
*parent_tg
, bool rw
)
890 if (throtl_slice_used(parent_tg
, rw
)) {
891 throtl_start_new_slice_with_credit(parent_tg
, rw
,
892 child_tg
->slice_start
[rw
]);
897 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
899 struct throtl_service_queue
*sq
= &tg
->service_queue
;
900 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
901 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
902 struct throtl_grp
*tg_to_put
= NULL
;
906 * @bio is being transferred from @tg to @parent_sq. Popping a bio
907 * from @tg may put its reference and @parent_sq might end up
908 * getting released prematurely. Remember the tg to put and put it
909 * after @bio is transferred to @parent_sq.
911 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
914 throtl_charge_bio(tg
, bio
);
917 * If our parent is another tg, we just need to transfer @bio to
918 * the parent using throtl_add_bio_tg(). If our parent is
919 * @td->service_queue, @bio is ready to be issued. Put it on its
920 * bio_lists[] and decrease total number queued. The caller is
921 * responsible for issuing these bios.
924 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
925 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
927 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
928 &parent_sq
->queued
[rw
]);
929 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
930 tg
->td
->nr_queued
[rw
]--;
933 throtl_trim_slice(tg
, rw
);
936 blkg_put(tg_to_blkg(tg_to_put
));
939 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
941 struct throtl_service_queue
*sq
= &tg
->service_queue
;
942 unsigned int nr_reads
= 0, nr_writes
= 0;
943 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
944 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
947 /* Try to dispatch 75% READS and 25% WRITES */
949 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
950 tg_may_dispatch(tg
, bio
, NULL
)) {
952 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
955 if (nr_reads
>= max_nr_reads
)
959 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
960 tg_may_dispatch(tg
, bio
, NULL
)) {
962 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
965 if (nr_writes
>= max_nr_writes
)
969 return nr_reads
+ nr_writes
;
972 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
974 unsigned int nr_disp
= 0;
977 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
978 struct throtl_service_queue
*sq
= &tg
->service_queue
;
983 if (time_before(jiffies
, tg
->disptime
))
986 throtl_dequeue_tg(tg
);
988 nr_disp
+= throtl_dispatch_tg(tg
);
990 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
991 tg_update_disptime(tg
);
993 if (nr_disp
>= throtl_quantum
)
1001 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1002 * @arg: the throtl_service_queue being serviced
1004 * This timer is armed when a child throtl_grp with active bio's become
1005 * pending and queued on the service_queue's pending_tree and expires when
1006 * the first child throtl_grp should be dispatched. This function
1007 * dispatches bio's from the children throtl_grps to the parent
1010 * If the parent's parent is another throtl_grp, dispatching is propagated
1011 * by either arming its pending_timer or repeating dispatch directly. If
1012 * the top-level service_tree is reached, throtl_data->dispatch_work is
1013 * kicked so that the ready bio's are issued.
1015 static void throtl_pending_timer_fn(unsigned long arg
)
1017 struct throtl_service_queue
*sq
= (void *)arg
;
1018 struct throtl_grp
*tg
= sq_to_tg(sq
);
1019 struct throtl_data
*td
= sq_to_td(sq
);
1020 struct request_queue
*q
= td
->queue
;
1021 struct throtl_service_queue
*parent_sq
;
1025 spin_lock_irq(q
->queue_lock
);
1027 parent_sq
= sq
->parent_sq
;
1031 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1032 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1033 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1035 ret
= throtl_select_dispatch(sq
);
1037 throtl_log(sq
, "bios disp=%u", ret
);
1041 if (throtl_schedule_next_dispatch(sq
, false))
1044 /* this dispatch windows is still open, relax and repeat */
1045 spin_unlock_irq(q
->queue_lock
);
1047 spin_lock_irq(q
->queue_lock
);
1054 /* @parent_sq is another throl_grp, propagate dispatch */
1055 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1056 tg_update_disptime(tg
);
1057 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1058 /* window is already open, repeat dispatching */
1065 /* reached the top-level, queue issueing */
