iwlagn: cosmetics in iwl-trans.h
[linux/fpc-iii.git] / mm / memcontrol.c
blob5f84d2351ddbe942706ed11a53c0574b71724627
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
73 #else
74 #define do_swap_account (0)
75 #endif
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index {
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS,
94 enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
111 MEM_CGROUP_TARGET_NUMAINFO,
112 MEM_CGROUP_NTARGETS,
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
118 struct mem_cgroup_stat_cpu {
119 long count[MEM_CGROUP_STAT_NSTATS];
120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121 unsigned long targets[MEM_CGROUP_NTARGETS];
125 * per-zone information in memory controller.
127 struct mem_cgroup_per_zone {
129 * spin_lock to protect the per cgroup LRU
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
134 struct zone_reclaim_stat reclaim_stat;
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
145 struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
158 struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
163 struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
167 struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
173 struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
181 int current_threshold;
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
188 struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
196 struct mem_cgroup_threshold_ary *spare;
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
205 static void mem_cgroup_threshold(struct mem_cgroup *mem);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
208 enum {
209 SCAN_BY_LIMIT,
210 SCAN_BY_SYSTEM,
211 NR_SCAN_CONTEXT,
212 SCAN_BY_SHRINK, /* not recorded now */
215 enum {
216 SCAN,
217 SCAN_ANON,
218 SCAN_FILE,
219 ROTATE,
220 ROTATE_ANON,
221 ROTATE_FILE,
222 FREED,
223 FREED_ANON,
224 FREED_FILE,
225 ELAPSED,
226 NR_SCANSTATS,
229 struct scanstat {
230 spinlock_t lock;
231 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
235 const char *scanstat_string[NR_SCANSTATS] = {
236 "scanned_pages",
237 "scanned_anon_pages",
238 "scanned_file_pages",
239 "rotated_pages",
240 "rotated_anon_pages",
241 "rotated_file_pages",
242 "freed_pages",
243 "freed_anon_pages",
244 "freed_file_pages",
245 "elapsed_ns",
247 #define SCANSTAT_WORD_LIMIT "_by_limit"
248 #define SCANSTAT_WORD_SYSTEM "_by_system"
249 #define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
253 * The memory controller data structure. The memory controller controls both
254 * page cache and RSS per cgroup. We would eventually like to provide
255 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
256 * to help the administrator determine what knobs to tune.
258 * TODO: Add a water mark for the memory controller. Reclaim will begin when
259 * we hit the water mark. May be even add a low water mark, such that
260 * no reclaim occurs from a cgroup at it's low water mark, this is
261 * a feature that will be implemented much later in the future.
263 struct mem_cgroup {
264 struct cgroup_subsys_state css;
266 * the counter to account for memory usage
268 struct res_counter res;
270 * the counter to account for mem+swap usage.
272 struct res_counter memsw;
274 * Per cgroup active and inactive list, similar to the
275 * per zone LRU lists.
277 struct mem_cgroup_lru_info info;
279 * While reclaiming in a hierarchy, we cache the last child we
280 * reclaimed from.
282 int last_scanned_child;
283 int last_scanned_node;
284 #if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
288 #endif
290 * Should the accounting and control be hierarchical, per subtree?
292 bool use_hierarchy;
294 bool oom_lock;
295 atomic_t under_oom;
297 atomic_t refcnt;
299 int swappiness;
300 /* OOM-Killer disable */
301 int oom_kill_disable;
303 /* set when res.limit == memsw.limit */
304 bool memsw_is_minimum;
306 /* protect arrays of thresholds */
307 struct mutex thresholds_lock;
309 /* thresholds for memory usage. RCU-protected */
310 struct mem_cgroup_thresholds thresholds;
312 /* thresholds for mem+swap usage. RCU-protected */
313 struct mem_cgroup_thresholds memsw_thresholds;
315 /* For oom notifier event fd */
316 struct list_head oom_notify;
317 /* For recording LRU-scan statistics */
318 struct scanstat scanstat;
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
323 unsigned long move_charge_at_immigrate;
325 * percpu counter.
327 struct mem_cgroup_stat_cpu *stat;
329 * used when a cpu is offlined or other synchronizations
330 * See mem_cgroup_read_stat().
332 struct mem_cgroup_stat_cpu nocpu_base;
333 spinlock_t pcp_counter_lock;
336 /* Stuffs for move charges at task migration. */
338 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
339 * left-shifted bitmap of these types.
341 enum move_type {
342 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
343 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
344 NR_MOVE_TYPE,
347 /* "mc" and its members are protected by cgroup_mutex */
348 static struct move_charge_struct {
349 spinlock_t lock; /* for from, to */
350 struct mem_cgroup *from;
351 struct mem_cgroup *to;
352 unsigned long precharge;
353 unsigned long moved_charge;
354 unsigned long moved_swap;
355 struct task_struct *moving_task; /* a task moving charges */
356 wait_queue_head_t waitq; /* a waitq for other context */
357 } mc = {
358 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
362 static bool move_anon(void)
364 return test_bit(MOVE_CHARGE_TYPE_ANON,
365 &mc.to->move_charge_at_immigrate);
368 static bool move_file(void)
370 return test_bit(MOVE_CHARGE_TYPE_FILE,
371 &mc.to->move_charge_at_immigrate);
375 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
376 * limit reclaim to prevent infinite loops, if they ever occur.
378 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
379 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
381 enum charge_type {
382 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
383 MEM_CGROUP_CHARGE_TYPE_MAPPED,
384 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
385 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
386 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
387 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
388 NR_CHARGE_TYPE,
391 /* for encoding cft->private value on file */
392 #define _MEM (0)
393 #define _MEMSWAP (1)
394 #define _OOM_TYPE (2)
395 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
396 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
397 #define MEMFILE_ATTR(val) ((val) & 0xffff)
398 /* Used for OOM nofiier */
399 #define OOM_CONTROL (0)
402 * Reclaim flags for mem_cgroup_hierarchical_reclaim
404 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
405 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
406 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
407 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
409 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
411 static void mem_cgroup_get(struct mem_cgroup *mem);
412 static void mem_cgroup_put(struct mem_cgroup *mem);
413 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414 static void drain_all_stock_async(struct mem_cgroup *mem);
416 static struct mem_cgroup_per_zone *
417 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
419 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
422 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
424 return &mem->css;
427 static struct mem_cgroup_per_zone *
428 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
430 int nid = page_to_nid(page);
431 int zid = page_zonenum(page);
433 return mem_cgroup_zoneinfo(mem, nid, zid);
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_node_zone(int nid, int zid)
439 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
442 static struct mem_cgroup_tree_per_zone *
443 soft_limit_tree_from_page(struct page *page)
445 int nid = page_to_nid(page);
446 int zid = page_zonenum(page);
448 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
451 static void
452 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453 struct mem_cgroup_per_zone *mz,
454 struct mem_cgroup_tree_per_zone *mctz,
455 unsigned long long new_usage_in_excess)
457 struct rb_node **p = &mctz->rb_root.rb_node;
458 struct rb_node *parent = NULL;
459 struct mem_cgroup_per_zone *mz_node;
461 if (mz->on_tree)
462 return;
464 mz->usage_in_excess = new_usage_in_excess;
465 if (!mz->usage_in_excess)
466 return;
467 while (*p) {
468 parent = *p;
469 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
470 tree_node);
471 if (mz->usage_in_excess < mz_node->usage_in_excess)
472 p = &(*p)->rb_left;
474 * We can't avoid mem cgroups that are over their soft
475 * limit by the same amount
477 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
478 p = &(*p)->rb_right;
480 rb_link_node(&mz->tree_node, parent, p);
481 rb_insert_color(&mz->tree_node, &mctz->rb_root);
482 mz->on_tree = true;
485 static void
486 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
487 struct mem_cgroup_per_zone *mz,
488 struct mem_cgroup_tree_per_zone *mctz)
490 if (!mz->on_tree)
491 return;
492 rb_erase(&mz->tree_node, &mctz->rb_root);
493 mz->on_tree = false;
496 static void
497 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
498 struct mem_cgroup_per_zone *mz,
499 struct mem_cgroup_tree_per_zone *mctz)
501 spin_lock(&mctz->lock);
502 __mem_cgroup_remove_exceeded(mem, mz, mctz);
503 spin_unlock(&mctz->lock);
507 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
509 unsigned long long excess;
510 struct mem_cgroup_per_zone *mz;
511 struct mem_cgroup_tree_per_zone *mctz;
512 int nid = page_to_nid(page);
513 int zid = page_zonenum(page);
514 mctz = soft_limit_tree_from_page(page);
517 * Necessary to update all ancestors when hierarchy is used.
518 * because their event counter is not touched.
520 for (; mem; mem = parent_mem_cgroup(mem)) {
521 mz = mem_cgroup_zoneinfo(mem, nid, zid);
522 excess = res_counter_soft_limit_excess(&mem->res);
524 * We have to update the tree if mz is on RB-tree or
525 * mem is over its softlimit.
527 if (excess || mz->on_tree) {
528 spin_lock(&mctz->lock);
529 /* if on-tree, remove it */
530 if (mz->on_tree)
531 __mem_cgroup_remove_exceeded(mem, mz, mctz);
533 * Insert again. mz->usage_in_excess will be updated.
534 * If excess is 0, no tree ops.
536 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537 spin_unlock(&mctz->lock);
542 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
544 int node, zone;
545 struct mem_cgroup_per_zone *mz;
546 struct mem_cgroup_tree_per_zone *mctz;
548 for_each_node_state(node, N_POSSIBLE) {
549 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
550 mz = mem_cgroup_zoneinfo(mem, node, zone);
551 mctz = soft_limit_tree_node_zone(node, zone);
552 mem_cgroup_remove_exceeded(mem, mz, mctz);
557 static struct mem_cgroup_per_zone *
558 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560 struct rb_node *rightmost = NULL;
561 struct mem_cgroup_per_zone *mz;
563 retry:
564 mz = NULL;
565 rightmost = rb_last(&mctz->rb_root);
566 if (!rightmost)
567 goto done; /* Nothing to reclaim from */
569 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 * Remove the node now but someone else can add it back,
572 * we will to add it back at the end of reclaim to its correct
573 * position in the tree.
575 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
576 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
577 !css_tryget(&mz->mem->css))
578 goto retry;
579 done:
580 return mz;
583 static struct mem_cgroup_per_zone *
584 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586 struct mem_cgroup_per_zone *mz;
588 spin_lock(&mctz->lock);
589 mz = __mem_cgroup_largest_soft_limit_node(mctz);
590 spin_unlock(&mctz->lock);
591 return mz;
595 * Implementation Note: reading percpu statistics for memcg.
597 * Both of vmstat[] and percpu_counter has threshold and do periodic
598 * synchronization to implement "quick" read. There are trade-off between
599 * reading cost and precision of value. Then, we may have a chance to implement
600 * a periodic synchronizion of counter in memcg's counter.
602 * But this _read() function is used for user interface now. The user accounts
603 * memory usage by memory cgroup and he _always_ requires exact value because
604 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
605 * have to visit all online cpus and make sum. So, for now, unnecessary
606 * synchronization is not implemented. (just implemented for cpu hotplug)
608 * If there are kernel internal actions which can make use of some not-exact
609 * value, and reading all cpu value can be performance bottleneck in some
610 * common workload, threashold and synchonization as vmstat[] should be
611 * implemented.
613 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
614 enum mem_cgroup_stat_index idx)
616 long val = 0;
617 int cpu;
619 get_online_cpus();
620 for_each_online_cpu(cpu)
621 val += per_cpu(mem->stat->count[idx], cpu);
622 #ifdef CONFIG_HOTPLUG_CPU
623 spin_lock(&mem->pcp_counter_lock);
624 val += mem->nocpu_base.count[idx];
625 spin_unlock(&mem->pcp_counter_lock);
626 #endif
627 put_online_cpus();
628 return val;
631 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
632 bool charge)
634 int val = (charge) ? 1 : -1;
635 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
638 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
640 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
643 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
645 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
648 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
649 enum mem_cgroup_events_index idx)
651 unsigned long val = 0;
652 int cpu;
654 for_each_online_cpu(cpu)
655 val += per_cpu(mem->stat->events[idx], cpu);
656 #ifdef CONFIG_HOTPLUG_CPU
657 spin_lock(&mem->pcp_counter_lock);
658 val += mem->nocpu_base.events[idx];
659 spin_unlock(&mem->pcp_counter_lock);
660 #endif
661 return val;
664 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665 bool file, int nr_pages)
667 preempt_disable();
669 if (file)
670 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671 else
672 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
674 /* pagein of a big page is an event. So, ignore page size */
675 if (nr_pages > 0)
676 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677 else {
678 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679 nr_pages = -nr_pages; /* for event */
682 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
684 preempt_enable();
687 unsigned long
688 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
689 unsigned int lru_mask)
691 struct mem_cgroup_per_zone *mz;
692 enum lru_list l;
693 unsigned long ret = 0;
695 mz = mem_cgroup_zoneinfo(mem, nid, zid);
697 for_each_lru(l) {
698 if (BIT(l) & lru_mask)
699 ret += MEM_CGROUP_ZSTAT(mz, l);
701 return ret;
704 static unsigned long
705 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
706 int nid, unsigned int lru_mask)
708 u64 total = 0;
709 int zid;
711 for (zid = 0; zid < MAX_NR_ZONES; zid++)
712 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
714 return total;
717 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
718 unsigned int lru_mask)
720 int nid;
721 u64 total = 0;
723 for_each_node_state(nid, N_HIGH_MEMORY)
724 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725 return total;
728 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
730 unsigned long val, next;
732 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
733 next = this_cpu_read(mem->stat->targets[target]);
734 /* from time_after() in jiffies.h */
735 return ((long)next - (long)val < 0);
738 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
740 unsigned long val, next;
742 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
744 switch (target) {
745 case MEM_CGROUP_TARGET_THRESH:
746 next = val + THRESHOLDS_EVENTS_TARGET;
747 break;
748 case MEM_CGROUP_TARGET_SOFTLIMIT:
749 next = val + SOFTLIMIT_EVENTS_TARGET;
750 break;
751 case MEM_CGROUP_TARGET_NUMAINFO:
752 next = val + NUMAINFO_EVENTS_TARGET;
753 break;
754 default:
755 return;
758 this_cpu_write(mem->stat->targets[target], next);
762 * Check events in order.
765 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
767 /* threshold event is triggered in finer grain than soft limit */
768 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769 mem_cgroup_threshold(mem);
770 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
771 if (unlikely(__memcg_event_check(mem,
772 MEM_CGROUP_TARGET_SOFTLIMIT))) {
773 mem_cgroup_update_tree(mem, page);
774 __mem_cgroup_target_update(mem,
775 MEM_CGROUP_TARGET_SOFTLIMIT);
777 #if MAX_NUMNODES > 1
778 if (unlikely(__memcg_event_check(mem,
779 MEM_CGROUP_TARGET_NUMAINFO))) {
780 atomic_inc(&mem->numainfo_events);
781 __mem_cgroup_target_update(mem,
782 MEM_CGROUP_TARGET_NUMAINFO);
784 #endif
788 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
790 return container_of(cgroup_subsys_state(cont,
791 mem_cgroup_subsys_id), struct mem_cgroup,
792 css);
795 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
798 * mm_update_next_owner() may clear mm->owner to NULL
799 * if it races with swapoff, page migration, etc.
800 * So this can be called with p == NULL.
802 if (unlikely(!p))
803 return NULL;
805 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
806 struct mem_cgroup, css);
809 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
811 struct mem_cgroup *mem = NULL;
813 if (!mm)
814 return NULL;
816 * Because we have no locks, mm->owner's may be being moved to other
817 * cgroup. We use css_tryget() here even if this looks
818 * pessimistic (rather than adding locks here).
820 rcu_read_lock();
821 do {
822 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
823 if (unlikely(!mem))
824 break;
825 } while (!css_tryget(&mem->css));
826 rcu_read_unlock();
827 return mem;
830 /* The caller has to guarantee "mem" exists before calling this */
831 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
833 struct cgroup_subsys_state *css;
834 int found;
836 if (!mem) /* ROOT cgroup has the smallest ID */
837 return root_mem_cgroup; /*css_put/get against root is ignored*/
838 if (!mem->use_hierarchy) {
839 if (css_tryget(&mem->css))
840 return mem;
841 return NULL;
843 rcu_read_lock();
845 * searching a memory cgroup which has the smallest ID under given
846 * ROOT cgroup. (ID >= 1)
848 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
849 if (css && css_tryget(css))
850 mem = container_of(css, struct mem_cgroup, css);
851 else
852 mem = NULL;
853 rcu_read_unlock();
854 return mem;
857 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
858 struct mem_cgroup *root,
859 bool cond)
861 int nextid = css_id(&iter->css) + 1;
862 int found;
863 int hierarchy_used;
864 struct cgroup_subsys_state *css;
866 hierarchy_used = iter->use_hierarchy;
868 css_put(&iter->css);
869 /* If no ROOT, walk all, ignore hierarchy */
870 if (!cond || (root && !hierarchy_used))
871 return NULL;
873 if (!root)
874 root = root_mem_cgroup;
876 do {
877 iter = NULL;
878 rcu_read_lock();
880 css = css_get_next(&mem_cgroup_subsys, nextid,
881 &root->css, &found);
882 if (css && css_tryget(css))
883 iter = container_of(css, struct mem_cgroup, css);
884 rcu_read_unlock();
885 /* If css is NULL, no more cgroups will be found */
886 nextid = found + 1;
887 } while (css && !iter);
889 return iter;
892 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
893 * be careful that "break" loop is not allowed. We have reference count.
894 * Instead of that modify "cond" to be false and "continue" to exit the loop.
