2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
66 #include <net/protocol.h>
69 #include <net/checksum.h>
72 #include <asm/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
76 struct kmem_cache
*skbuff_head_cache __read_mostly
;
77 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
80 * skb_panic - private function for out-of-line support
84 * @msg: skb_over_panic or skb_under_panic
86 * Out-of-line support for skb_put() and skb_push().
87 * Called via the wrapper skb_over_panic() or skb_under_panic().
88 * Keep out of line to prevent kernel bloat.
89 * __builtin_return_address is not used because it is not always reliable.
91 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
94 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
95 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
96 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
97 skb
->dev
? skb
->dev
->name
: "<NULL>");
101 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
103 skb_panic(skb
, sz
, addr
, __func__
);
106 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
108 skb_panic(skb
, sz
, addr
, __func__
);
112 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
113 * the caller if emergency pfmemalloc reserves are being used. If it is and
114 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
115 * may be used. Otherwise, the packet data may be discarded until enough
118 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
119 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
121 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
122 unsigned long ip
, bool *pfmemalloc
)
125 bool ret_pfmemalloc
= false;
128 * Try a regular allocation, when that fails and we're not entitled
129 * to the reserves, fail.
131 obj
= kmalloc_node_track_caller(size
,
132 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
134 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
137 /* Try again but now we are using pfmemalloc reserves */
138 ret_pfmemalloc
= true;
139 obj
= kmalloc_node_track_caller(size
, flags
, node
);
143 *pfmemalloc
= ret_pfmemalloc
;
148 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
149 * 'private' fields and also do memory statistics to find all the
154 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
159 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
160 gfp_mask
& ~__GFP_DMA
, node
);
165 * Only clear those fields we need to clear, not those that we will
166 * actually initialise below. Hence, don't put any more fields after
167 * the tail pointer in struct sk_buff!
169 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
171 skb
->truesize
= sizeof(struct sk_buff
);
172 atomic_set(&skb
->users
, 1);
174 #ifdef NET_SKBUFF_DATA_USES_OFFSET
175 skb
->mac_header
= ~0U;
182 * __alloc_skb - allocate a network buffer
183 * @size: size to allocate
184 * @gfp_mask: allocation mask
185 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
186 * instead of head cache and allocate a cloned (child) skb.
187 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
188 * allocations in case the data is required for writeback
189 * @node: numa node to allocate memory on
191 * Allocate a new &sk_buff. The returned buffer has no headroom and a
192 * tail room of at least size bytes. The object has a reference count
193 * of one. The return is the buffer. On a failure the return is %NULL.
195 * Buffers may only be allocated from interrupts using a @gfp_mask of
198 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
201 struct kmem_cache
*cache
;
202 struct skb_shared_info
*shinfo
;
207 cache
= (flags
& SKB_ALLOC_FCLONE
)
208 ? skbuff_fclone_cache
: skbuff_head_cache
;
210 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
211 gfp_mask
|= __GFP_MEMALLOC
;
214 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
219 /* We do our best to align skb_shared_info on a separate cache
220 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
221 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
222 * Both skb->head and skb_shared_info are cache line aligned.
224 size
= SKB_DATA_ALIGN(size
);
225 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
226 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
229 /* kmalloc(size) might give us more room than requested.
230 * Put skb_shared_info exactly at the end of allocated zone,
231 * to allow max possible filling before reallocation.
233 size
= SKB_WITH_OVERHEAD(ksize(data
));
234 prefetchw(data
+ size
);
237 * Only clear those fields we need to clear, not those that we will
238 * actually initialise below. Hence, don't put any more fields after
239 * the tail pointer in struct sk_buff!
241 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
242 /* Account for allocated memory : skb + skb->head */
243 skb
->truesize
= SKB_TRUESIZE(size
);
244 skb
->pfmemalloc
= pfmemalloc
;
245 atomic_set(&skb
->users
, 1);
248 skb_reset_tail_pointer(skb
);
249 skb
->end
= skb
->tail
+ size
;
250 #ifdef NET_SKBUFF_DATA_USES_OFFSET
251 skb
->mac_header
= ~0U;
252 skb
->transport_header
= ~0U;
255 /* make sure we initialize shinfo sequentially */
256 shinfo
= skb_shinfo(skb
);
257 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
258 atomic_set(&shinfo
->dataref
, 1);
259 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
261 if (flags
& SKB_ALLOC_FCLONE
) {
262 struct sk_buff
*child
= skb
+ 1;
263 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
265 kmemcheck_annotate_bitfield(child
, flags1
);
266 kmemcheck_annotate_bitfield(child
, flags2
);
267 skb
->fclone
= SKB_FCLONE_ORIG
;
268 atomic_set(fclone_ref
, 1);
270 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
271 child
->pfmemalloc
= pfmemalloc
;
276 kmem_cache_free(cache
, skb
);
280 EXPORT_SYMBOL(__alloc_skb
);
283 * build_skb - build a network buffer
284 * @data: data buffer provided by caller
285 * @frag_size: size of fragment, or 0 if head was kmalloced
287 * Allocate a new &sk_buff. Caller provides space holding head and
288 * skb_shared_info. @data must have been allocated by kmalloc()
289 * The return is the new skb buffer.
290 * On a failure the return is %NULL, and @data is not freed.
292 * Before IO, driver allocates only data buffer where NIC put incoming frame
293 * Driver should add room at head (NET_SKB_PAD) and
294 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
295 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
296 * before giving packet to stack.
297 * RX rings only contains data buffers, not full skbs.
299 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
301 struct skb_shared_info
*shinfo
;
303 unsigned int size
= frag_size
? : ksize(data
);
305 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
309 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
311 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
312 skb
->truesize
= SKB_TRUESIZE(size
);
313 skb
->head_frag
= frag_size
!= 0;
314 atomic_set(&skb
->users
, 1);
317 skb_reset_tail_pointer(skb
);
318 skb
->end
= skb
->tail
+ size
;
319 #ifdef NET_SKBUFF_DATA_USES_OFFSET
320 skb
->mac_header
= ~0U;
321 skb
->transport_header
= ~0U;
324 /* make sure we initialize shinfo sequentially */
325 shinfo
= skb_shinfo(skb
);
326 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
327 atomic_set(&shinfo
->dataref
, 1);
328 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
332 EXPORT_SYMBOL(build_skb
);
334 struct netdev_alloc_cache
{
335 struct page_frag frag
;
336 /* we maintain a pagecount bias, so that we dont dirty cache line
337 * containing page->_count every time we allocate a fragment.
339 unsigned int pagecnt_bias
;
341 static DEFINE_PER_CPU(struct netdev_alloc_cache
, netdev_alloc_cache
);
343 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
345 struct netdev_alloc_cache
*nc
;
350 local_irq_save(flags
);
351 nc
= &__get_cpu_var(netdev_alloc_cache
);
352 if (unlikely(!nc
->frag
.page
)) {
354 for (order
= NETDEV_FRAG_PAGE_MAX_ORDER
; ;) {
355 gfp_t gfp
= gfp_mask
;
358 gfp
|= __GFP_COMP
| __GFP_NOWARN
;
359 nc
->frag
.page
= alloc_pages(gfp
, order
);
360 if (likely(nc
->frag
.page
))
365 nc
->frag
.size
= PAGE_SIZE
<< order
;
367 atomic_set(&nc
->frag
.page
->_count
, NETDEV_PAGECNT_MAX_BIAS
);
368 nc
->pagecnt_bias
= NETDEV_PAGECNT_MAX_BIAS
;
372 if (nc
->frag
.offset
+ fragsz
> nc
->frag
.size
) {
373 /* avoid unnecessary locked operations if possible */
374 if ((atomic_read(&nc
->frag
.page
->_count
) == nc
->pagecnt_bias
) ||
375 atomic_sub_and_test(nc
->pagecnt_bias
, &nc
->frag
.page
->_count
))
380 data
= page_address(nc
->frag
.page
) + nc
->frag
.offset
;
381 nc
->frag
.offset
+= fragsz
;
384 local_irq_restore(flags
);
389 * netdev_alloc_frag - allocate a page fragment
390 * @fragsz: fragment size
392 * Allocates a frag from a page for receive buffer.
393 * Uses GFP_ATOMIC allocations.
395 void *netdev_alloc_frag(unsigned int fragsz
)
397 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
399 EXPORT_SYMBOL(netdev_alloc_frag
);
402 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
403 * @dev: network device to receive on
404 * @length: length to allocate
405 * @gfp_mask: get_free_pages mask, passed to alloc_skb
407 * Allocate a new &sk_buff and assign it a usage count of one. The
408 * buffer has unspecified headroom built in. Users should allocate
409 * the headroom they think they need without accounting for the
410 * built in space. The built in space is used for optimisations.
412 * %NULL is returned if there is no free memory.
