block, bfq: clarify the goal of bfq_split_bfqq()
[linux/fpc-iii.git] / kernel / time / sched_clock.c
blobe4332e3e2d5691430314ba70911a8610e7044d79
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic sched_clock() support, to extend low level hardware time
4 * counters to full 64-bit ns values.
5 */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
20 #include "timekeeping.h"
22 /**
23 * struct clock_read_data - data required to read from sched_clock()
25 * @epoch_ns: sched_clock() value at last update
26 * @epoch_cyc: Clock cycle value at last update.
27 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
28 * clocks.
29 * @read_sched_clock: Current clock source (or dummy source when suspended).
30 * @mult: Multipler for scaled math conversion.
31 * @shift: Shift value for scaled math conversion.
33 * Care must be taken when updating this structure; it is read by
34 * some very hot code paths. It occupies <=40 bytes and, when combined
35 * with the seqcount used to synchronize access, comfortably fits into
36 * a 64 byte cache line.
38 struct clock_read_data {
39 u64 epoch_ns;
40 u64 epoch_cyc;
41 u64 sched_clock_mask;
42 u64 (*read_sched_clock)(void);
43 u32 mult;
44 u32 shift;
47 /**
48 * struct clock_data - all data needed for sched_clock() (including
49 * registration of a new clock source)
51 * @seq: Sequence counter for protecting updates. The lowest
52 * bit is the index for @read_data.
53 * @read_data: Data required to read from sched_clock.
54 * @wrap_kt: Duration for which clock can run before wrapping.
55 * @rate: Tick rate of the registered clock.
56 * @actual_read_sched_clock: Registered hardware level clock read function.
58 * The ordering of this structure has been chosen to optimize cache
59 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
60 * into a single 64-byte cache line.
62 struct clock_data {
63 seqcount_t seq;
64 struct clock_read_data read_data[2];
65 ktime_t wrap_kt;
66 unsigned long rate;
68 u64 (*actual_read_sched_clock)(void);
71 static struct hrtimer sched_clock_timer;
72 static int irqtime = -1;
74 core_param(irqtime, irqtime, int, 0400);
76 static u64 notrace jiffy_sched_clock_read(void)
79 * We don't need to use get_jiffies_64 on 32-bit arches here
80 * because we register with BITS_PER_LONG
82 return (u64)(jiffies - INITIAL_JIFFIES);
85 static struct clock_data cd ____cacheline_aligned = {
86 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
87 .read_sched_clock = jiffy_sched_clock_read, },
88 .actual_read_sched_clock = jiffy_sched_clock_read,
91 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
93 return (cyc * mult) >> shift;
96 unsigned long long notrace sched_clock(void)
98 u64 cyc, res;
99 unsigned int seq;
100 struct clock_read_data *rd;
102 do {
103 seq = raw_read_seqcount(&cd.seq);
104 rd = cd.read_data + (seq & 1);
106 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
107 rd->sched_clock_mask;
108 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
109 } while (read_seqcount_retry(&cd.seq, seq));
111 return res;
115 * Updating the data required to read the clock.
117 * sched_clock() will never observe mis-matched data even if called from
118 * an NMI. We do this by maintaining an odd/even copy of the data and
119 * steering sched_clock() to one or the other using a sequence counter.
120 * In order to preserve the data cache profile of sched_clock() as much
121 * as possible the system reverts back to the even copy when the update
122 * completes; the odd copy is used *only* during an update.
124 static void update_clock_read_data(struct clock_read_data *rd)
126 /* update the backup (odd) copy with the new data */
127 cd.read_data[1] = *rd;
129 /* steer readers towards the odd copy */
130 raw_write_seqcount_latch(&cd.seq);
132 /* now its safe for us to update the normal (even) copy */
133 cd.read_data[0] = *rd;
135 /* switch readers back to the even copy */
136 raw_write_seqcount_latch(&cd.seq);
140 * Atomically update the sched_clock() epoch.