896 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
897 for (iter = mem_cgroup_start_loop(root);\
898 iter != NULL;\
899 iter = mem_cgroup_get_next(iter, root, cond))
901 #define for_each_mem_cgroup_tree(iter, root) \
902 for_each_mem_cgroup_tree_cond(iter, root, true)
904 #define for_each_mem_cgroup_all(iter) \
905 for_each_mem_cgroup_tree_cond(iter, NULL, true)
908 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
910 return (mem == root_mem_cgroup);
913 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
915 struct mem_cgroup *mem;
917 if (!mm)
918 return;
920 rcu_read_lock();
921 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
922 if (unlikely(!mem))
923 goto out;
925 switch (idx) {
926 case PGMAJFAULT:
927 mem_cgroup_pgmajfault(mem, 1);
928 break;
929 case PGFAULT:
930 mem_cgroup_pgfault(mem, 1);
931 break;
932 default:
933 BUG();
935 out:
936 rcu_read_unlock();
938 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
941 * Following LRU functions are allowed to be used without PCG_LOCK.
942 * Operations are called by routine of global LRU independently from memcg.
943 * What we have to take care of here is validness of pc->mem_cgroup.
945 * Changes to pc->mem_cgroup happens when
946 * 1. charge
947 * 2. moving account
948 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
949 * It is added to LRU before charge.
950 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
951 * When moving account, the page is not on LRU. It's isolated.
954 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
956 struct page_cgroup *pc;
957 struct mem_cgroup_per_zone *mz;
959 if (mem_cgroup_disabled())
960 return;
961 pc = lookup_page_cgroup(page);
962 /* can happen while we handle swapcache. */
963 if (!TestClearPageCgroupAcctLRU(pc))
964 return;
965 VM_BUG_ON(!pc->mem_cgroup);
967 * We don't check PCG_USED bit. It's cleared when the "page" is finally
968 * removed from global LRU.
970 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971 /* huge page split is done under lru_lock. so, we have no races. */
972 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973 if (mem_cgroup_is_root(pc->mem_cgroup))
974 return;
975 VM_BUG_ON(list_empty(&pc->lru));
976 list_del_init(&pc->lru);
979 void mem_cgroup_del_lru(struct page *page)
981 mem_cgroup_del_lru_list(page, page_lru(page));
985 * Writeback is about to end against a page which has been marked for immediate
986 * reclaim. If it still appears to be reclaimable, move it to the tail of the
987 * inactive list.
989 void mem_cgroup_rotate_reclaimable_page(struct page *page)
991 struct mem_cgroup_per_zone *mz;
992 struct page_cgroup *pc;
993 enum lru_list lru = page_lru(page);
995 if (mem_cgroup_disabled())
996 return;
998 pc = lookup_page_cgroup(page);
999 /* unused or root page is not rotated. */
1000 if (!PageCgroupUsed(pc))
1001 return;
1002 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1003 smp_rmb();
1004 if (mem_cgroup_is_root(pc->mem_cgroup))
1005 return;
1006 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007 list_move_tail(&pc->lru, &mz->lists[lru]);
1010 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1012 struct mem_cgroup_per_zone *mz;
1013 struct page_cgroup *pc;
1015 if (mem_cgroup_disabled())
1016 return;
1018 pc = lookup_page_cgroup(page);
1019 /* unused or root page is not rotated. */
1020 if (!PageCgroupUsed(pc))
1021 return;
1022 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1023 smp_rmb();
1024 if (mem_cgroup_is_root(pc->mem_cgroup))
1025 return;
1026 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1027 list_move(&pc->lru, &mz->lists[lru]);
1030 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1032 struct page_cgroup *pc;
1033 struct mem_cgroup_per_zone *mz;
1035 if (mem_cgroup_disabled())
1036 return;
1037 pc = lookup_page_cgroup(page);
1038 VM_BUG_ON(PageCgroupAcctLRU(pc));
1039 if (!PageCgroupUsed(pc))
1040 return;
1041 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1042 smp_rmb();
1043 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 /* huge page split is done under lru_lock. so, we have no races. */
1045 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046 SetPageCgroupAcctLRU(pc);
1047 if (mem_cgroup_is_root(pc->mem_cgroup))
1048 return;
1049 list_add(&pc->lru, &mz->lists[lru]);
1053 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1054 * while it's linked to lru because the page may be reused after it's fully
1055 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1056 * It's done under lock_page and expected that zone->lru_lock isnever held.
1058 static void mem_cgroup_lru_del_before_commit(struct page *page)
1060 unsigned long flags;
1061 struct zone *zone = page_zone(page);
1062 struct page_cgroup *pc = lookup_page_cgroup(page);
1065 * Doing this check without taking ->lru_lock seems wrong but this
1066 * is safe. Because if page_cgroup's USED bit is unset, the page
1067 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1068 * set, the commit after this will fail, anyway.
1069 * This all charge/uncharge is done under some mutual execustion.
1070 * So, we don't need to taking care of changes in USED bit.
1072 if (likely(!PageLRU(page)))
1073 return;
1075 spin_lock_irqsave(&zone->lru_lock, flags);
1077 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1078 * is guarded by lock_page() because the page is SwapCache.
1080 if (!PageCgroupUsed(pc))
1081 mem_cgroup_del_lru_list(page, page_lru(page));
1082 spin_unlock_irqrestore(&zone->lru_lock, flags);
1085 static void mem_cgroup_lru_add_after_commit(struct page *page)
1087 unsigned long flags;
1088 struct zone *zone = page_zone(page);
1089 struct page_cgroup *pc = lookup_page_cgroup(page);
1091 /* taking care of that the page is added to LRU while we commit it */
1092 if (likely(!PageLRU(page)))
1093 return;
1094 spin_lock_irqsave(&zone->lru_lock, flags);
1095 /* link when the page is linked to LRU but page_cgroup isn't */
1096 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097 mem_cgroup_add_lru_list(page, page_lru(page));
1098 spin_unlock_irqrestore(&zone->lru_lock, flags);
1102 void mem_cgroup_move_lists(struct page *page,
1103 enum lru_list from, enum lru_list to)
1105 if (mem_cgroup_disabled())
1106 return;
1107 mem_cgroup_del_lru_list(page, from);
1108 mem_cgroup_add_lru_list(page, to);
1112 * Checks whether given mem is same or in the root_mem's
1113 * hierarchy subtree
1115 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1116 struct mem_cgroup *mem)
1118 if (root_mem != mem) {
1119 return (root_mem->use_hierarchy &&
1120 css_is_ancestor(&mem->css, &root_mem->css));
1123 return true;
1126 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1128 int ret;
1129 struct mem_cgroup *curr = NULL;
1130 struct task_struct *p;
1132 p = find_lock_task_mm(task);
1133 if (!p)
1134 return 0;
1135 curr = try_get_mem_cgroup_from_mm(p->mm);
1136 task_unlock(p);
1137 if (!curr)
1138 return 0;
1140 * We should check use_hierarchy of "mem" not "curr". Because checking
1141 * use_hierarchy of "curr" here make this function true if hierarchy is
1142 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1143 * hierarchy(even if use_hierarchy is disabled in "mem").
1145 ret = mem_cgroup_same_or_subtree(mem, curr);
1146 css_put(&curr->css);
1147 return ret;
1150 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1152 unsigned long active;
1153 unsigned long inactive;
1154 unsigned long gb;
1155 unsigned long inactive_ratio;
1157 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1158 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1160 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1161 if (gb)
1162 inactive_ratio = int_sqrt(10 * gb);
1163 else
1164 inactive_ratio = 1;
1166 if (present_pages) {
1167 present_pages[0] = inactive;
1168 present_pages[1] = active;
1171 return inactive_ratio;
1174 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1176 unsigned long active;
1177 unsigned long inactive;
1178 unsigned long present_pages[2];
1179 unsigned long inactive_ratio;
1181 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1183 inactive = present_pages[0];
1184 active = present_pages[1];
1186 if (inactive * inactive_ratio < active)
1187 return 1;
1189 return 0;
1192 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1194 unsigned long active;
1195 unsigned long inactive;
1197 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1198 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1200 return (active > inactive);
1203 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1204 struct zone *zone)
1206 int nid = zone_to_nid(zone);
1207 int zid = zone_idx(zone);
1208 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1210 return &mz->reclaim_stat;
1213 struct zone_reclaim_stat *
1214 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1216 struct page_cgroup *pc;
1217 struct mem_cgroup_per_zone *mz;
1219 if (mem_cgroup_disabled())
1220 return NULL;
1222 pc = lookup_page_cgroup(page);
1223 if (!PageCgroupUsed(pc))
1224 return NULL;
1225 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1226 smp_rmb();
1227 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1228 return &mz->reclaim_stat;
1231 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1232 struct list_head *dst,
1233 unsigned long *scanned, int order,
1234 int mode, struct zone *z,
1235 struct mem_cgroup *mem_cont,
1236 int active, int file)
1238 unsigned long nr_taken = 0;
1239 struct page *page;
1240 unsigned long scan;
1241 LIST_HEAD(pc_list);
1242 struct list_head *src;
1243 struct page_cgroup *pc, *tmp;
1244 int nid = zone_to_nid(z);
1245 int zid = zone_idx(z);
1246 struct mem_cgroup_per_zone *mz;
1247 int lru = LRU_FILE * file + active;
1248 int ret;
1250 BUG_ON(!mem_cont);
1251 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1252 src = &mz->lists[lru];
1254 scan = 0;
1255 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1256 if (scan >= nr_to_scan)
1257 break;
1259 if (unlikely(!PageCgroupUsed(pc)))
1260 continue;
1262 page = lookup_cgroup_page(pc);
1264 if (unlikely(!PageLRU(page)))
1265 continue;
1267 scan++;
1268 ret = __isolate_lru_page(page, mode, file);
1269 switch (ret) {
1270 case 0:
1271 list_move(&page->lru, dst);
1272 mem_cgroup_del_lru(page);
1273 nr_taken += hpage_nr_pages(page);
1274 break;
1275 case -EBUSY:
1276 /* we don't affect global LRU but rotate in our LRU */
1277 mem_cgroup_rotate_lru_list(page, page_lru(page));
1278 break;
1279 default:
1280 break;
1284 *scanned = scan;
1286 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1287 0, 0, 0, mode);
1289 return nr_taken;
1292 #define mem_cgroup_from_res_counter(counter, member) \
1293 container_of(counter, struct mem_cgroup, member)
1296 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1297 * @mem: the memory cgroup
1299 * Returns the maximum amount of memory @mem can be charged with, in
1300 * pages.
1302 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1304 unsigned long long margin;
1306 margin = res_counter_margin(&mem->res);
1307 if (do_swap_account)
1308 margin = min(margin, res_counter_margin(&mem->memsw));
1309 return margin >> PAGE_SHIFT;
1312 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1314 struct cgroup *cgrp = memcg->css.cgroup;
1316 /* root ? */
1317 if (cgrp->parent == NULL)
1318 return vm_swappiness;
1320 return memcg->swappiness;
1323 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1325 int cpu;
1327 get_online_cpus();
1328 spin_lock(&mem->pcp_counter_lock);
1329 for_each_online_cpu(cpu)
1330 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1331 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1332 spin_unlock(&mem->pcp_counter_lock);
1333 put_online_cpus();
1335 synchronize_rcu();
1338 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1340 int cpu;
1342 if (!mem)
1343 return;
1344 get_online_cpus();
1345 spin_lock(&mem->pcp_counter_lock);
1346 for_each_online_cpu(cpu)
1347 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1348 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1349 spin_unlock(&mem->pcp_counter_lock);
1350 put_online_cpus();
1353 * 2 routines for checking "mem" is under move_account() or not.
1355 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1356 * for avoiding race in accounting. If true,
1357 * pc->mem_cgroup may be overwritten.
1359 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1360 * under hierarchy of moving cgroups. This is for
1361 * waiting at hith-memory prressure caused by "move".
1364 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1366 VM_BUG_ON(!rcu_read_lock_held());
1367 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1370 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1372 struct mem_cgroup *from;
1373 struct mem_cgroup *to;
1374 bool ret = false;
1376 * Unlike task_move routines, we access mc.to, mc.from not under
1377 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1379 spin_lock(&mc.lock);
1380 from = mc.from;
1381 to = mc.to;
1382 if (!from)
1383 goto unlock;
1385 ret = mem_cgroup_same_or_subtree(mem, from)
1386 || mem_cgroup_same_or_subtree(mem, to);
1387 unlock:
1388 spin_unlock(&mc.lock);
1389 return ret;
1392 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1394 if (mc.moving_task && current != mc.moving_task) {
1395 if (mem_cgroup_under_move(mem)) {
1396 DEFINE_WAIT(wait);
1397 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1398 /* moving charge context might have finished. */
1399 if (mc.moving_task)
1400 schedule();
1401 finish_wait(&mc.waitq, &wait);
1402 return true;
1405 return false;
1409 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1410 * @memcg: The memory cgroup that went over limit
1411 * @p: Task that is going to be killed
1413 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1414 * enabled
1416 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1418 struct cgroup *task_cgrp;
1419 struct cgroup *mem_cgrp;
1421 * Need a buffer in BSS, can't rely on allocations. The code relies
1422 * on the assumption that OOM is serialized for memory controller.
1423 * If this assumption is broken, revisit this code.
1425 static char memcg_name[PATH_MAX];
1426 int ret;
1428 if (!memcg || !p)
1429 return;
1432 rcu_read_lock();
1434 mem_cgrp = memcg->css.cgroup;
1435 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1437 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1438 if (ret < 0) {
1440 * Unfortunately, we are unable to convert to a useful name
1441 * But we'll still print out the usage information
1443 rcu_read_unlock();
1444 goto done;
1446 rcu_read_unlock();
1448 printk(KERN_INFO "Task in %s killed", memcg_name);
1450 rcu_read_lock();
1451 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1452 if (ret < 0) {
1453 rcu_read_unlock();
1454 goto done;
1456 rcu_read_unlock();
1459 * Continues from above, so we don't need an KERN_ level
1461 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1462 done:
1464 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1465 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1466 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1467 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1468 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1469 "failcnt %llu\n",
1470 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1471 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1472 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1476 * This function returns the number of memcg under hierarchy tree. Returns
1477 * 1(self count) if no children.
1479 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1481 int num = 0;
1482 struct mem_cgroup *iter;
1484 for_each_mem_cgroup_tree(iter, mem)
1485 num++;
1486 return num;
1490 * Return the memory (and swap, if configured) limit for a memcg.
1492 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1494 u64 limit;
1495 u64 memsw;
1497 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1498 limit += total_swap_pages << PAGE_SHIFT;
1500 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1502 * If memsw is finite and limits the amount of swap space available
1503 * to this memcg, return that limit.
1505 return min(limit, memsw);
1509 * Visit the first child (need not be the first child as per the ordering
1510 * of the cgroup list, since we track last_scanned_child) of @mem and use
1511 * that to reclaim free pages from.
1513 static struct mem_cgroup *
1514 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1516 struct mem_cgroup *ret = NULL;
1517 struct cgroup_subsys_state *css;
1518 int nextid, found;
1520 if (!root_mem->use_hierarchy) {
1521 css_get(&root_mem->css);
1522 ret = root_mem;
1525 while (!ret) {
1526 rcu_read_lock();
1527 nextid = root_mem->last_scanned_child + 1;
1528 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1529 &found);
1530 if (css && css_tryget(css))
1531 ret = container_of(css, struct mem_cgroup, css);
1533 rcu_read_unlock();
1534 /* Updates scanning parameter */
1535 if (!css) {
1536 /* this means start scan from ID:1 */
1537 root_mem->last_scanned_child = 0;
1538 } else
1539 root_mem->last_scanned_child = found;
1542 return ret;
1546 * test_mem_cgroup_node_reclaimable
1547 * @mem: the target memcg
1548 * @nid: the node ID to be checked.
1549 * @noswap : specify true here if the user wants flle only information.
1551 * This function returns whether the specified memcg contains any
1552 * reclaimable pages on a node. Returns true if there are any reclaimable
1553 * pages in the node.
1555 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1556 int nid, bool noswap)
1558 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1559 return true;
1560 if (noswap || !total_swap_pages)
1561 return false;
1562 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1563 return true;
1564 return false;
1567 #if MAX_NUMNODES > 1
1570 * Always updating the nodemask is not very good - even if we have an empty
1571 * list or the wrong list here, we can start from some node and traverse all
1572 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1575 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1577 int nid;
1579 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1580 * pagein/pageout changes since the last update.
1582 if (!atomic_read(&mem->numainfo_events))
1583 return;
1584 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1585 return;
1587 /* make a nodemask where this memcg uses memory from */
1588 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1590 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1592 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1593 node_clear(nid, mem->scan_nodes);
1596 atomic_set(&mem->numainfo_events, 0);
1597 atomic_set(&mem->numainfo_updating, 0);
1601 * Selecting a node where we start reclaim from. Because what we need is just
1602 * reducing usage counter, start from anywhere is O,K. Considering
1603 * memory reclaim from current node, there are pros. and cons.
1605 * Freeing memory from current node means freeing memory from a node which
1606 * we'll use or we've used. So, it may make LRU bad. And if several threads
1607 * hit limits, it will see a contention on a node. But freeing from remote
1608 * node means more costs for memory reclaim because of memory latency.
1610 * Now, we use round-robin. Better algorithm is welcomed.
1612 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1614 int node;
1616 mem_cgroup_may_update_nodemask(mem);
1617 node = mem->last_scanned_node;
1619 node = next_node(node, mem->scan_nodes);
1620 if (node == MAX_NUMNODES)
1621 node = first_node(mem->scan_nodes);
1623 * We call this when we hit limit, not when pages are added to LRU.
1624 * No LRU may hold pages because all pages are UNEVICTABLE or
1625 * memcg is too small and all pages are not on LRU. In that case,
1626 * we use curret node.
1628 if (unlikely(node == MAX_NUMNODES))
1629 node = numa_node_id();
1631 mem->last_scanned_node = node;
1632 return node;
1636 * Check all nodes whether it contains reclaimable pages or not.
1637 * For quick scan, we make use of scan_nodes. This will allow us to skip
1638 * unused nodes. But scan_nodes is lazily updated and may not cotain
1639 * enough new information. We need to do double check.
1641 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1643 int nid;
1646 * quick check...making use of scan_node.
1647 * We can skip unused nodes.
1649 if (!nodes_empty(mem->scan_nodes)) {
1650 for (nid = first_node(mem->scan_nodes);
1651 nid < MAX_NUMNODES;
1652 nid = next_node(nid, mem->scan_nodes)) {
1654 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1655 return true;
1659 * Check rest of nodes.