414 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
415 unsigned int length
, gfp_t gfp_mask
)
417 struct sk_buff
*skb
= NULL
;
418 unsigned int fragsz
= SKB_DATA_ALIGN(length
+ NET_SKB_PAD
) +
419 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
421 if (fragsz
<= PAGE_SIZE
&& !(gfp_mask
& (__GFP_WAIT
| GFP_DMA
))) {
424 if (sk_memalloc_socks())
425 gfp_mask
|= __GFP_MEMALLOC
;
427 data
= __netdev_alloc_frag(fragsz
, gfp_mask
);
430 skb
= build_skb(data
, fragsz
);
432 put_page(virt_to_head_page(data
));
435 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
,
436 SKB_ALLOC_RX
, NUMA_NO_NODE
);
439 skb_reserve(skb
, NET_SKB_PAD
);
444 EXPORT_SYMBOL(__netdev_alloc_skb
);
446 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
447 int size
, unsigned int truesize
)
449 skb_fill_page_desc(skb
, i
, page
, off
, size
);
451 skb
->data_len
+= size
;
452 skb
->truesize
+= truesize
;
454 EXPORT_SYMBOL(skb_add_rx_frag
);
456 static void skb_drop_list(struct sk_buff
**listp
)
458 kfree_skb_list(*listp
);
462 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
464 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
467 static void skb_clone_fraglist(struct sk_buff
*skb
)
469 struct sk_buff
*list
;
471 skb_walk_frags(skb
, list
)
475 static void skb_free_head(struct sk_buff
*skb
)
478 put_page(virt_to_head_page(skb
->head
));
483 static void skb_release_data(struct sk_buff
*skb
)
486 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
487 &skb_shinfo(skb
)->dataref
)) {
488 if (skb_shinfo(skb
)->nr_frags
) {
490 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
491 skb_frag_unref(skb
, i
);
495 * If skb buf is from userspace, we need to notify the caller
496 * the lower device DMA has done;
498 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
499 struct ubuf_info
*uarg
;
501 uarg
= skb_shinfo(skb
)->destructor_arg
;
503 uarg
->callback(uarg
, true);
506 if (skb_has_frag_list(skb
))
507 skb_drop_fraglist(skb
);
514 * Free an skbuff by memory without cleaning the state.
516 static void kfree_skbmem(struct sk_buff
*skb
)
518 struct sk_buff
*other
;
519 atomic_t
*fclone_ref
;
521 switch (skb
->fclone
) {
522 case SKB_FCLONE_UNAVAILABLE
:
523 kmem_cache_free(skbuff_head_cache
, skb
);
526 case SKB_FCLONE_ORIG
:
527 fclone_ref
= (atomic_t
*) (skb
+ 2);
528 if (atomic_dec_and_test(fclone_ref
))
529 kmem_cache_free(skbuff_fclone_cache
, skb
);
532 case SKB_FCLONE_CLONE
:
533 fclone_ref
= (atomic_t
*) (skb
+ 1);
536 /* The clone portion is available for
537 * fast-cloning again.
539 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
541 if (atomic_dec_and_test(fclone_ref
))
542 kmem_cache_free(skbuff_fclone_cache
, other
);
547 static void skb_release_head_state(struct sk_buff
*skb
)
551 secpath_put(skb
->sp
);
553 if (skb
->destructor
) {
555 skb
->destructor(skb
);
557 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
558 nf_conntrack_put(skb
->nfct
);
560 #ifdef CONFIG_BRIDGE_NETFILTER
561 nf_bridge_put(skb
->nf_bridge
);
563 /* XXX: IS this still necessary? - JHS */
564 #ifdef CONFIG_NET_SCHED
566 #ifdef CONFIG_NET_CLS_ACT
572 /* Free everything but the sk_buff shell. */
573 static void skb_release_all(struct sk_buff
*skb
)
575 skb_release_head_state(skb
);
576 if (likely(skb
->head
))
577 skb_release_data(skb
);
581 * __kfree_skb - private function
584 * Free an sk_buff. Release anything attached to the buffer.
585 * Clean the state. This is an internal helper function. Users should
586 * always call kfree_skb
589 void __kfree_skb(struct sk_buff
*skb
)
591 skb_release_all(skb
);
594 EXPORT_SYMBOL(__kfree_skb
);
597 * kfree_skb - free an sk_buff
598 * @skb: buffer to free
600 * Drop a reference to the buffer and free it if the usage count has
603 void kfree_skb(struct sk_buff
*skb
)
607 if (likely(atomic_read(&skb
->users
) == 1))
609 else if (likely(!atomic_dec_and_test(&skb
->users
)))
611 trace_kfree_skb(skb
, __builtin_return_address(0));
614 EXPORT_SYMBOL(kfree_skb
);
616 void kfree_skb_list(struct sk_buff
*segs
)
619 struct sk_buff
*next
= segs
->next
;
625 EXPORT_SYMBOL(kfree_skb_list
);
628 * skb_tx_error - report an sk_buff xmit error
629 * @skb: buffer that triggered an error
631 * Report xmit error if a device callback is tracking this skb.
632 * skb must be freed afterwards.
634 void skb_tx_error(struct sk_buff
*skb
)
636 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
637 struct ubuf_info
*uarg
;
639 uarg
= skb_shinfo(skb
)->destructor_arg
;
641 uarg
->callback(uarg
, false);
642 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
645 EXPORT_SYMBOL(skb_tx_error
);
648 * consume_skb - free an skbuff
649 * @skb: buffer to free
651 * Drop a ref to the buffer and free it if the usage count has hit zero
652 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
653 * is being dropped after a failure and notes that
655 void consume_skb(struct sk_buff
*skb
)
659 if (likely(atomic_read(&skb
->users
) == 1))
661 else if (likely(!atomic_dec_and_test(&skb
->users
)))
663 trace_consume_skb(skb
);
666 EXPORT_SYMBOL(consume_skb
);
668 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
670 new->tstamp
= old
->tstamp
;
672 new->transport_header
= old
->transport_header
;
673 new->network_header
= old
->network_header
;
674 new->mac_header
= old
->mac_header
;
675 new->inner_transport_header
= old
->inner_transport_header
;
676 new->inner_network_header
= old
->inner_network_header
;
677 new->inner_mac_header
= old
->inner_mac_header
;
678 skb_dst_copy(new, old
);
679 new->rxhash
= old
->rxhash
;
680 new->ooo_okay
= old
->ooo_okay
;
681 new->l4_rxhash
= old
->l4_rxhash
;
682 new->no_fcs
= old
->no_fcs
;
683 new->encapsulation
= old
->encapsulation
;
685 new->sp
= secpath_get(old
->sp
);
687 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
688 new->csum
= old
->csum
;
689 new->local_df
= old
->local_df
;
690 new->pkt_type
= old
->pkt_type
;
691 new->ip_summed
= old
->ip_summed
;
692 skb_copy_queue_mapping(new, old
);
693 new->priority
= old
->priority
;
694 #if IS_ENABLED(CONFIG_IP_VS)
695 new->ipvs_property
= old
->ipvs_property
;
697 new->pfmemalloc
= old
->pfmemalloc
;
698 new->protocol
= old
->protocol
;
699 new->mark
= old
->mark
;
700 new->skb_iif
= old
->skb_iif
;
702 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
703 new->nf_trace
= old
->nf_trace
;
705 #ifdef CONFIG_NET_SCHED
706 new->tc_index
= old
->tc_index
;
707 #ifdef CONFIG_NET_CLS_ACT
708 new->tc_verd
= old
->tc_verd
;
711 new->vlan_proto
= old
->vlan_proto
;
712 new->vlan_tci
= old
->vlan_tci
;
714 skb_copy_secmark(new, old
);
718 * You should not add any new code to this function. Add it to
719 * __copy_skb_header above instead.
721 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
723 #define C(x) n->x = skb->x
725 n
->next
= n
->prev
= NULL
;
727 __copy_skb_header(n
, skb
);
732 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
735 n
->destructor
= NULL
;
742 atomic_set(&n
->users
, 1);
744 atomic_inc(&(skb_shinfo(skb
)->dataref
));
752 * skb_morph - morph one skb into another
753 * @dst: the skb to receive the contents
754 * @src: the skb to supply the contents
756 * This is identical to skb_clone except that the target skb is
757 * supplied by the user.
759 * The target skb is returned upon exit.
761 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
763 skb_release_all(dst
);
764 return __skb_clone(dst
, src
);
766 EXPORT_SYMBOL_GPL(skb_morph
);
769 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
770 * @skb: the skb to modify
771 * @gfp_mask: allocation priority
773 * This must be called on SKBTX_DEV_ZEROCOPY skb.
774 * It will copy all frags into kernel and drop the reference
775 * to userspace pages.
777 * If this function is called from an interrupt gfp_mask() must be
780 * Returns 0 on success or a negative error code on failure
781 * to allocate kernel memory to copy to.
783 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
786 int num_frags
= skb_shinfo(skb
)->nr_frags
;
787 struct page
*page
, *head
= NULL
;
788 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
790 for (i
= 0; i
< num_frags
; i
++) {
792 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
794 page
= alloc_page(gfp_mask
);
797 struct page
*next
= (struct page
*)head
->private;
803 vaddr
= kmap_atomic(skb_frag_page(f
));
804 memcpy(page_address(page
),
805 vaddr
+ f
->page_offset
, skb_frag_size(f
));
806 kunmap_atomic(vaddr
);
807 page
->private = (unsigned long)head
;
811 /* skb frags release userspace buffers */
812 for (i
= 0; i
< num_frags
; i
++)
813 skb_frag_unref(skb
, i
);
815 uarg
->callback(uarg
, false);
817 /* skb frags point to kernel buffers */
818 for (i
= num_frags
- 1; i
>= 0; i
--) {
819 __skb_fill_page_desc(skb
, i
, head
, 0,
820 skb_shinfo(skb
)->frags
[i
].size
);
821 head
= (struct page
*)head
->private;
824 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
827 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
830 * skb_clone - duplicate an sk_buff
831 * @skb: buffer to clone
832 * @gfp_mask: allocation priority
834 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
835 * copies share the same packet data but not structure. The new
836 * buffer has a reference count of 1. If the allocation fails the
837 * function returns %NULL otherwise the new buffer is returned.