1066 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1069 spin_unlock_irq(q
->queue_lock
);
1073 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1074 * @work: work item being executed
1076 * This function is queued for execution when bio's reach the bio_lists[]
1077 * of throtl_data->service_queue. Those bio's are ready and issued by this
1080 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1082 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1084 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1085 struct request_queue
*q
= td
->queue
;
1086 struct bio_list bio_list_on_stack
;
1088 struct blk_plug plug
;
1091 bio_list_init(&bio_list_on_stack
);
1093 spin_lock_irq(q
->queue_lock
);
1094 for (rw
= READ
; rw
<= WRITE
; rw
++)
1095 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1096 bio_list_add(&bio_list_on_stack
, bio
);
1097 spin_unlock_irq(q
->queue_lock
);
1099 if (!bio_list_empty(&bio_list_on_stack
)) {
1100 blk_start_plug(&plug
);
1101 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1102 generic_make_request(bio
);
1103 blk_finish_plug(&plug
);
1107 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1110 struct throtl_grp
*tg
= pd_to_tg(pd
);
1111 u64 v
= *(u64
*)((void *)tg
+ off
);
1115 return __blkg_prfill_u64(sf
, pd
, v
);
1118 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1121 struct throtl_grp
*tg
= pd_to_tg(pd
);
1122 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1126 return __blkg_prfill_u64(sf
, pd
, v
);
1129 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1131 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1132 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1136 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1138 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1139 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1143 static void tg_conf_updated(struct throtl_grp
*tg
)
1145 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1146 struct cgroup_subsys_state
*pos_css
;
1147 struct blkcg_gq
*blkg
;
1149 throtl_log(&tg
->service_queue
,
1150 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1151 tg
->bps
[READ
], tg
->bps
[WRITE
],
1152 tg
->iops
[READ
], tg
->iops
[WRITE
]);
1155 * Update has_rules[] flags for the updated tg's subtree. A tg is
1156 * considered to have rules if either the tg itself or any of its
1157 * ancestors has rules. This identifies groups without any
1158 * restrictions in the whole hierarchy and allows them to bypass
1161 blkg_for_each_descendant_pre(blkg
, pos_css
, tg_to_blkg(tg
))
1162 tg_update_has_rules(blkg_to_tg(blkg
));
1165 * We're already holding queue_lock and know @tg is valid. Let's
1166 * apply the new config directly.
1168 * Restart the slices for both READ and WRITES. It might happen
1169 * that a group's limit are dropped suddenly and we don't want to
1170 * account recently dispatched IO with new low rate.
1172 throtl_start_new_slice(tg
, 0);
1173 throtl_start_new_slice(tg
, 1);
1175 if (tg
->flags
& THROTL_TG_PENDING
) {
1176 tg_update_disptime(tg
);
1177 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1181 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1182 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1184 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1185 struct blkg_conf_ctx ctx
;
1186 struct throtl_grp
*tg
;
1190 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1195 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1200 tg
= blkg_to_tg(ctx
.blkg
);
1203 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1205 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1207 tg_conf_updated(tg
);
1210 blkg_conf_finish(&ctx
);
1211 return ret
?: nbytes
;
1214 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1215 char *buf
, size_t nbytes
, loff_t off
)
1217 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1220 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1221 char *buf
, size_t nbytes
, loff_t off
)
1223 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1226 static struct cftype throtl_legacy_files
[] = {
1228 .name
= "throttle.read_bps_device",
1229 .private = offsetof(struct throtl_grp
, bps
[READ
]),
1230 .seq_show
= tg_print_conf_u64
,
1231 .write
= tg_set_conf_u64
,
1234 .name
= "throttle.write_bps_device",
1235 .private = offsetof(struct throtl_grp
, bps
[WRITE
]),
1236 .seq_show
= tg_print_conf_u64
,
1237 .write
= tg_set_conf_u64
,
1240 .name
= "throttle.read_iops_device",
1241 .private = offsetof(struct throtl_grp
, iops
[READ
]),