1661 for_each_node_state(nid, N_HIGH_MEMORY) {
1662 if (node_isset(nid, mem->scan_nodes))
1663 continue;
1664 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1665 return true;
1667 return false;
1670 #else
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1673 return 0;
1676 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1678 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1680 #endif
1682 static void __mem_cgroup_record_scanstat(unsigned long *stats,
1683 struct memcg_scanrecord *rec)
1686 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1687 stats[SCAN_ANON] += rec->nr_scanned[0];
1688 stats[SCAN_FILE] += rec->nr_scanned[1];
1690 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1691 stats[ROTATE_ANON] += rec->nr_rotated[0];
1692 stats[ROTATE_FILE] += rec->nr_rotated[1];
1694 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1695 stats[FREED_ANON] += rec->nr_freed[0];
1696 stats[FREED_FILE] += rec->nr_freed[1];
1698 stats[ELAPSED] += rec->elapsed;
1701 static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1703 struct mem_cgroup *mem;
1704 int context = rec->context;
1706 if (context >= NR_SCAN_CONTEXT)
1707 return;
1709 mem = rec->mem;
1710 spin_lock(&mem->scanstat.lock);
1711 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1712 spin_unlock(&mem->scanstat.lock);
1714 mem = rec->root;
1715 spin_lock(&mem->scanstat.lock);
1716 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1717 spin_unlock(&mem->scanstat.lock);
1721 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1722 * we reclaimed from, so that we don't end up penalizing one child extensively
1723 * based on its position in the children list.
1725 * root_mem is the original ancestor that we've been reclaim from.
1727 * We give up and return to the caller when we visit root_mem twice.
1728 * (other groups can be removed while we're walking....)
1730 * If shrink==true, for avoiding to free too much, this returns immedieately.
1732 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1733 struct zone *zone,
1734 gfp_t gfp_mask,
1735 unsigned long reclaim_options,
1736 unsigned long *total_scanned)
1738 struct mem_cgroup *victim;
1739 int ret, total = 0;
1740 int loop = 0;
1741 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1742 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1743 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1744 struct memcg_scanrecord rec;
1745 unsigned long excess;
1746 unsigned long scanned;
1748 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1750 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1751 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1752 noswap = true;
1754 if (shrink)
1755 rec.context = SCAN_BY_SHRINK;
1756 else if (check_soft)
1757 rec.context = SCAN_BY_SYSTEM;
1758 else
1759 rec.context = SCAN_BY_LIMIT;
1761 rec.root = root_mem;
1763 while (1) {
1764 victim = mem_cgroup_select_victim(root_mem);
1765 if (victim == root_mem) {
1766 loop++;
1768 * We are not draining per cpu cached charges during
1769 * soft limit reclaim because global reclaim doesn't
1770 * care about charges. It tries to free some memory and
1771 * charges will not give any.
1773 if (!check_soft && loop >= 1)
1774 drain_all_stock_async(root_mem);
1775 if (loop >= 2) {
1777 * If we have not been able to reclaim
1778 * anything, it might because there are
1779 * no reclaimable pages under this hierarchy
1781 if (!check_soft || !total) {
1782 css_put(&victim->css);
1783 break;
1786 * We want to do more targeted reclaim.
1787 * excess >> 2 is not to excessive so as to
1788 * reclaim too much, nor too less that we keep
1789 * coming back to reclaim from this cgroup
1791 if (total >= (excess >> 2) ||
1792 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1793 css_put(&victim->css);
1794 break;
1798 if (!mem_cgroup_reclaimable(victim, noswap)) {
1799 /* this cgroup's local usage == 0 */
1800 css_put(&victim->css);
1801 continue;
1803 rec.mem = victim;
1804 rec.nr_scanned[0] = 0;
1805 rec.nr_scanned[1] = 0;
1806 rec.nr_rotated[0] = 0;
1807 rec.nr_rotated[1] = 0;
1808 rec.nr_freed[0] = 0;
1809 rec.nr_freed[1] = 0;
1810 rec.elapsed = 0;
1811 /* we use swappiness of local cgroup */
1812 if (check_soft) {
1813 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1814 noswap, zone, &rec, &scanned);
1815 *total_scanned += scanned;
1816 } else
1817 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1818 noswap, &rec);
1819 mem_cgroup_record_scanstat(&rec);
1820 css_put(&victim->css);
1822 * At shrinking usage, we can't check we should stop here or
1823 * reclaim more. It's depends on callers. last_scanned_child
1824 * will work enough for keeping fairness under tree.
1826 if (shrink)
1827 return ret;
1828 total += ret;
1829 if (check_soft) {
1830 if (!res_counter_soft_limit_excess(&root_mem->res))
1831 return total;
1832 } else if (mem_cgroup_margin(root_mem))
1833 return total;
1835 return total;
1839 * Check OOM-Killer is already running under our hierarchy.
1840 * If someone is running, return false.
1841 * Has to be called with memcg_oom_lock
1843 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1845 int lock_count = -1;
1846 struct mem_cgroup *iter, *failed = NULL;
1847 bool cond = true;
1849 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1850 bool locked = iter->oom_lock;
1852 iter->oom_lock = true;
1853 if (lock_count == -1)
1854 lock_count = iter->oom_lock;
1855 else if (lock_count != locked) {
1857 * this subtree of our hierarchy is already locked
1858 * so we cannot give a lock.
1860 lock_count = 0;
1861 failed = iter;
1862 cond = false;
1866 if (!failed)
1867 goto done;
1870 * OK, we failed to lock the whole subtree so we have to clean up
1871 * what we set up to the failing subtree
1873 cond = true;
1874 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1875 if (iter == failed) {
1876 cond = false;
1877 continue;
1879 iter->oom_lock = false;
1881 done:
1882 return lock_count;
1886 * Has to be called with memcg_oom_lock
1888 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1890 struct mem_cgroup *iter;
1892 for_each_mem_cgroup_tree(iter, mem)
1893 iter->oom_lock = false;
1894 return 0;
1897 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1899 struct mem_cgroup *iter;
1901 for_each_mem_cgroup_tree(iter, mem)
1902 atomic_inc(&iter->under_oom);
1905 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1907 struct mem_cgroup *iter;
1910 * When a new child is created while the hierarchy is under oom,
1911 * mem_cgroup_oom_lock() may not be called. We have to use
1912 * atomic_add_unless() here.
1914 for_each_mem_cgroup_tree(iter, mem)
1915 atomic_add_unless(&iter->under_oom, -1, 0);
1918 static DEFINE_SPINLOCK(memcg_oom_lock);
1919 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1921 struct oom_wait_info {
1922 struct mem_cgroup *mem;
1923 wait_queue_t wait;
1926 static int memcg_oom_wake_function(wait_queue_t *wait,
1927 unsigned mode, int sync, void *arg)
1929 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1930 *oom_wait_mem;
1931 struct oom_wait_info *oom_wait_info;
1933 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1934 oom_wait_mem = oom_wait_info->mem;
1937 * Both of oom_wait_info->mem and wake_mem are stable under us.
1938 * Then we can use css_is_ancestor without taking care of RCU.
1940 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1941 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1942 return 0;
1943 return autoremove_wake_function(wait, mode, sync, arg);
1946 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1948 /* for filtering, pass "mem" as argument. */
1949 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1952 static void memcg_oom_recover(struct mem_cgroup *mem)
1954 if (mem && atomic_read(&mem->under_oom))
1955 memcg_wakeup_oom(mem);
1959 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1961 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1963 struct oom_wait_info owait;
1964 bool locked, need_to_kill;
1966 owait.mem = mem;
1967 owait.wait.flags = 0;
1968 owait.wait.func = memcg_oom_wake_function;
1969 owait.wait.private = current;
1970 INIT_LIST_HEAD(&owait.wait.task_list);
1971 need_to_kill = true;
1972 mem_cgroup_mark_under_oom(mem);
1974 /* At first, try to OOM lock hierarchy under mem.*/
1975 spin_lock(&memcg_oom_lock);
1976 locked = mem_cgroup_oom_lock(mem);
1978 * Even if signal_pending(), we can't quit charge() loop without
1979 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1980 * under OOM is always welcomed, use TASK_KILLABLE here.
1982 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1983 if (!locked || mem->oom_kill_disable)
1984 need_to_kill = false;
1985 if (locked)
1986 mem_cgroup_oom_notify(mem);
1987 spin_unlock(&memcg_oom_lock);
1989 if (need_to_kill) {
1990 finish_wait(&memcg_oom_waitq, &owait.wait);
1991 mem_cgroup_out_of_memory(mem, mask);
1992 } else {
1993 schedule();
1994 finish_wait(&memcg_oom_waitq, &owait.wait);
1996 spin_lock(&memcg_oom_lock);
1997 if (locked)
1998 mem_cgroup_oom_unlock(mem);
1999 memcg_wakeup_oom(mem);
2000 spin_unlock(&memcg_oom_lock);
2002 mem_cgroup_unmark_under_oom(mem);
2004 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2005 return false;
2006 /* Give chance to dying process */
2007 schedule_timeout(1);
2008 return true;
2012 * Currently used to update mapped file statistics, but the routine can be
2013 * generalized to update other statistics as well.
2015 * Notes: Race condition
2017 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2018 * it tends to be costly. But considering some conditions, we doesn't need
2019 * to do so _always_.
2021 * Considering "charge", lock_page_cgroup() is not required because all
2022 * file-stat operations happen after a page is attached to radix-tree. There
2023 * are no race with "charge".
2025 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2026 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2027 * if there are race with "uncharge". Statistics itself is properly handled
2028 * by flags.
2030 * Considering "move", this is an only case we see a race. To make the race
2031 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2032 * possibility of race condition. If there is, we take a lock.
2035 void mem_cgroup_update_page_stat(struct page *page,
2036 enum mem_cgroup_page_stat_item idx, int val)
2038 struct mem_cgroup *mem;
2039 struct page_cgroup *pc = lookup_page_cgroup(page);
2040 bool need_unlock = false;
2041 unsigned long uninitialized_var(flags);
2043 if (unlikely(!pc))
2044 return;
2046 rcu_read_lock();
2047 mem = pc->mem_cgroup;
2048 if (unlikely(!mem || !PageCgroupUsed(pc)))
2049 goto out;
2050 /* pc->mem_cgroup is unstable ? */
2051 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2052 /* take a lock against to access pc->mem_cgroup */
2053 move_lock_page_cgroup(pc, &flags);
2054 need_unlock = true;
2055 mem = pc->mem_cgroup;
2056 if (!mem || !PageCgroupUsed(pc))
2057 goto out;
2060 switch (idx) {
2061 case MEMCG_NR_FILE_MAPPED:
2062 if (val > 0)
2063 SetPageCgroupFileMapped(pc);
2064 else if (!page_mapped(page))
2065 ClearPageCgroupFileMapped(pc);
2066 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2067 break;
2068 default:
2069 BUG();
2072 this_cpu_add(mem->stat->count[idx], val);
2074 out:
2075 if (unlikely(need_unlock))
2076 move_unlock_page_cgroup(pc, &flags);
2077 rcu_read_unlock();
2078 return;
2080 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2083 * size of first charge trial. "32" comes from vmscan.c's magic value.
2084 * TODO: maybe necessary to use big numbers in big irons.
2086 #define CHARGE_BATCH 32U
2087 struct memcg_stock_pcp {
2088 struct mem_cgroup *cached; /* this never be root cgroup */
2089 unsigned int nr_pages;
2090 struct work_struct work;
2091 unsigned long flags;
2092 #define FLUSHING_CACHED_CHARGE (0)
2094 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2097 * Try to consume stocked charge on this cpu. If success, one page is consumed
2098 * from local stock and true is returned. If the stock is 0 or charges from a
2099 * cgroup which is not current target, returns false. This stock will be
2100 * refilled.
2102 static bool consume_stock(struct mem_cgroup *mem)
2104 struct memcg_stock_pcp *stock;
2105 bool ret = true;
2107 stock = &get_cpu_var(memcg_stock);
2108 if (mem == stock->cached && stock->nr_pages)
2109 stock->nr_pages--;
2110 else /* need to call res_counter_charge */
2111 ret = false;
2112 put_cpu_var(memcg_stock);
2113 return ret;
2117 * Returns stocks cached in percpu to res_counter and reset cached information.
2119 static void drain_stock(struct memcg_stock_pcp *stock)
2121 struct mem_cgroup *old = stock->cached;
2123 if (stock->nr_pages) {
2124 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2126 res_counter_uncharge(&old->res, bytes);
2127 if (do_swap_account)
2128 res_counter_uncharge(&old->memsw, bytes);
2129 stock->nr_pages = 0;
2131 stock->cached = NULL;
2135 * This must be called under preempt disabled or must be called by
2136 * a thread which is pinned to local cpu.
2138 static void drain_local_stock(struct work_struct *dummy)
2140 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2141 drain_stock(stock);
2142 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2146 * Cache charges(val) which is from res_counter, to local per_cpu area.
2147 * This will be consumed by consume_stock() function, later.
2149 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2151 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2153 if (stock->cached != mem) { /* reset if necessary */
2154 drain_stock(stock);
2155 stock->cached = mem;
2157 stock->nr_pages += nr_pages;
2158 put_cpu_var(memcg_stock);
2162 * Drains all per-CPU charge caches for given root_mem resp. subtree
2163 * of the hierarchy under it. sync flag says whether we should block
2164 * until the work is done.
2166 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2168 int cpu, curcpu;
2170 /* Notify other cpus that system-wide "drain" is running */
2171 get_online_cpus();
2173 * Get a hint for avoiding draining charges on the current cpu,
2174 * which must be exhausted by our charging. It is not required that
2175 * this be a precise check, so we use raw_smp_processor_id() instead of
2176 * getcpu()/putcpu().
2178 curcpu = raw_smp_processor_id();
2179 for_each_online_cpu(cpu) {
2180 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2181 struct mem_cgroup *mem;
2183 mem = stock->cached;
2184 if (!mem || !stock->nr_pages)
2185 continue;
2186 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2187 continue;
2188 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2189 if (cpu == curcpu)
2190 drain_local_stock(&stock->work);
2191 else
2192 schedule_work_on(cpu, &stock->work);
2196 if (!sync)
2197 goto out;
2199 for_each_online_cpu(cpu) {
2200 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2201 if (mem_cgroup_same_or_subtree(root_mem, stock->cached) &&
2202 test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2203 flush_work(&stock->work);
2205 out:
2206 put_online_cpus();
2210 * Tries to drain stocked charges in other cpus. This function is asynchronous
2211 * and just put a work per cpu for draining localy on each cpu. Caller can
2212 * expects some charges will be back to res_counter later but cannot wait for
2213 * it.
2215 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2217 drain_all_stock(root_mem, false);
2220 /* This is a synchronous drain interface. */
2221 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2223 /* called when force_empty is called */
2224 drain_all_stock(root_mem, true);
2228 * This function drains percpu counter value from DEAD cpu and
2229 * move it to local cpu. Note that this function can be preempted.
2231 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2233 int i;
2235 spin_lock(&mem->pcp_counter_lock);
2236 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2237 long x = per_cpu(mem->stat->count[i], cpu);
2239 per_cpu(mem->stat->count[i], cpu) = 0;
2240 mem->nocpu_base.count[i] += x;
2242 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2243 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2245 per_cpu(mem->stat->events[i], cpu) = 0;
2246 mem->nocpu_base.events[i] += x;
2248 /* need to clear ON_MOVE value, works as a kind of lock. */
2249 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2250 spin_unlock(&mem->pcp_counter_lock);
2253 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2255 int idx = MEM_CGROUP_ON_MOVE;
2257 spin_lock(&mem->pcp_counter_lock);
2258 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2259 spin_unlock(&mem->pcp_counter_lock);
2262 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2263 unsigned long action,
2264 void *hcpu)
2266 int cpu = (unsigned long)hcpu;
2267 struct memcg_stock_pcp *stock;
2268 struct mem_cgroup *iter;
2270 if ((action == CPU_ONLINE)) {
2271 for_each_mem_cgroup_all(iter)
2272 synchronize_mem_cgroup_on_move(iter, cpu);
2273 return NOTIFY_OK;
2276 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2277 return NOTIFY_OK;
2279 for_each_mem_cgroup_all(iter)
2280 mem_cgroup_drain_pcp_counter(iter, cpu);
2282 stock = &per_cpu(memcg_stock, cpu);
2283 drain_stock(stock);
2284 return NOTIFY_OK;
2288 /* See __mem_cgroup_try_charge() for details */
2289 enum {
2290 CHARGE_OK, /* success */
2291 CHARGE_RETRY, /* need to retry but retry is not bad */
2292 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2293 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2294 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2297 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2298 unsigned int nr_pages, bool oom_check)
2300 unsigned long csize = nr_pages * PAGE_SIZE;
2301 struct mem_cgroup *mem_over_limit;
2302 struct res_counter *fail_res;
2303 unsigned long flags = 0;
2304 int ret;
2306 ret = res_counter_charge(&mem->res, csize, &fail_res);
2308 if (likely(!ret)) {
2309 if (!do_swap_account)
2310 return CHARGE_OK;
2311 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2312 if (likely(!ret))
2313 return CHARGE_OK;
2315 res_counter_uncharge(&mem->res, csize);
2316 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2317 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2318 } else
2319 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2321 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2322 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2324 * Never reclaim on behalf of optional batching, retry with a
2325 * single page instead.
2327 if (nr_pages == CHARGE_BATCH)
2328 return CHARGE_RETRY;
2330 if (!(gfp_mask & __GFP_WAIT))
2331 return CHARGE_WOULDBLOCK;
2333 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2334 gfp_mask, flags, NULL);
2335 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2336 return CHARGE_RETRY;
2338 * Even though the limit is exceeded at this point, reclaim
2339 * may have been able to free some pages. Retry the charge
2340 * before killing the task.
2342 * Only for regular pages, though: huge pages are rather
2343 * unlikely to succeed so close to the limit, and we fall back
2344 * to regular pages anyway in case of failure.