839 * If this function is called from an interrupt gfp_mask() must be
843 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
847 if (skb_orphan_frags(skb
, gfp_mask
))
851 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
852 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
853 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
854 n
->fclone
= SKB_FCLONE_CLONE
;
855 atomic_inc(fclone_ref
);
857 if (skb_pfmemalloc(skb
))
858 gfp_mask
|= __GFP_MEMALLOC
;
860 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
864 kmemcheck_annotate_bitfield(n
, flags1
);
865 kmemcheck_annotate_bitfield(n
, flags2
);
866 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
869 return __skb_clone(n
, skb
);
871 EXPORT_SYMBOL(skb_clone
);
873 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
875 /* {transport,network,mac}_header and tail are relative to skb->head */
876 skb
->transport_header
+= off
;
877 skb
->network_header
+= off
;
878 if (skb_mac_header_was_set(skb
))
879 skb
->mac_header
+= off
;
880 skb
->inner_transport_header
+= off
;
881 skb
->inner_network_header
+= off
;
882 skb
->inner_mac_header
+= off
;
885 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
887 #ifndef NET_SKBUFF_DATA_USES_OFFSET
889 * Shift between the two data areas in bytes
891 unsigned long offset
= new->data
- old
->data
;
894 __copy_skb_header(new, old
);
896 #ifndef NET_SKBUFF_DATA_USES_OFFSET
897 skb_headers_offset_update(new, offset
);
899 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
900 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
901 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
904 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
906 if (skb_pfmemalloc(skb
))
912 * skb_copy - create private copy of an sk_buff
913 * @skb: buffer to copy
914 * @gfp_mask: allocation priority
916 * Make a copy of both an &sk_buff and its data. This is used when the
917 * caller wishes to modify the data and needs a private copy of the
918 * data to alter. Returns %NULL on failure or the pointer to the buffer
919 * on success. The returned buffer has a reference count of 1.
921 * As by-product this function converts non-linear &sk_buff to linear
922 * one, so that &sk_buff becomes completely private and caller is allowed
923 * to modify all the data of returned buffer. This means that this
924 * function is not recommended for use in circumstances when only
925 * header is going to be modified. Use pskb_copy() instead.
928 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
930 int headerlen
= skb_headroom(skb
);
931 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
932 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
933 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
938 /* Set the data pointer */
939 skb_reserve(n
, headerlen
);
940 /* Set the tail pointer and length */
941 skb_put(n
, skb
->len
);
943 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
946 copy_skb_header(n
, skb
);
949 EXPORT_SYMBOL(skb_copy
);
952 * __pskb_copy - create copy of an sk_buff with private head.
953 * @skb: buffer to copy
954 * @headroom: headroom of new skb
955 * @gfp_mask: allocation priority
957 * Make a copy of both an &sk_buff and part of its data, located
958 * in header. Fragmented data remain shared. This is used when
959 * the caller wishes to modify only header of &sk_buff and needs
960 * private copy of the header to alter. Returns %NULL on failure
961 * or the pointer to the buffer on success.
962 * The returned buffer has a reference count of 1.
965 struct sk_buff
*__pskb_copy(struct sk_buff
*skb
, int headroom
, gfp_t gfp_mask
)
967 unsigned int size
= skb_headlen(skb
) + headroom
;
968 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
969 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
974 /* Set the data pointer */
975 skb_reserve(n
, headroom
);
976 /* Set the tail pointer and length */
977 skb_put(n
, skb_headlen(skb
));
979 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
981 n
->truesize
+= skb
->data_len
;
982 n
->data_len
= skb
->data_len
;
985 if (skb_shinfo(skb
)->nr_frags
) {
988 if (skb_orphan_frags(skb
, gfp_mask
)) {
993 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
994 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
995 skb_frag_ref(skb
, i
);
997 skb_shinfo(n
)->nr_frags
= i
;
1000 if (skb_has_frag_list(skb
)) {
1001 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1002 skb_clone_fraglist(n
);
1005 copy_skb_header(n
, skb
);
1009 EXPORT_SYMBOL(__pskb_copy
);
1012 * pskb_expand_head - reallocate header of &sk_buff
1013 * @skb: buffer to reallocate
1014 * @nhead: room to add at head
1015 * @ntail: room to add at tail
1016 * @gfp_mask: allocation priority
1018 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1019 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1020 * reference count of 1. Returns zero in the case of success or error,
1021 * if expansion failed. In the last case, &sk_buff is not changed.
1023 * All the pointers pointing into skb header may change and must be
1024 * reloaded after call to this function.
1027 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1032 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1037 if (skb_shared(skb
))
1040 size
= SKB_DATA_ALIGN(size
);
1042 if (skb_pfmemalloc(skb
))
1043 gfp_mask
|= __GFP_MEMALLOC
;
1044 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1045 gfp_mask
, NUMA_NO_NODE
, NULL
);
1048 size
= SKB_WITH_OVERHEAD(ksize(data
));
1050 /* Copy only real data... and, alas, header. This should be
1051 * optimized for the cases when header is void.
1053 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1055 memcpy((struct skb_shared_info
*)(data
+ size
),
1057 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1060 * if shinfo is shared we must drop the old head gracefully, but if it
1061 * is not we can just drop the old head and let the existing refcount
1062 * be since all we did is relocate the values
1064 if (skb_cloned(skb
)) {
1065 /* copy this zero copy skb frags */
1066 if (skb_orphan_frags(skb
, gfp_mask
))
1068 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1069 skb_frag_ref(skb
, i
);
1071 if (skb_has_frag_list(skb
))
1072 skb_clone_fraglist(skb
);
1074 skb_release_data(skb
);
1078 off
= (data
+ nhead
) - skb
->head
;
1083 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1087 skb
->end
= skb
->head
+ size
;
1090 skb_headers_offset_update(skb
, off
);
1091 /* Only adjust this if it actually is csum_start rather than csum */
1092 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1093 skb
->csum_start
+= nhead
;
1097 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1105 EXPORT_SYMBOL(pskb_expand_head
);
1107 /* Make private copy of skb with writable head and some headroom */
1109 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1111 struct sk_buff
*skb2
;
1112 int delta
= headroom
- skb_headroom(skb
);
1115 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1117 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1118 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1126 EXPORT_SYMBOL(skb_realloc_headroom
);
1129 * skb_copy_expand - copy and expand sk_buff
1130 * @skb: buffer to copy
1131 * @newheadroom: new free bytes at head
1132 * @newtailroom: new free bytes at tail
1133 * @gfp_mask: allocation priority
1135 * Make a copy of both an &sk_buff and its data and while doing so
1136 * allocate additional space.
1138 * This is used when the caller wishes to modify the data and needs a
1139 * private copy of the data to alter as well as more space for new fields.
1140 * Returns %NULL on failure or the pointer to the buffer
1141 * on success. The returned buffer has a reference count of 1.
1143 * You must pass %GFP_ATOMIC as the allocation priority if this function
1144 * is called from an interrupt.
1146 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1147 int newheadroom
, int newtailroom
,
1151 * Allocate the copy buffer
1153 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1154 gfp_mask
, skb_alloc_rx_flag(skb
),
1156 int oldheadroom
= skb_headroom(skb
);
1157 int head_copy_len
, head_copy_off
;
1163 skb_reserve(n
, newheadroom
);
1165 /* Set the tail pointer and length */
1166 skb_put(n
, skb
->len
);
1168 head_copy_len
= oldheadroom
;
1170 if (newheadroom
<= head_copy_len
)
1171 head_copy_len
= newheadroom
;
1173 head_copy_off
= newheadroom
- head_copy_len
;
1175 /* Copy the linear header and data. */
1176 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1177 skb
->len
+ head_copy_len
))
1180 copy_skb_header(n
, skb
);
1182 off
= newheadroom
- oldheadroom
;
1183 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1184 n
->csum_start
+= off
;
1185 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1186 skb_headers_offset_update(n
, off
);
1191 EXPORT_SYMBOL(skb_copy_expand
);
1194 * skb_pad - zero pad the tail of an skb
1195 * @skb: buffer to pad
1196 * @pad: space to pad
1198 * Ensure that a buffer is followed by a padding area that is zero
1199 * filled. Used by network drivers which may DMA or transfer data
1200 * beyond the buffer end onto the wire.
1202 * May return error in out of memory cases. The skb is freed on error.
1205 int skb_pad(struct sk_buff
*skb
, int pad
)
1210 /* If the skbuff is non linear tailroom is always zero.. */
1211 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1212 memset(skb
->data
+skb
->len
, 0, pad
);
1216 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1217 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1218 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1223 /* FIXME: The use of this function with non-linear skb's really needs
1226 err
= skb_linearize(skb
);
1230 memset(skb
->data
+ skb
->len
, 0, pad
);
1237 EXPORT_SYMBOL(skb_pad
);
1240 * skb_put - add data to a buffer
1241 * @skb: buffer to use
1242 * @len: amount of data to add
1244 * This function extends the used data area of the buffer. If this would
1245 * exceed the total buffer size the kernel will panic. A pointer to the
1246 * first byte of the extra data is returned.
1248 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1250 unsigned char *tmp
= skb_tail_pointer(skb
);
1251 SKB_LINEAR_ASSERT(skb
);
1254 if (unlikely(skb
->tail
> skb
->end
))
1255 skb_over_panic(skb
, len
, __builtin_return_address(0));
1258 EXPORT_SYMBOL(skb_put
);
1261 * skb_push - add data to the start of a buffer
1262 * @skb: buffer to use
1263 * @len: amount of data to add
1265 * This function extends the used data area of the buffer at the buffer
1266 * start. If this would exceed the total buffer headroom the kernel will
1267 * panic. A pointer to the first byte of the extra data is returned.