1242 .seq_show
= tg_print_conf_uint
,
1243 .write
= tg_set_conf_uint
,
1246 .name
= "throttle.write_iops_device",
1247 .private = offsetof(struct throtl_grp
, iops
[WRITE
]),
1248 .seq_show
= tg_print_conf_uint
,
1249 .write
= tg_set_conf_uint
,
1252 .name
= "throttle.io_service_bytes",
1253 .private = (unsigned long)&blkcg_policy_throtl
,
1254 .seq_show
= blkg_print_stat_bytes
,
1257 .name
= "throttle.io_serviced",
1258 .private = (unsigned long)&blkcg_policy_throtl
,
1259 .seq_show
= blkg_print_stat_ios
,
1264 static u64
tg_prfill_max(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1267 struct throtl_grp
*tg
= pd_to_tg(pd
);
1268 const char *dname
= blkg_dev_name(pd
->blkg
);
1269 char bufs
[4][21] = { "max", "max", "max", "max" };
1273 if (tg
->bps
[READ
] == -1 && tg
->bps
[WRITE
] == -1 &&
1274 tg
->iops
[READ
] == -1 && tg
->iops
[WRITE
] == -1)
1277 if (tg
->bps
[READ
] != -1)
1278 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu", tg
->bps
[READ
]);
1279 if (tg
->bps
[WRITE
] != -1)
1280 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu", tg
->bps
[WRITE
]);
1281 if (tg
->iops
[READ
] != -1)
1282 snprintf(bufs
[2], sizeof(bufs
[2]), "%u", tg
->iops
[READ
]);
1283 if (tg
->iops
[WRITE
] != -1)
1284 snprintf(bufs
[3], sizeof(bufs
[3]), "%u", tg
->iops
[WRITE
]);
1286 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1287 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3]);
1291 static int tg_print_max(struct seq_file
*sf
, void *v
)
1293 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_max
,
1294 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1298 static ssize_t
tg_set_max(struct kernfs_open_file
*of
,
1299 char *buf
, size_t nbytes
, loff_t off
)
1301 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1302 struct blkg_conf_ctx ctx
;
1303 struct throtl_grp
*tg
;
1307 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1311 tg
= blkg_to_tg(ctx
.blkg
);
1313 v
[0] = tg
->bps
[READ
];
1314 v
[1] = tg
->bps
[WRITE
];
1315 v
[2] = tg
->iops
[READ
];
1316 v
[3] = tg
->iops
[WRITE
];
1319 char tok
[27]; /* wiops=18446744073709551616 */
1324 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1333 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1341 if (!strcmp(tok
, "rbps"))
1343 else if (!strcmp(tok
, "wbps"))
1345 else if (!strcmp(tok
, "riops"))
1346 v
[2] = min_t(u64
, val
, UINT_MAX
);
1347 else if (!strcmp(tok
, "wiops"))
1348 v
[3] = min_t(u64
, val
, UINT_MAX
);
1353 tg
->bps
[READ
] = v
[0];
1354 tg
->bps
[WRITE
] = v
[1];
1355 tg
->iops
[READ
] = v
[2];
1356 tg
->iops
[WRITE
] = v
[3];
1358 tg_conf_updated(tg
);
1361 blkg_conf_finish(&ctx
);
1362 return ret
?: nbytes
;
1365 static struct cftype throtl_files
[] = {
1368 .flags
= CFTYPE_NOT_ON_ROOT
,
1369 .seq_show
= tg_print_max
,
1370 .write
= tg_set_max
,
1375 static void throtl_shutdown_wq(struct request_queue
*q
)
1377 struct throtl_data
*td
= q
->td
;
1379 cancel_work_sync(&td
->dispatch_work
);
1382 static struct blkcg_policy blkcg_policy_throtl
= {
1383 .dfl_cftypes
= throtl_files
,
1384 .legacy_cftypes
= throtl_legacy_files
,
1386 .pd_alloc_fn
= throtl_pd_alloc
,
1387 .pd_init_fn
= throtl_pd_init
,
1388 .pd_online_fn
= throtl_pd_online
,
1389 .pd_free_fn
= throtl_pd_free
,
1392 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
1395 struct throtl_qnode
*qn
= NULL
;
1396 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
1397 struct throtl_service_queue
*sq
;
1398 bool rw
= bio_data_dir(bio
);
1399 bool throttled
= false;
1401 WARN_ON_ONCE(!rcu_read_lock_held());
1403 /* see throtl_charge_bio() */
1404 if ((bio
->bi_opf
& REQ_THROTTLED
) || !tg
->has_rules
[rw
])
1407 spin_lock_irq(q
->queue_lock
);
1409 if (unlikely(blk_queue_bypass(q
)))
1412 sq
= &tg
->service_queue
;
1415 /* throtl is FIFO - if bios are already queued, should queue */
1416 if (sq
->nr_queued
[rw
])
1419 /* if above limits, break to queue */
1420 if (!tg_may_dispatch(tg
, bio
, NULL
))
1423 /* within limits, let's charge and dispatch directly */
1424 throtl_charge_bio(tg
, bio
);
1427 * We need to trim slice even when bios are not being queued
1428 * otherwise it might happen that a bio is not queued for
1429 * a long time and slice keeps on extending and trim is not
1430 * called for a long time. Now if limits are reduced suddenly
1431 * we take into account all the IO dispatched so far at new
1432 * low rate and * newly queued IO gets a really long dispatch
1435 * So keep on trimming slice even if bio is not queued.