2346 if (nr_pages == 1 && ret)
2347 return CHARGE_RETRY;
2350 * At task move, charge accounts can be doubly counted. So, it's
2351 * better to wait until the end of task_move if something is going on.
2353 if (mem_cgroup_wait_acct_move(mem_over_limit))
2354 return CHARGE_RETRY;
2356 /* If we don't need to call oom-killer at el, return immediately */
2357 if (!oom_check)
2358 return CHARGE_NOMEM;
2359 /* check OOM */
2360 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2361 return CHARGE_OOM_DIE;
2363 return CHARGE_RETRY;
2367 * Unlike exported interface, "oom" parameter is added. if oom==true,
2368 * oom-killer can be invoked.
2370 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2371 gfp_t gfp_mask,
2372 unsigned int nr_pages,
2373 struct mem_cgroup **memcg,
2374 bool oom)
2376 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2377 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2378 struct mem_cgroup *mem = NULL;
2379 int ret;
2382 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2383 * in system level. So, allow to go ahead dying process in addition to
2384 * MEMDIE process.
2386 if (unlikely(test_thread_flag(TIF_MEMDIE)
2387 || fatal_signal_pending(current)))
2388 goto bypass;
2391 * We always charge the cgroup the mm_struct belongs to.
2392 * The mm_struct's mem_cgroup changes on task migration if the
2393 * thread group leader migrates. It's possible that mm is not
2394 * set, if so charge the init_mm (happens for pagecache usage).
2396 if (!*memcg && !mm)
2397 goto bypass;
2398 again:
2399 if (*memcg) { /* css should be a valid one */
2400 mem = *memcg;
2401 VM_BUG_ON(css_is_removed(&mem->css));
2402 if (mem_cgroup_is_root(mem))
2403 goto done;
2404 if (nr_pages == 1 && consume_stock(mem))
2405 goto done;
2406 css_get(&mem->css);
2407 } else {
2408 struct task_struct *p;
2410 rcu_read_lock();
2411 p = rcu_dereference(mm->owner);
2413 * Because we don't have task_lock(), "p" can exit.
2414 * In that case, "mem" can point to root or p can be NULL with
2415 * race with swapoff. Then, we have small risk of mis-accouning.
2416 * But such kind of mis-account by race always happens because
2417 * we don't have cgroup_mutex(). It's overkill and we allo that
2418 * small race, here.
2419 * (*) swapoff at el will charge against mm-struct not against
2420 * task-struct. So, mm->owner can be NULL.
2422 mem = mem_cgroup_from_task(p);
2423 if (!mem || mem_cgroup_is_root(mem)) {
2424 rcu_read_unlock();
2425 goto done;
2427 if (nr_pages == 1 && consume_stock(mem)) {
2429 * It seems dagerous to access memcg without css_get().
2430 * But considering how consume_stok works, it's not
2431 * necessary. If consume_stock success, some charges
2432 * from this memcg are cached on this cpu. So, we
2433 * don't need to call css_get()/css_tryget() before
2434 * calling consume_stock().
2436 rcu_read_unlock();
2437 goto done;
2439 /* after here, we may be blocked. we need to get refcnt */
2440 if (!css_tryget(&mem->css)) {
2441 rcu_read_unlock();
2442 goto again;
2444 rcu_read_unlock();
2447 do {
2448 bool oom_check;
2450 /* If killed, bypass charge */
2451 if (fatal_signal_pending(current)) {
2452 css_put(&mem->css);
2453 goto bypass;
2456 oom_check = false;
2457 if (oom && !nr_oom_retries) {
2458 oom_check = true;
2459 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2462 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2463 switch (ret) {
2464 case CHARGE_OK:
2465 break;
2466 case CHARGE_RETRY: /* not in OOM situation but retry */
2467 batch = nr_pages;
2468 css_put(&mem->css);
2469 mem = NULL;
2470 goto again;
2471 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2472 css_put(&mem->css);
2473 goto nomem;
2474 case CHARGE_NOMEM: /* OOM routine works */
2475 if (!oom) {
2476 css_put(&mem->css);
2477 goto nomem;
2479 /* If oom, we never return -ENOMEM */
2480 nr_oom_retries--;
2481 break;
2482 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2483 css_put(&mem->css);
2484 goto bypass;
2486 } while (ret != CHARGE_OK);
2488 if (batch > nr_pages)
2489 refill_stock(mem, batch - nr_pages);
2490 css_put(&mem->css);
2491 done:
2492 *memcg = mem;
2493 return 0;
2494 nomem:
2495 *memcg = NULL;
2496 return -ENOMEM;
2497 bypass:
2498 *memcg = NULL;
2499 return 0;
2503 * Somemtimes we have to undo a charge we got by try_charge().
2504 * This function is for that and do uncharge, put css's refcnt.
2505 * gotten by try_charge().
2507 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2508 unsigned int nr_pages)
2510 if (!mem_cgroup_is_root(mem)) {
2511 unsigned long bytes = nr_pages * PAGE_SIZE;
2513 res_counter_uncharge(&mem->res, bytes);
2514 if (do_swap_account)
2515 res_counter_uncharge(&mem->memsw, bytes);
2520 * A helper function to get mem_cgroup from ID. must be called under
2521 * rcu_read_lock(). The caller must check css_is_removed() or some if
2522 * it's concern. (dropping refcnt from swap can be called against removed
2523 * memcg.)
2525 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2527 struct cgroup_subsys_state *css;
2529 /* ID 0 is unused ID */
2530 if (!id)
2531 return NULL;
2532 css = css_lookup(&mem_cgroup_subsys, id);
2533 if (!css)
2534 return NULL;
2535 return container_of(css, struct mem_cgroup, css);
2538 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2540 struct mem_cgroup *mem = NULL;
2541 struct page_cgroup *pc;
2542 unsigned short id;
2543 swp_entry_t ent;
2545 VM_BUG_ON(!PageLocked(page));
2547 pc = lookup_page_cgroup(page);
2548 lock_page_cgroup(pc);
2549 if (PageCgroupUsed(pc)) {
2550 mem = pc->mem_cgroup;
2551 if (mem && !css_tryget(&mem->css))
2552 mem = NULL;
2553 } else if (PageSwapCache(page)) {
2554 ent.val = page_private(page);
2555 id = lookup_swap_cgroup(ent);
2556 rcu_read_lock();
2557 mem = mem_cgroup_lookup(id);
2558 if (mem && !css_tryget(&mem->css))
2559 mem = NULL;
2560 rcu_read_unlock();
2562 unlock_page_cgroup(pc);
2563 return mem;
2566 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2567 struct page *page,
2568 unsigned int nr_pages,
2569 struct page_cgroup *pc,
2570 enum charge_type ctype)
2572 lock_page_cgroup(pc);
2573 if (unlikely(PageCgroupUsed(pc))) {
2574 unlock_page_cgroup(pc);
2575 __mem_cgroup_cancel_charge(mem, nr_pages);
2576 return;
2579 * we don't need page_cgroup_lock about tail pages, becase they are not
2580 * accessed by any other context at this point.
2582 pc->mem_cgroup = mem;
2584 * We access a page_cgroup asynchronously without lock_page_cgroup().
2585 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2586 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2587 * before USED bit, we need memory barrier here.
2588 * See mem_cgroup_add_lru_list(), etc.
2590 smp_wmb();
2591 switch (ctype) {
2592 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2593 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2594 SetPageCgroupCache(pc);
2595 SetPageCgroupUsed(pc);
2596 break;
2597 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2598 ClearPageCgroupCache(pc);
2599 SetPageCgroupUsed(pc);
2600 break;
2601 default:
2602 break;
2605 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2606 unlock_page_cgroup(pc);
2608 * "charge_statistics" updated event counter. Then, check it.
2609 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2610 * if they exceeds softlimit.
2612 memcg_check_events(mem, page);
2615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2617 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2618 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2620 * Because tail pages are not marked as "used", set it. We're under
2621 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2623 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2625 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2626 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2627 unsigned long flags;
2629 if (mem_cgroup_disabled())
2630 return;
2632 * We have no races with charge/uncharge but will have races with
2633 * page state accounting.
2635 move_lock_page_cgroup(head_pc, &flags);
2637 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2638 smp_wmb(); /* see __commit_charge() */
2639 if (PageCgroupAcctLRU(head_pc)) {
2640 enum lru_list lru;
2641 struct mem_cgroup_per_zone *mz;
2644 * LRU flags cannot be copied because we need to add tail
2645 *.page to LRU by generic call and our hook will be called.
2646 * We hold lru_lock, then, reduce counter directly.
2648 lru = page_lru(head);
2649 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2650 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2652 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2653 move_unlock_page_cgroup(head_pc, &flags);
2655 #endif
2658 * mem_cgroup_move_account - move account of the page
2659 * @page: the page
2660 * @nr_pages: number of regular pages (>1 for huge pages)
2661 * @pc: page_cgroup of the page.
2662 * @from: mem_cgroup which the page is moved from.
2663 * @to: mem_cgroup which the page is moved to. @from != @to.
2664 * @uncharge: whether we should call uncharge and css_put against @from.
2666 * The caller must confirm following.
2667 * - page is not on LRU (isolate_page() is useful.)
2668 * - compound_lock is held when nr_pages > 1
2670 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2671 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2672 * true, this function does "uncharge" from old cgroup, but it doesn't if
2673 * @uncharge is false, so a caller should do "uncharge".
2675 static int mem_cgroup_move_account(struct page *page,
2676 unsigned int nr_pages,
2677 struct page_cgroup *pc,
2678 struct mem_cgroup *from,
2679 struct mem_cgroup *to,
2680 bool uncharge)
2682 unsigned long flags;
2683 int ret;
2685 VM_BUG_ON(from == to);
2686 VM_BUG_ON(PageLRU(page));
2688 * The page is isolated from LRU. So, collapse function
2689 * will not handle this page. But page splitting can happen.
2690 * Do this check under compound_page_lock(). The caller should
2691 * hold it.
2693 ret = -EBUSY;
2694 if (nr_pages > 1 && !PageTransHuge(page))
2695 goto out;
2697 lock_page_cgroup(pc);
2699 ret = -EINVAL;
2700 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2701 goto unlock;
2703 move_lock_page_cgroup(pc, &flags);
2705 if (PageCgroupFileMapped(pc)) {
2706 /* Update mapped_file data for mem_cgroup */
2707 preempt_disable();
2708 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2709 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2710 preempt_enable();
2712 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2713 if (uncharge)
2714 /* This is not "cancel", but cancel_charge does all we need. */
2715 __mem_cgroup_cancel_charge(from, nr_pages);
2717 /* caller should have done css_get */
2718 pc->mem_cgroup = to;
2719 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2721 * We charges against "to" which may not have any tasks. Then, "to"
2722 * can be under rmdir(). But in current implementation, caller of
2723 * this function is just force_empty() and move charge, so it's
2724 * guaranteed that "to" is never removed. So, we don't check rmdir
2725 * status here.
2727 move_unlock_page_cgroup(pc, &flags);
2728 ret = 0;
2729 unlock:
2730 unlock_page_cgroup(pc);
2732 * check events
2734 memcg_check_events(to, page);
2735 memcg_check_events(from, page);
2736 out:
2737 return ret;
2741 * move charges to its parent.
2744 static int mem_cgroup_move_parent(struct page *page,
2745 struct page_cgroup *pc,
2746 struct mem_cgroup *child,
2747 gfp_t gfp_mask)
2749 struct cgroup *cg = child->css.cgroup;
2750 struct cgroup *pcg = cg->parent;
2751 struct mem_cgroup *parent;
2752 unsigned int nr_pages;
2753 unsigned long uninitialized_var(flags);
2754 int ret;
2756 /* Is ROOT ? */
2757 if (!pcg)
2758 return -EINVAL;
2760 ret = -EBUSY;
2761 if (!get_page_unless_zero(page))
2762 goto out;
2763 if (isolate_lru_page(page))
2764 goto put;
2766 nr_pages = hpage_nr_pages(page);
2768 parent = mem_cgroup_from_cont(pcg);
2769 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2770 if (ret || !parent)
2771 goto put_back;
2773 if (nr_pages > 1)
2774 flags = compound_lock_irqsave(page);
2776 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2777 if (ret)
2778 __mem_cgroup_cancel_charge(parent, nr_pages);
2780 if (nr_pages > 1)
2781 compound_unlock_irqrestore(page, flags);
2782 put_back:
2783 putback_lru_page(page);
2784 put:
2785 put_page(page);
2786 out:
2787 return ret;
2791 * Charge the memory controller for page usage.
2792 * Return
2793 * 0 if the charge was successful
2794 * < 0 if the cgroup is over its limit
2796 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2797 gfp_t gfp_mask, enum charge_type ctype)
2799 struct mem_cgroup *mem = NULL;
2800 unsigned int nr_pages = 1;
2801 struct page_cgroup *pc;
2802 bool oom = true;
2803 int ret;
2805 if (PageTransHuge(page)) {
2806 nr_pages <<= compound_order(page);
2807 VM_BUG_ON(!PageTransHuge(page));
2809 * Never OOM-kill a process for a huge page. The
2810 * fault handler will fall back to regular pages.
2812 oom = false;
2815 pc = lookup_page_cgroup(page);
2816 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2818 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2819 if (ret || !mem)
2820 return ret;
2822 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2823 return 0;
2826 int mem_cgroup_newpage_charge(struct page *page,
2827 struct mm_struct *mm, gfp_t gfp_mask)
2829 if (mem_cgroup_disabled())
2830 return 0;
2832 * If already mapped, we don't have to account.
2833 * If page cache, page->mapping has address_space.
2834 * But page->mapping may have out-of-use anon_vma pointer,
2835 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2836 * is NULL.
2838 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2839 return 0;
2840 if (unlikely(!mm))
2841 mm = &init_mm;
2842 return mem_cgroup_charge_common(page, mm, gfp_mask,
2843 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2846 static void
2847 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2848 enum charge_type ctype);
2850 static void
2851 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2852 enum charge_type ctype)
2854 struct page_cgroup *pc = lookup_page_cgroup(page);
2856 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2857 * is already on LRU. It means the page may on some other page_cgroup's
2858 * LRU. Take care of it.
2860 mem_cgroup_lru_del_before_commit(page);
2861 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2862 mem_cgroup_lru_add_after_commit(page);
2863 return;
2866 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2867 gfp_t gfp_mask)
2869 struct mem_cgroup *mem = NULL;
2870 int ret;
2872 if (mem_cgroup_disabled())
2873 return 0;
2874 if (PageCompound(page))
2875 return 0;
2877 * Corner case handling. This is called from add_to_page_cache()
2878 * in usual. But some FS (shmem) precharges this page before calling it
2879 * and call add_to_page_cache() with GFP_NOWAIT.
2881 * For GFP_NOWAIT case, the page may be pre-charged before calling
2882 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2883 * charge twice. (It works but has to pay a bit larger cost.)
2884 * And when the page is SwapCache, it should take swap information
2885 * into account. This is under lock_page() now.
2887 if (!(gfp_mask & __GFP_WAIT)) {
2888 struct page_cgroup *pc;
2890 pc = lookup_page_cgroup(page);
2891 if (!pc)
2892 return 0;
2893 lock_page_cgroup(pc);
2894 if (PageCgroupUsed(pc)) {
2895 unlock_page_cgroup(pc);
2896 return 0;
2898 unlock_page_cgroup(pc);
2901 if (unlikely(!mm))
2902 mm = &init_mm;
2904 if (page_is_file_cache(page)) {
2905 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2906 if (ret || !mem)
2907 return ret;
2910 * FUSE reuses pages without going through the final
2911 * put that would remove them from the LRU list, make
2912 * sure that they get relinked properly.
2914 __mem_cgroup_commit_charge_lrucare(page, mem,
2915 MEM_CGROUP_CHARGE_TYPE_CACHE);
2916 return ret;
2918 /* shmem */
2919 if (PageSwapCache(page)) {
2920 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2921 if (!ret)
2922 __mem_cgroup_commit_charge_swapin(page, mem,
2923 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2924 } else
2925 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2926 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2928 return ret;
2932 * While swap-in, try_charge -> commit or cancel, the page is locked.
2933 * And when try_charge() successfully returns, one refcnt to memcg without
2934 * struct page_cgroup is acquired. This refcnt will be consumed by
2935 * "commit()" or removed by "cancel()"
2937 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2938 struct page *page,
2939 gfp_t mask, struct mem_cgroup **ptr)
2941 struct mem_cgroup *mem;
2942 int ret;
2944 *ptr = NULL;
2946 if (mem_cgroup_disabled())
2947 return 0;
2949 if (!do_swap_account)
2950 goto charge_cur_mm;
2952 * A racing thread's fault, or swapoff, may have already updated
2953 * the pte, and even removed page from swap cache: in those cases
2954 * do_swap_page()'s pte_same() test will fail; but there's also a
2955 * KSM case which does need to charge the page.
2957 if (!PageSwapCache(page))
2958 goto charge_cur_mm;
2959 mem = try_get_mem_cgroup_from_page(page);
2960 if (!mem)
2961 goto charge_cur_mm;
2962 *ptr = mem;
2963 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2964 css_put(&mem->css);
2965 return ret;
2966 charge_cur_mm:
2967 if (unlikely(!mm))
2968 mm = &init_mm;
2969 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2972 static void
2973 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2974 enum charge_type ctype)
2976 if (mem_cgroup_disabled())
2977 return;
2978 if (!ptr)
2979 return;
2980 cgroup_exclude_rmdir(&ptr->css);
2982 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2984 * Now swap is on-memory. This means this page may be
2985 * counted both as mem and swap....double count.
2986 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2987 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2988 * may call delete_from_swap_cache() before reach here.
2990 if (do_swap_account && PageSwapCache(page)) {
2991 swp_entry_t ent = {.val = page_private(page)};
2992 unsigned short id;
2993 struct mem_cgroup *memcg;
2995 id = swap_cgroup_record(ent, 0);
2996 rcu_read_lock();
2997 memcg = mem_cgroup_lookup(id);
2998 if (memcg) {
3000 * This recorded memcg can be obsolete one. So, avoid
3001 * calling css_tryget
3003 if (!mem_cgroup_is_root(memcg))
3004 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3005 mem_cgroup_swap_statistics(memcg, false);
3006 mem_cgroup_put(memcg);
3008 rcu_read_unlock();
3011 * At swapin, we may charge account against cgroup which has no tasks.