1269 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1273 if (unlikely(skb
->data
<skb
->head
))
1274 skb_under_panic(skb
, len
, __builtin_return_address(0));
1277 EXPORT_SYMBOL(skb_push
);
1280 * skb_pull - remove data from the start of a buffer
1281 * @skb: buffer to use
1282 * @len: amount of data to remove
1284 * This function removes data from the start of a buffer, returning
1285 * the memory to the headroom. A pointer to the next data in the buffer
1286 * is returned. Once the data has been pulled future pushes will overwrite
1289 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1291 return skb_pull_inline(skb
, len
);
1293 EXPORT_SYMBOL(skb_pull
);
1296 * skb_trim - remove end from a buffer
1297 * @skb: buffer to alter
1300 * Cut the length of a buffer down by removing data from the tail. If
1301 * the buffer is already under the length specified it is not modified.
1302 * The skb must be linear.
1304 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1307 __skb_trim(skb
, len
);
1309 EXPORT_SYMBOL(skb_trim
);
1311 /* Trims skb to length len. It can change skb pointers.
1314 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1316 struct sk_buff
**fragp
;
1317 struct sk_buff
*frag
;
1318 int offset
= skb_headlen(skb
);
1319 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1323 if (skb_cloned(skb
) &&
1324 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1331 for (; i
< nfrags
; i
++) {
1332 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1339 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1342 skb_shinfo(skb
)->nr_frags
= i
;
1344 for (; i
< nfrags
; i
++)
1345 skb_frag_unref(skb
, i
);
1347 if (skb_has_frag_list(skb
))
1348 skb_drop_fraglist(skb
);
1352 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1353 fragp
= &frag
->next
) {
1354 int end
= offset
+ frag
->len
;
1356 if (skb_shared(frag
)) {
1357 struct sk_buff
*nfrag
;
1359 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1360 if (unlikely(!nfrag
))
1363 nfrag
->next
= frag
->next
;
1375 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1379 skb_drop_list(&frag
->next
);
1384 if (len
> skb_headlen(skb
)) {
1385 skb
->data_len
-= skb
->len
- len
;
1390 skb_set_tail_pointer(skb
, len
);
1395 EXPORT_SYMBOL(___pskb_trim
);
1398 * __pskb_pull_tail - advance tail of skb header
1399 * @skb: buffer to reallocate
1400 * @delta: number of bytes to advance tail
1402 * The function makes a sense only on a fragmented &sk_buff,
1403 * it expands header moving its tail forward and copying necessary
1404 * data from fragmented part.
1406 * &sk_buff MUST have reference count of 1.
1408 * Returns %NULL (and &sk_buff does not change) if pull failed
1409 * or value of new tail of skb in the case of success.
1411 * All the pointers pointing into skb header may change and must be
1412 * reloaded after call to this function.
1415 /* Moves tail of skb head forward, copying data from fragmented part,
1416 * when it is necessary.
1417 * 1. It may fail due to malloc failure.
1418 * 2. It may change skb pointers.
1420 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1422 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1424 /* If skb has not enough free space at tail, get new one
1425 * plus 128 bytes for future expansions. If we have enough
1426 * room at tail, reallocate without expansion only if skb is cloned.
1428 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1430 if (eat
> 0 || skb_cloned(skb
)) {
1431 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1436 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1439 /* Optimization: no fragments, no reasons to preestimate
1440 * size of pulled pages. Superb.
1442 if (!skb_has_frag_list(skb
))
1445 /* Estimate size of pulled pages. */
1447 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1448 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1455 /* If we need update frag list, we are in troubles.
1456 * Certainly, it possible to add an offset to skb data,
1457 * but taking into account that pulling is expected to
1458 * be very rare operation, it is worth to fight against
1459 * further bloating skb head and crucify ourselves here instead.
1460 * Pure masohism, indeed. 8)8)
1463 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1464 struct sk_buff
*clone
= NULL
;
1465 struct sk_buff
*insp
= NULL
;
1470 if (list
->len
<= eat
) {
1471 /* Eaten as whole. */
1476 /* Eaten partially. */
1478 if (skb_shared(list
)) {
1479 /* Sucks! We need to fork list. :-( */
1480 clone
= skb_clone(list
, GFP_ATOMIC
);
1486 /* This may be pulled without
1490 if (!pskb_pull(list
, eat
)) {
1498 /* Free pulled out fragments. */
1499 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1500 skb_shinfo(skb
)->frag_list
= list
->next
;
1503 /* And insert new clone at head. */
1506 skb_shinfo(skb
)->frag_list
= clone
;
1509 /* Success! Now we may commit changes to skb data. */
1514 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1515 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1518 skb_frag_unref(skb
, i
);
1521 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1523 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1524 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1530 skb_shinfo(skb
)->nr_frags
= k
;
1533 skb
->data_len
-= delta
;
1535 return skb_tail_pointer(skb
);
1537 EXPORT_SYMBOL(__pskb_pull_tail
);
1540 * skb_copy_bits - copy bits from skb to kernel buffer
1542 * @offset: offset in source
1543 * @to: destination buffer
1544 * @len: number of bytes to copy
1546 * Copy the specified number of bytes from the source skb to the
1547 * destination buffer.
1550 * If its prototype is ever changed,
1551 * check arch/{*}/net/{*}.S files,
1552 * since it is called from BPF assembly code.
1554 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1556 int start
= skb_headlen(skb
);
1557 struct sk_buff
*frag_iter
;
1560 if (offset
> (int)skb
->len
- len
)
1564 if ((copy
= start
- offset
) > 0) {
1567 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1568 if ((len
-= copy
) == 0)
1574 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1576 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1578 WARN_ON(start
> offset
+ len
);
1580 end
= start
+ skb_frag_size(f
);
1581 if ((copy
= end
- offset
) > 0) {
1587 vaddr
= kmap_atomic(skb_frag_page(f
));
1589 vaddr
+ f
->page_offset
+ offset
- start
,
1591 kunmap_atomic(vaddr
);
1593 if ((len
-= copy
) == 0)
1601 skb_walk_frags(skb
, frag_iter
) {
1604 WARN_ON(start
> offset
+ len
);
1606 end
= start
+ frag_iter
->len
;
1607 if ((copy
= end
- offset
) > 0) {
1610 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1612 if ((len
-= copy
) == 0)
1626 EXPORT_SYMBOL(skb_copy_bits
);
1629 * Callback from splice_to_pipe(), if we need to release some pages
1630 * at the end of the spd in case we error'ed out in filling the pipe.
1632 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1634 put_page(spd
->pages
[i
]);
1637 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1638 unsigned int *offset
,
1641 struct page_frag
*pfrag
= sk_page_frag(sk
);
1643 if (!sk_page_frag_refill(sk
, pfrag
))
1646 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1648 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1649 page_address(page
) + *offset
, *len
);
1650 *offset
= pfrag
->offset
;
1651 pfrag
->offset
+= *len
;
1656 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1658 unsigned int offset
)
1660 return spd
->nr_pages
&&
1661 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1662 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1663 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1667 * Fill page/offset/length into spd, if it can hold more pages.
1669 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1670 struct pipe_inode_info
*pipe
, struct page
*page
,
1671 unsigned int *len
, unsigned int offset
,
1675 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1679 page
= linear_to_page(page
, len
, &offset
, sk
);
1683 if (spd_can_coalesce(spd
, page
, offset
)) {
1684 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1688 spd
->pages
[spd
->nr_pages
] = page
;
1689 spd
->partial
[spd
->nr_pages
].len
= *len
;
1690 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1696 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1697 unsigned int plen
, unsigned int *off
,
1699 struct splice_pipe_desc
*spd
, bool linear
,
1701 struct pipe_inode_info
*pipe
)
1706 /* skip this segment if already processed */
1712 /* ignore any bits we already processed */
1718 unsigned int flen
= min(*len
, plen
);
1720 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1726 } while (*len
&& plen
);
1732 * Map linear and fragment data from the skb to spd. It reports true if the
1733 * pipe is full or if we already spliced the requested length.
1735 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1736 unsigned int *offset
, unsigned int *len
,
1737 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1741 /* map the linear part :
1742 * If skb->head_frag is set, this 'linear' part is backed by a
1743 * fragment, and if the head is not shared with any clones then
1744 * we can avoid a copy since we own the head portion of this page.
1746 if (__splice_segment(virt_to_page(skb
->data
),
1747 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1750 skb_head_is_locked(skb
),
1755 * then map the fragments
1757 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1758 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1760 if (__splice_segment(skb_frag_page(f
),
1761 f
->page_offset
, skb_frag_size(f
),
1762 offset
, len
, spd
, false, sk
, pipe
))
1770 * Map data from the skb to a pipe. Should handle both the linear part,
1771 * the fragments, and the frag list. It does NOT handle frag lists within
1772 * the frag list, if such a thing exists. We'd probably need to recurse to
1773 * handle that cleanly.
1775 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1776 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1779 struct partial_page partial
[MAX_SKB_FRAGS
];
1780 struct page
*pages
[MAX_SKB_FRAGS
];
1781 struct splice_pipe_desc spd
= {
1784 .nr_pages_max
= MAX_SKB_FRAGS
,
1786 .ops
= &nosteal_pipe_buf_ops
,
1787 .spd_release
= sock_spd_release
,
1789 struct sk_buff
*frag_iter
;
1790 struct sock
*sk
= skb
->sk
;
1794 * __skb_splice_bits() only fails if the output has no room left,
1795 * so no point in going over the frag_list for the error case.