142 static void update_sched_clock(void)
144 u64 cyc;
145 u64 ns;
146 struct clock_read_data rd;
148 rd = cd.read_data[0];
150 cyc = cd.actual_read_sched_clock();
151 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
153 rd.epoch_ns = ns;
154 rd.epoch_cyc = cyc;
156 update_clock_read_data(&rd);
159 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
161 update_sched_clock();
162 hrtimer_forward_now(hrt, cd.wrap_kt);
164 return HRTIMER_RESTART;
167 void __init
168 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
170 u64 res, wrap, new_mask, new_epoch, cyc, ns;
171 u32 new_mult, new_shift;
172 unsigned long r, flags;
173 char r_unit;
174 struct clock_read_data rd;
176 if (cd.rate > rate)
177 return;
179 /* Cannot register a sched_clock with interrupts on */
180 local_irq_save(flags);
182 /* Calculate the mult/shift to convert counter ticks to ns. */
183 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
185 new_mask = CLOCKSOURCE_MASK(bits);
186 cd.rate = rate;
188 /* Calculate how many nanosecs until we risk wrapping */
189 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
190 cd.wrap_kt = ns_to_ktime(wrap);
192 rd = cd.read_data[0];
194 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
195 new_epoch = read();
196 cyc = cd.actual_read_sched_clock();
197 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
198 cd.actual_read_sched_clock = read;
200 rd.read_sched_clock = read;
201 rd.sched_clock_mask = new_mask;
202 rd.mult = new_mult;
203 rd.shift = new_shift;
204 rd.epoch_cyc = new_epoch;
205 rd.epoch_ns = ns;
207 update_clock_read_data(&rd);
209 if (sched_clock_timer.function != NULL) {
210 /* update timeout for clock wrap */
211 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
214 r = rate;
215 if (r >= 4000000) {
216 r /= 1000000;
217 r_unit = 'M';
218 } else {
219 if (r >= 1000) {
220 r /= 1000;
221 r_unit = 'k';
222 } else {
223 r_unit = ' ';
227 /* Calculate the ns resolution of this counter */
228 res = cyc_to_ns(1ULL, new_mult, new_shift);
230 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
231 bits, r, r_unit, res, wrap);
233 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
234 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
235 enable_sched_clock_irqtime();
237 local_irq_restore(flags);
239 pr_debug("Registered %pS as sched_clock source\n", read);
242 void __init generic_sched_clock_init(void)
245 * If no sched_clock() function has been provided at that point,
246 * make it the final one one.
248 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
249 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
251 update_sched_clock();
254 * Start the timer to keep sched_clock() properly updated and
255 * sets the initial epoch.
257 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
258 sched_clock_timer.function = sched_clock_poll;
259 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
263 * Clock read function for use when the clock is suspended.
265 * This function makes it appear to sched_clock() as if the clock
266 * stopped counting at its last update.
268 * This function must only be called from the critical
269 * section in sched_clock(). It relies on the read_seqcount_retry()
270 * at the end of the critical section to be sure we observe the
271 * correct copy of 'epoch_cyc'.
273 static u64 notrace suspended_sched_clock_read(void)
275 unsigned int seq = raw_read_seqcount(&cd.seq);
277 return cd.read_data[seq & 1].epoch_cyc;
280 int sched_clock_suspend(void)
282 struct clock_read_data *rd = &cd.read_data[0];
284 update_sched_clock();
285 hrtimer_cancel(&sched_clock_timer);
286 rd->read_sched_clock = suspended_sched_clock_read;
288 return 0;
291 void sched_clock_resume(void)
293 struct clock_read_data *rd = &cd.read_data[0];
295 rd->epoch_cyc = cd.actual_read_sched_clock();
296 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
297 rd->read_sched_clock = cd.actual_read_sched_clock;
300 static struct syscore_ops sched_clock_ops = {
301 .suspend = sched_clock_suspend,
302 .resume = sched_clock_resume,
305 static int __init sched_clock_syscore_init(void)
307 register_syscore_ops(&sched_clock_ops);
309 return 0;
311 device_initcall(sched_clock_syscore_init);