3012 * So, rmdir()->pre_destroy() can be called while we do this charge.
3013 * In that case, we need to call pre_destroy() again. check it here.
3015 cgroup_release_and_wakeup_rmdir(&ptr->css);
3018 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
3020 __mem_cgroup_commit_charge_swapin(page, ptr,
3021 MEM_CGROUP_CHARGE_TYPE_MAPPED);
3024 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3026 if (mem_cgroup_disabled())
3027 return;
3028 if (!mem)
3029 return;
3030 __mem_cgroup_cancel_charge(mem, 1);
3033 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3034 unsigned int nr_pages,
3035 const enum charge_type ctype)
3037 struct memcg_batch_info *batch = NULL;
3038 bool uncharge_memsw = true;
3040 /* If swapout, usage of swap doesn't decrease */
3041 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3042 uncharge_memsw = false;
3044 batch = &current->memcg_batch;
3046 * In usual, we do css_get() when we remember memcg pointer.
3047 * But in this case, we keep res->usage until end of a series of
3048 * uncharges. Then, it's ok to ignore memcg's refcnt.
3050 if (!batch->memcg)
3051 batch->memcg = mem;
3053 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3054 * In those cases, all pages freed continuously can be expected to be in
3055 * the same cgroup and we have chance to coalesce uncharges.
3056 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3057 * because we want to do uncharge as soon as possible.
3060 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3061 goto direct_uncharge;
3063 if (nr_pages > 1)
3064 goto direct_uncharge;
3067 * In typical case, batch->memcg == mem. This means we can
3068 * merge a series of uncharges to an uncharge of res_counter.
3069 * If not, we uncharge res_counter ony by one.
3071 if (batch->memcg != mem)
3072 goto direct_uncharge;
3073 /* remember freed charge and uncharge it later */
3074 batch->nr_pages++;
3075 if (uncharge_memsw)
3076 batch->memsw_nr_pages++;
3077 return;
3078 direct_uncharge:
3079 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3080 if (uncharge_memsw)
3081 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3082 if (unlikely(batch->memcg != mem))
3083 memcg_oom_recover(mem);
3084 return;
3088 * uncharge if !page_mapped(page)
3090 static struct mem_cgroup *
3091 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3093 struct mem_cgroup *mem = NULL;
3094 unsigned int nr_pages = 1;
3095 struct page_cgroup *pc;
3097 if (mem_cgroup_disabled())
3098 return NULL;
3100 if (PageSwapCache(page))
3101 return NULL;
3103 if (PageTransHuge(page)) {
3104 nr_pages <<= compound_order(page);
3105 VM_BUG_ON(!PageTransHuge(page));
3108 * Check if our page_cgroup is valid
3110 pc = lookup_page_cgroup(page);
3111 if (unlikely(!pc || !PageCgroupUsed(pc)))
3112 return NULL;
3114 lock_page_cgroup(pc);
3116 mem = pc->mem_cgroup;
3118 if (!PageCgroupUsed(pc))
3119 goto unlock_out;
3121 switch (ctype) {
3122 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3123 case MEM_CGROUP_CHARGE_TYPE_DROP:
3124 /* See mem_cgroup_prepare_migration() */
3125 if (page_mapped(page) || PageCgroupMigration(pc))
3126 goto unlock_out;
3127 break;
3128 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3129 if (!PageAnon(page)) { /* Shared memory */
3130 if (page->mapping && !page_is_file_cache(page))
3131 goto unlock_out;
3132 } else if (page_mapped(page)) /* Anon */
3133 goto unlock_out;
3134 break;
3135 default:
3136 break;
3139 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3141 ClearPageCgroupUsed(pc);
3143 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3144 * freed from LRU. This is safe because uncharged page is expected not
3145 * to be reused (freed soon). Exception is SwapCache, it's handled by
3146 * special functions.
3149 unlock_page_cgroup(pc);
3151 * even after unlock, we have mem->res.usage here and this memcg
3152 * will never be freed.
3154 memcg_check_events(mem, page);
3155 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3156 mem_cgroup_swap_statistics(mem, true);
3157 mem_cgroup_get(mem);
3159 if (!mem_cgroup_is_root(mem))
3160 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3162 return mem;
3164 unlock_out:
3165 unlock_page_cgroup(pc);
3166 return NULL;
3169 void mem_cgroup_uncharge_page(struct page *page)
3171 /* early check. */
3172 if (page_mapped(page))
3173 return;
3174 if (page->mapping && !PageAnon(page))
3175 return;
3176 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3179 void mem_cgroup_uncharge_cache_page(struct page *page)
3181 VM_BUG_ON(page_mapped(page));
3182 VM_BUG_ON(page->mapping);
3183 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3187 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3188 * In that cases, pages are freed continuously and we can expect pages
3189 * are in the same memcg. All these calls itself limits the number of
3190 * pages freed at once, then uncharge_start/end() is called properly.
3191 * This may be called prural(2) times in a context,
3194 void mem_cgroup_uncharge_start(void)
3196 current->memcg_batch.do_batch++;
3197 /* We can do nest. */
3198 if (current->memcg_batch.do_batch == 1) {
3199 current->memcg_batch.memcg = NULL;
3200 current->memcg_batch.nr_pages = 0;
3201 current->memcg_batch.memsw_nr_pages = 0;
3205 void mem_cgroup_uncharge_end(void)
3207 struct memcg_batch_info *batch = &current->memcg_batch;
3209 if (!batch->do_batch)
3210 return;
3212 batch->do_batch--;
3213 if (batch->do_batch) /* If stacked, do nothing. */
3214 return;
3216 if (!batch->memcg)
3217 return;
3219 * This "batch->memcg" is valid without any css_get/put etc...
3220 * bacause we hide charges behind us.
3222 if (batch->nr_pages)
3223 res_counter_uncharge(&batch->memcg->res,
3224 batch->nr_pages * PAGE_SIZE);
3225 if (batch->memsw_nr_pages)
3226 res_counter_uncharge(&batch->memcg->memsw,
3227 batch->memsw_nr_pages * PAGE_SIZE);
3228 memcg_oom_recover(batch->memcg);
3229 /* forget this pointer (for sanity check) */
3230 batch->memcg = NULL;
3233 #ifdef CONFIG_SWAP
3235 * called after __delete_from_swap_cache() and drop "page" account.
3236 * memcg information is recorded to swap_cgroup of "ent"
3238 void
3239 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3241 struct mem_cgroup *memcg;
3242 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3244 if (!swapout) /* this was a swap cache but the swap is unused ! */
3245 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3247 memcg = __mem_cgroup_uncharge_common(page, ctype);
3250 * record memcg information, if swapout && memcg != NULL,
3251 * mem_cgroup_get() was called in uncharge().
3253 if (do_swap_account && swapout && memcg)
3254 swap_cgroup_record(ent, css_id(&memcg->css));
3256 #endif
3258 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3260 * called from swap_entry_free(). remove record in swap_cgroup and
3261 * uncharge "memsw" account.
3263 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3265 struct mem_cgroup *memcg;
3266 unsigned short id;
3268 if (!do_swap_account)
3269 return;
3271 id = swap_cgroup_record(ent, 0);
3272 rcu_read_lock();
3273 memcg = mem_cgroup_lookup(id);
3274 if (memcg) {
3276 * We uncharge this because swap is freed.
3277 * This memcg can be obsolete one. We avoid calling css_tryget
3279 if (!mem_cgroup_is_root(memcg))
3280 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3281 mem_cgroup_swap_statistics(memcg, false);
3282 mem_cgroup_put(memcg);
3284 rcu_read_unlock();
3288 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3289 * @entry: swap entry to be moved
3290 * @from: mem_cgroup which the entry is moved from
3291 * @to: mem_cgroup which the entry is moved to
3292 * @need_fixup: whether we should fixup res_counters and refcounts.
3294 * It succeeds only when the swap_cgroup's record for this entry is the same
3295 * as the mem_cgroup's id of @from.
3297 * Returns 0 on success, -EINVAL on failure.
3299 * The caller must have charged to @to, IOW, called res_counter_charge() about
3300 * both res and memsw, and called css_get().
3302 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3303 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3305 unsigned short old_id, new_id;
3307 old_id = css_id(&from->css);
3308 new_id = css_id(&to->css);
3310 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3311 mem_cgroup_swap_statistics(from, false);
3312 mem_cgroup_swap_statistics(to, true);
3314 * This function is only called from task migration context now.
3315 * It postpones res_counter and refcount handling till the end
3316 * of task migration(mem_cgroup_clear_mc()) for performance
3317 * improvement. But we cannot postpone mem_cgroup_get(to)
3318 * because if the process that has been moved to @to does
3319 * swap-in, the refcount of @to might be decreased to 0.
3321 mem_cgroup_get(to);
3322 if (need_fixup) {
3323 if (!mem_cgroup_is_root(from))
3324 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3325 mem_cgroup_put(from);
3327 * we charged both to->res and to->memsw, so we should
3328 * uncharge to->res.
3330 if (!mem_cgroup_is_root(to))
3331 res_counter_uncharge(&to->res, PAGE_SIZE);
3333 return 0;
3335 return -EINVAL;
3337 #else
3338 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3339 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3341 return -EINVAL;
3343 #endif
3346 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3347 * page belongs to.
3349 int mem_cgroup_prepare_migration(struct page *page,
3350 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3352 struct mem_cgroup *mem = NULL;
3353 struct page_cgroup *pc;
3354 enum charge_type ctype;
3355 int ret = 0;
3357 *ptr = NULL;
3359 VM_BUG_ON(PageTransHuge(page));
3360 if (mem_cgroup_disabled())
3361 return 0;
3363 pc = lookup_page_cgroup(page);
3364 lock_page_cgroup(pc);
3365 if (PageCgroupUsed(pc)) {
3366 mem = pc->mem_cgroup;
3367 css_get(&mem->css);
3369 * At migrating an anonymous page, its mapcount goes down
3370 * to 0 and uncharge() will be called. But, even if it's fully
3371 * unmapped, migration may fail and this page has to be
3372 * charged again. We set MIGRATION flag here and delay uncharge
3373 * until end_migration() is called
3375 * Corner Case Thinking
3376 * A)
3377 * When the old page was mapped as Anon and it's unmap-and-freed
3378 * while migration was ongoing.
3379 * If unmap finds the old page, uncharge() of it will be delayed
3380 * until end_migration(). If unmap finds a new page, it's
3381 * uncharged when it make mapcount to be 1->0. If unmap code
3382 * finds swap_migration_entry, the new page will not be mapped
3383 * and end_migration() will find it(mapcount==0).
3385 * B)
3386 * When the old page was mapped but migraion fails, the kernel
3387 * remaps it. A charge for it is kept by MIGRATION flag even
3388 * if mapcount goes down to 0. We can do remap successfully
3389 * without charging it again.
3391 * C)
3392 * The "old" page is under lock_page() until the end of
3393 * migration, so, the old page itself will not be swapped-out.
3394 * If the new page is swapped out before end_migraton, our
3395 * hook to usual swap-out path will catch the event.
3397 if (PageAnon(page))
3398 SetPageCgroupMigration(pc);
3400 unlock_page_cgroup(pc);
3402 * If the page is not charged at this point,
3403 * we return here.
3405 if (!mem)
3406 return 0;
3408 *ptr = mem;
3409 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3410 css_put(&mem->css);/* drop extra refcnt */
3411 if (ret || *ptr == NULL) {
3412 if (PageAnon(page)) {
3413 lock_page_cgroup(pc);
3414 ClearPageCgroupMigration(pc);
3415 unlock_page_cgroup(pc);
3417 * The old page may be fully unmapped while we kept it.
3419 mem_cgroup_uncharge_page(page);
3421 return -ENOMEM;
3424 * We charge new page before it's used/mapped. So, even if unlock_page()
3425 * is called before end_migration, we can catch all events on this new
3426 * page. In the case new page is migrated but not remapped, new page's
3427 * mapcount will be finally 0 and we call uncharge in end_migration().
3429 pc = lookup_page_cgroup(newpage);
3430 if (PageAnon(page))
3431 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3432 else if (page_is_file_cache(page))
3433 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3434 else
3435 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3436 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3437 return ret;
3440 /* remove redundant charge if migration failed*/
3441 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3442 struct page *oldpage, struct page *newpage, bool migration_ok)
3444 struct page *used, *unused;
3445 struct page_cgroup *pc;
3447 if (!mem)
3448 return;
3449 /* blocks rmdir() */
3450 cgroup_exclude_rmdir(&mem->css);
3451 if (!migration_ok) {
3452 used = oldpage;
3453 unused = newpage;
3454 } else {
3455 used = newpage;
3456 unused = oldpage;
3459 * We disallowed uncharge of pages under migration because mapcount
3460 * of the page goes down to zero, temporarly.
3461 * Clear the flag and check the page should be charged.
3463 pc = lookup_page_cgroup(oldpage);
3464 lock_page_cgroup(pc);
3465 ClearPageCgroupMigration(pc);
3466 unlock_page_cgroup(pc);
3468 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3471 * If a page is a file cache, radix-tree replacement is very atomic
3472 * and we can skip this check. When it was an Anon page, its mapcount
3473 * goes down to 0. But because we added MIGRATION flage, it's not
3474 * uncharged yet. There are several case but page->mapcount check
3475 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3476 * check. (see prepare_charge() also)
3478 if (PageAnon(used))
3479 mem_cgroup_uncharge_page(used);
3481 * At migration, we may charge account against cgroup which has no
3482 * tasks.
3483 * So, rmdir()->pre_destroy() can be called while we do this charge.
3484 * In that case, we need to call pre_destroy() again. check it here.
3486 cgroup_release_and_wakeup_rmdir(&mem->css);
3490 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3491 * Calling hierarchical_reclaim is not enough because we should update
3492 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3493 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3494 * not from the memcg which this page would be charged to.
3495 * try_charge_swapin does all of these works properly.
3497 int mem_cgroup_shmem_charge_fallback(struct page *page,
3498 struct mm_struct *mm,
3499 gfp_t gfp_mask)
3501 struct mem_cgroup *mem;
3502 int ret;
3504 if (mem_cgroup_disabled())
3505 return 0;
3507 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3508 if (!ret)
3509 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3511 return ret;
3514 #ifdef CONFIG_DEBUG_VM
3515 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3517 struct page_cgroup *pc;
3519 pc = lookup_page_cgroup(page);
3520 if (likely(pc) && PageCgroupUsed(pc))
3521 return pc;
3522 return NULL;
3525 bool mem_cgroup_bad_page_check(struct page *page)
3527 if (mem_cgroup_disabled())
3528 return false;
3530 return lookup_page_cgroup_used(page) != NULL;
3533 void mem_cgroup_print_bad_page(struct page *page)
3535 struct page_cgroup *pc;
3537 pc = lookup_page_cgroup_used(page);
3538 if (pc) {
3539 int ret = -1;
3540 char *path;
3542 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3543 pc, pc->flags, pc->mem_cgroup);
3545 path = kmalloc(PATH_MAX, GFP_KERNEL);
3546 if (path) {
3547 rcu_read_lock();
3548 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3549 path, PATH_MAX);
3550 rcu_read_unlock();
3553 printk(KERN_CONT "(%s)\n",
3554 (ret < 0) ? "cannot get the path" : path);
3555 kfree(path);
3558 #endif
3560 static DEFINE_MUTEX(set_limit_mutex);
3562 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3563 unsigned long long val)
3565 int retry_count;
3566 u64 memswlimit, memlimit;
3567 int ret = 0;
3568 int children = mem_cgroup_count_children(memcg);
3569 u64 curusage, oldusage;
3570 int enlarge;
3573 * For keeping hierarchical_reclaim simple, how long we should retry
3574 * is depends on callers. We set our retry-count to be function
3575 * of # of children which we should visit in this loop.
3577 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3579 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3581 enlarge = 0;
3582 while (retry_count) {
3583 if (signal_pending(current)) {
3584 ret = -EINTR;
3585 break;
3588 * Rather than hide all in some function, I do this in
3589 * open coded manner. You see what this really does.
3590 * We have to guarantee mem->res.limit < mem->memsw.limit.
3592 mutex_lock(&set_limit_mutex);
3593 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3594 if (memswlimit < val) {
3595 ret = -EINVAL;
3596 mutex_unlock(&set_limit_mutex);
3597 break;
3600 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3601 if (memlimit < val)
3602 enlarge = 1;
3604 ret = res_counter_set_limit(&memcg->res, val);
3605 if (!ret) {
3606 if (memswlimit == val)
3607 memcg->memsw_is_minimum = true;
3608 else
3609 memcg->memsw_is_minimum = false;
3611 mutex_unlock(&set_limit_mutex);
3613 if (!ret)
3614 break;
3616 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3617 MEM_CGROUP_RECLAIM_SHRINK,
3618 NULL);
3619 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3620 /* Usage is reduced ? */
3621 if (curusage >= oldusage)
3622 retry_count--;
3623 else
3624 oldusage = curusage;
3626 if (!ret && enlarge)
3627 memcg_oom_recover(memcg);
3629 return ret;
3632 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3633 unsigned long long val)
3635 int retry_count;
3636 u64 memlimit, memswlimit, oldusage, curusage;
3637 int children = mem_cgroup_count_children(memcg);
3638 int ret = -EBUSY;
3639 int enlarge = 0;
3641 /* see mem_cgroup_resize_res_limit */
3642 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3643 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3644 while (retry_count) {
3645 if (signal_pending(current)) {
3646 ret = -EINTR;
3647 break;
3650 * Rather than hide all in some function, I do this in
3651 * open coded manner. You see what this really does.
3652 * We have to guarantee mem->res.limit < mem->memsw.limit.