1797 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1803 * now see if we have a frag_list to map
1805 skb_walk_frags(skb
, frag_iter
) {
1808 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1815 * Drop the socket lock, otherwise we have reverse
1816 * locking dependencies between sk_lock and i_mutex
1817 * here as compared to sendfile(). We enter here
1818 * with the socket lock held, and splice_to_pipe() will
1819 * grab the pipe inode lock. For sendfile() emulation,
1820 * we call into ->sendpage() with the i_mutex lock held
1821 * and networking will grab the socket lock.
1824 ret
= splice_to_pipe(pipe
, &spd
);
1832 * skb_store_bits - store bits from kernel buffer to skb
1833 * @skb: destination buffer
1834 * @offset: offset in destination
1835 * @from: source buffer
1836 * @len: number of bytes to copy
1838 * Copy the specified number of bytes from the source buffer to the
1839 * destination skb. This function handles all the messy bits of
1840 * traversing fragment lists and such.
1843 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1845 int start
= skb_headlen(skb
);
1846 struct sk_buff
*frag_iter
;
1849 if (offset
> (int)skb
->len
- len
)
1852 if ((copy
= start
- offset
) > 0) {
1855 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1856 if ((len
-= copy
) == 0)
1862 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1863 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1866 WARN_ON(start
> offset
+ len
);
1868 end
= start
+ skb_frag_size(frag
);
1869 if ((copy
= end
- offset
) > 0) {
1875 vaddr
= kmap_atomic(skb_frag_page(frag
));
1876 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1878 kunmap_atomic(vaddr
);
1880 if ((len
-= copy
) == 0)
1888 skb_walk_frags(skb
, frag_iter
) {
1891 WARN_ON(start
> offset
+ len
);
1893 end
= start
+ frag_iter
->len
;
1894 if ((copy
= end
- offset
) > 0) {
1897 if (skb_store_bits(frag_iter
, offset
- start
,
1900 if ((len
-= copy
) == 0)
1913 EXPORT_SYMBOL(skb_store_bits
);
1915 /* Checksum skb data. */
1917 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1918 int len
, __wsum csum
)
1920 int start
= skb_headlen(skb
);
1921 int i
, copy
= start
- offset
;
1922 struct sk_buff
*frag_iter
;
1925 /* Checksum header. */
1929 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1930 if ((len
-= copy
) == 0)
1936 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1938 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1940 WARN_ON(start
> offset
+ len
);
1942 end
= start
+ skb_frag_size(frag
);
1943 if ((copy
= end
- offset
) > 0) {
1949 vaddr
= kmap_atomic(skb_frag_page(frag
));
1950 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1951 offset
- start
, copy
, 0);
1952 kunmap_atomic(vaddr
);
1953 csum
= csum_block_add(csum
, csum2
, pos
);
1962 skb_walk_frags(skb
, frag_iter
) {
1965 WARN_ON(start
> offset
+ len
);
1967 end
= start
+ frag_iter
->len
;
1968 if ((copy
= end
- offset
) > 0) {
1972 csum2
= skb_checksum(frag_iter
, offset
- start
,
1974 csum
= csum_block_add(csum
, csum2
, pos
);
1975 if ((len
-= copy
) == 0)
1986 EXPORT_SYMBOL(skb_checksum
);
1988 /* Both of above in one bottle. */
1990 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1991 u8
*to
, int len
, __wsum csum
)
1993 int start
= skb_headlen(skb
);
1994 int i
, copy
= start
- offset
;
1995 struct sk_buff
*frag_iter
;
2002 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2004 if ((len
-= copy
) == 0)
2011 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2014 WARN_ON(start
> offset
+ len
);
2016 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2017 if ((copy
= end
- offset
) > 0) {
2020 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2024 vaddr
= kmap_atomic(skb_frag_page(frag
));
2025 csum2
= csum_partial_copy_nocheck(vaddr
+
2029 kunmap_atomic(vaddr
);
2030 csum
= csum_block_add(csum
, csum2
, pos
);
2040 skb_walk_frags(skb
, frag_iter
) {
2044 WARN_ON(start
> offset
+ len
);
2046 end
= start
+ frag_iter
->len
;
2047 if ((copy
= end
- offset
) > 0) {
2050 csum2
= skb_copy_and_csum_bits(frag_iter
,
2053 csum
= csum_block_add(csum
, csum2
, pos
);
2054 if ((len
-= copy
) == 0)
2065 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2067 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2072 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2073 csstart
= skb_checksum_start_offset(skb
);
2075 csstart
= skb_headlen(skb
);
2077 BUG_ON(csstart
> skb_headlen(skb
));
2079 skb_copy_from_linear_data(skb
, to
, csstart
);
2082 if (csstart
!= skb
->len
)
2083 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2084 skb
->len
- csstart
, 0);
2086 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2087 long csstuff
= csstart
+ skb
->csum_offset
;
2089 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2092 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2095 * skb_dequeue - remove from the head of the queue
2096 * @list: list to dequeue from
2098 * Remove the head of the list. The list lock is taken so the function
2099 * may be used safely with other locking list functions. The head item is
2100 * returned or %NULL if the list is empty.
2103 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2105 unsigned long flags
;
2106 struct sk_buff
*result
;
2108 spin_lock_irqsave(&list
->lock
, flags
);
2109 result
= __skb_dequeue(list
);
2110 spin_unlock_irqrestore(&list
->lock
, flags
);
2113 EXPORT_SYMBOL(skb_dequeue
);
2116 * skb_dequeue_tail - remove from the tail of the queue
2117 * @list: list to dequeue from
2119 * Remove the tail of the list. The list lock is taken so the function
2120 * may be used safely with other locking list functions. The tail item is
2121 * returned or %NULL if the list is empty.
2123 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2125 unsigned long flags
;
2126 struct sk_buff
*result
;
2128 spin_lock_irqsave(&list
->lock
, flags
);
2129 result
= __skb_dequeue_tail(list
);
2130 spin_unlock_irqrestore(&list
->lock
, flags
);
2133 EXPORT_SYMBOL(skb_dequeue_tail
);
2136 * skb_queue_purge - empty a list
2137 * @list: list to empty
2139 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2140 * the list and one reference dropped. This function takes the list
2141 * lock and is atomic with respect to other list locking functions.
2143 void skb_queue_purge(struct sk_buff_head
*list
)
2145 struct sk_buff
*skb
;
2146 while ((skb
= skb_dequeue(list
)) != NULL
)
2149 EXPORT_SYMBOL(skb_queue_purge
);
2152 * skb_queue_head - queue a buffer at the list head
2153 * @list: list to use
2154 * @newsk: buffer to queue
2156 * Queue a buffer at the start of the list. This function takes the
2157 * list lock and can be used safely with other locking &sk_buff functions
2160 * A buffer cannot be placed on two lists at the same time.
2162 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2164 unsigned long flags
;
2166 spin_lock_irqsave(&list
->lock
, flags
);
2167 __skb_queue_head(list
, newsk
);
2168 spin_unlock_irqrestore(&list
->lock
, flags
);
2170 EXPORT_SYMBOL(skb_queue_head
);
2173 * skb_queue_tail - queue a buffer at the list tail
2174 * @list: list to use
2175 * @newsk: buffer to queue
2177 * Queue a buffer at the tail of the list. This function takes the
2178 * list lock and can be used safely with other locking &sk_buff functions
2181 * A buffer cannot be placed on two lists at the same time.
2183 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2185 unsigned long flags
;
2187 spin_lock_irqsave(&list
->lock
, flags
);
2188 __skb_queue_tail(list
, newsk
);
2189 spin_unlock_irqrestore(&list
->lock
, flags
);
2191 EXPORT_SYMBOL(skb_queue_tail
);
2194 * skb_unlink - remove a buffer from a list
2195 * @skb: buffer to remove
2196 * @list: list to use
2198 * Remove a packet from a list. The list locks are taken and this
2199 * function is atomic with respect to other list locked calls
2201 * You must know what list the SKB is on.
2203 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2205 unsigned long flags
;
2207 spin_lock_irqsave(&list
->lock
, flags
);
2208 __skb_unlink(skb
, list
);
2209 spin_unlock_irqrestore(&list
->lock
, flags
);
2211 EXPORT_SYMBOL(skb_unlink
);
2214 * skb_append - append a buffer
2215 * @old: buffer to insert after
2216 * @newsk: buffer to insert
2217 * @list: list to use
2219 * Place a packet after a given packet in a list. The list locks are taken
2220 * and this function is atomic with respect to other list locked calls.
2221 * A buffer cannot be placed on two lists at the same time.
2223 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2225 unsigned long flags
;
2227 spin_lock_irqsave(&list
->lock
, flags
);
2228 __skb_queue_after(list
, old
, newsk
);
2229 spin_unlock_irqrestore(&list
->lock
, flags
);
2231 EXPORT_SYMBOL(skb_append
);
2234 * skb_insert - insert a buffer
2235 * @old: buffer to insert before
2236 * @newsk: buffer to insert
2237 * @list: list to use
2239 * Place a packet before a given packet in a list. The list locks are
2240 * taken and this function is atomic with respect to other list locked
2243 * A buffer cannot be placed on two lists at the same time.