1437 throtl_trim_slice(tg
, rw
);
1440 * @bio passed through this layer without being throttled.
1441 * Climb up the ladder. If we''re already at the top, it
1442 * can be executed directly.
1444 qn
= &tg
->qnode_on_parent
[rw
];
1451 /* out-of-limit, queue to @tg */
1452 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1453 rw
== READ
? 'R' : 'W',
1454 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
, tg
->bps
[rw
],
1455 tg
->io_disp
[rw
], tg
->iops
[rw
],
1456 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1458 bio_associate_current(bio
);
1459 tg
->td
->nr_queued
[rw
]++;
1460 throtl_add_bio_tg(bio
, qn
, tg
);
1464 * Update @tg's dispatch time and force schedule dispatch if @tg
1465 * was empty before @bio. The forced scheduling isn't likely to
1466 * cause undue delay as @bio is likely to be dispatched directly if
1467 * its @tg's disptime is not in the future.
1469 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1470 tg_update_disptime(tg
);
1471 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
1475 spin_unlock_irq(q
->queue_lock
);
1478 * As multiple blk-throtls may stack in the same issue path, we
1479 * don't want bios to leave with the flag set. Clear the flag if
1483 bio
->bi_opf
&= ~REQ_THROTTLED
;
1488 * Dispatch all bios from all children tg's queued on @parent_sq. On
1489 * return, @parent_sq is guaranteed to not have any active children tg's
1490 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1492 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
1494 struct throtl_grp
*tg
;
1496 while ((tg
= throtl_rb_first(parent_sq
))) {
1497 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1500 throtl_dequeue_tg(tg
);
1502 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
1503 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1504 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
1505 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1510 * blk_throtl_drain - drain throttled bios
1511 * @q: request_queue to drain throttled bios for
1513 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1515 void blk_throtl_drain(struct request_queue
*q
)
1516 __releases(q
->queue_lock
) __acquires(q
->queue_lock
)
1518 struct throtl_data
*td
= q
->td
;
1519 struct blkcg_gq
*blkg
;
1520 struct cgroup_subsys_state
*pos_css
;
1524 queue_lockdep_assert_held(q
);
1528 * Drain each tg while doing post-order walk on the blkg tree, so
1529 * that all bios are propagated to td->service_queue. It'd be
1530 * better to walk service_queue tree directly but blkg walk is
1533 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
1534 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
1536 /* finally, transfer bios from top-level tg's into the td */
1537 tg_drain_bios(&td
->service_queue
);
1540 spin_unlock_irq(q
->queue_lock
);
1542 /* all bios now should be in td->service_queue, issue them */
1543 for (rw
= READ
; rw
<= WRITE
; rw
++)
1544 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
1546 generic_make_request(bio
);
1548 spin_lock_irq(q
->queue_lock
);
1551 int blk_throtl_init(struct request_queue
*q
)
1553 struct throtl_data
*td
;
1556 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1560 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
1561 throtl_service_queue_init(&td
->service_queue
);
1566 /* activate policy */
1567 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
1573 void blk_throtl_exit(struct request_queue
*q
)
1576 throtl_shutdown_wq(q
);
1577 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
1581 static int __init
throtl_init(void)
1583 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
1584 if (!kthrotld_workqueue
)
1585 panic("Failed to create kthrotld\n");
1587 return blkcg_policy_register(&blkcg_policy_throtl
);
1590 module_init(throtl_init
);