3654 mutex_lock(&set_limit_mutex);
3655 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3656 if (memlimit > val) {
3657 ret = -EINVAL;
3658 mutex_unlock(&set_limit_mutex);
3659 break;
3661 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3662 if (memswlimit < val)
3663 enlarge = 1;
3664 ret = res_counter_set_limit(&memcg->memsw, val);
3665 if (!ret) {
3666 if (memlimit == val)
3667 memcg->memsw_is_minimum = true;
3668 else
3669 memcg->memsw_is_minimum = false;
3671 mutex_unlock(&set_limit_mutex);
3673 if (!ret)
3674 break;
3676 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3677 MEM_CGROUP_RECLAIM_NOSWAP |
3678 MEM_CGROUP_RECLAIM_SHRINK,
3679 NULL);
3680 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3681 /* Usage is reduced ? */
3682 if (curusage >= oldusage)
3683 retry_count--;
3684 else
3685 oldusage = curusage;
3687 if (!ret && enlarge)
3688 memcg_oom_recover(memcg);
3689 return ret;
3692 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3693 gfp_t gfp_mask,
3694 unsigned long *total_scanned)
3696 unsigned long nr_reclaimed = 0;
3697 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3698 unsigned long reclaimed;
3699 int loop = 0;
3700 struct mem_cgroup_tree_per_zone *mctz;
3701 unsigned long long excess;
3702 unsigned long nr_scanned;
3704 if (order > 0)
3705 return 0;
3707 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3709 * This loop can run a while, specially if mem_cgroup's continuously
3710 * keep exceeding their soft limit and putting the system under
3711 * pressure
3713 do {
3714 if (next_mz)
3715 mz = next_mz;
3716 else
3717 mz = mem_cgroup_largest_soft_limit_node(mctz);
3718 if (!mz)
3719 break;
3721 nr_scanned = 0;
3722 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3723 gfp_mask,
3724 MEM_CGROUP_RECLAIM_SOFT,
3725 &nr_scanned);
3726 nr_reclaimed += reclaimed;
3727 *total_scanned += nr_scanned;
3728 spin_lock(&mctz->lock);
3731 * If we failed to reclaim anything from this memory cgroup
3732 * it is time to move on to the next cgroup
3734 next_mz = NULL;
3735 if (!reclaimed) {
3736 do {
3738 * Loop until we find yet another one.
3740 * By the time we get the soft_limit lock
3741 * again, someone might have aded the
3742 * group back on the RB tree. Iterate to
3743 * make sure we get a different mem.
3744 * mem_cgroup_largest_soft_limit_node returns
3745 * NULL if no other cgroup is present on
3746 * the tree
3748 next_mz =
3749 __mem_cgroup_largest_soft_limit_node(mctz);
3750 if (next_mz == mz)
3751 css_put(&next_mz->mem->css);
3752 else /* next_mz == NULL or other memcg */
3753 break;
3754 } while (1);
3756 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3757 excess = res_counter_soft_limit_excess(&mz->mem->res);
3759 * One school of thought says that we should not add
3760 * back the node to the tree if reclaim returns 0.
3761 * But our reclaim could return 0, simply because due
3762 * to priority we are exposing a smaller subset of
3763 * memory to reclaim from. Consider this as a longer
3764 * term TODO.
3766 /* If excess == 0, no tree ops */
3767 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3768 spin_unlock(&mctz->lock);
3769 css_put(&mz->mem->css);
3770 loop++;
3772 * Could not reclaim anything and there are no more
3773 * mem cgroups to try or we seem to be looping without
3774 * reclaiming anything.
3776 if (!nr_reclaimed &&
3777 (next_mz == NULL ||
3778 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3779 break;
3780 } while (!nr_reclaimed);
3781 if (next_mz)
3782 css_put(&next_mz->mem->css);
3783 return nr_reclaimed;
3787 * This routine traverse page_cgroup in given list and drop them all.
3788 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3790 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3791 int node, int zid, enum lru_list lru)
3793 struct zone *zone;
3794 struct mem_cgroup_per_zone *mz;
3795 struct page_cgroup *pc, *busy;
3796 unsigned long flags, loop;
3797 struct list_head *list;
3798 int ret = 0;
3800 zone = &NODE_DATA(node)->node_zones[zid];
3801 mz = mem_cgroup_zoneinfo(mem, node, zid);
3802 list = &mz->lists[lru];
3804 loop = MEM_CGROUP_ZSTAT(mz, lru);
3805 /* give some margin against EBUSY etc...*/
3806 loop += 256;
3807 busy = NULL;
3808 while (loop--) {
3809 struct page *page;
3811 ret = 0;
3812 spin_lock_irqsave(&zone->lru_lock, flags);
3813 if (list_empty(list)) {
3814 spin_unlock_irqrestore(&zone->lru_lock, flags);
3815 break;
3817 pc = list_entry(list->prev, struct page_cgroup, lru);
3818 if (busy == pc) {
3819 list_move(&pc->lru, list);
3820 busy = NULL;
3821 spin_unlock_irqrestore(&zone->lru_lock, flags);
3822 continue;
3824 spin_unlock_irqrestore(&zone->lru_lock, flags);
3826 page = lookup_cgroup_page(pc);
3828 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3829 if (ret == -ENOMEM)
3830 break;
3832 if (ret == -EBUSY || ret == -EINVAL) {
3833 /* found lock contention or "pc" is obsolete. */
3834 busy = pc;
3835 cond_resched();
3836 } else
3837 busy = NULL;
3840 if (!ret && !list_empty(list))
3841 return -EBUSY;
3842 return ret;
3846 * make mem_cgroup's charge to be 0 if there is no task.
3847 * This enables deleting this mem_cgroup.
3849 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3851 int ret;
3852 int node, zid, shrink;
3853 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3854 struct cgroup *cgrp = mem->css.cgroup;
3856 css_get(&mem->css);
3858 shrink = 0;
3859 /* should free all ? */
3860 if (free_all)
3861 goto try_to_free;
3862 move_account:
3863 do {
3864 ret = -EBUSY;
3865 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3866 goto out;
3867 ret = -EINTR;
3868 if (signal_pending(current))
3869 goto out;
3870 /* This is for making all *used* pages to be on LRU. */
3871 lru_add_drain_all();
3872 drain_all_stock_sync(mem);
3873 ret = 0;
3874 mem_cgroup_start_move(mem);
3875 for_each_node_state(node, N_HIGH_MEMORY) {
3876 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3877 enum lru_list l;
3878 for_each_lru(l) {
3879 ret = mem_cgroup_force_empty_list(mem,
3880 node, zid, l);
3881 if (ret)
3882 break;
3885 if (ret)
3886 break;
3888 mem_cgroup_end_move(mem);
3889 memcg_oom_recover(mem);
3890 /* it seems parent cgroup doesn't have enough mem */
3891 if (ret == -ENOMEM)
3892 goto try_to_free;
3893 cond_resched();
3894 /* "ret" should also be checked to ensure all lists are empty. */
3895 } while (mem->res.usage > 0 || ret);
3896 out:
3897 css_put(&mem->css);
3898 return ret;
3900 try_to_free:
3901 /* returns EBUSY if there is a task or if we come here twice. */
3902 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3903 ret = -EBUSY;
3904 goto out;
3906 /* we call try-to-free pages for make this cgroup empty */
3907 lru_add_drain_all();
3908 /* try to free all pages in this cgroup */
3909 shrink = 1;
3910 while (nr_retries && mem->res.usage > 0) {
3911 struct memcg_scanrecord rec;
3912 int progress;
3914 if (signal_pending(current)) {
3915 ret = -EINTR;
3916 goto out;
3918 rec.context = SCAN_BY_SHRINK;
3919 rec.mem = mem;
3920 rec.root = mem;
3921 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3922 false, &rec);
3923 if (!progress) {
3924 nr_retries--;
3925 /* maybe some writeback is necessary */
3926 congestion_wait(BLK_RW_ASYNC, HZ/10);
3930 lru_add_drain();
3931 /* try move_account...there may be some *locked* pages. */
3932 goto move_account;
3935 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3937 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3941 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3943 return mem_cgroup_from_cont(cont)->use_hierarchy;
3946 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3947 u64 val)
3949 int retval = 0;
3950 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3951 struct cgroup *parent = cont->parent;
3952 struct mem_cgroup *parent_mem = NULL;
3954 if (parent)
3955 parent_mem = mem_cgroup_from_cont(parent);
3957 cgroup_lock();
3959 * If parent's use_hierarchy is set, we can't make any modifications
3960 * in the child subtrees. If it is unset, then the change can
3961 * occur, provided the current cgroup has no children.
3963 * For the root cgroup, parent_mem is NULL, we allow value to be
3964 * set if there are no children.
3966 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3967 (val == 1 || val == 0)) {
3968 if (list_empty(&cont->children))
3969 mem->use_hierarchy = val;
3970 else
3971 retval = -EBUSY;
3972 } else
3973 retval = -EINVAL;
3974 cgroup_unlock();
3976 return retval;
3980 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3981 enum mem_cgroup_stat_index idx)
3983 struct mem_cgroup *iter;
3984 long val = 0;
3986 /* Per-cpu values can be negative, use a signed accumulator */
3987 for_each_mem_cgroup_tree(iter, mem)
3988 val += mem_cgroup_read_stat(iter, idx);
3990 if (val < 0) /* race ? */
3991 val = 0;
3992 return val;
3995 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3997 u64 val;
3999 if (!mem_cgroup_is_root(mem)) {
4000 if (!swap)
4001 return res_counter_read_u64(&mem->res, RES_USAGE);
4002 else
4003 return res_counter_read_u64(&mem->memsw, RES_USAGE);
4006 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
4007 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
4009 if (swap)
4010 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4012 return val << PAGE_SHIFT;
4015 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
4017 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4018 u64 val;
4019 int type, name;
4021 type = MEMFILE_TYPE(cft->private);
4022 name = MEMFILE_ATTR(cft->private);
4023 switch (type) {
4024 case _MEM:
4025 if (name == RES_USAGE)
4026 val = mem_cgroup_usage(mem, false);
4027 else
4028 val = res_counter_read_u64(&mem->res, name);
4029 break;
4030 case _MEMSWAP:
4031 if (name == RES_USAGE)
4032 val = mem_cgroup_usage(mem, true);
4033 else
4034 val = res_counter_read_u64(&mem->memsw, name);
4035 break;
4036 default:
4037 BUG();
4038 break;
4040 return val;
4043 * The user of this function is...
4044 * RES_LIMIT.
4046 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4047 const char *buffer)
4049 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4050 int type, name;
4051 unsigned long long val;
4052 int ret;
4054 type = MEMFILE_TYPE(cft->private);
4055 name = MEMFILE_ATTR(cft->private);
4056 switch (name) {
4057 case RES_LIMIT:
4058 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4059 ret = -EINVAL;
4060 break;
4062 /* This function does all necessary parse...reuse it */
4063 ret = res_counter_memparse_write_strategy(buffer, &val);
4064 if (ret)
4065 break;
4066 if (type == _MEM)
4067 ret = mem_cgroup_resize_limit(memcg, val);
4068 else
4069 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4070 break;
4071 case RES_SOFT_LIMIT:
4072 ret = res_counter_memparse_write_strategy(buffer, &val);
4073 if (ret)
4074 break;
4076 * For memsw, soft limits are hard to implement in terms
4077 * of semantics, for now, we support soft limits for
4078 * control without swap
4080 if (type == _MEM)
4081 ret = res_counter_set_soft_limit(&memcg->res, val);
4082 else
4083 ret = -EINVAL;
4084 break;
4085 default:
4086 ret = -EINVAL; /* should be BUG() ? */
4087 break;
4089 return ret;
4092 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4093 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4095 struct cgroup *cgroup;
4096 unsigned long long min_limit, min_memsw_limit, tmp;
4098 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4099 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4100 cgroup = memcg->css.cgroup;
4101 if (!memcg->use_hierarchy)
4102 goto out;
4104 while (cgroup->parent) {
4105 cgroup = cgroup->parent;
4106 memcg = mem_cgroup_from_cont(cgroup);
4107 if (!memcg->use_hierarchy)
4108 break;
4109 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4110 min_limit = min(min_limit, tmp);
4111 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4112 min_memsw_limit = min(min_memsw_limit, tmp);
4114 out:
4115 *mem_limit = min_limit;
4116 *memsw_limit = min_memsw_limit;
4117 return;
4120 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4122 struct mem_cgroup *mem;
4123 int type, name;
4125 mem = mem_cgroup_from_cont(cont);
4126 type = MEMFILE_TYPE(event);
4127 name = MEMFILE_ATTR(event);
4128 switch (name) {
4129 case RES_MAX_USAGE:
4130 if (type == _MEM)
4131 res_counter_reset_max(&mem->res);
4132 else
4133 res_counter_reset_max(&mem->memsw);
4134 break;
4135 case RES_FAILCNT:
4136 if (type == _MEM)
4137 res_counter_reset_failcnt(&mem->res);
4138 else
4139 res_counter_reset_failcnt(&mem->memsw);
4140 break;
4143 return 0;
4146 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4147 struct cftype *cft)
4149 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4152 #ifdef CONFIG_MMU
4153 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4154 struct cftype *cft, u64 val)
4156 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4158 if (val >= (1 << NR_MOVE_TYPE))
4159 return -EINVAL;
4161 * We check this value several times in both in can_attach() and
4162 * attach(), so we need cgroup lock to prevent this value from being
4163 * inconsistent.
4165 cgroup_lock();
4166 mem->move_charge_at_immigrate = val;
4167 cgroup_unlock();
4169 return 0;
4171 #else
4172 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4173 struct cftype *cft, u64 val)
4175 return -ENOSYS;
4177 #endif
4180 /* For read statistics */
4181 enum {
4182 MCS_CACHE,
4183 MCS_RSS,
4184 MCS_FILE_MAPPED,
4185 MCS_PGPGIN,
4186 MCS_PGPGOUT,
4187 MCS_SWAP,
4188 MCS_PGFAULT,
4189 MCS_PGMAJFAULT,
4190 MCS_INACTIVE_ANON,
4191 MCS_ACTIVE_ANON,
4192 MCS_INACTIVE_FILE,
4193 MCS_ACTIVE_FILE,
4194 MCS_UNEVICTABLE,
4195 NR_MCS_STAT,
4198 struct mcs_total_stat {
4199 s64 stat[NR_MCS_STAT];
4202 struct {
4203 char *local_name;
4204 char *total_name;
4205 } memcg_stat_strings[NR_MCS_STAT] = {
4206 {"cache", "total_cache"},
4207 {"rss", "total_rss"},
4208 {"mapped_file", "total_mapped_file"},
4209 {"pgpgin", "total_pgpgin"},
4210 {"pgpgout", "total_pgpgout"},
4211 {"swap", "total_swap"},
4212 {"pgfault", "total_pgfault"},
4213 {"pgmajfault", "total_pgmajfault"},
4214 {"inactive_anon", "total_inactive_anon"},
4215 {"active_anon", "total_active_anon"},
4216 {"inactive_file", "total_inactive_file"},
4217 {"active_file", "total_active_file"},
4218 {"unevictable", "total_unevictable"}
4222 static void
4223 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4225 s64 val;
4227 /* per cpu stat */
4228 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4229 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4230 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4231 s->stat[MCS_RSS] += val * PAGE_SIZE;
4232 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4233 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4234 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4235 s->stat[MCS_PGPGIN] += val;
4236 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4237 s->stat[MCS_PGPGOUT] += val;
4238 if (do_swap_account) {
4239 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4240 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4242 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4243 s->stat[MCS_PGFAULT] += val;
4244 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4245 s->stat[MCS_PGMAJFAULT] += val;
4247 /* per zone stat */
4248 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4249 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4250 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4251 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4252 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4253 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4254 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4255 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4256 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4257 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4260 static void
4261 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4263 struct mem_cgroup *iter;
4265 for_each_mem_cgroup_tree(iter, mem)
4266 mem_cgroup_get_local_stat(iter, s);
4269 #ifdef CONFIG_NUMA
4270 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4272 int nid;
4273 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4274 unsigned long node_nr;
4275 struct cgroup *cont = m->private;
4276 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4278 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4279 seq_printf(m, "total=%lu", total_nr);
4280 for_each_node_state(nid, N_HIGH_MEMORY) {
4281 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4282 seq_printf(m, " N%d=%lu", nid, node_nr);
4284 seq_putc(m, '\n');
4286 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4287 seq_printf(m, "file=%lu", file_nr);
4288 for_each_node_state(nid, N_HIGH_MEMORY) {
4289 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4290 LRU_ALL_FILE);
4291 seq_printf(m, " N%d=%lu", nid, node_nr);
4293 seq_putc(m, '\n');
4295 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4296 seq_printf(m, "anon=%lu", anon_nr);
4297 for_each_node_state(nid, N_HIGH_MEMORY) {
4298 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4299 LRU_ALL_ANON);
4300 seq_printf(m, " N%d=%lu", nid, node_nr);
4302 seq_putc(m, '\n');
4304 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4305 seq_printf(m, "unevictable=%lu", unevictable_nr);
4306 for_each_node_state(nid, N_HIGH_MEMORY) {
4307 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4308 BIT(LRU_UNEVICTABLE));
4309 seq_printf(m, " N%d=%lu", nid, node_nr);
4311 seq_putc(m, '\n');
4312 return 0;
4314 #endif /* CONFIG_NUMA */
4316 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4317 struct cgroup_map_cb *cb)
4319 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4320 struct mcs_total_stat mystat;
4321 int i;
4323 memset(&mystat, 0, sizeof(mystat));
4324 mem_cgroup_get_local_stat(mem_cont, &mystat);
4327 for (i = 0; i < NR_MCS_STAT; i++) {
4328 if (i == MCS_SWAP && !do_swap_account)
4329 continue;
4330 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4333 /* Hierarchical information */
4335 unsigned long long limit, memsw_limit;
4336 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4337 cb->fill(cb, "hierarchical_memory_limit", limit);
4338 if (do_swap_account)
4339 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4342 memset(&mystat, 0, sizeof(mystat));
4343 mem_cgroup_get_total_stat(mem_cont, &mystat);
4344 for (i = 0; i < NR_MCS_STAT; i++) {
4345 if (i == MCS_SWAP && !do_swap_account)
4346 continue;
4347 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4350 #ifdef CONFIG_DEBUG_VM
4351 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4354 int nid, zid;
4355 struct mem_cgroup_per_zone *mz;
4356 unsigned long recent_rotated[2] = {0, 0};
4357 unsigned long recent_scanned[2] = {0, 0};
4359 for_each_online_node(nid)
4360 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4361 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4363 recent_rotated[0] +=
4364 mz->reclaim_stat.recent_rotated[0];
4365 recent_rotated[1] +=
4366 mz->reclaim_stat.recent_rotated[1];
4367 recent_scanned[0] +=
4368 mz->reclaim_stat.recent_scanned[0];
4369 recent_scanned[1] +=
4370 mz->reclaim_stat.recent_scanned[1];
4372 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4373 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4374 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4375 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4377 #endif
4379 return 0;
4382 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4384 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4386 return mem_cgroup_swappiness(memcg);
4389 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4390 u64 val)
4392 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4393 struct mem_cgroup *parent;
4395 if (val > 100)
4396 return -EINVAL;
4398 if (cgrp->parent == NULL)
4399 return -EINVAL;
4401 parent = mem_cgroup_from_cont(cgrp->parent);
4403 cgroup_lock();
4405 /* If under hierarchy, only empty-root can set this value */
4406 if ((parent->use_hierarchy) ||
4407 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4408 cgroup_unlock();
4409 return -EINVAL;
4412 memcg->swappiness = val;
4414 cgroup_unlock();
4416 return 0;
4419 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4421 struct mem_cgroup_threshold_ary *t;
4422 u64 usage;
4423 int i;
4425 rcu_read_lock();
4426 if (!swap)
4427 t = rcu_dereference(memcg->thresholds.primary);
4428 else
4429 t = rcu_dereference(memcg->memsw_thresholds.primary);
4431 if (!t)
4432 goto unlock;
4434 usage = mem_cgroup_usage(memcg, swap);
4437 * current_threshold points to threshold just below usage.