2245 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2247 unsigned long flags
;
2249 spin_lock_irqsave(&list
->lock
, flags
);
2250 __skb_insert(newsk
, old
->prev
, old
, list
);
2251 spin_unlock_irqrestore(&list
->lock
, flags
);
2253 EXPORT_SYMBOL(skb_insert
);
2255 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2256 struct sk_buff
* skb1
,
2257 const u32 len
, const int pos
)
2261 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2263 /* And move data appendix as is. */
2264 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2265 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2267 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2268 skb_shinfo(skb
)->nr_frags
= 0;
2269 skb1
->data_len
= skb
->data_len
;
2270 skb1
->len
+= skb1
->data_len
;
2273 skb_set_tail_pointer(skb
, len
);
2276 static inline void skb_split_no_header(struct sk_buff
*skb
,
2277 struct sk_buff
* skb1
,
2278 const u32 len
, int pos
)
2281 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2283 skb_shinfo(skb
)->nr_frags
= 0;
2284 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2286 skb
->data_len
= len
- pos
;
2288 for (i
= 0; i
< nfrags
; i
++) {
2289 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2291 if (pos
+ size
> len
) {
2292 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2296 * We have two variants in this case:
2297 * 1. Move all the frag to the second
2298 * part, if it is possible. F.e.
2299 * this approach is mandatory for TUX,
2300 * where splitting is expensive.
2301 * 2. Split is accurately. We make this.
2303 skb_frag_ref(skb
, i
);
2304 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2305 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2306 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2307 skb_shinfo(skb
)->nr_frags
++;
2311 skb_shinfo(skb
)->nr_frags
++;
2314 skb_shinfo(skb1
)->nr_frags
= k
;
2318 * skb_split - Split fragmented skb to two parts at length len.
2319 * @skb: the buffer to split
2320 * @skb1: the buffer to receive the second part
2321 * @len: new length for skb
2323 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2325 int pos
= skb_headlen(skb
);
2327 skb_shinfo(skb1
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2328 if (len
< pos
) /* Split line is inside header. */
2329 skb_split_inside_header(skb
, skb1
, len
, pos
);
2330 else /* Second chunk has no header, nothing to copy. */
2331 skb_split_no_header(skb
, skb1
, len
, pos
);
2333 EXPORT_SYMBOL(skb_split
);
2335 /* Shifting from/to a cloned skb is a no-go.
2337 * Caller cannot keep skb_shinfo related pointers past calling here!
2339 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2341 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2345 * skb_shift - Shifts paged data partially from skb to another
2346 * @tgt: buffer into which tail data gets added
2347 * @skb: buffer from which the paged data comes from
2348 * @shiftlen: shift up to this many bytes
2350 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2351 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2352 * It's up to caller to free skb if everything was shifted.
2354 * If @tgt runs out of frags, the whole operation is aborted.
2356 * Skb cannot include anything else but paged data while tgt is allowed
2357 * to have non-paged data as well.
2359 * TODO: full sized shift could be optimized but that would need
2360 * specialized skb free'er to handle frags without up-to-date nr_frags.
2362 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2364 int from
, to
, merge
, todo
;
2365 struct skb_frag_struct
*fragfrom
, *fragto
;
2367 BUG_ON(shiftlen
> skb
->len
);
2368 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2372 to
= skb_shinfo(tgt
)->nr_frags
;
2373 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2375 /* Actual merge is delayed until the point when we know we can
2376 * commit all, so that we don't have to undo partial changes
2379 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2380 fragfrom
->page_offset
)) {
2385 todo
-= skb_frag_size(fragfrom
);
2387 if (skb_prepare_for_shift(skb
) ||
2388 skb_prepare_for_shift(tgt
))
2391 /* All previous frag pointers might be stale! */
2392 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2393 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2395 skb_frag_size_add(fragto
, shiftlen
);
2396 skb_frag_size_sub(fragfrom
, shiftlen
);
2397 fragfrom
->page_offset
+= shiftlen
;
2405 /* Skip full, not-fitting skb to avoid expensive operations */
2406 if ((shiftlen
== skb
->len
) &&
2407 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2410 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2413 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2414 if (to
== MAX_SKB_FRAGS
)
2417 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2418 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2420 if (todo
>= skb_frag_size(fragfrom
)) {
2421 *fragto
= *fragfrom
;
2422 todo
-= skb_frag_size(fragfrom
);
2427 __skb_frag_ref(fragfrom
);
2428 fragto
->page
= fragfrom
->page
;
2429 fragto
->page_offset
= fragfrom
->page_offset
;
2430 skb_frag_size_set(fragto
, todo
);
2432 fragfrom
->page_offset
+= todo
;
2433 skb_frag_size_sub(fragfrom
, todo
);
2441 /* Ready to "commit" this state change to tgt */
2442 skb_shinfo(tgt
)->nr_frags
= to
;
2445 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2446 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2448 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2449 __skb_frag_unref(fragfrom
);
2452 /* Reposition in the original skb */
2454 while (from
< skb_shinfo(skb
)->nr_frags
)
2455 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2456 skb_shinfo(skb
)->nr_frags
= to
;
2458 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2461 /* Most likely the tgt won't ever need its checksum anymore, skb on
2462 * the other hand might need it if it needs to be resent
2464 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2465 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2467 /* Yak, is it really working this way? Some helper please? */
2468 skb
->len
-= shiftlen
;
2469 skb
->data_len
-= shiftlen
;
2470 skb
->truesize
-= shiftlen
;
2471 tgt
->len
+= shiftlen
;
2472 tgt
->data_len
+= shiftlen
;
2473 tgt
->truesize
+= shiftlen
;
2479 * skb_prepare_seq_read - Prepare a sequential read of skb data
2480 * @skb: the buffer to read
2481 * @from: lower offset of data to be read
2482 * @to: upper offset of data to be read
2483 * @st: state variable
2485 * Initializes the specified state variable. Must be called before
2486 * invoking skb_seq_read() for the first time.
2488 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2489 unsigned int to
, struct skb_seq_state
*st
)
2491 st
->lower_offset
= from
;
2492 st
->upper_offset
= to
;
2493 st
->root_skb
= st
->cur_skb
= skb
;
2494 st
->frag_idx
= st
->stepped_offset
= 0;
2495 st
->frag_data
= NULL
;
2497 EXPORT_SYMBOL(skb_prepare_seq_read
);
2500 * skb_seq_read - Sequentially read skb data
2501 * @consumed: number of bytes consumed by the caller so far
2502 * @data: destination pointer for data to be returned
2503 * @st: state variable
2505 * Reads a block of skb data at &consumed relative to the
2506 * lower offset specified to skb_prepare_seq_read(). Assigns
2507 * the head of the data block to &data and returns the length
2508 * of the block or 0 if the end of the skb data or the upper
2509 * offset has been reached.
2511 * The caller is not required to consume all of the data
2512 * returned, i.e. &consumed is typically set to the number
2513 * of bytes already consumed and the next call to
2514 * skb_seq_read() will return the remaining part of the block.
2516 * Note 1: The size of each block of data returned can be arbitrary,
2517 * this limitation is the cost for zerocopy seqeuental
2518 * reads of potentially non linear data.
2520 * Note 2: Fragment lists within fragments are not implemented
2521 * at the moment, state->root_skb could be replaced with
2522 * a stack for this purpose.
2524 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2525 struct skb_seq_state
*st
)
2527 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2530 if (unlikely(abs_offset
>= st
->upper_offset
))
2534 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2536 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2537 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2538 return block_limit
- abs_offset
;
2541 if (st
->frag_idx
== 0 && !st
->frag_data
)
2542 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2544 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2545 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2546 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2548 if (abs_offset
< block_limit
) {
2550 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2552 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2553 (abs_offset
- st
->stepped_offset
);
2555 return block_limit
- abs_offset
;
2558 if (st
->frag_data
) {
2559 kunmap_atomic(st
->frag_data
);
2560 st
->frag_data
= NULL
;
2564 st
->stepped_offset
+= skb_frag_size(frag
);
2567 if (st
->frag_data
) {
2568 kunmap_atomic(st
->frag_data
);
2569 st
->frag_data
= NULL
;
2572 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2573 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2576 } else if (st
->cur_skb
->next
) {
2577 st
->cur_skb
= st
->cur_skb
->next
;
2584 EXPORT_SYMBOL(skb_seq_read
);
2587 * skb_abort_seq_read - Abort a sequential read of skb data
2588 * @st: state variable
2590 * Must be called if skb_seq_read() was not called until it
2593 void skb_abort_seq_read(struct skb_seq_state
*st
)
2596 kunmap_atomic(st
->frag_data
);
2598 EXPORT_SYMBOL(skb_abort_seq_read
);
2600 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2602 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2603 struct ts_config
*conf
,
2604 struct ts_state
*state
)
2606 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2609 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2611 skb_abort_seq_read(TS_SKB_CB(state
));
2615 * skb_find_text - Find a text pattern in skb data
2616 * @skb: the buffer to look in
2617 * @from: search offset
2619 * @config: textsearch configuration
2620 * @state: uninitialized textsearch state variable
2622 * Finds a pattern in the skb data according to the specified
2623 * textsearch configuration. Use textsearch_next() to retrieve
2624 * subsequent occurrences of the pattern. Returns the offset
2625 * to the first occurrence or UINT_MAX if no match was found.
2627 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2628 unsigned int to
, struct ts_config
*config
,
2629 struct ts_state
*state
)
2633 config
->get_next_block
= skb_ts_get_next_block
;
2634 config
->finish
= skb_ts_finish
;
2636 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2638 ret
= textsearch_find(config
, state
);
2639 return (ret
<= to
- from
? ret
: UINT_MAX
);
2641 EXPORT_SYMBOL(skb_find_text
);
2644 * skb_append_datato_frags - append the user data to a skb
2645 * @sk: sock structure
2646 * @skb: skb structure to be appened with user data.