4438 * If it's not true, a threshold was crossed after last
4439 * call of __mem_cgroup_threshold().
4441 i = t->current_threshold;
4444 * Iterate backward over array of thresholds starting from
4445 * current_threshold and check if a threshold is crossed.
4446 * If none of thresholds below usage is crossed, we read
4447 * only one element of the array here.
4449 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4450 eventfd_signal(t->entries[i].eventfd, 1);
4452 /* i = current_threshold + 1 */
4453 i++;
4456 * Iterate forward over array of thresholds starting from
4457 * current_threshold+1 and check if a threshold is crossed.
4458 * If none of thresholds above usage is crossed, we read
4459 * only one element of the array here.
4461 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4462 eventfd_signal(t->entries[i].eventfd, 1);
4464 /* Update current_threshold */
4465 t->current_threshold = i - 1;
4466 unlock:
4467 rcu_read_unlock();
4470 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4472 while (memcg) {
4473 __mem_cgroup_threshold(memcg, false);
4474 if (do_swap_account)
4475 __mem_cgroup_threshold(memcg, true);
4477 memcg = parent_mem_cgroup(memcg);
4481 static int compare_thresholds(const void *a, const void *b)
4483 const struct mem_cgroup_threshold *_a = a;
4484 const struct mem_cgroup_threshold *_b = b;
4486 return _a->threshold - _b->threshold;
4489 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4491 struct mem_cgroup_eventfd_list *ev;
4493 list_for_each_entry(ev, &mem->oom_notify, list)
4494 eventfd_signal(ev->eventfd, 1);
4495 return 0;
4498 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4500 struct mem_cgroup *iter;
4502 for_each_mem_cgroup_tree(iter, mem)
4503 mem_cgroup_oom_notify_cb(iter);
4506 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4507 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4509 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4510 struct mem_cgroup_thresholds *thresholds;
4511 struct mem_cgroup_threshold_ary *new;
4512 int type = MEMFILE_TYPE(cft->private);
4513 u64 threshold, usage;
4514 int i, size, ret;
4516 ret = res_counter_memparse_write_strategy(args, &threshold);
4517 if (ret)
4518 return ret;
4520 mutex_lock(&memcg->thresholds_lock);
4522 if (type == _MEM)
4523 thresholds = &memcg->thresholds;
4524 else if (type == _MEMSWAP)
4525 thresholds = &memcg->memsw_thresholds;
4526 else
4527 BUG();
4529 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4531 /* Check if a threshold crossed before adding a new one */
4532 if (thresholds->primary)
4533 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4535 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4537 /* Allocate memory for new array of thresholds */
4538 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4539 GFP_KERNEL);
4540 if (!new) {
4541 ret = -ENOMEM;
4542 goto unlock;
4544 new->size = size;
4546 /* Copy thresholds (if any) to new array */
4547 if (thresholds->primary) {
4548 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4549 sizeof(struct mem_cgroup_threshold));
4552 /* Add new threshold */
4553 new->entries[size - 1].eventfd = eventfd;
4554 new->entries[size - 1].threshold = threshold;
4556 /* Sort thresholds. Registering of new threshold isn't time-critical */
4557 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4558 compare_thresholds, NULL);
4560 /* Find current threshold */
4561 new->current_threshold = -1;
4562 for (i = 0; i < size; i++) {
4563 if (new->entries[i].threshold < usage) {
4565 * new->current_threshold will not be used until
4566 * rcu_assign_pointer(), so it's safe to increment
4567 * it here.
4569 ++new->current_threshold;
4573 /* Free old spare buffer and save old primary buffer as spare */
4574 kfree(thresholds->spare);
4575 thresholds->spare = thresholds->primary;
4577 rcu_assign_pointer(thresholds->primary, new);
4579 /* To be sure that nobody uses thresholds */
4580 synchronize_rcu();
4582 unlock:
4583 mutex_unlock(&memcg->thresholds_lock);
4585 return ret;
4588 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4589 struct cftype *cft, struct eventfd_ctx *eventfd)
4591 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4592 struct mem_cgroup_thresholds *thresholds;
4593 struct mem_cgroup_threshold_ary *new;
4594 int type = MEMFILE_TYPE(cft->private);
4595 u64 usage;
4596 int i, j, size;
4598 mutex_lock(&memcg->thresholds_lock);
4599 if (type == _MEM)
4600 thresholds = &memcg->thresholds;
4601 else if (type == _MEMSWAP)
4602 thresholds = &memcg->memsw_thresholds;
4603 else
4604 BUG();
4607 * Something went wrong if we trying to unregister a threshold
4608 * if we don't have thresholds
4610 BUG_ON(!thresholds);
4612 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4614 /* Check if a threshold crossed before removing */
4615 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4617 /* Calculate new number of threshold */
4618 size = 0;
4619 for (i = 0; i < thresholds->primary->size; i++) {
4620 if (thresholds->primary->entries[i].eventfd != eventfd)
4621 size++;
4624 new = thresholds->spare;
4626 /* Set thresholds array to NULL if we don't have thresholds */
4627 if (!size) {
4628 kfree(new);
4629 new = NULL;
4630 goto swap_buffers;
4633 new->size = size;
4635 /* Copy thresholds and find current threshold */
4636 new->current_threshold = -1;
4637 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4638 if (thresholds->primary->entries[i].eventfd == eventfd)
4639 continue;
4641 new->entries[j] = thresholds->primary->entries[i];
4642 if (new->entries[j].threshold < usage) {
4644 * new->current_threshold will not be used
4645 * until rcu_assign_pointer(), so it's safe to increment
4646 * it here.
4648 ++new->current_threshold;
4650 j++;
4653 swap_buffers:
4654 /* Swap primary and spare array */
4655 thresholds->spare = thresholds->primary;
4656 rcu_assign_pointer(thresholds->primary, new);
4658 /* To be sure that nobody uses thresholds */
4659 synchronize_rcu();
4661 mutex_unlock(&memcg->thresholds_lock);
4664 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4665 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4667 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4668 struct mem_cgroup_eventfd_list *event;
4669 int type = MEMFILE_TYPE(cft->private);
4671 BUG_ON(type != _OOM_TYPE);
4672 event = kmalloc(sizeof(*event), GFP_KERNEL);
4673 if (!event)
4674 return -ENOMEM;
4676 spin_lock(&memcg_oom_lock);
4678 event->eventfd = eventfd;
4679 list_add(&event->list, &memcg->oom_notify);
4681 /* already in OOM ? */
4682 if (atomic_read(&memcg->under_oom))
4683 eventfd_signal(eventfd, 1);
4684 spin_unlock(&memcg_oom_lock);
4686 return 0;
4689 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4690 struct cftype *cft, struct eventfd_ctx *eventfd)
4692 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4693 struct mem_cgroup_eventfd_list *ev, *tmp;
4694 int type = MEMFILE_TYPE(cft->private);
4696 BUG_ON(type != _OOM_TYPE);
4698 spin_lock(&memcg_oom_lock);
4700 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4701 if (ev->eventfd == eventfd) {
4702 list_del(&ev->list);
4703 kfree(ev);
4707 spin_unlock(&memcg_oom_lock);
4710 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4711 struct cftype *cft, struct cgroup_map_cb *cb)
4713 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4715 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4717 if (atomic_read(&mem->under_oom))
4718 cb->fill(cb, "under_oom", 1);
4719 else
4720 cb->fill(cb, "under_oom", 0);
4721 return 0;
4724 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4725 struct cftype *cft, u64 val)
4727 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4728 struct mem_cgroup *parent;
4730 /* cannot set to root cgroup and only 0 and 1 are allowed */
4731 if (!cgrp->parent || !((val == 0) || (val == 1)))
4732 return -EINVAL;
4734 parent = mem_cgroup_from_cont(cgrp->parent);
4736 cgroup_lock();
4737 /* oom-kill-disable is a flag for subhierarchy. */
4738 if ((parent->use_hierarchy) ||
4739 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4740 cgroup_unlock();
4741 return -EINVAL;
4743 mem->oom_kill_disable = val;
4744 if (!val)
4745 memcg_oom_recover(mem);
4746 cgroup_unlock();
4747 return 0;
4750 #ifdef CONFIG_NUMA
4751 static const struct file_operations mem_control_numa_stat_file_operations = {
4752 .read = seq_read,
4753 .llseek = seq_lseek,
4754 .release = single_release,
4757 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4759 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4761 file->f_op = &mem_control_numa_stat_file_operations;
4762 return single_open(file, mem_control_numa_stat_show, cont);
4764 #endif /* CONFIG_NUMA */
4766 static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4767 struct cftype *cft,
4768 struct cgroup_map_cb *cb)
4770 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4771 char string[64];
4772 int i;
4774 for (i = 0; i < NR_SCANSTATS; i++) {
4775 strcpy(string, scanstat_string[i]);
4776 strcat(string, SCANSTAT_WORD_LIMIT);
4777 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4780 for (i = 0; i < NR_SCANSTATS; i++) {
4781 strcpy(string, scanstat_string[i]);
4782 strcat(string, SCANSTAT_WORD_SYSTEM);
4783 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4786 for (i = 0; i < NR_SCANSTATS; i++) {
4787 strcpy(string, scanstat_string[i]);
4788 strcat(string, SCANSTAT_WORD_LIMIT);
4789 strcat(string, SCANSTAT_WORD_HIERARCHY);
4790 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4792 for (i = 0; i < NR_SCANSTATS; i++) {
4793 strcpy(string, scanstat_string[i]);
4794 strcat(string, SCANSTAT_WORD_SYSTEM);
4795 strcat(string, SCANSTAT_WORD_HIERARCHY);
4796 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4798 return 0;
4801 static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4802 unsigned int event)
4804 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4806 spin_lock(&mem->scanstat.lock);
4807 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4808 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4809 spin_unlock(&mem->scanstat.lock);
4810 return 0;
4814 static struct cftype mem_cgroup_files[] = {
4816 .name = "usage_in_bytes",
4817 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4818 .read_u64 = mem_cgroup_read,
4819 .register_event = mem_cgroup_usage_register_event,
4820 .unregister_event = mem_cgroup_usage_unregister_event,
4823 .name = "max_usage_in_bytes",
4824 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4825 .trigger = mem_cgroup_reset,
4826 .read_u64 = mem_cgroup_read,
4829 .name = "limit_in_bytes",
4830 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4831 .write_string = mem_cgroup_write,
4832 .read_u64 = mem_cgroup_read,
4835 .name = "soft_limit_in_bytes",
4836 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4837 .write_string = mem_cgroup_write,
4838 .read_u64 = mem_cgroup_read,
4841 .name = "failcnt",
4842 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4843 .trigger = mem_cgroup_reset,
4844 .read_u64 = mem_cgroup_read,
4847 .name = "stat",
4848 .read_map = mem_control_stat_show,
4851 .name = "force_empty",
4852 .trigger = mem_cgroup_force_empty_write,
4855 .name = "use_hierarchy",
4856 .write_u64 = mem_cgroup_hierarchy_write,
4857 .read_u64 = mem_cgroup_hierarchy_read,
4860 .name = "swappiness",
4861 .read_u64 = mem_cgroup_swappiness_read,
4862 .write_u64 = mem_cgroup_swappiness_write,
4865 .name = "move_charge_at_immigrate",
4866 .read_u64 = mem_cgroup_move_charge_read,
4867 .write_u64 = mem_cgroup_move_charge_write,
4870 .name = "oom_control",
4871 .read_map = mem_cgroup_oom_control_read,
4872 .write_u64 = mem_cgroup_oom_control_write,
4873 .register_event = mem_cgroup_oom_register_event,
4874 .unregister_event = mem_cgroup_oom_unregister_event,
4875 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4877 #ifdef CONFIG_NUMA
4879 .name = "numa_stat",
4880 .open = mem_control_numa_stat_open,
4881 .mode = S_IRUGO,
4883 #endif
4885 .name = "vmscan_stat",
4886 .read_map = mem_cgroup_vmscan_stat_read,
4887 .trigger = mem_cgroup_reset_vmscan_stat,
4891 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4892 static struct cftype memsw_cgroup_files[] = {
4894 .name = "memsw.usage_in_bytes",
4895 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4896 .read_u64 = mem_cgroup_read,
4897 .register_event = mem_cgroup_usage_register_event,
4898 .unregister_event = mem_cgroup_usage_unregister_event,
4901 .name = "memsw.max_usage_in_bytes",
4902 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4903 .trigger = mem_cgroup_reset,
4904 .read_u64 = mem_cgroup_read,
4907 .name = "memsw.limit_in_bytes",
4908 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4909 .write_string = mem_cgroup_write,
4910 .read_u64 = mem_cgroup_read,
4913 .name = "memsw.failcnt",
4914 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4915 .trigger = mem_cgroup_reset,
4916 .read_u64 = mem_cgroup_read,
4920 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4922 if (!do_swap_account)
4923 return 0;
4924 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4925 ARRAY_SIZE(memsw_cgroup_files));
4927 #else
4928 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4930 return 0;
4932 #endif
4934 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4936 struct mem_cgroup_per_node *pn;
4937 struct mem_cgroup_per_zone *mz;
4938 enum lru_list l;
4939 int zone, tmp = node;
4941 * This routine is called against possible nodes.
4942 * But it's BUG to call kmalloc() against offline node.
4944 * TODO: this routine can waste much memory for nodes which will
4945 * never be onlined. It's better to use memory hotplug callback
4946 * function.
4948 if (!node_state(node, N_NORMAL_MEMORY))
4949 tmp = -1;
4950 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4951 if (!pn)
4952 return 1;
4954 mem->info.nodeinfo[node] = pn;
4955 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4956 mz = &pn->zoneinfo[zone];
4957 for_each_lru(l)
4958 INIT_LIST_HEAD(&mz->lists[l]);
4959 mz->usage_in_excess = 0;
4960 mz->on_tree = false;
4961 mz->mem = mem;
4963 return 0;
4966 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4968 kfree(mem->info.nodeinfo[node]);
4971 static struct mem_cgroup *mem_cgroup_alloc(void)
4973 struct mem_cgroup *mem;
4974 int size = sizeof(struct mem_cgroup);
4976 /* Can be very big if MAX_NUMNODES is very big */
4977 if (size < PAGE_SIZE)
4978 mem = kzalloc(size, GFP_KERNEL);
4979 else
4980 mem = vzalloc(size);
4982 if (!mem)
4983 return NULL;
4985 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4986 if (!mem->stat)
4987 goto out_free;
4988 spin_lock_init(&mem->pcp_counter_lock);
4989 return mem;
4991 out_free:
4992 if (size < PAGE_SIZE)
4993 kfree(mem);
4994 else
4995 vfree(mem);
4996 return NULL;
5000 * At destroying mem_cgroup, references from swap_cgroup can remain.
5001 * (scanning all at force_empty is too costly...)
5003 * Instead of clearing all references at force_empty, we remember
5004 * the number of reference from swap_cgroup and free mem_cgroup when
5005 * it goes down to 0.
5007 * Removal of cgroup itself succeeds regardless of refs from swap.