2647 * @getfrag: call back function to be used for getting the user data
2648 * @from: pointer to user message iov
2649 * @length: length of the iov message
2651 * Description: This procedure append the user data in the fragment part
2652 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2654 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2655 int (*getfrag
)(void *from
, char *to
, int offset
,
2656 int len
, int odd
, struct sk_buff
*skb
),
2657 void *from
, int length
)
2659 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2663 struct page_frag
*pfrag
= ¤t
->task_frag
;
2666 /* Return error if we don't have space for new frag */
2667 if (frg_cnt
>= MAX_SKB_FRAGS
)
2670 if (!sk_page_frag_refill(sk
, pfrag
))
2673 /* copy the user data to page */
2674 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2676 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2677 offset
, copy
, 0, skb
);
2681 /* copy was successful so update the size parameters */
2682 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
2685 pfrag
->offset
+= copy
;
2686 get_page(pfrag
->page
);
2688 skb
->truesize
+= copy
;
2689 atomic_add(copy
, &sk
->sk_wmem_alloc
);
2691 skb
->data_len
+= copy
;
2695 } while (length
> 0);
2699 EXPORT_SYMBOL(skb_append_datato_frags
);
2702 * skb_pull_rcsum - pull skb and update receive checksum
2703 * @skb: buffer to update
2704 * @len: length of data pulled
2706 * This function performs an skb_pull on the packet and updates
2707 * the CHECKSUM_COMPLETE checksum. It should be used on
2708 * receive path processing instead of skb_pull unless you know
2709 * that the checksum difference is zero (e.g., a valid IP header)
2710 * or you are setting ip_summed to CHECKSUM_NONE.
2712 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2714 unsigned char *data
= skb
->data
;
2716 BUG_ON(len
> skb
->len
);
2717 __skb_pull(skb
, len
);
2718 skb_postpull_rcsum(skb
, data
, len
);
2721 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2724 * skb_segment - Perform protocol segmentation on skb.
2725 * @skb: buffer to segment
2726 * @features: features for the output path (see dev->features)
2728 * This function performs segmentation on the given skb. It returns
2729 * a pointer to the first in a list of new skbs for the segments.
2730 * In case of error it returns ERR_PTR(err).
2732 struct sk_buff
*skb_segment(struct sk_buff
*skb
, netdev_features_t features
)
2734 struct sk_buff
*segs
= NULL
;
2735 struct sk_buff
*tail
= NULL
;
2736 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2737 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2738 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2739 unsigned int offset
= doffset
;
2740 unsigned int tnl_hlen
= skb_tnl_header_len(skb
);
2741 unsigned int headroom
;
2745 int sg
= !!(features
& NETIF_F_SG
);
2746 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2751 proto
= skb_network_protocol(skb
);
2752 if (unlikely(!proto
))
2753 return ERR_PTR(-EINVAL
);
2755 csum
= !!can_checksum_protocol(features
, proto
);
2756 __skb_push(skb
, doffset
);
2757 headroom
= skb_headroom(skb
);
2758 pos
= skb_headlen(skb
);
2761 struct sk_buff
*nskb
;
2766 len
= skb
->len
- offset
;
2770 hsize
= skb_headlen(skb
) - offset
;
2773 if (hsize
> len
|| !sg
)
2776 if (!hsize
&& i
>= nfrags
) {
2777 BUG_ON(fskb
->len
!= len
);
2780 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2783 if (unlikely(!nskb
))
2786 hsize
= skb_end_offset(nskb
);
2787 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2792 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
2793 skb_release_head_state(nskb
);
2794 __skb_push(nskb
, doffset
);
2796 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
2797 GFP_ATOMIC
, skb_alloc_rx_flag(skb
),
2800 if (unlikely(!nskb
))
2803 skb_reserve(nskb
, headroom
);
2804 __skb_put(nskb
, doffset
);
2813 __copy_skb_header(nskb
, skb
);
2815 /* nskb and skb might have different headroom */
2816 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2817 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2819 skb_reset_mac_header(nskb
);
2820 skb_set_network_header(nskb
, skb
->mac_len
);
2821 nskb
->transport_header
= (nskb
->network_header
+
2822 skb_network_header_len(skb
));
2823 skb_reset_mac_len(nskb
);
2825 skb_copy_from_linear_data_offset(skb
, -tnl_hlen
,
2826 nskb
->data
- tnl_hlen
,
2827 doffset
+ tnl_hlen
);
2829 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2830 goto perform_csum_check
;
2833 nskb
->ip_summed
= CHECKSUM_NONE
;
2834 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2840 frag
= skb_shinfo(nskb
)->frags
;
2842 skb_copy_from_linear_data_offset(skb
, offset
,
2843 skb_put(nskb
, hsize
), hsize
);
2845 skb_shinfo(nskb
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2847 while (pos
< offset
+ len
&& i
< nfrags
) {
2848 if (unlikely(skb_orphan_frags(skb
, GFP_ATOMIC
)))
2850 *frag
= skb_shinfo(skb
)->frags
[i
];
2851 __skb_frag_ref(frag
);
2852 size
= skb_frag_size(frag
);
2855 frag
->page_offset
+= offset
- pos
;
2856 skb_frag_size_sub(frag
, offset
- pos
);
2859 skb_shinfo(nskb
)->nr_frags
++;
2861 if (pos
+ size
<= offset
+ len
) {
2865 skb_frag_size_sub(frag
, pos
+ size
- (offset
+ len
));
2872 if (pos
< offset
+ len
) {
2873 struct sk_buff
*fskb2
= fskb
;
2875 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2881 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2887 SKB_FRAG_ASSERT(nskb
);
2888 skb_shinfo(nskb
)->frag_list
= fskb2
;
2892 nskb
->data_len
= len
- hsize
;
2893 nskb
->len
+= nskb
->data_len
;
2894 nskb
->truesize
+= nskb
->data_len
;
2898 nskb
->csum
= skb_checksum(nskb
, doffset
,
2899 nskb
->len
- doffset
, 0);
2900 nskb
->ip_summed
= CHECKSUM_NONE
;
2902 } while ((offset
+= len
) < skb
->len
);
2907 while ((skb
= segs
)) {
2911 return ERR_PTR(err
);
2913 EXPORT_SYMBOL_GPL(skb_segment
);
2915 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2917 struct sk_buff
*p
= *head
;
2918 struct sk_buff
*nskb
;
2919 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2920 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2921 unsigned int headroom
;
2922 unsigned int len
= skb_gro_len(skb
);
2923 unsigned int offset
= skb_gro_offset(skb
);
2924 unsigned int headlen
= skb_headlen(skb
);
2925 unsigned int delta_truesize
;
2927 if (p
->len
+ len
>= 65536)
2930 if (pinfo
->frag_list
)
2932 else if (headlen
<= offset
) {
2935 int i
= skbinfo
->nr_frags
;
2936 int nr_frags
= pinfo
->nr_frags
+ i
;
2940 if (nr_frags
> MAX_SKB_FRAGS
)
2943 pinfo
->nr_frags
= nr_frags
;
2944 skbinfo
->nr_frags
= 0;
2946 frag
= pinfo
->frags
+ nr_frags
;
2947 frag2
= skbinfo
->frags
+ i
;
2952 frag
->page_offset
+= offset
;
2953 skb_frag_size_sub(frag
, offset
);
2955 /* all fragments truesize : remove (head size + sk_buff) */
2956 delta_truesize
= skb
->truesize
-
2957 SKB_TRUESIZE(skb_end_offset(skb
));
2959 skb
->truesize
-= skb
->data_len
;
2960 skb
->len
-= skb
->data_len
;
2963 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
2965 } else if (skb
->head_frag
) {
2966 int nr_frags
= pinfo
->nr_frags
;
2967 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
2968 struct page
*page
= virt_to_head_page(skb
->head
);
2969 unsigned int first_size
= headlen
- offset
;
2970 unsigned int first_offset
;
2972 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
2975 first_offset
= skb
->data
-
2976 (unsigned char *)page_address(page
) +
2979 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
2981 frag
->page
.p
= page
;
2982 frag
->page_offset
= first_offset
;
2983 skb_frag_size_set(frag
, first_size
);
2985 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
2986 /* We dont need to clear skbinfo->nr_frags here */
2988 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
2989 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
2991 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2994 headroom
= skb_headroom(p
);
2995 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2996 if (unlikely(!nskb
))
2999 __copy_skb_header(nskb
, p
);
3000 nskb
->mac_len
= p
->mac_len
;
3002 skb_reserve(nskb
, headroom
);
3003 __skb_put(nskb
, skb_gro_offset(p
));
3005 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
3006 skb_set_network_header(nskb
, skb_network_offset(p
));
3007 skb_set_transport_header(nskb
, skb_transport_offset(p
));
3009 __skb_pull(p
, skb_gro_offset(p
));
3010 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
3011 p
->data
- skb_mac_header(p
));
3013 skb_shinfo(nskb
)->frag_list
= p
;
3014 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
3015 pinfo
->gso_size
= 0;
3016 skb_header_release(p
);
3017 NAPI_GRO_CB(nskb
)->last
= p
;
3019 nskb
->data_len
+= p
->len
;
3020 nskb
->truesize
+= p
->truesize
;
3021 nskb
->len
+= p
->len
;
3024 nskb
->next
= p
->next
;
3030 delta_truesize
= skb
->truesize
;
3031 if (offset
> headlen
) {
3032 unsigned int eat
= offset
- headlen
;
3034 skbinfo
->frags
[0].page_offset
+= eat
;
3035 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3036 skb
->data_len
-= eat
;
3041 __skb_pull(skb
, offset
);
3043 NAPI_GRO_CB(p
)->last
->next
= skb
;
3044 NAPI_GRO_CB(p
)->last
= skb
;
3045 skb_header_release(skb
);
3048 NAPI_GRO_CB(p
)->count
++;
3050 p
->truesize
+= delta_truesize
;
3053 NAPI_GRO_CB(skb
)->same_flow
= 1;
3056 EXPORT_SYMBOL_GPL(skb_gro_receive
);
3058 void __init
skb_init(void)
3060 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3061 sizeof(struct sk_buff
),
3063 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3065 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3066 (2*sizeof(struct sk_buff
)) +
3069 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3074 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3075 * @skb: Socket buffer containing the buffers to be mapped
3076 * @sg: The scatter-gather list to map into
3077 * @offset: The offset into the buffer's contents to start mapping
3078 * @len: Length of buffer space to be mapped
3080 * Fill the specified scatter-gather list with mappings/pointers into a
3081 * region of the buffer space attached to a socket buffer.