5010 static void __mem_cgroup_free(struct mem_cgroup *mem)
5012 int node;
5014 mem_cgroup_remove_from_trees(mem);
5015 free_css_id(&mem_cgroup_subsys, &mem->css);
5017 for_each_node_state(node, N_POSSIBLE)
5018 free_mem_cgroup_per_zone_info(mem, node);
5020 free_percpu(mem->stat);
5021 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
5022 kfree(mem);
5023 else
5024 vfree(mem);
5027 static void mem_cgroup_get(struct mem_cgroup *mem)
5029 atomic_inc(&mem->refcnt);
5032 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
5034 if (atomic_sub_and_test(count, &mem->refcnt)) {
5035 struct mem_cgroup *parent = parent_mem_cgroup(mem);
5036 __mem_cgroup_free(mem);
5037 if (parent)
5038 mem_cgroup_put(parent);
5042 static void mem_cgroup_put(struct mem_cgroup *mem)
5044 __mem_cgroup_put(mem, 1);
5048 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5050 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5052 if (!mem->res.parent)
5053 return NULL;
5054 return mem_cgroup_from_res_counter(mem->res.parent, res);
5057 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5058 static void __init enable_swap_cgroup(void)
5060 if (!mem_cgroup_disabled() && really_do_swap_account)
5061 do_swap_account = 1;
5063 #else
5064 static void __init enable_swap_cgroup(void)
5067 #endif
5069 static int mem_cgroup_soft_limit_tree_init(void)
5071 struct mem_cgroup_tree_per_node *rtpn;
5072 struct mem_cgroup_tree_per_zone *rtpz;
5073 int tmp, node, zone;
5075 for_each_node_state(node, N_POSSIBLE) {
5076 tmp = node;
5077 if (!node_state(node, N_NORMAL_MEMORY))
5078 tmp = -1;
5079 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5080 if (!rtpn)
5081 return 1;
5083 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5085 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5086 rtpz = &rtpn->rb_tree_per_zone[zone];
5087 rtpz->rb_root = RB_ROOT;
5088 spin_lock_init(&rtpz->lock);
5091 return 0;
5094 static struct cgroup_subsys_state * __ref
5095 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5097 struct mem_cgroup *mem, *parent;
5098 long error = -ENOMEM;
5099 int node;
5101 mem = mem_cgroup_alloc();
5102 if (!mem)
5103 return ERR_PTR(error);
5105 for_each_node_state(node, N_POSSIBLE)
5106 if (alloc_mem_cgroup_per_zone_info(mem, node))
5107 goto free_out;
5109 /* root ? */
5110 if (cont->parent == NULL) {
5111 int cpu;
5112 enable_swap_cgroup();
5113 parent = NULL;
5114 root_mem_cgroup = mem;
5115 if (mem_cgroup_soft_limit_tree_init())
5116 goto free_out;
5117 for_each_possible_cpu(cpu) {
5118 struct memcg_stock_pcp *stock =
5119 &per_cpu(memcg_stock, cpu);
5120 INIT_WORK(&stock->work, drain_local_stock);
5122 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5123 } else {
5124 parent = mem_cgroup_from_cont(cont->parent);
5125 mem->use_hierarchy = parent->use_hierarchy;
5126 mem->oom_kill_disable = parent->oom_kill_disable;
5129 if (parent && parent->use_hierarchy) {
5130 res_counter_init(&mem->res, &parent->res);
5131 res_counter_init(&mem->memsw, &parent->memsw);
5133 * We increment refcnt of the parent to ensure that we can
5134 * safely access it on res_counter_charge/uncharge.
5135 * This refcnt will be decremented when freeing this
5136 * mem_cgroup(see mem_cgroup_put).
5138 mem_cgroup_get(parent);
5139 } else {
5140 res_counter_init(&mem->res, NULL);
5141 res_counter_init(&mem->memsw, NULL);
5143 mem->last_scanned_child = 0;
5144 mem->last_scanned_node = MAX_NUMNODES;
5145 INIT_LIST_HEAD(&mem->oom_notify);
5147 if (parent)
5148 mem->swappiness = mem_cgroup_swappiness(parent);
5149 atomic_set(&mem->refcnt, 1);
5150 mem->move_charge_at_immigrate = 0;
5151 mutex_init(&mem->thresholds_lock);
5152 spin_lock_init(&mem->scanstat.lock);
5153 return &mem->css;
5154 free_out:
5155 __mem_cgroup_free(mem);
5156 root_mem_cgroup = NULL;
5157 return ERR_PTR(error);
5160 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5161 struct cgroup *cont)
5163 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5165 return mem_cgroup_force_empty(mem, false);
5168 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5169 struct cgroup *cont)
5171 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5173 mem_cgroup_put(mem);
5176 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5177 struct cgroup *cont)
5179 int ret;
5181 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5182 ARRAY_SIZE(mem_cgroup_files));
5184 if (!ret)
5185 ret = register_memsw_files(cont, ss);
5186 return ret;
5189 #ifdef CONFIG_MMU
5190 /* Handlers for move charge at task migration. */
5191 #define PRECHARGE_COUNT_AT_ONCE 256
5192 static int mem_cgroup_do_precharge(unsigned long count)
5194 int ret = 0;
5195 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5196 struct mem_cgroup *mem = mc.to;
5198 if (mem_cgroup_is_root(mem)) {
5199 mc.precharge += count;
5200 /* we don't need css_get for root */
5201 return ret;
5203 /* try to charge at once */
5204 if (count > 1) {
5205 struct res_counter *dummy;
5207 * "mem" cannot be under rmdir() because we've already checked
5208 * by cgroup_lock_live_cgroup() that it is not removed and we
5209 * are still under the same cgroup_mutex. So we can postpone
5210 * css_get().
5212 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5213 goto one_by_one;
5214 if (do_swap_account && res_counter_charge(&mem->memsw,
5215 PAGE_SIZE * count, &dummy)) {
5216 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5217 goto one_by_one;
5219 mc.precharge += count;
5220 return ret;
5222 one_by_one:
5223 /* fall back to one by one charge */
5224 while (count--) {
5225 if (signal_pending(current)) {
5226 ret = -EINTR;
5227 break;
5229 if (!batch_count--) {
5230 batch_count = PRECHARGE_COUNT_AT_ONCE;
5231 cond_resched();
5233 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5234 if (ret || !mem)
5235 /* mem_cgroup_clear_mc() will do uncharge later */
5236 return -ENOMEM;
5237 mc.precharge++;
5239 return ret;
5243 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5244 * @vma: the vma the pte to be checked belongs
5245 * @addr: the address corresponding to the pte to be checked
5246 * @ptent: the pte to be checked
5247 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5249 * Returns
5250 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5251 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5252 * move charge. if @target is not NULL, the page is stored in target->page
5253 * with extra refcnt got(Callers should handle it).
5254 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5255 * target for charge migration. if @target is not NULL, the entry is stored
5256 * in target->ent.
5258 * Called with pte lock held.
5260 union mc_target {
5261 struct page *page;
5262 swp_entry_t ent;
5265 enum mc_target_type {
5266 MC_TARGET_NONE, /* not used */
5267 MC_TARGET_PAGE,
5268 MC_TARGET_SWAP,
5271 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5272 unsigned long addr, pte_t ptent)
5274 struct page *page = vm_normal_page(vma, addr, ptent);
5276 if (!page || !page_mapped(page))
5277 return NULL;
5278 if (PageAnon(page)) {
5279 /* we don't move shared anon */
5280 if (!move_anon() || page_mapcount(page) > 2)
5281 return NULL;
5282 } else if (!move_file())
5283 /* we ignore mapcount for file pages */
5284 return NULL;
5285 if (!get_page_unless_zero(page))
5286 return NULL;
5288 return page;
5291 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5292 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5294 int usage_count;
5295 struct page *page = NULL;
5296 swp_entry_t ent = pte_to_swp_entry(ptent);
5298 if (!move_anon() || non_swap_entry(ent))
5299 return NULL;
5300 usage_count = mem_cgroup_count_swap_user(ent, &page);
5301 if (usage_count > 1) { /* we don't move shared anon */
5302 if (page)
5303 put_page(page);
5304 return NULL;
5306 if (do_swap_account)
5307 entry->val = ent.val;
5309 return page;
5312 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5313 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5315 struct page *page = NULL;
5316 struct inode *inode;
5317 struct address_space *mapping;
5318 pgoff_t pgoff;
5320 if (!vma->vm_file) /* anonymous vma */
5321 return NULL;
5322 if (!move_file())
5323 return NULL;
5325 inode = vma->vm_file->f_path.dentry->d_inode;
5326 mapping = vma->vm_file->f_mapping;
5327 if (pte_none(ptent))
5328 pgoff = linear_page_index(vma, addr);
5329 else /* pte_file(ptent) is true */
5330 pgoff = pte_to_pgoff(ptent);
5332 /* page is moved even if it's not RSS of this task(page-faulted). */
5333 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5334 page = find_get_page(mapping, pgoff);
5335 } else { /* shmem/tmpfs file. we should take account of swap too. */
5336 swp_entry_t ent;
5337 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5338 if (do_swap_account)
5339 entry->val = ent.val;
5342 return page;
5345 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5346 unsigned long addr, pte_t ptent, union mc_target *target)
5348 struct page *page = NULL;
5349 struct page_cgroup *pc;
5350 int ret = 0;
5351 swp_entry_t ent = { .val = 0 };
5353 if (pte_present(ptent))
5354 page = mc_handle_present_pte(vma, addr, ptent);
5355 else if (is_swap_pte(ptent))
5356 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5357 else if (pte_none(ptent) || pte_file(ptent))
5358 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5360 if (!page && !ent.val)
5361 return 0;
5362 if (page) {
5363 pc = lookup_page_cgroup(page);
5365 * Do only loose check w/o page_cgroup lock.
5366 * mem_cgroup_move_account() checks the pc is valid or not under
5367 * the lock.
5369 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5370 ret = MC_TARGET_PAGE;
5371 if (target)
5372 target->page = page;
5374 if (!ret || !target)
5375 put_page(page);
5377 /* There is a swap entry and a page doesn't exist or isn't charged */
5378 if (ent.val && !ret &&
5379 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5380 ret = MC_TARGET_SWAP;
5381 if (target)
5382 target->ent = ent;
5384 return ret;
5387 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5388 unsigned long addr, unsigned long end,
5389 struct mm_walk *walk)
5391 struct vm_area_struct *vma = walk->private;
5392 pte_t *pte;
5393 spinlock_t *ptl;
5395 split_huge_page_pmd(walk->mm, pmd);
5397 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5398 for (; addr != end; pte++, addr += PAGE_SIZE)
5399 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5400 mc.precharge++; /* increment precharge temporarily */
5401 pte_unmap_unlock(pte - 1, ptl);
5402 cond_resched();
5404 return 0;
5407 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5409 unsigned long precharge;
5410 struct vm_area_struct *vma;
5412 down_read(&mm->mmap_sem);
5413 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5414 struct mm_walk mem_cgroup_count_precharge_walk = {
5415 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5416 .mm = mm,
5417 .private = vma,
5419 if (is_vm_hugetlb_page(vma))
5420 continue;
5421 walk_page_range(vma->vm_start, vma->vm_end,
5422 &mem_cgroup_count_precharge_walk);
5424 up_read(&mm->mmap_sem);
5426 precharge = mc.precharge;
5427 mc.precharge = 0;
5429 return precharge;
5432 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5434 unsigned long precharge = mem_cgroup_count_precharge(mm);
5436 VM_BUG_ON(mc.moving_task);
5437 mc.moving_task = current;
5438 return mem_cgroup_do_precharge(precharge);
5441 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5442 static void __mem_cgroup_clear_mc(void)
5444 struct mem_cgroup *from = mc.from;
5445 struct mem_cgroup *to = mc.to;
5447 /* we must uncharge all the leftover precharges from mc.to */
5448 if (mc.precharge) {
5449 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5450 mc.precharge = 0;
5453 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5454 * we must uncharge here.
5456 if (mc.moved_charge) {
5457 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5458 mc.moved_charge = 0;
5460 /* we must fixup refcnts and charges */
5461 if (mc.moved_swap) {
5462 /* uncharge swap account from the old cgroup */
5463 if (!mem_cgroup_is_root(mc.from))
5464 res_counter_uncharge(&mc.from->memsw,
5465 PAGE_SIZE * mc.moved_swap);
5466 __mem_cgroup_put(mc.from, mc.moved_swap);
5468 if (!mem_cgroup_is_root(mc.to)) {
5470 * we charged both to->res and to->memsw, so we should
5471 * uncharge to->res.
5473 res_counter_uncharge(&mc.to->res,
5474 PAGE_SIZE * mc.moved_swap);
5476 /* we've already done mem_cgroup_get(mc.to) */
5477 mc.moved_swap = 0;
5479 memcg_oom_recover(from);
5480 memcg_oom_recover(to);
5481 wake_up_all(&mc.waitq);
5484 static void mem_cgroup_clear_mc(void)
5486 struct mem_cgroup *from = mc.from;
5489 * we must clear moving_task before waking up waiters at the end of
5490 * task migration.
5492 mc.moving_task = NULL;
5493 __mem_cgroup_clear_mc();
5494 spin_lock(&mc.lock);
5495 mc.from = NULL;
5496 mc.to = NULL;
5497 spin_unlock(&mc.lock);
5498 mem_cgroup_end_move(from);
5501 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5502 struct cgroup *cgroup,
5503 struct task_struct *p)
5505 int ret = 0;
5506 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5508 if (mem->move_charge_at_immigrate) {
5509 struct mm_struct *mm;
5510 struct mem_cgroup *from = mem_cgroup_from_task(p);
5512 VM_BUG_ON(from == mem);
5514 mm = get_task_mm(p);
5515 if (!mm)
5516 return 0;
5517 /* We move charges only when we move a owner of the mm */
5518 if (mm->owner == p) {
5519 VM_BUG_ON(mc.from);
5520 VM_BUG_ON(mc.to);
5521 VM_BUG_ON(mc.precharge);
5522 VM_BUG_ON(mc.moved_charge);
5523 VM_BUG_ON(mc.moved_swap);
5524 mem_cgroup_start_move(from);
5525 spin_lock(&mc.lock);
5526 mc.from = from;
5527 mc.to = mem;
5528 spin_unlock(&mc.lock);
5529 /* We set mc.moving_task later */
5531 ret = mem_cgroup_precharge_mc(mm);
5532 if (ret)
5533 mem_cgroup_clear_mc();
5535 mmput(mm);
5537 return ret;
5540 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5541 struct cgroup *cgroup,
5542 struct task_struct *p)
5544 mem_cgroup_clear_mc();
5547 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5548 unsigned long addr, unsigned long end,
5549 struct mm_walk *walk)
5551 int ret = 0;
5552 struct vm_area_struct *vma = walk->private;
5553 pte_t *pte;
5554 spinlock_t *ptl;
5556 split_huge_page_pmd(walk->mm, pmd);
5557 retry:
5558 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5559 for (; addr != end; addr += PAGE_SIZE) {
5560 pte_t ptent = *(pte++);
5561 union mc_target target;
5562 int type;
5563 struct page *page;
5564 struct page_cgroup *pc;
5565 swp_entry_t ent;
5567 if (!mc.precharge)
5568 break;
5570 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5571 switch (type) {
5572 case MC_TARGET_PAGE:
5573 page = target.page;
5574 if (isolate_lru_page(page))
5575 goto put;
5576 pc = lookup_page_cgroup(page);
5577 if (!mem_cgroup_move_account(page, 1, pc,
5578 mc.from, mc.to, false)) {
5579 mc.precharge--;
5580 /* we uncharge from mc.from later. */
5581 mc.moved_charge++;
5583 putback_lru_page(page);
5584 put: /* is_target_pte_for_mc() gets the page */
5585 put_page(page);
5586 break;
5587 case MC_TARGET_SWAP:
5588 ent = target.ent;
5589 if (!mem_cgroup_move_swap_account(ent,
5590 mc.from, mc.to, false)) {
5591 mc.precharge--;
5592 /* we fixup refcnts and charges later. */
5593 mc.moved_swap++;
5595 break;
5596 default:
5597 break;
5600 pte_unmap_unlock(pte - 1, ptl);
5601 cond_resched();
5603 if (addr != end) {
5605 * We have consumed all precharges we got in can_attach().
5606 * We try charge one by one, but don't do any additional
5607 * charges to mc.to if we have failed in charge once in attach()
5608 * phase.
5610 ret = mem_cgroup_do_precharge(1);
5611 if (!ret)
5612 goto retry;
5615 return ret;
5618 static void mem_cgroup_move_charge(struct mm_struct *mm)
5620 struct vm_area_struct *vma;
5622 lru_add_drain_all();
5623 retry:
5624 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5626 * Someone who are holding the mmap_sem might be waiting in
5627 * waitq. So we cancel all extra charges, wake up all waiters,
5628 * and retry. Because we cancel precharges, we might not be able
5629 * to move enough charges, but moving charge is a best-effort
5630 * feature anyway, so it wouldn't be a big problem.
5632 __mem_cgroup_clear_mc();
5633 cond_resched();
5634 goto retry;
5636 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5637 int ret;
5638 struct mm_walk mem_cgroup_move_charge_walk = {
5639 .pmd_entry = mem_cgroup_move_charge_pte_range,
5640 .mm = mm,
5641 .private = vma,
5643 if (is_vm_hugetlb_page(vma))
5644 continue;
5645 ret = walk_page_range(vma->vm_start, vma->vm_end,
5646 &mem_cgroup_move_charge_walk);
5647 if (ret)
5649 * means we have consumed all precharges and failed in
5650 * doing additional charge. Just abandon here.
5652 break;
5654 up_read(&mm->mmap_sem);
5657 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5658 struct cgroup *cont,
5659 struct cgroup *old_cont,
5660 struct task_struct *p)
5662 struct mm_struct *mm = get_task_mm(p);
5664 if (mm) {
5665 if (mc.to)
5666 mem_cgroup_move_charge(mm);
5667 put_swap_token(mm);
5668 mmput(mm);
5670 if (mc.to)
5671 mem_cgroup_clear_mc();
5673 #else /* !CONFIG_MMU */
5674 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5675 struct cgroup *cgroup,
5676 struct task_struct *p)
5678 return 0;
5680 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5681 struct cgroup *cgroup,
5682 struct task_struct *p)
5685 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5686 struct cgroup *cont,
5687 struct cgroup *old_cont,
5688 struct task_struct *p)
5691 #endif
5693 struct cgroup_subsys mem_cgroup_subsys = {
5694 .name = "memory",
5695 .subsys_id = mem_cgroup_subsys_id,
5696 .create = mem_cgroup_create,
5697 .pre_destroy = mem_cgroup_pre_destroy,
5698 .destroy = mem_cgroup_destroy,
5699 .populate = mem_cgroup_populate,
5700 .can_attach = mem_cgroup_can_attach,
5701 .cancel_attach = mem_cgroup_cancel_attach,
5702 .attach = mem_cgroup_move_task,
5703 .early_init = 0,
5704 .use_id = 1,
5707 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5708 static int __init enable_swap_account(char *s)
5710 /* consider enabled if no parameter or 1 is given */
5711 if (!strcmp(s, "1"))
5712 really_do_swap_account = 1;
5713 else if (!strcmp(s, "0"))
5714 really_do_swap_account = 0;
5715 return 1;
5717 __setup("swapaccount=", enable_swap_account);
5719 #endif