3084 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3086 int start
= skb_headlen(skb
);
3087 int i
, copy
= start
- offset
;
3088 struct sk_buff
*frag_iter
;
3094 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3096 if ((len
-= copy
) == 0)
3101 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3104 WARN_ON(start
> offset
+ len
);
3106 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3107 if ((copy
= end
- offset
) > 0) {
3108 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3112 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3113 frag
->page_offset
+offset
-start
);
3122 skb_walk_frags(skb
, frag_iter
) {
3125 WARN_ON(start
> offset
+ len
);
3127 end
= start
+ frag_iter
->len
;
3128 if ((copy
= end
- offset
) > 0) {
3131 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3133 if ((len
-= copy
) == 0)
3143 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3145 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3147 sg_mark_end(&sg
[nsg
- 1]);
3151 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3154 * skb_cow_data - Check that a socket buffer's data buffers are writable
3155 * @skb: The socket buffer to check.
3156 * @tailbits: Amount of trailing space to be added
3157 * @trailer: Returned pointer to the skb where the @tailbits space begins
3159 * Make sure that the data buffers attached to a socket buffer are
3160 * writable. If they are not, private copies are made of the data buffers
3161 * and the socket buffer is set to use these instead.
3163 * If @tailbits is given, make sure that there is space to write @tailbits
3164 * bytes of data beyond current end of socket buffer. @trailer will be
3165 * set to point to the skb in which this space begins.
3167 * The number of scatterlist elements required to completely map the
3168 * COW'd and extended socket buffer will be returned.
3170 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3174 struct sk_buff
*skb1
, **skb_p
;
3176 /* If skb is cloned or its head is paged, reallocate
3177 * head pulling out all the pages (pages are considered not writable
3178 * at the moment even if they are anonymous).
3180 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3181 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3184 /* Easy case. Most of packets will go this way. */
3185 if (!skb_has_frag_list(skb
)) {
3186 /* A little of trouble, not enough of space for trailer.
3187 * This should not happen, when stack is tuned to generate
3188 * good frames. OK, on miss we reallocate and reserve even more
3189 * space, 128 bytes is fair. */
3191 if (skb_tailroom(skb
) < tailbits
&&
3192 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3200 /* Misery. We are in troubles, going to mincer fragments... */
3203 skb_p
= &skb_shinfo(skb
)->frag_list
;
3206 while ((skb1
= *skb_p
) != NULL
) {
3209 /* The fragment is partially pulled by someone,
3210 * this can happen on input. Copy it and everything
3213 if (skb_shared(skb1
))
3216 /* If the skb is the last, worry about trailer. */
3218 if (skb1
->next
== NULL
&& tailbits
) {
3219 if (skb_shinfo(skb1
)->nr_frags
||
3220 skb_has_frag_list(skb1
) ||
3221 skb_tailroom(skb1
) < tailbits
)
3222 ntail
= tailbits
+ 128;
3228 skb_shinfo(skb1
)->nr_frags
||
3229 skb_has_frag_list(skb1
)) {
3230 struct sk_buff
*skb2
;
3232 /* Fuck, we are miserable poor guys... */
3234 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3236 skb2
= skb_copy_expand(skb1
,
3240 if (unlikely(skb2
== NULL
))
3244 skb_set_owner_w(skb2
, skb1
->sk
);
3246 /* Looking around. Are we still alive?
3247 * OK, link new skb, drop old one */
3249 skb2
->next
= skb1
->next
;
3256 skb_p
= &skb1
->next
;
3261 EXPORT_SYMBOL_GPL(skb_cow_data
);
3263 static void sock_rmem_free(struct sk_buff
*skb
)
3265 struct sock
*sk
= skb
->sk
;
3267 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3271 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3273 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3277 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3278 (unsigned int)sk
->sk_rcvbuf
)
3283 skb
->destructor
= sock_rmem_free
;
3284 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3286 /* before exiting rcu section, make sure dst is refcounted */
3289 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3290 if (!sock_flag(sk
, SOCK_DEAD
))
3291 sk
->sk_data_ready(sk
, len
);
3294 EXPORT_SYMBOL(sock_queue_err_skb
);
3296 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3297 struct skb_shared_hwtstamps
*hwtstamps
)
3299 struct sock
*sk
= orig_skb
->sk
;
3300 struct sock_exterr_skb
*serr
;
3301 struct sk_buff
*skb
;
3308 *skb_hwtstamps(orig_skb
) =
3312 * no hardware time stamps available,
3313 * so keep the shared tx_flags and only
3314 * store software time stamp
3316 orig_skb
->tstamp
= ktime_get_real();
3319 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3323 serr
= SKB_EXT_ERR(skb
);
3324 memset(serr
, 0, sizeof(*serr
));
3325 serr
->ee
.ee_errno
= ENOMSG
;
3326 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3328 err
= sock_queue_err_skb(sk
, skb
);
3333 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3335 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3337 struct sock
*sk
= skb
->sk
;
3338 struct sock_exterr_skb
*serr
;
3341 skb
->wifi_acked_valid
= 1;
3342 skb
->wifi_acked
= acked
;
3344 serr
= SKB_EXT_ERR(skb
);
3345 memset(serr
, 0, sizeof(*serr
));
3346 serr
->ee
.ee_errno
= ENOMSG
;
3347 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3349 err
= sock_queue_err_skb(sk
, skb
);
3353 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3357 * skb_partial_csum_set - set up and verify partial csum values for packet
3358 * @skb: the skb to set
3359 * @start: the number of bytes after skb->data to start checksumming.
3360 * @off: the offset from start to place the checksum.
3362 * For untrusted partially-checksummed packets, we need to make sure the values
3363 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3365 * This function checks and sets those values and skb->ip_summed: if this
3366 * returns false you should drop the packet.
3368 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3370 if (unlikely(start
> skb_headlen(skb
)) ||
3371 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3372 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3373 start
, off
, skb_headlen(skb
));
3376 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3377 skb
->csum_start
= skb_headroom(skb
) + start
;
3378 skb
->csum_offset
= off
;
3379 skb_set_transport_header(skb
, start
);
3382 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3384 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3386 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3389 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
3391 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
3394 skb_release_head_state(skb
);
3395 kmem_cache_free(skbuff_head_cache
, skb
);
3400 EXPORT_SYMBOL(kfree_skb_partial
);
3403 * skb_try_coalesce - try to merge skb to prior one
3405 * @from: buffer to add
3406 * @fragstolen: pointer to boolean
3407 * @delta_truesize: how much more was allocated than was requested
3409 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
3410 bool *fragstolen
, int *delta_truesize
)
3412 int i
, delta
, len
= from
->len
;
3414 *fragstolen
= false;
3419 if (len
<= skb_tailroom(to
)) {
3420 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
3421 *delta_truesize
= 0;
3425 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
3428 if (skb_headlen(from
) != 0) {
3430 unsigned int offset
;
3432 if (skb_shinfo(to
)->nr_frags
+
3433 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
3436 if (skb_head_is_locked(from
))
3439 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3441 page
= virt_to_head_page(from
->head
);
3442 offset
= from
->data
- (unsigned char *)page_address(page
);
3444 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
3445 page
, offset
, skb_headlen(from
));
3448 if (skb_shinfo(to
)->nr_frags
+
3449 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
3452 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
3455 WARN_ON_ONCE(delta
< len
);
3457 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
3458 skb_shinfo(from
)->frags
,
3459 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
3460 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
3462 if (!skb_cloned(from
))
3463 skb_shinfo(from
)->nr_frags
= 0;
3465 /* if the skb is not cloned this does nothing
3466 * since we set nr_frags to 0.
3468 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
3469 skb_frag_ref(from
, i
);
3471 to
->truesize
+= delta
;
3473 to
->data_len
+= len
;
3475 *delta_truesize
= delta
;
3478 EXPORT_SYMBOL(skb_try_coalesce
);
3481 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3485 * skb_gso_transport_seglen is used to determine the real size of the
3486 * individual segments, including Layer4 headers (TCP/UDP).
3488 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3490 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
3492 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3494 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
3495 return tcp_hdrlen(skb
) + shinfo
->gso_size
;
3497 /* UFO sets gso_size to the size of the fragmentation
3498 * payload, i.e. the size of the L4 (UDP) header is already
3501 return shinfo
->gso_size
;
3503 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);